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Abstract. The present work aims at handling uncertain materials in shape and topol-
ogy optimisation applied to additive manufacturing. More specifically, we minimise an
objective function combining the mean values of standard cost functions and assume that
the uncertainties are small and generated by two random variables. These two variables
representing the amplitude of the Young’s modulus correspond to the zone of porosity
inclusion and surface roughness defects. A deterministic approach that relies on a second-
order Taylor expansion of the cost function has been proposed by Allaire & Dapogny [2].
The present work proposes a general framework to handle uncertainties of the Young’s
modulus in which its amplitude is divided into N zones and then applied onto two zones
corresponding to the porosity inclusion and surface roughness defects. We demonstrate
the effectiveness of the approach in the context of the level-set-based topology optimisa-
tion for the robust compliance minimisation of three-dimensional cantilever test cases.
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1 INTRODUCTION

Additive manufacturing (AM) technology has demonstrated its effectiveness in produc-
ing complex part designs. However, it is well known that AM leads to high uncertainties
at the microstructure level that affect the suitability of the part as-built [4]. These un-
certainties are linked to geometric defects such as porosity and surface roughness which
directly result in high variability of material properties such as the Young’s modulus [1].
The present paper aims at handling material uncertainty in the context of shape and
topology optimisation for additive manufacturing. Concretely, we minimise a composite
objective function depending on the mean values of standard cost functions and assume
that the uncertainties are small and generated by a finite number of random variables.
More precisely, two random variables represent the porosity and the surface roughness un-
certainties characterised by variations of the Young’s modulus. A deterministic approach
that relies on a second-order Taylor expansion of the cost function has been proposed by
Allaire and Dapogny [2]. We demonstrate the effectiveness of the approach in the context
of the level-set-based topology optimisation for the robust compliance minimisation on
three-dimensional test cases. From a computational point of view, our strategy relies on
a body-fitted mesh evolution approach allowing to generate adapted, high quality meshes
of the mechanical parts at each stage of the optimisation process [3].

2 Young’s modulus characterisation

Metal bed powder based additive manufacturing such as selective laser melting (SLM)
has shown its success in manufacturing parts from a metalic material. Even though the
SLM technology has made significant progress, defects such as porosity inclusion and sur-
face roughness are still present [6]. These defects have a direct influence on mechanical
properties such as the Young’s modulus [7]. This section introduces how to characterise
the Young’s modulus based on the porosity inclusion and surface roughness defects pro-
duced by the SLM additive manufacturing process.

The equivalent Young’s modulus of a porous material can be defined by the exponential
law as follows [5]:

E = E0(1− p

pc
)f , (1)

where E0 is the Young’s modulus of the solid material, p is the porosity of the porous
material, pc is the nominal porosity for which the effective Young’s modulus E is zero,
and f is a constant depending on the morphology and geometry of the grain composing
the porous material.

The defects produced by the additive manufacturing are characterised by the equivalent
bi-material comprising an interior material (blue) and an exterior material (red) as shown
in Figure 1 on the right. The interior material corresponds to the porosity inclusion defect.
The exterior material corresponds to the surface roughness defect. The exterior material
is characterised by the volume generated by the mean surface of the surface roughness
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Figure 1: Porosity inclusion and surface roughness defects of computed tomography scan of an SLM
manufactured beam on the left and the equivalent bi-material comprising interior and exterior materials
on the right.

and the thickness corresponds to the mean amplitude of the surface rougness eS [8] as
shown in Figure 1 on the left .

Let us define pk with k ∈ {int, ext} the respective actual porosities of the interior
and exterior materials, pkc with k ∈ {int, ext} the respective nominal porosities of the

interior and exterior materials, and p̄k = pk

pkc
with k ∈ {int, ext} the respective effective

porosities of the interior and exterior materials. Because the two materials share the same
morphology and geometry of the grain, the constant f is the same for both cases. We can
write the following relation:

Ek = E0(1− p̄k)f , (2)

The equivalent Young’s modulus of the bi-material can be written as:

Eeq =
E0

2
Σk(1− p̄k)f , (3)

The amplitude of the Young’s modulus is defined as the gap between the Young’s
modulus of the solid material and the porous material. Thus, the amplitude can be
written as follow:

Ek
a = akE0(1− (1− p̄k)f ), (4)

where ak is the amplitude factor that indicates the Young’s modulus variability intensity.
In this study, the porosity parameters will be chosen according to the reference of a

sintered iron from [5] as indicated in the table below:
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Table 1: Range of the porosity parameters and Young’s modulus.

E0(GPa) p pc f
212± 3.5 0− 0.22 0.41± 0.09 1.13± 0.36

3 Shape and topology optimisation via level set

3.1 Shape and topology optimisation

The goal of the shape and topology optimisation is to find a shape that is a solution
of a problem of the form:

min
Ω∈Oad

J (Ω), (5)

where J (Ω) is a cost function that depends on the domain Ω ∈ Rd and Oad is the set
of admissible shapes.

Relying on Hadamard’s notion of shape derivative, we evaluate the cost function sen-
sitivity with respect to a certain class of domain perturbations in order to implement an
iterative continuous optimisation algorithm. A variation of a domain Ω is given by:

Ωθ = (I + θ)(Ω), (6)

where θ ∈ W 1,∞(Rd,Rd) and for θ sufficiently small, (I + θ) is a diffeomorphism in Rd.
A function J (Ω) admits a shape derivative if the mapping θ → J (Ωθ) fromW 1,∞(Rd,Rd)

to R is Fréchet differentiable at θ = 0. The Fréchet derivative (or shape derivative) of
J (Ω) is denoted by θ → J ′(Ω)(θ) and defined as:

J (Ωθ) = J (Ω) + J ′(Ω)(θ) + o(θ), (7)

where
|o(θ)|

||θ||W 1,∞(Rd,Rd)

θ→0−→ 0

and J ′(Ω) is a continuous linear form on W 1,∞(Rd,Rd).
The shape derivative depends on the normal trace of the perturbation θ in Ω [10]. In

many relevant cases, it can be written as in [11]:

∀θ ∈ W 1,∞(Rd,Rd), J ′(Ω)(θ) =

∫
∂Ω

vΩ(s)θnΩ ds, (8)

where nΩ is the outward unit normal to the boundary ∂Ω and vΩ(s) depends on J (Ω).
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3.2 Level set method

The level set method introduced by Osher and Sethian [9] is used for the numerical
implementation of the shape and topology optimisation problem. In this framework, a
shape Ω ⊂ Rd is represented by the negative subdomain of an auxiliary level set function
φ : Rd → R :

∀x ∈ Rd,


φ(x) < 0 if x ∈ Ω
φ(x) = 0 if x ∈ ∂Ω

φ(x) > 0 if x ∈ Ω
c

(9)

The motion of a domain Ω(t) for t ∈ [0, T ] according to a normal velocity field V (x, t)
translates into a Hamilton-Jacobi equation for the associated level set function φ(t, .):

∂φ

∂t
+ V |∇φ| = 0, t ∈ (0, T ), x ∈ Rd, (10)

where t is a pseudo-time, the upper bound T is analogous to the step size of a gradient
descent and the advection field V derives from the shape derivative J ′Ω of the objective
function J (Ω). Instead of taking the direction of steepest descent V = −J ′Ω, a regulari-
sation and an extension process to compute V from J ′Ω is implemented [12].

3.3 Remeshing

In this work, the strategy of domain evolution is based on the description of the level
set as mentioned above and also on the explicit mesh discretisation of the level set. The
level set allows abitrary shape evolutions included topology changes; on the other hand,
the remeshing of the level set can describe the evolution of the form without introducing
any numerical artefacts. With the exact discretisation of the level set, we can obtain the
explicit mesh of the design domain D corresponding to the negative φ region [13]. After
adapting the mesh to the actual level set, the mesh of the design domain D contains the
computed mesh Ω as a submesh. The surface interface ∂Ω is explicitly discretised by the
triangulation and the level set is reinitialised by the distance evaluation of the interface
at each point of the design domain.

To obtain the topology change, the design domain is updated by equation (10). The
new topology is defined implicitly by Ωk+1 = {x ∈ D : φk+1(x) < 0}. The explicit mesh
of the design domain Ωk+1 is obtained by the remeshing step and the discretisation of the
zero level set φk+1 [15, 13].

This evolution strategy is used to compute the current point in the optimisation
nullspace-based algorithm used in this study [14].
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4 Random perturbations on materials in shape and topology optimisation

4.1 A model problem

Let us consider a linear elastic solid domain Ω ⊂ Rd. The Dirichlet boundary condition
is imposed on ΓD ⊂ ∂Ω. Body and surface forces are respectively denoted by f ∈ L2(Ω)d

and g ∈ L2(ΓN)d with ΓN ⊂ ∂Ω and Γ0 = ∂Ω\ (ΓN ∪ ΓD). The mechanical problem obeys
the following system of equations :

−div(σ(uΩ)) = f in Ω,
uΩ = 0 on ΓD,

σ(uΩ)n = g on ΓN ,
σ(uΩ)n = 0 on Γ0,

(11)

Let us define Hooke’s tensor firs A(E) ≡ EĀ and σ(uΩ) = Ae(uΩ), where

Āe =
1

2(1 + ν)
e+

ν

(1 + ν)(1− 2ν)
tr(e)I,∀e ∈ S(Rd), (12)

where S is a regular simplex.
We introduce a small perturbation Ê in the equivalent Young’s modulus E = Eeq + Ê

such that Eeq ∈ L∞(Ω), and Ê = ΣN
i=1Ea,iχiξi.Ea,i ∈ L∞(Ω) are the amplitudes of the

perturbation corresponding to the zone χi , N is the number of the regions and ξi the
independent centred normal distribution.

We assume that the perturbations are random and accordingly we set Ê ≡ Ê(x, ω) for
x ∈ Ω and ω ∈ O, where (O,F ,P) is a probability space.

The standard cost function can be written as:

M(Ω) =

∫
O
C(Ω, E0 + Ê(., ω))P(dω), (13)

4.2 Mean of the cost function

The mean value of the second-order Taylor expansion developped in [2] can be written
as:

M̃(Ω) =

∫
Ω

X(uΩ, u
1
Ω,1, u

1
Ω,2, ..., u

1
Ω,N , u

2
Ω)dx, (14)

where

X(uΩ, u
1
Ω,1, u

1
Ω,2, ..., u

1
Ω,N , u

2
Ω) = j(uΩ) +

1

2
ΣN
i=1∇2j(uΩ)(u1

Ω,i, u
1
Ω,i) +

1

2
∇j(uΩ)u2

Ω, (15)

where u1
Ω,i, i = 1...N are the solutions to the following equations:

∀v ∈ H1
ΓD

(Ω)d,

∫
Ω

Ae(u1
Ω,i) : e(v)dx = −

∫
Ω

EiχiĀe(uΩ) : e(v)dx, (16)
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By superimposing of the equations (16), we deduce that u1
Ω = ΣN

i=1u
1
Ω,i is the solution

to the equation:

∀v ∈ H1
ΓD

(Ω)d,

∫
Ω

σ(u1
Ω) : e(v)dx = −

∫
Ω

σ1(uΩ) : e(v)dx, (17)

where

σ1(uΩ) = ΣN
i=1

Eiχi
Eeq + Eiχi

σ(uΩ), (18)

and u2
Ω is the solution to the equation:

∀v ∈ H1
ΓD

(Ω)d,

∫
Ω

σ(u2
Ω) : e(v)dx = −

∫
Ω

σ1(uΩ) : e(v)dx, (19)

where

σ2(uΩ) = ΣN
i=1

E2
i χi

(Eeq + Eiχi)2
σ(uΩ), (20)

4.3 Shape derivative of the mean of the cost function

According to The theorem 16 in Allaire & Dapogny [2], the Fréchet derivative of the
mean of the cost function is given by :

∀θ ∈ Oad,M̃′(Ω) =
∫

Γ
(X(uΩ, u

1
Ω,1, u

1
Ω,2, ..., u

1
Ω,N , u

2
Ω)

+Y (uΩ, pΩ, u
1
Ω,1, p

1
Ω,1, u

1
Ω,2, p

1
Ω,2, ..., u

1
Ω,N , p

1
Ω,N , u

2
Ω, p

2
Ω))nθ ds,

(21)

where

Y (uΩ, pΩ, u
1
Ω,1, p

1
Ω,1, u

1
Ω,2, p

1
Ω,2, ..., u

1
Ω,N , p

1
Ω,N , u

2
Ω, p

2
Ω) = Ae(u2

Ω) : e(pΩ) + Ae(uΩ) : e(p2
Ω)

+ΣN
i=1(EiχiĀe(u

1
Ω,i) : e(pΩ) + Ae(u1

Ω,i) : e(p1
Ω,i) + EiχiĀe(uΩ) : e(p1

Ω,i)),
(22)

pΩ is the solution of the equation:

∀v ∈ H1
ΓD

(Ω)d,

∫
Ω

Ae(pΩ) : e(v)dx = −
∫

Ω

∇j(uΩ)vdx, (23)

p1
Ω,i, i = 1...N are the solutions of the following equations:

∀v ∈ H1
ΓD

(Ω)d,

∫
Ω

Ae(p1
Ω,i) : e(v)dx = −

∫
Ω

∇2j(uΩ)(u1
Ω,i, v)dx−

∫
Ω

EiχiĀe(pΩ) : e(v)dx,

(24)
By superimposing of the equations (24), we deduce that p1

Ω = ΣN
i=1p

1
Ω,i is the solution

to the equation:

∀v ∈ H1
ΓD

(Ω)d,

∫
Ω

σ(p1
Ω) : e(v)dx = −

∫
Ω

∇2j(uΩ)(u1
Ω, v)dx−

∫
Ω

σ1(pΩ) : e(v)dx, (25)
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and p2
Ω is the solution to the equation:

∀v ∈ H1
ΓD

(Ω)d,
∫

Ω
Ae(p2

Ω) : e(v)dx =
−
∫

Ω
∇j(uΩ)(uΩ, v)dx− 1

2

∫
Ω
∇2j(uΩ)(u2

Ω, v)dx
−1

2

∫
Ω
∇3j(uΩ)(u1

Ω, u
1
Ω, v)dx− σ2(pΩ) : e(v)dx,

(26)

4.4 Application to robust compliance

The so-called compliance function is defined as:

C(Ω) =

∫
Ω

σ(uΩ) : e(uΩ)dx, (27)

The approximate of the robust compliance becomes:

M̃(Ω) =

∫
Ω

σ(uΩ) : e(uΩ) +
1

2
σ1(uΩ) : e(u1

Ω) +
1

2
σ(uΩ) : e(u2

Ω)dx, (28)

The corresponding shape derivative can be written as:

∀θ ∈ Oad,M̃′(Ω) =
∫

Γ
(σ(uΩ) : e(uΩ) + 3

2
(σ1(uΩ) : e(u1

Ω) + σ(uΩ) : e(pΩ))− 1
2
σ(uΩ) : e(u2

Ω))nθ ds,
(29)

pΩ is the solution of the adjoint equation:

∀v ∈ H1
ΓD

(Ω)d,

∫
Ω

σ(pΩ) : e(v)dx = −
∫

Ω

σ(uΩ) : e(v)dx−
∫

Ω

σ2(uΩ) : e(v)dx−1

2

∫
Ω

σ(u2
Ω) : e(v)dx,

(30)

4.5 Evolution of amplitude zones corresponding to a topology change

As mentioned in section 2, the additively manufactured structure is divided into two
zones corresponding to the porosity inclusion and the surface roughness defects. The
surface roughness defect is exposed to the empty space zone. It corresponds to the level
set of the designed structure. The zone of the exterior material is created by the offset of
the surface of the designed structure. The offset size is equivalent to the mean amplitude
of surface roughness. This value should be larger or equal to the maximum size of the
mesh to be able to capture the amplitude of this zone. The zone is then updated at each
iteration of the optimisation see Figure 2.
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Figure 2: Evolution of amplitudes zones corresponding to the interior and the exterior materials for the
design space on the left and the new topology on the right.

5 Numerical Example

In the following example, we consider the minimisation of the compliance with a 0.2m3

volume-constraint.
Let us consider the test case of a three-dimensional cantilever. The design domain

is a box of 2m × 0.5m × 1m as shown on Figure 3 on the left. It is clamped at one
extremity of the beam and a surface force is applied at another extremity g = (−1kN, 0, 0).
The clamped zone and the applied force zone are non-optimised zones, i.e, they are not
considered in the optimisation. The nominal material parameters are E0 = 212GPa, ν =
0.3. The porous material parameters are indicated in the table below. From this table,
we can compute the equivalent Young’s modulus by equation (3) Eeq = 141GPa.

Figure 3 in the middle illustrates the initial design with holes. In the initial design
phase, the interface offset that bounds the exterior material amplitude zone is determined
as illustrated in Figure 3 on the right. The amplitude zones change at each optimisation
iteration.

Table 2: Values of porosity parameters for the numerical application.

Material p pc p̄ f
Interoir 0.08 0.41 0.2 1.13
Exteroir 0.16 0.41 0.4 1.13

The optimised shapes obtained at iteration 60 for the deterministic case and at iteration
30 for the robust case are displayed on Figure 4 and 5 on the left. This result clearly
shows that the optimised solution changes significantly when uncertainties are taken into
account. When the amplitudes of each material zone are introduced, the robust optimised
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Figure 3: Boundary condition on the left, initial design in the center and the two zones of interior and
exterior materials on the right.

shape exhibits a high stiffness at the high amplitude zones. The convergence histories of
compliance and volume for the two cases are shown in Figure 4 and 5 on the right.

Figure 4: Final shape at iteration 60 of the deterministic optimisation on the left and the convergence
history on the right.
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Figure 5: Final shape at iteration 30 of the robust optimisation on the left and convergence history on
the right.

6 CONCLUSIONS

This paper introduces a general formulation of the deterministic formulation to take
the uncertainty of the Young’s modulus into account. The superimposed solutions of the
adjoint equations are used to determine the approximate mean value of the cost function
and the corresponding shape derivative. A strategy associating the Young’s modulus value
with the porosity inclusion and the surface roughness defects via two material zones (an
interior and an exterior one) and an exponential law has been proposed. The numerical
example of a 3D cantilever beam shows a significant change of the optimised form when
uncertainties of the Young’s modulus of the two zones are taken into account compared
to the one obtained in the deterministic case.
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