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Firm non-expansive mappings
in weak metric spaces
Armando W. Gutiérrez and Cormac Walsh

Abstract. We introduce the notion of firm non-expansive mapping in
weak metric spaces, extending previous work for Banach spaces and
certain geodesic spaces. We prove that, for firm non-expansive mappings,
the minimal displacement, the linear rate of escape, and the asymptotic
step size are all equal. This generalises a theorem by Reich and Shafrir.
Mathematics Subject Classification (2010). 47H09; 51F99.
Keywords. non-expansive mapping, weak metric, firmly non-expansive,
firm non-expansive, metric functional.

1. Introduction
A fundamental question in the theory of metric spaces is the long term be-
haviour of iterates of non-expansive mappings. Recall that a mapping T of a
metric space (X, δ) into itself is said to be non-expansive if, for every x, y ∈ X,

δ(Tx, Ty) ≤ δ(x, y).

Particularly interesting is the case where the mapping has no fixed point,
because here the iterates have the possibility of escaping to infinity.

In the setting of Banach spaces, Bruck [3] introduced a special class of
non-expansive mappings, which he called firmly non-expansive. These map-
pings were further studied in [7, p.41, p.129] and [26]. In particular, it was
shown in [26] that for firmly non-expansive mappings the minimal displace-
ment, the linear rate of escape, and the asymptotic step size are all equal.
The definition of firmly non-expansive and the equality of these three quan-
tities were extended by Ariza-Ruiz et al. [1, Theorem 5.1] to a broader class
of spaces, namely, the W -hyperbolic spaces. These are geodesic metric spaces
with a certain “negative curvature”-type condition.

In this paper, we broaden the idea further. We introduce the notion of
firm non-expansive mapping in arbitrary (weak) metric spaces. Our definition
does not assume the existence of geodesics. This is significant since in modern
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optimisation applications one often deals with discrete spaces or has access
to a collection of points of a space whose geometric structure is unknown. We
show, in Section 2, that our class of firm non-expansive mappings contains all
the firmly non-expansive ones in the setting of Banach spaces or W -hyperbolic
spaces. In Section 3, we provide non-trivial examples by characterising the
firm non-expansive mappings of 1-dimensional asymmetric normed spaces.
We then prove in Section 4 our main result, which is as follows.

Theorem 1.1. Let T be a firm non-expansive mapping of a weak metric space
(X, δ) into itself. Then, for every x ∈ X and every integer k ≥ 1,

inf
w∈X

δ(w, Tw) = lim
n→∞

δ(x, Tnx)

n
= lim

n→∞
δ(Tnx, Tn+1x) =

1

k
lim

n→∞
δ(Tnx, Tn+kx).

The first three quantities in this equation are, respectively, the minimal
displacement, the linear rate of escape, and the asymptotic step size, men-
tioned earlier. Our theorem thus generalises the results by Reich and Shafrir
and by Ariza-Ruiz et al., referred to above.

We conclude this note by proving in Section 5 a couple of corollaries
of our main result, concerning the behaviour of the iterates of firm non-
expansive mappings in terms of metric functionals.

The first enhances [5, Theorem 16] for firm non-expansive mappings
in arbitrary metric spaces when the linear rate of escape, denoted by ρ(T ),
equals zero (compare also with [12, Proposition 3]).

Corollary 1.2. Let T be a firm non-expansive mapping of a metric space (X, δ)
into itself such that ρ(T ) = 0. Then, there exists a metric functional h on X
such that, for every x ∈ X,

h(Tx) ≤ h(x).

We point out that the metric functional h in Corollary 1.2 is defined
in terms of the iterates Tnx0 for some x0 ∈ X, whereas the construction
of the metric functional appearing in [5, Theorem 16] relies strongly on the
non-positive curvature condition assumed there.

A theorem by Lins [22, Theorem 2.1] states that, for every fixed-point-
free non-expansive mapping in a finite-dimensional normed space, there is
a metric functional along which the orbits are seen to escape to infinity.
It is not known in general whether this behaviour of escaping to infinity
is monotone. We use Corollary 1.2 to show that, in the case of firm non-
expansive mappings, it is.

Corollary 1.3. Let T be a firm non-expansive mapping of a finite-dimensional
normed space (V, ‖ · ‖) into itself. Suppose that ρ(T ) = 0. Then, either T has
bounded orbits, or there is a metric functional h on V such that, for every
x ∈ V , the sequence (h(Tnx))n converges monotonically to −∞. Moreover,
the metric functional h is a limit point of the orbit (Tn0)n≥0.
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2. Firm non-expansive mappings
A weak metric on a set X is a mapping δ : X × X → [0,+∞[ satisfying
δ(x, x) = 0, for every x ∈ X, and the triangle inequality

δ(x, z) ≤ δ(x, y) + δ(y, z),

for every x, y, z ∈ X. Examples of weak metrics include the Funk weak metric,
the Apollonian weak metric, and Thurston’s metric; see the papers [23, 24] by
Papadopoulos and Troyanov for more details. Weak metrics are sometimes
called quasi-pseudometrics.

Motivated by Ćirić’s work [4] on a generalisation of Banach’s contrac-
tion principle, we introduce the notion of firm non-expansive mapping in an
arbitrary weak metric space.
Definition 2.1. A mapping T of a weak metric space (X, δ) into itself is firm
if there exist mappings q, r, s, and t of X × X into the interval [0,+∞[
satisfying the following three conditions:

inf
(x,y)∈X×X

t(x, y) > 0; (2.1)

sup
(x,y)∈X×X

q(x, y) + r(x, y) + s(x, y) + 2t(x, y) ≤ 1; (2.2)

and, for every x, y ∈ X,
δ(Tx, Ty) ≤ q(x, y)δ(x, y) + r(x, y)δ(x, Tx) + s(x, y)δ(y, Ty)

+ t(x, y)
[
δ(x, Ty) + δ(Tx, y)

]
.

(2.3)

We say that T is firm non-expansive if it is both firm and non-expansive.
For purposes of comparison, we recall Bruck’s notion of firmly non-

expansive mapping. A mapping T of a Banach space (V, ‖ · ‖) into itself is
said to be firmly non-expansive if, for every x, y ∈ V and every 0 < λ ≤ 1,

‖Tx− Ty‖ ≤ ‖(1− λ)(Tx− Ty) + λ(x− y)‖. (2.4)
A simple example of a firm non-expansive mapping that is not firmly non-
expansive is the mapping x 7→ Tx = |x| + 1 on the real line endowed with
its usual metric. Indeed, for x < 0 and y = 0, there is no λ ∈]0, 1[ such that
(2.4) holds. One can readily verify that this mapping is firm non-expansive.
Another example of a firm non-expansive mapping on the real line is

Tx =

{
−x+ 1 if x < 0,

x+ e−x if x ≥ 0.

By setting q(x, y) = r(x, y) = s(x, y) = 0 and t(x, y) = 1/2 for every x, y, we
see that T is firm non-expansive.

Every firmly non-expansive mapping in a Banach space is firm non-
expansive. Indeed, if T satisfies inequality (2.4) with λ ∈]0, 1[, then, for every
x, y ∈ V ,

‖Tx− Ty‖ ≤ λ

2− λ
‖x− y‖+ 1− λ

2− λ
(‖x− Ty‖+ ‖Tx− y‖) .
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Our claim follows from this by fixing λ ∈]0, 1[ and setting

q(x, y) =
λ

2− λ
, r(x, y) = 0, s(x, y) = 0, and t(x, y) =

1− λ

2− λ
,

for every x, y ∈ V . More generally, every firmly non-expansive mapping in a
W -hyperbolic space is firm non-expansive. This follows immediately from [1,
Lemma 5.6].

Our definition of firm non-expansive is inspired by Ćirić’s definition [4]
of a generalised contraction. This is a mapping T from a metric space (X, δ)
to itself such that there exist mappings q, r, s, and t from X ×X to [0,+∞[
such that (2.3) above holds, and the supremum in (2.2) is strictly less than
1. Note that when this is the case, it is possible to slightly increase t every-
where so that (2.1) also holds. The relation between generalised contractions
and our firm non-expansive mappings may be considered similar to the rela-
tion between strict contractions and non-expansive mappings. Ćirić showed
that generalised contractions satisfy the conclusion of Banach’s Contraction
Theorem.

Other authors have focused on the existence of a unique fixed point of
mappings that satisfy conditions similar to those considered in our definition
of firm mapping; see [6, 13, 25, 27, 32]. In contrast, we are interested in the
asymptotic behaviour of fixed-point-free non-expansive mappings.

The definition of firmly non-expansive mappings of Ariza-Ruiz et al.
was studied in the context of CAT(0) spaces in [21]. For a different approach
to generalising firmly non-expansive mappings, see [2].

3. An example: asymmetric norms on R.
The following characterisation of firmness for non-expansive mappings will
prove useful in studying our example. Let T be a non-expansive self-mapping
of a weak metric space (X, δ). For each x, y ∈ X, define

M(x, y) := max
[
δ(x, y), δ(x, Tx), δ(y, Ty)

]
A(x, y) :=

1

2

(
δ(x, Ty) + δ(Tx, y)

)
and τ(x, y) :=

M(x, y)− δ(Tx, Ty)

2
(
M(x, y)−A(x, y)

) .
Then, T is firm if and only if

inf
{
τ(x, y) | x, y ∈ X, A(x, y) < δ(Tx, Ty)

}
> 0.

3.1. Asymmetric norms on R.
We consider R endowed with an asymmetric norm

||x|| := max
(
− αx, βx

)
,

where α and β are positive real numbers.
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For each distinct x and y in R, define zxy to be the unique element of
R such that ||zxy − y|| = ||y − x|| and (y − x)(zxy − y) < 0. If x and y are
points of R, and T is a mapping such that Tx = y and Ty = zxy, then one
can calculate that τ(x, y) = 0 in the criterion above with δ(x, y) := ||y − x||,
and hence the mapping T is not firm.

The following proposition shows that a non-expansive self-mapping of
(R, || · ||) fails to be firm precisely when one can find points arbitrarily close
to this configuration.

Proposition 3.1. Let (R, || · ||) be the asymmetric normed space above. Then,
a non-expansive mapping T : R → R is not firm if and only if, for every ϵ > 0
there exist distinct points x and y in R such that ||Tx− y|| and ||Ty − zxy||
are both less than ||y − x||ϵ.

In particular, we see that every fixed-point-free non-expansive mapping
on (R, || · ||) is firm. This shows that firm non-expansive mappings are consid-
erably more general than firmly non-expansive mappings, even in dimension
one. Recall that, on R, the latter mappings are precisely the 1-Lipschitz map-
pings that are non-decreasing.

Proof. Assume first that T satisfies the condition. So, we can find sequences
of points xn and yn in R such that ||Txn − yn||/dn and ||Tyn − zxn,yn

||/dn
converge to zero, where dn := ||yn−xn||, for all n. It follows that Mn/dn and
δn/dn both converge to 1, where Mn := M(xn, yn) and δn := ||Tyn − Txn||,
for all n. Define An := A(xn, yn), for all n. Since ||zxn,yn

−xn|| ≤ ||yn −xn||,
for all n, we have

lim sup
n

An

dn
≤ 1

2
.

This gives An < δn for n large enough, and that τ(xn, yn) converges to zero.
By the criterion at the start of this section, T is not firm.

Now assume that T is not firm. So, there exists sequences of points xn

and yn in R such that An < δn for all n, and τn converges to zero, where we
have written An := A(xn, yn) and δn := ||Tyn − Txn||, and τn := τ(xn, yn).
We assume without loss of generality that xn < yn, for all n. If there is a
subsequence where the opposite inequality is true, it can be handled in a
similar manner. Note that, for any n,

An ≥ 1

2
β
(
Tyn − xn + yn − Txn

)
.

If Tyn ≥ Txn, then the non-expansiveness of T would imply that the quantity
on the right-hand-side is greater than or equal to δn, which is not the case.
We conclude that Tyn < Txn, for all n.

For each n,

τn ≥ Mn − δn
2Mn

=
1

2

(
1− δn

Mn

)
and δn ≤ ||yn − xn|| ≤ Mn,
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where we have defined Mn := M(xn, yn). We deduce that the ratios
δn/||yn − xn|| and Mn/||yn − xn||

both converge to 1, as n tends to infinity.
It follows from the convergence of the latter ratio that (un, vn) stays

within a bounded region of the plane, where

un :=
Txn − xn

||yn − xn||
and vn :=

Tyn − yn
||yn − xn||

.

Let (u, v) be a limit point of this sequence. Again from the convergence of
the ratio, both u and v lie in the interval [−1/α, 1/β]. Since, for each n,

δn
||yn − xn||

=
||Tyn − Txn||
||yn − xn||

= −α
(
vn − un +

yn − xn

||yn − xn||

)
= −α

(
vn − un +

1

β

)
,

we get that v − u = −1/α − 1/β. We deduce that v = −1/α and u = 1/β.
Hence ||un|| and ||vn|| both converge to 1. It follows that

||Txn − yn||/||yn − xn|| and ||Tyn − zxn,yn ||/||yn − xn||
both converge to zero, as n tends to infinity. □

4. Minimal displacement, linear rate of escape, and asymptotic
step size

Let T be a non-expansive mapping of a weak metric space (X, δ) into itself.
We first recall the relations among the minimal displacement,

ρ(T ) := inf
w∈X

δ(w, Tw),

the (linear) escape rate of the orbits of T ,

ρ(T ) := lim
n→∞

δ(x, Tnx)

n
,

and the asymptotic step size of the orbit (Tnx)n≥0,
σ1(x, T ) := lim

n→∞
δ(Tnx, Tn+1x).

Non-expansiveness and the triangle inequality imply that the linear
rate of escape ρ(T ) is well defined and does not depend on x; see the com-
ment after [5, Definition 11]. Moreover, the following inequality holds (see [5,
Lemma 12]):

ρ(T ) ≥ ρ(T ).

In general, this inequality may be strict, as shown for example in [5, Exam-
ple 26]. Kohlberg and Neyman [19, Theorem 1.1] proved that ρ(T ) = ρ(T )
when (X, δ) is a Banach space. Gaubert and Vigeral [5, Theorem 1] showed
that this equality also holds in a larger class of geodesic metric spaces, namely
when (X, δ) is a complete metrically star-shaped space [5, Definition 5].
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Another consequence of non-expansiveness is that, for every x ∈ X and
every integer k ≥ 1, the following limit exists:

σk(x, T ) := lim
n→∞

δ(Tnx, Tn+kx). (4.1)

Unlike the escape rate, this quantity may depend on x.
By using again the triangle inequality and non-expansiveness, one can

verify that
σk(x, T )

k
≤ σ1(x, T ), for k ≥ 1, (4.2)

and
σ1(x, T ) ≥ ρ(T ). (4.3)

Our main result is that for firm non-expansive mappings the minimal
displacement, the escape rate, and the asymptotic step size are equal.

Theorem 4.1. Let T be a firm non-expansive mapping of a weak metric space
(X, δ) into itself. Then, for every x ∈ X and every integer k ≥ 1,

ρ(T ) = ρ(T ) = σ1(x, T ) =
σk(x, T )

k
.

Proof. Let x be a point in X. First, we show by induction that for every
integer k ≥ 1,

σk(x, T )

k
= σ1(x, T ).

Let k be a positive integer. Assume that the inductive hypothesis is
true, that is,

σj(x, T ) = jσ1(x, T ),

for every positive integer j ≤ k. Let ϵ be a positive real number. It follows
from (4.1) and the inductive hypothesis that there exists a positive integer
N so that for every n ≥ N and every j ≤ k,

j(σ1(x, T )− ϵ) ≤ δ(Tnx, Tn+jx) ≤ j(σ1(x, T ) + ϵ). (4.4)
Since T is firm, there exist non-negative functions q, r, s, t on X × X

satisfying the properties (2.1), (2.2) and (2.3). The following notation will be
helpful:

qba := q(T ax, T bx), rba := r(T ax, T bx), sba := s(T ax, T bx),

tba := t(T ax, T bx), δba := δ(T ax, T bx),

for all positive integers a, b. Now, the property (2.3) implies that

δn+k+1
n ≥ 1

tn+k
n

δn+k+1
n+1 − qn+k

n

tn+k
n

δn+k
n − rn+k

n

tn+k
n

δn+1
n − sn+k

n

tn+k
n

δn+k+1
n+k −δn+k

n+1 . (4.5)

By applying (4.4) in (4.5), it follows that for every n ≥ N ,

δn+k+1
n ≥ k

tn+k
n

(σ1(x, T )− ϵ)− qn+k
n

tn+k
n

k(σ1(x, T ) + ϵ)− rn+k
n

tn+k
n

(σ1(x, T ) + ϵ)

− sn+k
n

tn+k
n

(σ1(x, T ) + ϵ)− (k − 1)(σ1(x, T ) + ϵ),
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or equivalently,
δn+k+1
n ≥ (An,k − k + 1)σ1(x, T )− (Bn,k + k − 1) ϵ, (4.6)

where
An,k :=

k − kqn+k
n − rn+k

n − sn+k
n

tn+k
n

and
Bn,k :=

k + kqn+k
n + rn+k

n + sn+k
n

tn+k
n

.

On the other hand, if we let α denote the positive real number given in
(2.1), then the property (2.2) implies that

Bn,k ≤ 1 + 2k

α
(4.7)

and also
An,k ≥ 2k. (4.8)

By applying the inequalities (4.7) and (4.8) in (4.6), we obtain for every
n ≥ N ,

δn+k+1
n ≥ (k + 1)σ1(x, T )−

[
1 + 2k

α
+ k − 1

]
ϵ.

Taking the limit first as n tends to infinity, and then as ϵ tends to zero, we
get

σk+1(x, T ) ≥ (k + 1)σ1(x, T ).

This inequality together with (4.2) show our first claim.
To complete the proof of our theorem, we need only show that σ1(x, T )

and ρ(T ) are equal. Indeed, since T is non-expansive, we have that, for every
positive integer m,

σm(x, T ) ≤ δ(x, Tmx).

So, by our first claim, σ1(x, T ) ≤ δ(x, Tmx)/m. By letting m tend to infinity,
we obtain

σ1(x, T ) ≤ ρ(T ).

This inequality is finally combined with (4.3) and the inequality ρ(T ) ≥ ρ(T )
to complete the proof. □

5. Metric functionals
Let (X, δ) be a metric space and let x0 be an arbitrary base-point in X. We
consider the mapping

Φ : X → RX

w 7→ hw(·) := δ(·, w)− δ(x0, w).

If we endow the target space RX with the topology of point-wise convergence,
then the mapping Φ is a continuous injection. Moreover, the closure Φ(X) is
compact and consists of mappings h : X → R vanishing at x0 and satisfying
|h(x) − h(y)| ≤ δ(x, y), for every x, y ∈ X. Each element of the compact
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space Φ(X) is called a metric functional. Metric functionals and the related
notion of horofunctions are discussed in [9, 8, 17, 18]. These objects have
been studied in spaces such as Hilbert and Thompson geometries [29, 20, 30],
Teichmüller geometry [31], and normed spaces [28, 14, 10, 9, 11].

Among other applications, metric functionals are useful for understand-
ing the behaviour of the iterates of non-expansive mappings. Karlsson [15]
proved the following result, which he calls the Metric Spectral Principle [16].

Theorem 5.1. Let T be a non-expansive mapping of a metric space (X, δ) into
itself. Then, there exists a metric functional h such that

h(Tn(x0)) ≤ −ρ(T )n

for every n ≥ 1. Moreover, for every x ∈ X,

lim
n→∞

− 1

n
h(Tnx) = ρ(T ).

Complementing this, Gaubert and Vigeral [5] proved the following.

Theorem 5.2. If (X, δ) is a Banach space or, more generally, a complete
metrically star-shaped space, then ρ(T ) = ρ(T ) and there exists a metric
functional h such that for every x ∈ X,

h(Tx) ≤ h(x)− ρ(T ).

It should be noted that the metric functional appearing in Theorem 5.1
is a limit point of the orbit (Tnx0)n≥0 in the compact space Φ(X). On the
other hand, in Theorem 5.2, the metric functional is constructed by compos-
ing T with a retraction along geodesics to get a strict contraction, having of
course a fixed point, and then taking a limit point of the sequence of fixed
points as the retraction approaches the identity.

Proof of Corollary 1.2. Recall that Φ(X) is a compact space. This space is
sequentially compact whenever X is separable. In this case, there is a sub-
sequence ni such that Φ(Tnix0) converges to some h ∈ Φ(X) as i → ∞.
Since T is a firm non-expansive mapping and δ is a metric, it follows from
Theorem 1.1 that for every x ∈ X,

h(Tx) = lim
i→∞

[
δ(Tx, Tnix0)− δ(x0, T

nix0)
]

≤ lim inf
i→∞

[
δ(Tx, Tni+1x0) + δ(Tni+1x0, T

nix0)− δ(x0, T
nix0)

]
≤ lim inf

i→∞

[
δ(x, Tnix0)− δ(x0, T

nix0) + δ(Tnix0, T
ni+1x0)

]
= h(x) + ρ(T ).

Our claim follows immediately from the assumption ρ(T ) = 0.
In general, Φ(X) is not sequentially compact. However, we can argue as

follows. For every n ≥ 1 define the set

Wn = {h ∈ Φ(X) : h(Tx) ≤ h(x) + δ(Tnx0, T
n+1x0), for all x ∈ X}.
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Each Wn is non-empty since Φ(Tnx0) belongs to Wn. Moreover, (Wn)n≥1 is a
non-increasing sequence of compact subsets of Φ(X). Therefore, there exists
h ∈

∩
n≥1 Wn satisfying our claim. □

Proof of Corollary 1.3. We fix here x0 = 0 ∈ V . If the orbit (Tn0)n≥0 is
unbounded, it follows from [22, p. 2390] that there exists a subsequence ni

such that Φ(Tni0) converges to some h ∈ Φ(V ) as i → ∞. Moreover, for
every x ∈ V ,

lim
n→∞

h(Tnx) = −∞.

Since T is firm non-expansive and ρ(T ) = 0, it follows from Corollary 1.2
that

h(Tn+1x) ≤ h(Tnx),

for every n ≥ 0. This completes the proof. □
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