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A uniformization theorem

for closed convex polyhedra

in Euclidean 3-space.

Georg Grützner

ABSTRACT. We introduce a notion of discrete-conformal equivalence of
closed convex polyhedra in Euclidean 3-space. Using this notion, we prove
a uniformization theorem for closed convex polyhedra in Euclidean 3-space.

INTRODUCTION

In this paper, we introduce an equivalence relation on the class of closed
convex polyhedra in the Euclidean 3-space E3. This equivalence relation has
the property that, if P and Q are two convex polyhedra inscribed in the
unit sphere, then P is equivalent to Q if and only if there exists a Möbius
transformation on the sphere that maps the vertex set of P to the vertex
set of Q. This property suggests this equivalence relation as a concept of
discrete conformality.

Inspired by Riemann’s mapping theorem and the more general uniformiza-
tion theorem of Poincaré and Koebe, we prove a uniformization theorem for
closed convex polyhedra in Euclidean 3-space in the following sense.

Theorem 4 (Uniformization). Every closed convex polyhedron in E3 is
discrete-conformally equivalent to a closed convex polyhedron inscribed in
the unit sphere. This polyhedron is unique up to Möbius transformations on
the sphere.

In a special case, we further characterize the equivalence relation by simple
transformations on the vertices of the polyhedra. More specifically, if two
polyhedra P and Q share a common Delaunay triangulation T (to be defined
below), then P and Q are conformally equivalent if and only if there exists
a real valued function uT on the vertices of P such that, for every edge ij
in the Delaunay triangulation between vertices i and j, its length in Q is
related to its length in P by

lQ(ij) = lP (ij) e
1
2
(uT (i)+uT (j)).
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We conjecture more generally that P and Q are discrete-conformally equiv-
alent if and only if there exists a finite sequence of closed convex polyhedra
P = P1, P2, . . . , Pn−1, Pn = Q such that, for k = 1, . . . , n− 1 the polyhedra
Pk and Pk+1 share a common Delaunay triangulation Tk and there exists a
real valued function uTk on the vertices of Pk with the following property.
For every edge ij in the Delaunay triangulation between vertices i and j, its
length in Pk+1 is related to its length in Pk by

lPk+1(ij) = lPk (ij) e
1
2
(uTk

(i)+uTk
(j)).

This work arose out of a general interest in understanding the relationship
between different concepts of discrete conformality that have been developed
in the last decades.

Vertex scalings. The concept of discrete conformality by a vertex scaling
as above, first appeared in a paper by Luo in 2004 [13]. Luo introduces a
discrete scalar curvature on piecewise flat surfaces and describes a discrete
analog of Yamabe flow in this setting. Luo works with a triple (S, T , ρ)
of a surface S and a triangulation T of S, together with a positive real
valued function ρ on the set of edges of T such that the edge lengths of any
triangle in T define an isometric Euclidean triangle. Luo calls the function
ρ a polyhedral metric on (S, T ).

Given a polyhedral metric ρ on (S, T ), let u be a real valued function defined
on the vertex set of (S, T ), Luo defines a discrete-conformal change of ρ by
the vertex scaling

u ∗ ρ(vv′) = ρ(vv′) e
1
2
(u(v)+u(v′))

on edges of T . If u ∗ ρ defines a polyhedral metric, we say that ρ and u ∗ ρ
are discrete-conformally equivalent.

Circle packings. A hint that the concept of conformality could make
sense also in a discrete setting appeared in the theory of circle packings in
the 1930’s. A circle packing is a connected collection of circles in the plane
whose interiors are disjoint. A classical result in this area is Koebe’s circle
packing theorem [12].

Theorem (Koebe). For every connected simple planar graph G there is a
circle packing in the plane whose intersection graph is G.

The intersection graph of a circle packing is the graph having a vertex for
each circle, and an edge for every pair of circles that are tangent. Let S be
an oriented surface, i.e. a connected topological 2-manifold, with a metric.
Given a collection C = {cv} of circles (e.g. metric spheres) in S and a
simplicial 2-complex K triangulating S, the pair (C,K) is said to be a circle
packing for a simplicial 2-complex K, denoted CK , if

1. for each vertex v in K there exists exactly one circle cv in C with center
v and vice versa,

2. if 〈u, v〉 is an edge of K, then the two circles cu and cv form a tangent
pair and
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3. if 〈u, v, w〉 forms a positively oriented face of K, then the three circles
cu, cv and cw form a positively oriented tangent triple in S.

We say that an abstract simplicial 2-complex K is a combinatorial sphere if
it triangulates a topological sphere.

For circle packings for a combinatorial sphere K, Thurston observed the fol-
lowing rigidity property (see Proposition 6.1, p. 72 in [18]). This constitutes
a uniqueness statement, completing Koebe’s existence theorem.

Theorem (Thurston). Let K be a combinatorial sphere. Then there exists
a univalent circle packing CK , i.e. the interior of the circles are disjoint, for
K on the sphere. This circle packing is unique up to Möbius transformations
on the sphere.

Circle patterns. Closely related to circle packings is the concept of circle
patterns. Let G∗ be the dual of a connected planar graph G viewed as a
graph embedded in the sphere, and let α : E(G∗) → (0,π) be a weight on
the edges E(G∗). A spherical circle pattern on the sphere with adjacency
graph G∗ and intersection angles α is a collection of circles for each vertex,
such that the following conditions hold.

1. For each edge uv in E(G∗), the two circles associated to u, v in V (G∗)
intersect with exterior intersection angle α(uv).

2. The circles corresponding to the vertices adjacent to the same face of
G∗ intersect in a single point.

3. Consider a counterclockwise cyclic order of the intersection points from
(2) on the circle corresponding to a vertex v of G∗. This order agrees
with the counterclockwise cyclic order of the cycle of faces of G∗ adja-
cent to v.

Theorem (Rivin [17][15]). Let G∗ be the dual graph of a connected planar
graph G. Let w : G∗ → (0,π) be a weight on the edges of G∗ such that for
all edges incident to a face f of G∗ we have

!

e incident to f

π − α(e) = 2π,

and for every simple circuit e1, . . . , ek of edges in G∗ that does not bound a
single face of G∗ we have

!

i

π − α(ei) > 2π.

Then there exists a spherical circle pattern CG∗ in the sphere with adjacency
graph G∗ and intersection angles α. This circle pattern is unique up to
Möbius transformations on the sphere.

Bobenko and Springborn give an alternative proof of Rivin’s theorem in [11]
which is applicable to higher genus surfaces. Rivin formulates in [17] the
above theorem in terms of ideal convex polyhedra. Circle patterns on the
sphere are closely related to ideal convex polyhedra. We may interpret the
sphere as the ideal boundary of the hyperbolic space H3 in the Poincaré
model. If we carve out all hyperbolic half-planes defined by the circles in
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CG∗ on the ideal boundary of H3, we obtain an ideal convex polyhedron
PCG∗ in H3 with the dihedral angle at an edge e of PCG∗ given by α(e).

From circle packings to vertex scalings. A hint that the concept
of discrete conformality by vertex scaling and the concept of discrete con-
formality associated to circle packings are related, appears in a paper by
Bobenko, Pinkall and Springborn [5]. In their paper they address the fol-
lowing question: Given a polyhedral surface (S, T , ρ) with N vertices and a
set of complete angles (θ1, . . . , θN ) (i.e. the sum of angles around vertices),
satisfying some necessary conditions, does there exist a conformal factor u
such that u ∗ ρ is a polyhedral metric and has complete angle θi at each
vertex? Bobenko, Pinkall and Springborn give a partial answer using a vari-
ational principle. Their functional is closely related to a family of functionals
developed within the theory of circle packings and circle patterns. To this
family belongs for example the functional of Rivin introduced in his paper on
“Euclidean structures on simplicial surfaces and hyperbolic volume” [15] and
the functional of Colin de Verdière that gives an existence and uniqueness
proof of circle packings [7].

Structure of the paper. In section 1 we define the notion of closed convex
polyhedra and ideal polyhedra, state a rigidity property for closed polyhedra,
introduce the notions of polyhedral surfaces, ideal polyhedral surfaces and
development and outline the proof of an isometric embedding theorem of
polyhedral surfaces used in section 3.

In section 2 we outline the proof of an isometric embedding theorem of ideal
polyhedral surfaces used in section 3.

In section 3 we introduce the notion of Delaunay triangulation, define a
notion of discrete conformality of polyhedra and prove the uniformization
theorem of polyhedra mentioned in the introduction. We further characterize
discrete conformality in special cases by elementary transformations on the
vertices of polyhedra. Finally we relate the notion of discrete conformality
of this paper with Thurston’s notion of discrete conformality based on circle
packings.

I would like to thank my PhD. thesis advisor Prof. Pierre Pansu for our
many valuable discussions and his support. It is a great pleasure to discover
and advance mathematics with him. I also thank my Master’s thesis advisor
Prof. Wendelin Werner for his kind support during my time at ETH Zurich.
Lastly, I thank the Studienstiftung des deutschen Volkes for their support
and their trust throughout my career.

1. ALEXANDROV’S THEORY ON CLOSED CONVEX POLYHEDRA

We will consider closed convex polyhedra in Euclidean 3-space E3 and hyper-
bolic 3-space H3. A closed convex polyhedron in E3 or H3 is the convex hull
of a finite set of points in E3 or H3. This definition includes doubly-covered
closed convex polygons. By a closed polygon we mean any domain in E2 or
H2 that is bounded by finitely many geodesic line segments.

The boundary of a closed convex polyhedron is composed of finitely many
closed convex polygons in the respective 2-dimensional space. In the follow-
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ing, we will not explicitely stipulate that the polyhedron under consideration
is closed and convex.

The polygons bounding a polyhedron are the faces of the polyhedron. The
sides and vertices of the faces of a polyhedron are the edges and vertices of
the polyhedron.

In the same manner one could define the vertices of a polyhedron P as the
minimal number of points, whose convex hull agrees with P .

A convex polyhedron with vertices at infinity in H3 is the convex hull of a
finite set of points, some of them lying on the ideal boundary of H3. A
convex polyhedron with all vertices on the ideal boundary is called an ideal
convex polyhedron.

A rigidity property of convex polyhedra. It is a fundamental result
of rigidity theory that convex polyhedra in E3 or H3 with congruent corre-
sponding faces must be congruent to each other. This result is attributed to
Augustin Cauchy who published this result in 1813 [6]. Cauchy’s Theorem
may be formulated as follows (Theorem 1, p. 171 in [1]).

Theorem 1 (Cauchy, Aleksandrov). Every isometry ϕ from the boundary
of a closed convex polyhedron P in R3 or H3 onto the boundary of another
closed convex polyhedron Q can be realized as a motion or a motion and a
reflection, i.e. there is a motion, or a motion followed by a reflection, which
takes each point of the boundary of P to its image under the mapping ϕ.

In fact, this is a slightly stronger form of Cauchy’s Theorem that resulted
from work of Aleksandrov and was published in the 1940’s.

Polyhedral surface. A polyhedral surface (S, d) is a surface S together
with a flat cone metric d on S that has finitely many cone points. A cone
point is a point v in S that admits a circle centered at v with circumference
different from 2πr, where r is its radius.

Given two points x and y on the boundary of a Euclidean or hyperbolic
polyhedron P , there exists a polygonal path from x to y on the boundary
of P . The infimum of the lengths of polygonal paths from x to y defines a
distance on the boundary of P , we denote this polyhedral surface by (S, dP ).
This construction associates with every Euclidean polyhedron P a Euclidean
polyhedral surface (S, dP ) homeomorphic to the sphere.

An ideal polyhedral surface is a complete hyperbolic surface of finite area,
homeomorphic to the N times punctured sphere. We denote a surface home-
omorphic to the N times punctured sphere by X. Analogously, every ideal
polyhedron P gives rise to an ideal polyhedral surface (X, d̂P ).

The complete angle at a point x in a polyhedral surface S is the number

lim
ε→0

Cε(x)

ε
,
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where Cε is the circumference of a circle of radius ε at x. The notion of a
complete angle is an intrinsic property of the polyhedral surface.

Let θ be the complete angle at a point x, the difference 2π−θ is the curvature
at x. A polyhedral surface that has a non-negative curvature at every point
is said to be a polyhedral surface of non-negative curvature.

A polyhedral surface arising as the boundary of a convex polyhedron has
a non-negative curvature everywhere. Conversely, does every polyhedral
surface of non-negative curvature arise from a convex polyhedron in E3 or
H3?

An affirmative answer was given by Alexandrov in the 1940’s. In fact,
Alexandrov showed that every polyhedral surface of non-negative curvature
defines a unique polyhedron in E3 or H3 up to congruence [1].

Development. A development is a finite collection of closed polygons in
E2 or H2 together with a set of rules for “gluing” them together along their
edges. The rule for gluing satisfies the following conditions:

1. The correspondence of “gluing” two segments is an isometry.

2. It is possible to pass from each polygon to any other polygon by travers-
ing polygons with glued sides.

3. Each side of every polygon is glued to exactly one side of another
polygon.

The sides and vertices of the polygons within a development are the edges and
vertices of the development, where identified sides and vertices are considered
the same. We denote a development by R.

Every development R defines an underlying polyhedral surface, which we
denote by (S, dR). In other words, a development is a polyhedral surface
plus a subdivision into geodesic polygons.

Several developments can define the same polyhedral surface. One may
think of a development as a “coordinate representation” of a polyhedral
surface. Different cuttings of a polyhedral surface into polygons correspond
to different coordinate representations of the same polyhedral surface.

Two developments R and R′ can be obtained from each other by cutting and
gluing if the polygons in R can be cut into polygons and glued along edges
such that we obtain the development R′. One observes:

Proposition 1. Two developments R and R′ are related by cutting and
gluing if and only if (S, dR) and (S, dR′) are isometric.

We will use the above ideas to turn the space of closed polyhedral surfaces
into a manifold by “cutting” polyhedral surfaces into triangles. Those rep-
resentations will turn out to be convenient coordinate charts for our space.

Every convex polyhedron is naturally associated with a development. The
face development of a polyhedron P is the development RP whose polygons
are the faces of the polyhedron P .
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Isometric embedding of polyhedral surfaces. We now return to the
question by Alexandrov: Does every polyhedral surface of positive curvature
in E3 arise as the boundary of a convex polyhedron?

We suggested to think of developments of polyhedral surfaces as coordinate
representations of the polyhedral surface. In this section we will make this
more precise by cutting polyhedral surfaces into triangles. We then outline
Alexandrov’s proof that the map assigning its boundary to a polyhedron
achieves a homeomorphism from the space of polyhedra with N vertices up
to congruence to the space of polyhedral surfaces of non-negative curvature
with N cone points.

We say that two polyhedral surfaces (S, d) and (S′, d′) are equivalent, if
there exists an isometry f : (S, d) → (S′, d′). Let Mcon

PL (N) be the space of
equivalence classes of closed simply-connected polyhedral surfaces with N
cone points of strictly positive curvature.

When dealing with coordinates, it is more convenient to work with marked
polyhedral surfaces. A marked polyhedral surface is a polyhedral surface to-
gether with a homeomorphism µ from the standard sphere S with N distinct
points {p1, . . . , pN} to (S, d), where the N distinct points map to cone points
in (S, d). Two marked polyhedral surfaces are said to be equivalent, if there
exists an isometry between them, whose pullback on S is homotopic to the
identity by an homotopy that fixes the points {p1, . . . , pN}. A triangulation
of (S, d)µ is a triangulation T of S with vertices the N distinct points of
S. A geodesic triangulation is a triangulation of (S, d)µ whose edges are
minimizing geodesics in (S, d). We denote the space of marked polyhedral

surfaces of strict positive curvature by "Mcon
PL (N). The map from "Mcon

PL (N)
to Mcon

PL (N) that forgets the marking is a covering map.

Let T be a geodesic triangulation of a marked polyhedral surface (S, d)µ in
"Mcon

PL (N). The map ϑT that associates to every edge of T its length, is a

coordinate chart of "Mcon
PL (N) around (S, d)µ. The corresponding atlas turns

"Mcon
PL (N) into a 3N − 6 dimensional manifold (section 2 in [9]).

We may now sketch the proof of Alexandrov’s embedding theorem (see p.
210 in [1]).

Theorem 2 (Alexandrov). Let (S, d) be a polyhedral surface with N cone
points of strictly positive curvature, homeomorphic to the sphere. Then (S, d)
can be realized as the boundary of a closed convex polyhedron P with N
vertices. This polyhedron is unique up to congruence.

Outline of the proof. Let PN be the space of closed convex polyhedra with
N vertices. Let #PN be the space of marked closed convex polyhedra with
N vertices in R3, parametrized by the positions of their vertices. A marked
closed polyhedron is a polyhedron P together with a homeomorphism µ from
the standard sphere S with N distinct points {p1, . . . , pN} to the boundary
of P , where the N distinct points map to the vertices of P . Two polyhedra
are said to be equivalent, if there exists an isometry between them, whose
pullback on S is homotopic to the identity by an homotopy that fixes the
points {p1, . . . , pN}. #PN is a 3N − 6 dimensional manifold. Indeed, three
vertices are sent by an isometry to the origin, the positive x-axis and the
half-plane y > 0 of the xy-plane, respectively. If the polyhedron does not
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degenerate into a doubly-covered polygon, then a fourth point not contained
in the xy-plane is mapped into the half-space z > 0 by reflecting along the
z = 0 plane if needed. This eliminates the action of the isometry group of
R3. There are 3N variable coordinates, however three vertices are constant
in three, two and one coordinates respectively. Therefore, we have 3N − 6
variable coordinates.

The boundary of every marked closed convex polyhedron with N vertices
can be viewed as a marked polyhedral surface with N cone points of strictly
positive curvature homeomorphic to the sphere. Formally this gives a map
g̃ : #PN → "Mcon

PL (N). Alexandrov shows that g̃ is a (1) continuous, (2)
injective and (3) closed map and (4) that every connected component of
"Mcon

PL (N) admits a preimage in #PN .

#PN and "Mcon
PL (N) are manifolds of equal dimension, by (1) and (2) and the

invariance of domain principle of Brouwer, g̃ is an open map. Since g̃ is also
closed, we conclude together with (4) that g̃ is a homeomorphism from #PN

onto "Mcon
PL (N).

#PN "Mcon
PL (N)

PN Mcon
PL (N)

g̃

g

Hence, g is surjective and by the Theorem of Cauchy and Alexandrov it is
also injective. !

Remark: The fact that a polyhedron in R3 is determined by the geometry of
its surface, is particular to polyhedra in three dimensional space. A polygon
is not at all determined by the length of its edges. Also, in higher dimensions
such a correspondence does not hold in general. The dependence of the
theory on the dimension reveals itself in the usage of Brouwer’s invariance
of domain principle. It is particular to R3, that the space of closed convex
polyhedra with N vertices has the same dimension as the space of polyhedral
surfaces with N cone points of strictly positive curvature.

2. RIVIN’S THEORY ON IDEAL CONVEX POLYHEDRA

Isometric embedding of ideal polyhedral surfaces. Does every ideal
polyhedral surface arise from the boundary of an ideal hyperbolic polyhe-
dron?

Analogously to the Euclidean case, we can use triangulations to give ideal
polyhedral surfaces a manifold structure. We will need a few concepts from
classical hyperbolic geometry to do so.

Let ABC be an ideal triangle in H2. Let hA be a horocycle centered at A,
define DABC(hA) to be the length of the arc of hA cut out by the triangle
ABC. The difference in size between arcs of two horocycles hA and h′

A

cut out by ABC gives information on the distance between the arcs. More
precisely:
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Lemma 1. Let hA and h′
A be two horocycles at A. The hyperbolic distance

between hA and h′
A is equal to | log(DABC(hA)/DABC(h

′
A))|.

Proof: Let ABC be the triangle A = ∞, B = 0 and C = 1 in the upper
half-space model. The horocycles hA and h′

A are horizontal lines through
i/y and i/y′, respectively. Hence, the length of the arcs of hA and h′

A cut
out by ABC is 1/y and 1/y′ respectively and the distance between hA and
h′
A is | log(y/y′)|. !

Two ideal triangles ABC and ADC can slide with respect to each other
along the common side AC. For any choice of horocycle hA, the number
∫AC := log(DABC(hA)/DADC(hA)) measures the shear between the triangles
ABC and ADC along AC. The shear ∫AC does not depend on which of the
vertices A or C is taken as the center of the horocycles.

Intuitively, two triangles ABC and ADC are joined along AC without a
shear, if for any horocycle at A the arcs cut out by ABC and ADC have the
same “distance” to A.

The cross-ratio of four points z1, z2, z3, z4 in the complex plane is the number

[z1, z2, z3, z4] :=
(z1 − z3)(z2 − z4)

(z1 − z2)(z3 − z4)
.

The notions of cross-ratio of four points and shear between two triangles are
related.

Lemma 2. The shear between two triangles ABC and ABD is equal to the
log of the absolute value of the cross-ratio [C,B,D,A].

Proof: Let ABC be the triangle A = ∞, B = 1 and C = 0. In this case, the
shear between ABC and ABD is log |D|. !

A marked ideal polyhedral surface is a polyhedral surface (X, d̂) together with
a homeomorphism µ from a standard ideal polyhedral surface (X, d̂) to (X, d̂).
Two marked polyhedral surfaces are equivalent if there exists an isometry
between them, whose pullback on (X, d̂) is isotopic to the identity. Let "M(N)
be the set of equivalence classes of marked ideal polyhedral surfaces.

A triangulation of a marked ideal polyhedral surface is a triangulation whose
vertices are at the cusps of the hyperbolic surface. A geometric triangulation
of a marked ideal polyhedral surface is a triangulation of the ideal polyhedral
surface whose edges are geodesics.

The set "M(N) is parametrized by shears along the edges of a geodesic tri-
angulation of marked ideal polyhedral surfaces. Let T be a geometric trian-
gulation of a marked ideal polyhedral surface with N cusps. To each edge
of T , associate the shear of the two abutting triangles of T . This informa-
tion determines the geometry completely. Conversely, an assignment of real
numbers to the edges of T specifies a complete hyperbolic structure if and
only if the shears around any cusp add up to zero. Hence the set "M(N)
is naturally parametrized by R|E(T )|−N . According to the Euler formula,
|E(T )| − N = 2N − 6, so the dimension of this space depends only on the
number of cusps.
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Lemma 3. Any triangulation of a complete hyperbolic surface with cusps
can be straightened to a geodesic triangulation.

Proof: We need to show that, if A,B,C and D are cusps of a complete
hyperbolic surface such that A and B are connected by a path γ1 in T and
C and D are connected by a path γ2 in T , then the corresponding geodesics
also do not intersect.

The path γ1 and γ2 do not intersect in (X, d̂) if and only if their lifts to the
universal cover H2 of SN do not intersect. The lifts of γ1 and γ2 hit the
boundary of H2 in a single point. Indeed, one end of γ1 will be completely
inside a circular neighborhood of A. The corresponding end of the lift of
γ1 will be inside a horosphere. Hence, this end of the lift of γ1 touches the
boundary in a single point. If two paths between the ideal boundary of H2 do
not intersect, then the corresponding minimizing geodesics do not intersect
either. !
The shear coordinate system on "M(N) corresponding to the triangulation
T of a marked polyhedral surface is given as follows. With a particular
metric in "M(N), one can associate its shears along the straightened edges

of T . This embeds "M(N) into R3N−6 as a linear subspace. The subspace
is given by the N conditions that shears add up to zero along vertices. Let
ηT : "M(N) → R2N−6 be the orthogonal projection to this 2N−6 dimensional

linear subspace. Notice that ηT : "M(N) → R2N−6 is a homeomorphism.
Given a point x in R2N−6, we can compute the remaining N shears from the
condition that shears must add up to zero around vertices. Hence, "M(N) is
connected.

Theorem 3 (Rivin [16]). Let (X, d̂) be an ideal polyhedral surface. Then
(X, d̂) can be isometrically embedded in H3 as the boundary of a convex
polyhedron P with all vertices on the sphere at infinity.

The proof needs some specific techniques related to the fact that we are
dealing with geodesics between ideal points. Nevertheless, the proof follows
essentially the same philosophy as Alexandrov’s.

Outline of the proof. Let PN
ideal be the space of convex ideal polyhedra with

N vertices in H3. Let #PN
ideal be the space of marked convex ideal polyhedra

with N vertices in H, this space is parametrized by the positions of their
vertices on the sphere at infinity. A marked convex ideal polyhedron is an
ideal polyhedron P together with a homeomorphism µ from a standard ideal
polyhedral surface (X, d̂) to the boundary of P . Two marked ideal polyhedra
are equivalent if there exists an isometry between them, whose pullback on
(X, d̂) is isotopic to the identity. #PN

ideal is a 2N − 6 dimensional manifold.
Indeed, three of the vertices of P are fixed at 0, 1, and ∞. This eliminates
the action of the isometry group of H3. There are 2N variable coordinates,
however three vertices are fixed. Therefore, we have 2N − 6 variable coordi-
nates.

The boundary of every marked convex ideal polyhedron with N vertices can
be viewed as a complete marked hyperbolic surface of finite area, home-
omorphic to the N times punctured sphere. Formally this gives a map
h̃ : #PN

ideal → "M(N). Rivin shows that h̃ is a (1) continuous, (2) injective
and (3) closed map.
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#PN
ideal and "M(N) are manifolds of equal dimension, by (1) and (2) and the

invariance of domain principle of Brouwer, h̃ is an open map. Since h̃ is also
closed, we conclude, together with the fact that "M(N) is connected, that h̃

is a homeomorphism from #PN
ideal onto "M(N).

#PN
ideal

"M(N)

PN
ideal M(N)

h̃

h

Since every conformal transformation on the sphere corresponds to an isom-
etry of H3, π(PN

ideal) = π(M(N)). The fundamental group of M(N) is co-
Hopfian [4], therefore h∗π1(PN

ideal) = π1(M(N)) and hence h is one to one.
!

3. A CONFORMAL EQUIVALENCE RELATION FOR CONVEX
POLYHEDRA

Discrete conformality of convex polyhedra. A Delaunay triangulation
of a finite set of points V in the Euclidean plane is a triangulation of the
convex hull of V into triangles such that no point in V is inside the circum-
circle of any other triangle. A Delaunay triangulation of a development R
is a Delaunay triangulation of every polygon in R. The following lemma is
a classical property of Delaunay triangulations in the plane. A proof can be
found in Aurenhammer’s book on Voronoi diagrams [3].

Lemma 4. If a finite set of points in the plane admits two Delaunay tri-
angulations, then there exists a sequence of Delaunay triangulations between
them, such that each is related to the next by a diagonal switch.

Hence, if a Euclidean development R admits two distinct Delaunay triangu-
lations, then they differ by a finite number of diagonal switches between two
abbuting triangles within a polygon in R that share the same circumcircle.

Every Euclidean development R has a unique set of circumcircles attached
to its vertices, by taking the circumcircles of a Delaunay triangulation of
R. A Euclidean triangle with its circumcircle can be viewed as an ideal
hyperbolic triangle in the Klein model. This construction does not depend
on the chosen Delaunay triangulation and associates with every Euclidean
development R with N vertices an ideal polyhedral surface (X, d̂R) with a
cusp for each vertex of the development. Indeed, by the following theorem
the associated hyperbolic surface with cusps is complete, since the shear
coordinates add up to zero around vertices.

Proposition 2. Let R be a Euclidean development with N vertices and T a
Delaunay triangulation of R. Let ijk and ilj be two triangles in T abutting
along the edge ij. The hyperbolic structure d̂R on X is the unique complete
hyperbolic structure on X with shear

log
ϑT ((S, dR))il
ϑT ((S, dR))ik

:
ϑT ((S, dR))jl
ϑT ((S, dR))jk
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along the edge ij of T .

Proof: The map associating every Euclidean development R with a hyper-
bolic surface with cusps (X, d̂R), can be described in upper half-space model
as follows. Consider C as the sphere at infinity of the hyperbolic 3-space
H3 = C × R>0. Let ijk and ijl be two abutting triangles in R. Embed
ijk ∪ ijl into the sphere at infinity by an isometry f . The hyperbolic metric
d̂R on ijk ∪ ijl is the hyperbolic metric of the ideal hyperbolic triangles in
H3, having the same vertices as ijk and ijl, glued by the same isometry f ,
considered as a hyperbolic motion of H3.

The shear of (X, d̂R) along the edge ij is the logarithm of the absolute value
of the complex cross-ratio of the four vertices zi, zj , zk and zl of the triangles
ijk and ijl in C. Clearly,

log | zi − zl
zi − zk

:
zj − zl
zj − zk

| = log
ϑT ((S, dR))il
ϑT ((S, dR))ik

:
ϑT ((S, dR))jl
ϑT ((S, dR))jk

.

!

A Delaunay triangulation of a convex polyhedron P is a triangulation of its
boundary coming from a Delaunay triangulation of its face development RP .

Note: A Delaunay triangulation of an ideal convex polyhedron P in H3, is a
Delaunay triangulation of a convex polyhedron if P is viewed as a Euclidean
convex polyhedron inscribed in the sphere.

Given a convex Euclidean polyhedron P , we associate with P the ideal poly-
hedral surface (X, d̂RP ) coming from the face development of P . In the
following, we denote (X, d̂RP ) by (X, d̂P ). Formally we obtain a function

f : PN → M(N) (1)

mapping P to (X, d̂P ).

Definition 1. Two closed convex polyhedra P and Q with N vertices are
discrete-conformally equivalent if and only if (X, d̂P ) and (X ′, d̂Q) are iso-
metric e.g. f(P ) = f(Q).

The definition is inspired by a closely related concept of discrete conformality
of polyhderal surfaces introduced by Bobenko, Pinkall and Springborn in [5].
Bobenko, Pinkall and Springborn work with the data of a polyhedral surface
together with a triangulation and associate with it an ideal polyhedral surface
like above. They define two polyhedral surfaces with the same triangulation
as being discrete-conformally equivalent, if and only if their associated ideal
polyhedral surfaces are isometric. This notion allows them to associate a
triangulated polyhedral surface with a polyhedron inscribed in the sphere
that is star-shaped with respect to one point and unique if it exists. The
notion of discrete conformality in this paper is adapted to the setting of
closed convex polyhedra. The use of Delaunay triangulations makes the
construction canonical in the sense that the function f does not depend on
a triangulation. This construction allows us to associate to every convex
polyhedron a polyhedron inscribed in the sphere that is convex, unique and
always exists.
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Proposition 3. Let P and Q be two convex polyhedra inscribed in the unit
sphere that are discrete-conformally equivalent. Then there exists a Möbius
transformation on the sphere that maps the vertex set of P to the vertex set
of Q.

Proof: If P is inscribed in the unit sphere, then the association P → (X, d̂P )
defined above is nothing but interpreting P as a convex ideal polyhedron
in the Klein model and moving to the boundary. Hence, if P and Q are
discrete-conformally equivalent, there exists a hyperbolic isometry from the
boundary of P to the boundary of Q. According to the rigidity theory of
Cauchy, Alexandrov and Rivin, this isometry can be realized as a motion or a
motion and a reflection in H3. Equally, there exists a Möbius transformation
on the sphere mapping the vertex set of P to the vertex set of Q. !

The above rigidity theorem allows us to classify Euclidean polyhedra up to
discrete conformality.

Theorem 4 (Uniformization). Every closed convex polyhedron in E3 is
discrete-conformally equivalent to a closed convex polyhedron inscribed in
the unit sphere. This polyhedron is unique up to Möbius transformations on
the sphere.

The uniqueness part was proven above. The existence follows from Rivin’s
isometric embedding of ideal polyhedra in hyperbolic 3-space.

Proposition 4. Given a convex polyhedron P in E3, there exists a convex
polyhedron Q inscribed in the unit sphere that is discrete-conformally equiv-
alent to P .

Proof: Let (X, d̂P ) be the ideal polyhedral surface associated with P . Ac-
cording to Rivin’s isometric embedding theorem, (X, d̂P ) can be isometrically
embedded in H3 as the boundary of a convex hyperbolic polyhedron Q with
all vertices on the sphere at infinity. The polyhedron Q may be interpreted
as a convex Euclidean polyhedron inscribed in the sphere if viewed in the
Klein model. This interpretation is just the inverse of the map Q → (X ′, d̂Q).
Hence, (X, d̂P ) is isometric to (X ′, d̂Q) and P and Q are discrete-conformally
equivalent. !

Characterization of discrete conformality. The notion of discrete con-
formality passes through hyperbolic geometry. In the following we charac-
terize discrete conformality of Euclidean polyhedra that share a common
Delaunay triangulation by elementary transformations on vertices. To every
Delaunay triangulation one can associate a lattice formed by its vertices,
edges and triangles, which are ordered by inclusion. Two polyhedra share a
common Delaunay triangulation if the associated lattices are isomorphic.

We will first construct a function

f̃ : #PN → "M(N) (2)

that is a lift of f using Penner’s theory on decorated Teichmüller spaces [14].
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A decorated ideal triangle is an ideal triangle ABC together with a choice
of horocycles hA, hB and hC . The Penner distance between two distinct
horocycles hA and hB is

lPAB := lP (hA, hB) := eλAB/2, (3)

where λAB := λ(hA, hB) is the signed distance between two distinct horocy-
cles.

Two decorated ideal triangles (ABC, hA, hB , hC) and (ADC, hA, hD, hC) can
be glued along the edge AC by an isometry preserving the horocycles hA

and hC .

A decorated ideal polyhedral surface (X, d̂, {hi})µ is the data of a marked ideal
polyhedral surface (X, d̂)µ plus a horoball for every puncture i. Two deco-
rated ideal polyhedral surfaces (X, d̂, {hi})µ and (X ′, d̂, {h′

i})µ′ are equiva-

lent if there exists an isometric map f : (X, d̂) → (X ′, d̂) such that µ′−1◦f ◦µ
is homotopic to the identity in (X, d̂) and every horoball hi is mapped to h′

i

by f .

Let "MD(N) be the set of equivalence classes of decorated ideal polyhedral

surfaces with N punctures. Let "M(N) be the set of complete, finite volume
hyperbolic structures on (X, d̂) as introduced above. The mapping

"MD(X) → "M(X)× RN
>0

(X, d̂, {hi
1})µ +→ ((X, d̂)µ, (w1, . . . , wN ))

is a bijection, where wi is the sum of the lengths Dijk(hi) of horoarcs cut
out by the ideal triangles at i.

Let T be a geodesic triangulation of (X, d̂, {hi})µ. The map ϕT that asso-
ciates to every edge ij in T the Penner distance lPij , gives local coordinates

to (X, d̂, {hi})µ in "MD(N). Those Penner coordinate charts turn "MD(N)
into a real analytic manifold [14] .

Let p̃ : "MD(N) → "M(N) be the projection, mapping (X, d̂, {hi})µ to (X, d̂)µ,

and let g̃ : #PN → "Mcon
PL (N) be Alexandrov’s homeomorphism. We aim

to construct a function F : "Mcon
PL (N) → "MD(N) such that the following

diagram commutes

#PN "Mcon
PL (N) "MD(N) "M(N)

PN M(N).

g̃ F p̃

f

We denote by #P a preimage of a polyhedron P in #PN . We denote by (S, d !P )µ

the image of the polyhedron #P under g̃ in "Mcon
PL (N). Let DPL(T ) be the

set of elements (S, d !P )µ in "Mcon
PL (N) such that T is isotopic to a Delaunay

triangulation of the associated polyhedron P . The sets DPL(T ) for different

isotopy classes of triangulations of (S, d !P )µ form a covering of "Mcon
PL (N). Let

FT = ϕ−1
T ◦ ϑT , define a function F on "Mcon

PL (N) by setting F ((S, d !P )µ) =
FT ((S, d !P )µ) if (S, d !P )µ ∈ DPL(T ).
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Lemma 5. The function F : "Mcon
PL (N) → "MD(N) is well-defined.

Proof: Suppose (S, d !P )µ ∈ DPL(T ) ∩ DPL(T ′), i.e. both T and T ′ are

Delaunay triangulations of #P . Then there exists a sequence of Delaunay
triangulations T = T1, . . . , Tn = T ′ of #P such that Ti is obtained from Ti+1

by a diagonal switch. In particular FT ((S, d !P )µ) = FT ′((S, d !P )µ) follows
from FTi((S, d !P )µ) = FTi+1((S, d !P )µ) for i = 1, 2, . . . , n− 1. Hence, assume
that T ′ is obtained from T by a diagonal switch at an edge e.

Let ϑT ((S, d !P )µ) = (x0, x1, . . . , xn). Since both T and T ′ are Delaunay

triangulations of #P , the triangles abutting at e share a common circumcircle.
In this case the transition function is of the form

ϑT ′ϑ−1
T (x0, x1, . . . , xn) = (

x1x3 + x2x4

x0
, x1, x2, . . . , xn).

On the other hand, according to Penner [14] the λ-lengths satisfy the Ptolemy
relation for decorated ideal triangles. Hence,

ϕT ′ϕ−1
T (x0, x1, . . . , xn) = (

x1x3 + x2x4

x0
, x1, x2, . . . , xn).

This shows,

ϑT ′ϑ−1
T (x0, x1, . . . , xn) = ϕT ′ϕ−1

T (x0, x1, . . . , xn),

which is

FT ((S, d !P )µ) = ϕ−1
T ◦ ϑT ((S, d !P )µ) = ϕ−1

T ′ ◦ ϑT ′((S, d !P )µ) = FT ′((S, d !P )µ).

!

Lemma 6. Let (X, d̂, {hi})µ ∈ "MD(N) and let ϕT be a coordinate chart
containing (X, d̂, {hi})µ, then the shear coordinate between two abutting tri-
angles ilj and ikj in T of (X, d̂, {hi})µ is given by

log
ϕT ((X, d̂, {hi})µ)il
ϕT ((X, d̂, {hi})µ)ik

:
ϕT ((X, d̂, {hi})µ)jl
ϕT ((X, d̂, {hi})µ)jk

.

Proof: Recall that ϕT ((X, d̂, {hi})µ)il = eλil/2, where λil is the signed dis-
tance between the horospheres hi and hl (3). Hence,

log
ϕT ((X, d̂, {hi})µ)il
ϕT ((X, d̂, {hi})µ)ik

:
ϕT ((X, d̂, {hi})µ)jl
ϕT ((X, d̂, {hi})µ)jk

=

1

2
(λil − λlj + λjk − λki).

Let us focus first only on the decorated triangle ijk. The axis of symmetry
through the point i of the ideal triangle ijk splits the signed distance λjk

between the horocycles hi and hl into the sum of two numbers pkij and pjki,
being the signed distance between the base point of the axis of symmetry
and the horocycle hk and hj , respectively. Doing the same for λij and λki

gives λij = pijk + pjki, λjk = pjki + pkij and λki = pkij + pijk. Solving for pjki
gives

pjki =
1

2
(λij + λjk − λki).
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Doing the same for the triangle ijl gives

pjil =
1

2
(λij + λjl − λil).

Hence,

log
ϕT ((X, d̂, {hi})µ)il
ϕT ((X, d̂, {hi})µ)ik

:
ϕT ((X, d̂, {hi})µ)jl
ϕT ((X, d̂, {hi})µ)jk

=

pjki − pjil.

But the right-hand-side is nothing but the shear between the two triangles
ijk and ijl. !

Proposition 5. The following diagram commutes

#PN "Mcon
PL (N) "MD(N) "M(N)

PN M(N).

g̃ F p̃

f

Proof: Let T be a Delaunay triangulation of #P . Let ijk and ilj be two
triangles in T abutting along the edge ij. Let (X, d̂ !P , {hi})µ = F ◦ g( #P ),
by Lemma 6 the shear coordinates of the decorated ideal polyhedral surface
(X, d̂ !P , {hi})µ along the edge ij is

log
ϕT ((X, d̂ !P , {hi})µ)il
ϕT ((X, d̂ !P , {hi})µ)ik

:
ϕT ((X, d̂ !P , {hi})µ)jl
ϕT ((X, d̂ !P , {hi})µ)jk

.

But g( #P ) lies in DPL(T ), hence

(X, d̂ !P , {hi})µ = FT ((S, d !P )µ) = ϕ−1
T ϑT ((S, d !P )µ).

Hence,

log
ϕT ((X, d̂ !P , {hi})µ)il
ϕT ((X, d̂ !P , {hi})µ)ik

:
ϕT ((X, d̂ !P , {hi})µ)jl
ϕT ((X, d̂ !P , {hi})µ)jk

= (4)

log
ϑT ((S, d !P )µ)il

ϑT ((S, d !P )µ)ik
:
ϑT ((S, d !P )µ)jl

ϑT ((S, d !P )µ)jk
. (5)

By Proposition 2, (5) is exactly the coordinate description of the hyperbolic
structure on f(P ) if we fix the triangulation T on P and f(P ).

!
Let us return to the main theorem of this section.

Theorem 5. Let P and Q be two polyhedra that share a common Delaunay
triangulation T , then P and Q are discrete-conformally equivalent if and
only if there exist two lifts #P and #Q and a real valued function uT on the
vertices of #P so that, if e is an edge in T between the vertices i and j, then
the length l !P (e) and l !Q(e) of e in #P and #Q are related by

l !Q(e) = l !P (e) e
1
2
(uT (i)+uT (j)).
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Proof: Suppose there exist two lifts #P and #Q and uT such that uT ∗ #P = #Q.
By Proposition 2 the hyperbolic structure on (X, d̂ !Q)µ is the unique complete
hyperbolic structure with shear

log
ϑT ((S, d !Q)µ)il

ϑT ((S, d !Q)µ)ik
:
ϑT ((S, d !Q)µ)jl

ϑT ((S, d !Q)µ)jk

along the edge ij of T . If there exists a conformal factor uT such that
#Q = uT ∗ #P , this number equals

log
e

1
2
(uT (i)+uT (l))ϑT ((S, d !P )µ)il

e
1
2
(uT (i)+uT (k))ϑT ((S, d !P )µ)ik

:
e

1
2
(uT (j)+uT (l))ϑT ((S, d !P )µ)jl

e
1
2
(uT (j)+uT (k))ϑT ((S, d !P )µ)jk

,

which equals

log
ϑT ((S, d !P )µ)il

ϑT ((S, d !P )µ)ik
:
ϑT ((S, d !P )µ)jl

ϑT ((S, d !P )µ)jk
.

Hence, f(P ) = f(Q), that means P and Q are discrete-conformally equivalent.

If P and Q are discrete-conformally equivalent, i.e. f(P ) = f(Q), then there

exist lifts #P and #Q such that f̃( #P ) = f̃( #Q). In particular, there exists an
isometric map f from (X, d̂ !P )µ to (X ′, d̂ !Q)µ homotopic to the identity.
Thus, we obtain a marked ideal polyhedral surface with two decorations
(X ′, d̂ !Q, {h

′
i}, {f(hi)})µ. Notice that since f is homotopic to the identity,

f(hi) is a horoball in (X ′, d̂ !Q)µ at the i-th cone point.

Let λi
!P→ !Q be the signed distance between the horoballs h′

i and f(hi) at the

i-th cone point in (X ′, d̂ !Q)µ, which is negative if and only if the horoball

f(hi) is smaller than the horoball h′
i. Given an edge ij of T , the signed

distances between horoballs λ
!P
ij = λ(hi, hj) and λ

!Q
ij = λ(h′

i, h
′
j) are related

by

λ
!Q
ij = λ

!P
ij + λi

!P→ !Q + λj
!P→ !Q

.

In particular,

eλ
!Q
ij/2 = eλ

!P
ij/2 e

1
2
(λi

!P→ !Q
+λ

j
!P→ !Q

)
.

By definition F ◦ g( #P ) = ϕ−1
T ϑT ((S, d !P )µ), thus

eλ
!P
ij/2 = ϕT ((X, d̂ !P , {hi})µ)ij = ϑT ((S, d !P )µ)ij = l !P (ij)

and likewise eλ
!Q
ij/2 = l !Q(ij). Hence, if we define

uT (i) := λi
!P→ !Q,

for every vertex i = 1, . . . , N of the polyhedron #P , then uT is a conformal
factor satisfying uT ∗ #P = #Q. !

Alternative proof of characterization theorem. It would be convenient
to construct the function uT directly, without passing through Penner’s the-
ory of decorated Teichmüller spaces. Given a triangle ijk in the triangulation
T and a path γ in T that contains the edges ik and jk, one can transform
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γ to a path γ′ in T by reflecting along the edge ij. Such a transformation
is called a discrete homotopy. We say that a triangulation T is simply con-
nected, if every even loop can be transformed by discrete homotopies to the
constant loop.

Figure 1: Illustration of a discrete homotopy

In the special case where two polyhedra P and Q share a common simply-
connected Delaunay triangulation T , we can prove the analogue weaker
statement of Theorem 5.

Proof: If P and Q are discrete-conformally equivalent, then there exist two
lifts #P and #Q that have equal shear along every edge of T . In other words

log
l !P (il)

l !P (ik)
:
l !P (jl)

l !P (jk)
= log

l !Q(il)

l !Q(ik)
:
l !Q(jl)

l !Q(jk)
.

Rearrangement gives

log
l !P (il)

l !Q(il)
− log

l !P (ik)

l !Q(ik)
+ log

l !P (jk)

l !Q(jk)
− log

l !P (jl)

l !Q(jl)
= 0.

If we assign to every edge in T the value

yij := log
l !P (ij)

l !Q(ij)
,

then their alternating sum around two abutting triangles vanishes. Notice
that for any even loop in T , the alternating sum of yij ’s along the loop
does not change by discrete homotopies. Since every even loop in T may be
changed by a discrete homotopy to a path around two abutting triangles,
the alternating sum of yij ’s vanishes around every even loop in T .

Fix a vertex 0 and an adjacent vertex 1 in T . Define a function u0
T by the

following system of equations

u0
T (i)− u0

T (0) =
!

n=1

(−1)nyknln (6)

u0
T (0) + u0

T (1) = y01, (7)



19

where the alternating sum in the first equation is along an even path from 0
to i. Analogously, define an function u1

T by the following system of equations

u1
T (i)− u1

T (1) =
!

n=1

(−1)nyknln (8)

u1
T (0) + u1

T (1) = y01, (9)

where the alternating sum in the first equation is along an even path from 1
to i.

We like to know how u0
T and u1

T differ at a point i. Pick a point k adjacent
to 0 and 1, then

(u0
T (i)− u0

T (0))− (u1
T (i)− u1

T (1)) + y0k − yk1

is an alternating sum along an even loop in T . Hence, it vanishes and

(u0
T (i)− u0

T (0))− (u1
T (i)− u1

T (1)) = −y0k + yk1.

The right-hand-side is an alternating sum along an even path from 0 to 1,
hence

(u0
T (i)− u0

T (0))− (u1
T (i)− u1

T (1)) = u0
T (1)− u0

T (0).

Rearrangement gives

u1
T (i)− u1

T (1) = u0
T (i)− u0

T (1). (10)

Let i and j be two adjacent vertices in T ,

(u0
T (i)− u0

T (0)) + (u1
T (j)− u1

T (1)) + y01 − yij

is an alternating sum along an even loop in T . Hence, it vanishes. Using
equality (10) we obtain

u0
T (i) + u0

T (j) + y01 − u0
T (0))− u0

T (1) = yij

and since
u0
T (0) + u0

T (1) = y01,

we obtain
u0
T (i) + u0

T (j) = yij .

Hence, uT is a function on the vertices of T such that for every edge ij of
T ,

l !P (ij) = l !Q(ij)e
u0
T (i)+u0

T (j).

!

Concepts of discrete conformality. Let Pideal be the space of ideal
convex polyhedra in H3. Using the Klein model of the hyperbolic 3-space,
let us interpret Pideal as the space of convex Euclidean polyhedra inscribed
in the unit sphere.

There exists a beautiful correspondence between convex Euclidean polyhedra
inscribed in the unit sphere and circles covering the unit sphere.
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Let C be the set of circle patterns covering the unit sphere. To every circle
pattern C in C corresponds a unique convex Euclidean polyhedron PC in
Pideal by cutting off all half-planes defined by the circles in C. Conversely,
every convex polyhedron inscribed in the unit sphere corresponds to a unique
circle pattern covering the unit sphere.

This allows us to relate the equivalence of circle patterns with the discrete-
conformal equivalence of convex Euclidean polyhedra inscribed in the sphere
by using purely terms from Euclidean geometry.

Proposition 6. Let C1 and C2 be two circle patterns in C and let PC1

and PC2 be the corresponding convex polyhedra inscribed in the unit sphere.
There exists a Möbius transformation f on the sphere mapping the circle
pattern C1 onto the circle pattern C2 if and only if PC1 and PC2 share a
common Delaunay triangulation T and there exists a function uT defined on
the vertex set of PC1 such that for every edge ij in the Delaunay triangulation
between vertices i and j, its length in PC2 is related to its length in PC1 by

lPC2
(ij) = lPC1

(ij) e
1
2
(uT (i)+uT (j)).

Moreover, f and uT are related by uT = log |df |V , where V is the vertex set
of PC1 .

Proof: Thanks to the Uniformization-Theorem 4, it only remains to prove
the relation of uT and the Möbius transformation f . Let x and y be two
distinct vertices of PC1 . Let {xn} and {yn} be sequences on the unit sphere
converging to x and y, respectively, but not containing the points x and y.
The Euclidean length cross-ratio is invariant under Möbius transformations
on the sphere. Hence

|x− xn|
|x− yn|

:
|y − xn|
|y − yn|

=
|f(x)− f(xn)|
|f(x)− f(yn)|

:
|f(y)− f(xn)|
|f(y)− f(yn)|

.

A rearrangment gives

|f(x)− f(yn)|
|x− yn|

|f(y)− f(xn)|
|y − xn|

=
|f(x)− f(xn)|

|x− xn|
|f(y)− f(yn)|

|y − yn|
.

Taking the limit n → ∞ results in

|f(x)− f(y)|2

|x− y|2 = |df(x)||df(y)|.

This shows that PC1 and PC2 are discrete-conformally equivalent with uT =
log |df |V . !

4. DIRECTIONS OF FURTHER RESEARCH

Characterization of discrete conformality. It would be more elegant
to have a definition of discrete-conformal equivalence of convex polyhedra
by elementary transformations on vertices. We conjecture that P and Q are
discrete-conformally equivalent if and only if there exists a finite sequence
of closed convex polyhedra P = P1, P2, . . . , Pn−1, Pn = Q such that, for
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k = 1, . . . , n − 1 the polyhedra Pk and Pk+1 share a common Delaunay tri-
angulation Tk and there exists a real valued function uTk on the vertices of
Pk with the following property. For every edge ij in the Delaunay triangu-
lation between vertices i and j, its length in Pk+1 is related to its length in
Pk by

lPk+1(ij) = lPk (ij) e
1
2
(uTk

(i)+uTk
(j)).

The statement is difficult to prove because the function f̃ can be discontin-
uous when passing from a “cell” DPL(T ) to another. This discontinuity
arises because a Delaunay triangulation of a Euclidean convex polyhedron P
is not a Delaunay triangulation of the associated marked polyhedral surface
(S, dP )µ.

Delaunay triagulations were originally introduced to the topic of polyhedral
surfaces by Luo in [13]. Using Delaunay triangulations of polyhedral surfaces,
Luo proves that the variational principal of Bobenko, Pinkall and Springborn
always has a solution [9]. In this paper we are using a different triangulation
than Luo to construct an ideal polyhedral surface from a polyhedron. This
allows us to give a uniformization theorem for polyhedra. Its disadvantage
is, that it becomes more difficult to completely characterize this concept of
discrete conformality by elementary transformations.

Variational principles. The uniformization theory of convex polyhedra
may shed some light on the relationships between the different variational
principles developed in the context of discrete conformality. Glickenstein
suggested a formal framework in [8]. The natural appearance of real analytic
cell decompositions in the work of Gu, Luo, Sun and Wu [9], may suggest the
theory of moment maps as a general setting. According to Atiyah, Guillemin
and Sternberg, the image of the moment map of a hamiltonian torus action
on a compact connected symplectic manifold is always a polytope [2] [10].

Möbius geometry. Theorem 6 suggests a third variant of discrete confor-
mality, namely discrete Möbius geometry.

Roughly speaking, a Möbius structure on a set X is an equivalence class
of metrics on X, where two metrics are equivalent if they define the same
crossratio. Let M be a Möbius structure on a set X. The pair (X,M) is
called a Möbius space.

If X is a strongly hyperbolic metric space, then its ideal boundary carries a
natural Möbius structure as observed by Nica and Spakula.

Let X be a finite set, let df be the pull-back metric of the Euclidean distance
on X induced by an embedding f of X into the sphere. One could ask the
following question.

Question 1. The metric spaces (X, df1) and (X, df2) are Möbius equivalent
if and only if the associated convex polyhedra Pf1 and Pf2 are discrete-
conformally equivalent.

Notice that if (X, df1) and (X, df2) are Möbius equivalent, then f((X, df1))
and f((X, df2)) are not obviously isometric since f depends on a choice of
a triangulation which is initially not given. However, if Pf1 and Pf2 are
discrete-conformally equivalent, then there exists a Möbius transformation
on the sphere mapping the vertex set of Pf1 onto the vertex set of Pf2 , hence
(X, df1) and (X, df2) are Möbius equivalent.
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