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Summary

In this study, an acoustic resonator – a bass brass
instrument – with multiple resonances coupled to an
exciter – the player’s lips – with one resonance is mod-
elled by a multidimensional dynamical system, and
studied using a continuation and bifurcation software.
Bifurcation diagrams are explored with respect to the
blowing pressure, in particular with focus on the min-
imal blowing pressure allowing stable periodic oscilla-
tions and the associated frequency.

The behaviour of the instrument is first studied
close to a (non oscillating) equilibrium using linear
stability analysis. This allows to determine the condi-
tions at which an equilibrium destabilises and as such
where oscillating regimes can emerge (corresponding
to a sound production). This approach is useful to
characterise the ease of playing of a brass instrument,
which is assumed here to be related – as a first ap-
proximation – to the linear threshold pressure. In
particular, the lower the threshold pressure, the lower
the physical effort the player has to make to play a
note [Campbell et al., 2021].

Cases are highlighted where periodic solutions in
the bifurcation diagrams are reached for blowing pres-
sures below the value given by the linear stability
analysis. Thus, bifurcation diagrams allow a more
in-depth analysis. Particular attention is devoted to
the first playing regime of bass brass instruments (the
pedal note and the ghost note of a tuba in particular),
whose behaviour qualitatively differs from a trombone
to a euphonium for instance.

1 Introduction

One main goal of the acoustics of wind instruments
is to describe and quantify the intonation and ease of
playing of an instrument. From the physics viewpoint,
it is interesting to model the coupled system formed
by the musician and the instrument. Of particular in-
terest is the influence of the musician’s control param-

eters on the oscillation frequency (linked to the into-
nation), and the minimum mouth pressure required to
achieve auto-oscillations (related to the ease of play-
ing). Indeed, it is assumed here that the musician’s
feeling of ease of playing partly relies on the threshold
blowing pressure: the higher the latter, the higher the
physical effort the player has to make to play a note
[Campbell et al., 2021]. In practice, the musician can
play several notes without depressing any valves in
the case of a tuba, or moving the slide in the case of a
trombone. These playing regimes are called the natu-
ral notes (B[1, B[2, F3, B[3, D4, F4,... in the case of
a trombone or a euphonium for instance), and their
frequencies are close to the resonance frequencies of
the instrument as a whole, except for the lowest note
playable (B[1).

Several tools are available to infer the oscillation
frequencies and the threshold blowing pressures from
a model of the system. Linear stability analysis allows
to predict the behaviour of a dynamical system in the
vicinity of its equilibrium solutions. The method con-
sists in linearising the system and analysing its eigen-
values to determine whether or not the equilibrium
solutions are stable. This method has already been
applied to physical models of musical instruments –
brass instruments – in [Velut et al., 2017]. Linear sta-
bility analysis is, in essence, only valid close to the
equilibrium solutions. As such, this method alone
might not explain the existence of periodic regimes,
as highlighted for instance in [Velut et al., 2017] for
the first regime of a saxhorn.

Alternatively, bifurcation analysis gives access to an
extensive knowledge of permanent regimes (namely
equilibrium and periodic regimes) of the dynamical
system, as well as their stability when relevant. Bi-
furcation diagrams ideally represent all the families
of equilibrium and periodic solutions with respect to
one parameter of interest. In this paper, we inves-
tigate bifurcation diagrams of a physical model of a
brass instrument to understand some aspects of its
behaviour.

We consider here a simple model: the
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player’s lips are modeled through the
‘outward-striking valve’ [Campbell et al., 2021,
Cullen et al., 2000, Elliott and Bowsher, 1982], a
one degree-of-freedom system. Also, the non-
linear sound propagation in the instrument’s
bore which accounts for the ‘brassy sounds’
[Campbell et al., 2021] at high sound levels is ne-
glected [Msallam et al., 2000, Berjamin et al., 2017].
The airflow blown by the musician into the instru-
ment is described by a nonlinear algebraic equation.
Some of the functions in this equation being non-
smooth, a regularised form of this equation is used
for numerical reasons.

In section 2, we describe the considered model and
numerical methods, namely linear stability analysis
and numerical continuation. In sections 3 and 4, we
use linear stability analysis and bifurcation diagrams,
respectively, to investigate the minimal blowing pres-
sure and playing frequencies of the trombone. Even-
tually, we focus in section 5 on the first regime of two
bass brass instruments (the trombone and the eupho-
nium), mainly thanks to bifurcation diagrams. This
highlights a major difference in the behaviour of these
two instruments.

2 Theoretical background

2.1 Generic brass model

This subsection details the brass-instrument model
considered throughout the article. Brass instruments
as a whole can be described through both linear and
nonlinear mechanisms. More precisely, a localised
nonlinear element (the lips’ valve effect, i.e. the
airflow modulation caused by the lips’ vibration)
excites a passive linear acoustic multimode element
(the musical instrument, usually characterised by
its input impedance in the frequency domain). The
latter acoustic resonator exerts, in turn, a retroaction
on the former mechanical resonator. Such musical
instruments are self-sustained oscillators: they gener-
ate an oscillating acoustic pressure (the note played)
from a static overpressure in the player’s mouth (the
blowing pressure).

Figure 1: Schematic representation of the player’s
mouth coupled to the mouthpiece of a brass instru-
ment.

The brass instrument coupled to the player is then
described by a system of three equations. Because it
relies on major simplifications [Campbell et al., 2021,
Elliott and Bowsher, 1982], this model is often re-
ferred to as ‘elementary’. More precisely, the three
equations link the lip-opening height h(t), the pres-
sure in the mouthpiece p(t) and the volume airflow
entering the instrument u(t), which will be the three
independent variables of interest in this paper. They
are all represented schematically in figure 1. Several
control parameters (i.e controlled by the musician) are
also involved: this includes in particular the blowing
mouth pressure pm and the lips’ resonance frequency
f`.

First, the vibrating lips of the musician are de-
scribed by a one-degree-of-freedom damped oscillator:

ḧ+
ω`
Q`
ḣ+ ω2

` (h−H) =
pm − p
µ

, (1)

where ω` = 2πf` and Q` are the angular resonance
frequency and the quality factor of the lips, respec-
tively, µ is the lips’ mass per unit area, and H is the
lip-opening height at rest.

The Bernoulli’s theorem applied between the mouth
and the mouthpiece and taking into account the pres-
sure drop caused by the presence of turbulence in the
mouthpiece leads to the following equation:

u(t) = wh+(t) sgn (pm − p(t))
√

2 |pm − p(t)|
ρ

, (2)

with w the lip-opening width (considered as con-
stant) and ρ the air density. Here, h+ = max(h, 0)
accounts for the fact that the lips cannot physically
interpenetrate: as soon as the lips touch (h = 0), the
volume flow is forced to zero. The sign function sgn
accounts for the possibility of air flowing from the
instrument into the player’s mouth.

Finally, the acoustic input impedance Z(ω) of the
resonator is described in the Fourier domain as the
ratio between the pressure and the volume flow at
the input of the instrument. This provides a last link
between the mouth pressure and the volume airflow:

P (ω) = Z(ω)U(ω), (3)

with ω the angular frequency. Figure 2 shows the
modulus and phase of Z with respect to the angular
frequency ω, for a bass trombone (A. Courtois Legend
AC502).

Several limitations of this generic model have
already been pointed out in previous works
[Campbell et al., 2021, Velut et al., 2017]. Firstly, it
is worth noting that the instrument is described with
a linear model of its input impedance: the nonlin-
ear propagation of sound in the instrument itself is
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not taken into account, preventing any description
of the characteristic ‘brassy sound’ of a brass instru-
ment at high sound levels. However, since we focus
here on the emergence of auto-oscillations, this ef-
fect can be neglected. Furthermore, the harmonics
created by the nonlinear distortion of the wavefront
propagating in the instrument are known not to be
reflected back to the player when they reach the bell
[Hirschberg et al., 1995].

Secondly, lips are described as a one-degree-of-
freedom damped oscillator, which is also a strong
assumption. As a matter of fact, both experi-
ments using artificial lips [Cullen et al., 2000] and
in-vivo measurements [Newton et al., 2008] demon-
strated that the lips’ oscillation mechanism relies
mainly on a pair of lips’ resonance frequencies. Fur-
thermore, only the first resonance of the lips reflects
the ‘outward-striking swinging door’ mechanism de-
scribed in [Campbell et al., 2021], hence the single
degree of freedom. In any case, the one-degree-of-
freedom damped oscillator prevents any description
of the ‘buzzing phenomenon’, which corresponds to
the lips’ vibration without the instrument.

Thirdly, the lips’ opening area S in the airflow
(equation 2) is assumed to be proportional to h,
and is thus written S = w × h with w a con-
stant. This assumption was only partially validated
in [Bromage et al., 2010], depending on which regime
is studied as well as on the sound level. In particular,
a law S ∝ h2 would be more adequate when studying
the first regimes like the pedal note.

2.2 Numerical considerations
In this paper, we aim at determining the minimal
blowing pressures for which each periodic regime (nat-
ural notes B[1, B[2, F3, B[3, D4, F4,...) is observable,
as well as the corresponding playing frequencies.

In this subsection, the numerical methods allowing
for the investigation of the periodic solutions of model
{(1) ∪ (2) ∪ (3)} are presented, as well as the modal
representation of the input impedance required for the
practical implementation of these methods.

2.2.1 Numerical methods

Several numerical methods are available to investi-
gate the influence of a control parameter – such as
pm or f`, as they are the most obvious parameters
the player can change – on the dynamics of the sys-
tem. Linear stability analysis [Velut et al., 2017] con-
sists in studying the stability of the equilibrium solu-
tions to small perturbations, obtained by zeroing all
time derivatives. This allows one to determine the
threshold value of the control parameter at which the
equilibrium solution destabilises, which means that at
least one of the eigenvalues of the system exhibits a
positive real part, and where a small-amplitude peri-
odic regime (stable or unstable) can emerge. When a

small-amplitude periodic regime indeed emerges, such
a change in the system’s behaviour is called a Hopf bi-
furcation [Kuznetsov, 2004].

In the case of brass instruments, both pm and f` can
be considered as control parameters. Figure 4 (blue
curve) represents the threshold pressure predicted by
the linear stability analysis with respect to f`. This
analysis also provides the threshold frequency, that
is to say the frequency of the periodic regime that
emerges when the equilibrium solution destabilises.
This is represented in the bottom plot in figure 4.

One of the main advantages of this method is its
straight-forward implementation. However, it gives
very little information on the oscillation regime of the
model far from the so-called Hopf bifurcation point at
which the equilibrium loses its stability. This method
has already been used in [Velut et al., 2017], and is
applied here to the trombone (see blue curves in figure
4).

To know more about the oscillating solution arbi-
trarily far from the bifurcation point (i.e the point
at which the equilibrium solution becomes unsta-
ble), another approach consists in numerically solv-
ing the whole system, thanks to an ODE solver
[Velut et al., 2017]. In doing so, both the transient
and the stationary parts of the solution are obtained
for any value of the control parameter. Nevertheless,
this approach becomes tedious and unsuitable in the
context of the systematic investigation of the influence
of the control parameter on the oscillation regime.

Continuation methods, on the other hand, are
more suitable to gain access to a more extensive view
of all the oscillating regimes of the system. It consists
in computing the waveform of the oscillating solution
for successive values of the control parameter. The
waveform corresponding to a new value of the control
parameter is then deduced from previously computed
waveforms, through a predictor/corrector algorithm.
The behaviour of an oscillatory solution of the
system with respect to a control parameter such
as pm can then be assessed by plotting bifurcation
diagrams, which are shown in section 4. This
approach is implemented in several softwares, such
as AUTO [Doedel et al., 1999, Gilbert et al., 2020,
Cochelin and Vergez, 2009, Karkar et al., 2013,
Fréour et al., 2020] which is used in this publication.
However, continuation methods require the system
to be written in the form dX

dt = F (X), with certain
smoothness properties on F . Therefore, some work
has yet to be done on the equations presented in
section 2.1, which is done in the following.

2.2.2 Input impedance

Since the continuation method requires the equations
to be written in the time domain, equation (3) can-
not be used as it is. An analytical form of the input
impedance Z is therefore required to perform an in-
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verse Fourier transform of (3). This quantity can be
quite easily measured, and is represented in figure 2
(blue curve). This measured impedance can then be
numerically fitted, in the frequency domain, by a sum
of N individual acoustical resonance modes of the fol-
lowing form [Ablitzer, 2021] :

Zfit(ω) =

N∑
n=1

jωAn
ω2
n − ω2 + 2jξnωnω

. (4)

Here, (An, ωn, ξn) ∈ R3 are the modal parameters
of the modal decomposition. For numerical reasons,
it has been chosen to convert this set of parameters
(An, ωn, ξn) into another one (Cn, sn) so that the fit-
ted input impedance writes ( z∗ is the complex con-
jugate of z):

Zfit(ω) = Zc

N∑
n=1

(
Cn

jω − sn
+

C∗n
jω − s∗n

)
, (5)

where Zc is the characteristic input impedance of the
resonator defined as Zc = %c

Se
with Se the input cross-

sectional area, and (Cn, sn) ∈ C2 are defined as fol-
lows: Cn = An

2

(
1 + j ξn√

1−ξ2n

)
,

sn = ωn

(
−ξn + j

√
1− ξ2n

)
.

(6)

The new coefficients (Cn, sn) also verify the relation
Re (Cns

∗
n) = 0, since one switched from a 3-real pa-

rameters description with (An, ωn, ξn) to a 2-complex
parameters description with (Cn, sn).

The fitted impedance Zfit(ω) is plotted (orange
dashed curve) in figure 2.

Reinjecting equation (5) in equation (3) and ap-
plying an inverse Fourier transform (for details, see
appendix A) leads to the following expression in the
time domain [Fréour et al., 2020, Silva et al., 2014]:

ṗn = ZcCnu+ snpn, n ∈ J1, NK. (7)

The mouthpiece pressure p can then be written
as p = 2

∑N
n=1 Re (pn). Eventually, the system

{(1) ∪ (2) ∪ (7)} is now written in the form dX
dt =

F (X), with:

X =
(
{Xm}m∈J1,2(N+1)K

)
=
(
h; ḣ; {Re(pn)}n∈J1,NK ; {Im(pn)}n∈J1,NK

) (8)

the state vector, so that h = X1, ḣ = X2, and p =
2
∑N
n=1 Re (pn) = 2

∑N+2
n=3 Xn. Taking the real and

imaginary part of the N equations (7) yields 2N real
equations, so that the nonlinear function F is defined
as:
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Figure 2: Modulus (top) and phase (bottom) of the
input impedance of a bass trombone (A. Courtois Leg-
end AC502) with respect to frequency. Blue curve:
measured impedance; dashed orange curve: modal
fit function with N = 15 modes; green curve: error
between measured and fitted impedances, defined by
||Zfit| − |Zexp|| and arg (Zfit)− arg (Zexp) respectively
as regards the module and phase.

F : X 7→



X2

− ω`

Q`
X2 − ω2

` (X1 −H) +
pm−2

∑N+2
n=3 Xn

µ

Re [s1 (X3 + jXN+3) + ZcC1u(X)]
Re [s2 (X4 + jXN+4) + ZcC2u(X)]

...
Re
[
sN
(
XN+2 + jX2(N+1)

)
+ ZcCNu(X)

]
Im [s1 (X3 + jXN+3) + ZcC1u(X)]
Im [s2 (X4 + jXN+4) + ZcC2u(X)]

...
Im
[
sN
(
XN+2 + jX2(N+1)

)
+ ZcCNu(X)

]



,

(9)

with u : X 7→ wX+
1 sgn

(
pm − 2

∑N+2
n=3 Xn

)
×√

2
%

∣∣∣pm − 2
∑N+2
n=3 Xn

∣∣∣.
2.2.3 Regularisation of the volume airflow

For the continuation method implemented in AUTO
to work correctly, F has to be a C1 vector function.
In this respect, noting that sgn(x) = x/ |x| for x 6=
0 and x+ = max (x, 0) = 1

2 (x+ |x|), equation (2)
is regularised based on the regularisation |x| ∼

η→0
=√

x2 + η used in section 2 of [Colinot et al., 2019]:
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u ∼
η→0

w×
h+ h0

√(
h
h0

)2
+ η

2
× pm − p
√
p0

4

√(
pm−p
p0

)2
+ η

,

(10)
or equivalently

u ∼
η→0

w ×
X1 + h0

√(
X1

h0

)2
+ η

2

× pm − 2
∑N+2
n=3 Xn

√
p0

4

√(
pm−2

∑N+2
n=3 Xn

p0

)2
+ η

(11)

in terms of the components of the state vector X,
with η the regularisation parameter, which is fixed
to 10−6 in the following. p0 is defined in a similar
way as the closure pressure for woodwind instruments
[Gilbert et al., 2020]: p0 = µω2

0h0, except that ω0 is
chosen close to the first resonance frequency of the
resonator. Indeed, the choice of ω` generally con-
sidered for woodwind instruments is not suitable in
the case of brass instruments where ω` is no longer
constant. In practice, the choice is not ω0 = ωres,1
(where {ωres,n}n∈J1,NK are the resonance angular fre-
quencies of the resonator), but rather ω0 = ωres,4/4,
because the fourth resonance of instruments having
the same tube length (a trombone and a euphonium
for instance) appears to be quite constant, contrary
to the first resonance frequency which can vary up to
8 semitones between a trombone and euphonium.

In the following, the system equations (9) with
u(X) given by equation (11) are processed numeri-
cally in a dimensionless form, which is detailed in ap-
pendix B. Typical bifurcation diagrams will be shown
in section 4.

3 Lips’ parameters and linear
stability analysis

The results of the linear stability analysis detailed in
subsection 3.1 suggest that the lips’ parameter f` can
be tuned so as to obtain a given desired oscillatory
regime. The values of the other lips’ parameters are
difficult to measure and thus hardly found in the liter-
ature. In a first subsection, we consider the same pa-
rameters as in [Velut et al., 2017], which are detailed
in table 1. In order to be more consistent with exper-
imental results, we introduce, in a second subsection;
a frequency-dependent lip-opening at rest, based on
experimental data from [Elliott and Bowsher, 1982].

3.1 Constant lip-opening height at
rest

In the case of constant lips’ parameters, the results of
the linear stability analysis of the system are repre-
sented in figure 4 by the blue U-shaped patterns. As
described in subsection 2.2, these results give the val-
ues of the mouth pressure pm at which the equilibrium
solution destabilises (the threshold mouth pressures),
as well as the related frequency at which the oscil-
lating solution emerges (the threshold frequencies).
As a matter of fact, the multiple U-shaped patterns
on the top plot of figure 4 reflect the fact that for a
given configuration of the resonator (i.e without mov-
ing the slide nor activating any trigger), the trombone
player can play several notes called ‘natural notes’ just
by changing the lips’ resonance frequency (see for in-
stance [Campbell et al., 2021]) represented in figure 5,
from the B[1 (58Hz) to B[4 (466Hz) approximately.
For each natural note or regime n to emerge, there
is an optimal lips’ resonance frequency fopt,eq`,n which
corresponds to the minimum of a U-shaped pattern.
This is associated with an optimal threshold mouth
pressure popt,eqthresh,n and an optimal threshold frequency
fopt,eqthresh,n. The notation fopt,eq`,n has been chosen to be
as consistent as possible with [Velut et al., 2017]: in
this article, the equilibrium optimal threshold value
(i.e. the threshold inferred from the linear stability
analysis) of a quantity q in the nth regime was writ-
ten qoptthresh,n. Here, the threshold quantities are ob-
tained either using linear stability analysis or through
a bifurcation analysis, which will be defined and ad-
dressed in section 4. Therefore, it has been chosen to
add an extra superscript ‘eq’ for ‘equilibrium’, refer-
ring to the linear stability analysis, or ‘per’ for ‘peri-
odic solutions’, referring to the analysis of bifurcation
diagrams. Furthermore, it can be noticed that the
patterns on the bottom plot of figure 4 are always
above the line whose equation is fthresh = f`, which is
a characteristic of the outward-striking valve model:
the instrument always plays a note slightly above the
lips’ resonance frequency.

3.2 Frequency-dependent lip-opening
height at rest

In order to assess the validity of the results pre-
sented above, a comparison is drawn with the mini-
mal threshold mouth pressures estimated experimen-
tally in [Gilbert et al., 2018], for the exact same trom-
bone as the one considered in this paper. In fig-
ure 4, the comparison between the minima of the
blue U-shaped patterns and the red dots (representing
the experimental measures of the minimal threshold
mouth pressures) highlights significant differences. In
particular, the results of the linear stability analy-
sis, on the one hand, and of the experiment, on the
other hand, are quite different: compared to the ex-
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perimental data, threshold pressures computed nu-
merically are too low for the first regimes, and too
high for the last regimes. To overcome this issue,
additional information coming from experiments in
[Elliott and Bowsher, 1982] is considered. Indeed, the
lips’ opening height at rest H is measured to decrease
monotonously with f`. The experimental points are
plotted in black on the top plot of figure 3, together
with two regression functions which aim at fitting
these points. The inverse function H = k/f` (k is
given in table 1) appears here to better fit the experi-
mental points than the linear regression H = af` + b.
Therefore, the former H-profile will be retained here-
after, even if the case H = h0 is still given alongside
for sake of comparison until the end of section 4.

100 150 200 250 300 350 400 450

f` [Hz]

0.2

0.3

0.4

0.5

0.6

H
[m

m
]

Figure 3: Considered H-profiles vs. lips’ reso-
nance frequency. Blue line corresponds to the con-
stant value of H = h0 from [Velut et al., 2017],
black points correspond to experimental data from
[Elliott and Bowsher, 1982], and the orange and green
curves correspond to the regression functions chosen
to fit the experimental points, respectivelyH = af`+b
and H ∝ 1/f`.

h0 [m] w [m] Q`
1
µ [m2 kg−1]

5.0× 10−4 1.2× 10−2 7.0 1.1× 10−1

% [kgm−3] c0 [m s−1] k [mHz]
1.2 3.4× 102 7.4× 10−2

Table 1: Lips’ parameters used in the present publi-
cation, mostly taken from [Velut et al., 2017].

4 Bifurcation diagrams and
minimal blowing pressure

In this section several typical bifurcation diagrams of
a trombone are shown and discussed in detail. The
additional information obtained with the continuation
method on the threshold mouth pressure is also dis-
cussed, leading to new conclusions compared to the
case of the linear stability analysis.

100 200 300 400

f` [Hz]

10−1

100

101

p t
h
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sh
[k

P
a]
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f` [Hz]

100
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500

f t
h
re

sh
[H

z]

Figure 4: Results of the linear stability analysis with
the constant, linear and inverse H-profile described
on figure 3. Top and bottom plots represent respec-
tively the threshold mouth pressure and the thresh-
old frequency vs. the lips’ resonance frequency. Blue:
H = h0, orange: H = af` + b, green: H ∝ 1/f`.
Circles point out the minima of each U-shaped pat-
tern on the top plot. Red points represent the exper-
imental values of minimal threshold pressures given
by [Gilbert et al., 2018]. The black dashed line on
the bottom plot represents fthresh = f`.

Figure 5: Natural notes playable by a trombone, i.e
without moving the slide nor activating any trigger.
From left to right: B[1 (pedal note), B[2, F3, B[3,
D4, F4, A[4 (naturally a bit flat compared to an equal
tempered scale), B[4.

4.1 Case of the third regime

In this section the example of the third regime of a
trombone is considered (F3, third U-shaped pattern
on top plot of figure 4), as it shows a variety of differ-
ent behaviours of the system.

The left plot of figure 6 shows the bifurcation di-
agrams obtained by continuation for a constant H-
profile H = h0 and for three different but close values
of f`. For each branch of periodic solution, there is a
global minimum of the mouth pressure (identified by
the vertical dotted lines) below which the regime does
not exist anymore. This minimum can be lower than
or equal to the linear threshold mouth pressure given
by the linear stability analysis in section 3. As for this
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latter method, an optimal threshold mouth pressure
popt,perthresh,n

1 which can be lower than or equal to popt,eqthresh,n
is introduced, as well as the associated optimal thresh-
old frequency fopt,perthresh,n and the associated optimal lips’
resonance frequency fopt,per`,n . For instance, in the case
f` = 175.09Hz (green curve) the observed bifurcation
is a direct Hopf [Kuznetsov, 2004] and the minimal
blowing pressure is the same as the one given by the
linear stability analysis. On the contrary, in the case
f` = fopt,eq`,3 (blue curve) and f` = fopt,per`,3 (orange
curve), a small stable portion at the very beginning
of the branch is noticed, thus rigorously classifying
the bifurcation as a direct Hopf. However, since this
stable portion only exists for a narrow range of pm
it would be very difficult to observe it experimen-
tally, hence we choose to neglect it. In the following,
this configuration will be referred to as ‘almost-inverse
Hopf’ instead. In the case of this almost-inverse Hopf
bifurcation, the solution emerging from the equilib-
rium is unstable (if we neglect the small stable por-
tion at the very beginning) and stabilises further on
the branch at a value of threshold mouth pressure
lower than at the equilibrium. For f` = fopt,per`,3 , the
actual minimal blowing pressure is not only below the
linear threshold pressure but also below the minimal
blowing pressure given by the case f` = fopt,eq`,3 .

However, it is worth noting that the linear stabil-
ity analysis provides a rather accurate first guess of
the note which is the easiest to play. Indeed, the
frequency interval between the easiest note according
to the linear stability analysis (corresponding to the
minimal blowing pressure of the blue curve on figure
6) and according to the bifurcation diagrams (corre-
sponding to the minimal blowing pressure of the or-
ange curve on figure 6) is less than a semitone.

Eventually, it is reassuring to note that even if the
variable H-profile H ∝ 1/f` has a significant im-
pact on the threshold pressure of the system, it has
nonetheless qualitatively no influence on its threshold
frequencies as shown on bottom plot of figure 4.

For the interested reader, an animation showing the
evolution of the bifurcation diagrams as a function of
the lips’ resonance frequency f` is provided online2.
It especially shows how the bifurcation can go from
almost-inverse Hopf to direct Hopf through the merg-
ing of the two stable portions of the branch into a
single one.

1see subsection 3.1 for details about this notation.
2Animation showing the evolution of the bifurcation dia-

grams as a function of the lips’ resonance frequency f` increas-
ing from 134.2Hz to 182.1Hz in the case of the constant H-
profile H = h0 at http://perso.univ-lemans.fr/~rmatte/bd_
dyn_AC_basse_reg_reg3.avi or in the case of the inverse H-
profile H ∝ 1/f` at http://perso.univ-lemans.fr/~rmatte/
bd_dyn_AC_basse_Hinv_reg_reg3.avi.

4.2 Minimal blowing pressures
The investigation performed in subsection 4.1 for two
values of f` is repeated for a wide range of lips’ res-
onance frequency. For each value of f`, the global
minimal blowing pressure is extracted from the bifur-
cation diagrams, and these threshold values are com-
pared with the results of linear stability analysis. The
results of both methods are represented in figure 7,
which clearly highlights the added value of the con-
tinuation approach. In particular, the fact the first
regimes (B[1, B[2 and F3) emerge through inverse
Hopf bifurcations results in an actual threshold pres-
sure which is lower than the one predicted by the lin-
ear stability analysis. Nevertheless, it is worth noting
that the system only exhibit direct Hopf bifurcations
for regimes ≥ 4. This means that the linear stabil-
ity analysis is sufficient to characterise the threshold
mouth pressures for these regimes. Nevertheless, it
is worth noting that similar investigations performed
for a trumpet (which is very similar to a trombone
considering its bore, except that its pitch is an octave
higher) in [Fréour et al., 2020] highlighted an inverse
Hopf bifurcation for the fourth regime. Also, the be-
haviour observed here for the trombone has also been
observed in the case of the euphonium or the saxhorn,
except for the first regime which will be addressed in
section 5.

As in subsection 4.1, it is reassuring here to note
that the variable H-profile H ∝ 1/f` has qualita-
tively no influence on the system’s behaviour dis-
cussed above, in particular its threshold frequencies
as shown on bottom plots of figure 7.

Among all the regimes that can be played by the
musician according to figure 7 and figure 5, the first
one is especially worth focusing on. Indeed, it exhibits
a very different behaviour depending on whether the
instrument has a predominantly-cylindrical bore pro-
file (case of the trombone or the trumpet for instance)
or a predominantly-expanding bore profile (case of the
tubas or the flugelhorn); see for instance figure 7.34 of
[Campbell et al., 2021]. In this respect, the last sec-
tion of this paper focuses on the study of the first
regime of the trombone (predominantly-cylindrical
bore profile) and the euphonium (predominantly-
expanding bore profile).

5 Bifurcation diagrams, case of
the first regime

5.1 Case of the trombone
Similarly to the case of the third regime (see subsec-
tion 4.1), the bifurcation diagrams of the trombone
show that the first regime generally emerges through
an inverse Hopf bifurcations (see figure 8). As al-
ready discussed in subsection 4.2, this leads to an opti-
mal threshold pressure popt,perthresh,1 smaller than popt,eqthresh,1.

http://perso.univ-lemans.fr/~rmatte/bd_dyn_AC_basse_reg_reg3.avi
http://perso.univ-lemans.fr/~rmatte/bd_dyn_AC_basse_reg_reg3.avi
http://perso.univ-lemans.fr/~rmatte/bd_dyn_AC_basse_Hinv_reg_reg3.avi
http://perso.univ-lemans.fr/~rmatte/bd_dyn_AC_basse_Hinv_reg_reg3.avi
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Figure 6: Top and bottom plots represent respectively the maximum amplitude of the periodic oscillation
branches and their oscillation frequency vs. the blowing pressure. Left: case H = h0; right: case H ∝ 1/f`. Blue
curves: case f` = fopt,eq`,3 = 165.84Hz (left) or 167.75Hz (right); orange curves: case f` = fopt,per`,3 = 164.00Hz

(left) or 165.17Hz (right); green curves: case f` = 175.09Hz, which corresponds to an arbitrary f` value at
which the Hopf bifurcations are direct. The line thickness indicates whether the branch portion is stable (thick
line) or unstable (thin line). The vertical dashed lines locate the value of the minimal threshold mouth pressure
of each curve.

However, it is worth noting that, similarly to other
regimes, only one note is accessible to the musician
since only one branch of the bifurcation diagrams is
stable. The corresponding note is called the ‘pedal
note’ (B[1, lowest note playable in first position and
roughly one octave below the second regime B[2, see
also figure 5).

The optimal playing frequency fopt,perthresh,1 of the pedal
note predicted by the bifurcation diagrams is about a
semitone lower than the optimal linear threshold fre-
quency fopt,eqthresh,1 given by the linear stability analysis
used in [Velut et al., 2017]. Therefore, the analysis
of the bifurcation diagrams adds a significant infor-
mation as regards the playing frequency, even though
– as previously discussed in subsection 4.2 – the lin-
ear stability analysis already provides a rather good
estimation of the playing frequency.

5.2 Case of a bass brass instruments
with predominantly-expanding
bore profile

For the regimes 2 to 8, the bifurcation diagrams of
the euphonium (not shown here) are very similar to
the trombone’s ones, in terms of the direct or inverse
nature of the Hopf bifurcations. However, the eupho-

nium exhibits a specific behaviour for the first regime,
which is qualitatively different from the one observed
for the trombone.

In the case of the euphonium, the left part of figure
10 shows typical bifurcation diagrams, obtained for
a value of lips’ resonance frequency f` in the range
of the first regime. Contrary to the trombone, these
diagrams display two stable regimes corresponding to
two distinct periodic solution branches, thus resulting
in two different playing regimes accessible to the musi-
cian. The note with the lowest oscillation frequency is
called – as for the trombone – the ‘pedal note’ (B[1,
lowest note playable without any valve pushed, see
also figure 9), whereas the other one is referred to as
the ‘ghost note’ 3 (see figure 9).

On the one hand, the pedal note (red note on figure
9) is a natural note, which is as familiar as any other
regime for both trombone and euphonium players. On
the other hand, the ghost note (green note on figure
9) is a regime exclusively accessible to bass brass in-
struments with predominantly-expanding bore profile
as a whole, such as the euphonium. Even though
the ghost note is not much used in a musical context

3We chose here to use the term employed by
[Velut et al., 2017] to qualify this note being between a
minor third and a perfect fourth higher than the pedal note.
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Figure 7: Top and bottom plots represent respectively the threshold pressures and threshold frequencies given
by the linear stability analysis (blue) and the continuation method (orange) vs. the lips’ frequency. Left: case
H = h0; right: case H ∝ 1/f`. The circles identify the value of f` corresponding to a local minimum of blowing
pressure. Horizontal dotted lines on the bottom plots locate the values of the acoustical resonances of the
resonator; the black dashed line on the bottom plots represents fthresh = f`.

by euphonium players, it can be played by any tuba
player and was brought to light for the first time in
[Velut et al., 2017] using linear stability analysis. In
particular, it was the only note playable for values
of f` close to the first acoustic resonance of the res-
onator according to this method. As a matter of fact,
since the branch corresponding to the pedal note (see
the left plots of figure 10) does not emerge from the
equilibrium solution (whereas the branch of the ghost
note does), this regime could not be found by linear
stability analysis which gives trustworthy information
only in the vicinity of an equilibrium. Furthermore,
the ghost note can be linked to one of the ‘factitious
notes’ mentioned in [Herbert et al., 2019], where it is
referred to as a ‘phenomenon whereby a player can
sound a note intermediate between notes low in the
series of natural notes’ and sounds a perfect fourth
above the pedal note in the case of an E[-tuba.

To illustrate the uncommon behaviour of the bi-
furcation diagrams shown in figure 10 (left), figure 10
(right) shows results of time-domain simulations. The
first simulation (left) corresponds to the blue point on
the ghost note branch of the bifurcation diagrams. Its
instantaneous frequency is 69.5Hz, which is coherent
with the oscillation frequency displayed on the top
right plot in figure 10. The second time-domain sim-
ulation (right) corresponds to the orange point on the
pedal note branch of the bifurcation diagrams. Its

instantaneous frequency is 60.6Hz, which is coherent
with the oscillation frequency displayed on the top left
bottom in figure 10.

In the case of the pedal note, it is worth noting that
over one period, p(t) becomes higher than pm (hori-
zontal dotted line), which is physically questionable
as it was never observed experimentally. This phe-
nomenon might be considered as a weakness of the
model used, caused by the raw modelling of the con-
tact between the lips in equation 2. To overcome this
limitation, a contact force between the lips – currently
unavailable in literature – could be added in this equa-
tion. However, it is worth mentioning that such a
contact force has already been introduced in the case
of reed instruments [Munoz Arancon et al., 2013].

5.3 Assessment of the frequency inter-
val between pedal note and ghost
note

It is possible to qualitatively check the relevance, in
terms of intonation, of these two regimes predicted by
the bifurcation analysis. In particular, one can com-
pare the frequency intervals between the ‘easiest-to-
play’ notes predicted by the bifurcation diagrams on
the one hand, and by analysing recordings of a eupho-
nium player on the other hand. In the case of a eupho-
nium and considering the U-shaped patterns in figure
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Figure 8: Top and bottom plots represent respec-
tively the maximum amplitude of the periodic so-
lutions branches and their oscillation frequency vs.
the blowing pressure in the case of a trombone, for
f` = fopt,per`,1 = 54.86Hz. The line thickness indicates
whether the branch portion is stable (thick line) or
unstable (thin line).

Figure 9: Natural notes playable by a euphonium,
i.e without depressing any valves. From left to right:
B[1 (pedal note, red), D2 (ghost note, green), B[2,
F3, B[3, D4, F4, A[4 (naturally a bit flat compared
to an equal tempered scale), B[4.

11, the ‘easiest-to-play’ notes are those with the lowest
threshold mouth pressure. The corresponding oscilla-
tion frequencies are fopt,perthresh,PN = 60.6Hz for the pedal
note, fopt,eqthresh,GN = 75.6Hz for the ghost note, and
fopt,perthresh,2 = 120.4Hz for the B[2 (in the bifurcation di-
agrams, we have actually fopt,perthresh,2 < fopt,eqthresh,2). There-
fore, it has been found that the frequency interval be-
tween the pedal note and the ghost note inferred from
the bifurcation analysis (75.6/60.6 ≈ 1.25 = 5/4) is
about 2 tones (major third), whereas the recording of
a euphonium player4 leads to a high major third be-
tween the pedal note and the ghost note, which is

4Recording of a euphonium player at http://perso.
univ-lemans.fr/~rmatte/bb-euphonium_reg1-6.mp4 and of
an E[-tuba player at http://perso.univ-lemans.fr/~rmatte/
eb-tuba_reg1-6.mp4 playing successively an ascending series
and a descending series of the six first natural notes, going
through the ghost note when descending.

reasonably close. Furthermore, the frequency inter-
val between the pedal note and the second regime
obtained in the bifurcation diagrams is found to be
close to 12 semitones (octave), as one would expect
between a B[1 and a B[2.

Eventually, it is worth highlighting that the ghost
note does exist for other tuba types than the eupho-
nium, such as the E[-tuba for instance4.

6 Conclusion

Most results in this study highlight the usefulness of
linear stability analysis to understand various near-
threshold behaviours of a complete nonlinear model
of brass instrument applied to trombone and eupho-
nium, as well as the ability of bifurcation diagrams to
quickly give valuable information about their periodic
solutions.

The ease of playing of an instrument is chosen to be
assessed based on the minimal threshold pressures. A
good estimate can be obtained using linear stability
analysis. At the same time, the associated thresh-
old oscillation frequency is inferred, which is directly
linked to the pitch of the note. For the considered
elementary model of brass instrument, this method
provides information on all the periodic regimes ac-
cessible to a trombone player for a given position of
the slide, and on almost all periodic regimes accessible
for a given fingering of a euphonium.

However, linear stability analysis turns out to be
unable to describe the pedal note of the euphonium.
In this respect, the analysis of bifurcation diagrams
are conveniently introduced. It allows to illustrate the
existence of the pedal regime in the form of a branch
of periodic solutions far from equilibrium (hence the
failure of linear stability analysis to describe it) sep-
arated from the one describing the ghost note, which
itself emerges from the destabilisation of the equilib-
rium solution. Moreover, compared to the linear sta-
bility analysis, bifurcation diagrams give a more pre-
cise prediction of the threshold mouth pressures in
the event of an inverse Hopf bifurcation. However,
it is worth highlighting that the minimal threshold
mouth pressure of each periodic regimes for a given
slide position or fingering in the case of a trombone or
a euphonium – except the pedal note of the latter –
given by the bifurcation diagrams is qualitatively the
same as given by the linear stability analysis.

If the ghost note seems to exist on every model of
tubas, the interval between the ghost note and the
first regime appears to vary from a minor third to
a perfect fourth depending on the tuba’s pitch. Fu-
ture work include a more quantitative study on a wide
range of tubas going from the B[-contrabass tuba to
the B[-baritone horn (an octave higher), in order to
determine whether or not the frequency interval be-
tween the pedal note and the ghost note remains con-

http://perso.univ-lemans.fr/~rmatte/bb-euphonium_reg1-6.mp4
http://perso.univ-lemans.fr/~rmatte/bb-euphonium_reg1-6.mp4
http://perso.univ-lemans.fr/~rmatte/eb-tuba_reg1-6.mp4
http://perso.univ-lemans.fr/~rmatte/eb-tuba_reg1-6.mp4
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Figure 10: Typical bifurcation diagrams (left) and time-domain simulations (right) in the case of the eupho-
nium’s first regime, obtained for pm = 1.8 kPa and f` = fopt,per`,PN (Pedal Note) = 49Hz. Left plots represent the
maximum amplitude of the periodic oscillation branches vs. the blowing pressure (top) and the frequency of
the corresponding periodic solutions vs. the blowing pressure (bottom). The line thickness indicates whether
the branch portion is stable (thick line) or unstable (thin line). Right plots represent the time evolution of
the acoustic pressure at two points of the bifurcation diagrams above, given by the intersection of the vertical
dotted line and the branches. Top: time-domain simulation of the ghost note (blue point on the bifurcation
diagrams); bottom: time-domain simulation of the pedal note (orange point on the bifurcation diagrams). The
horizontal dotted line represents the value of pm.

stant regardless of the considered bass brass instru-
ment with predominantly-expanding bore profile.

Moreover, it is worth noting that the pedal note
also exhibits different behaviours for the high brass
instruments, depending on the bore profile of the
instrument. For example, the pedal note appears
to be more ‘slotted’ (meaning that the player has
the sensation of a well-defined pitch) on a flugel-
horn (predominantly-expanding bore profile) than on
a trumpet (predominantly-cylindrical bore profile).

One important limitation of the present study lies
in the difficulty to estimate the lips’ parameters used
in the model. Indeed, it would be reasonable to think
that lips’ parameters would vary from playing a low
note to playing a high note, not to mention from play-
ing a contrabass tuba to playing an alto trombone for
instance. Yet, these lips’ parameters being difficult to
measure both on an artificial mouth or directly on the
player, they were kept the same regardless the instru-
ment or the note played. Even though the obtained
results look reasonable, i.e consistent with the mu-
sicians’ experience, in vivo measurements of lips pa-
rameters during musical performance would be very
valuable. Furthermore, even if the system dynamics

does not seem to depend sensitively on the model’s pa-
rameters such as the lip-opening height at rest H, it
may be worth checking the impact of a finer modelling
of various elements on the ease of playing and pitch:
for instance, considering a mouth section proportional
to H2 (instead of only H in the present study), taking
a second resonance frequency of the lips into account,
or adding a contact force between the lips when they
are about to touch each other.
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A Inverse Fourier transform of
the input impedance

This appendix is based on the demonstration found
in section 6.3 of [Silva, 2009].

Quantities in the Fourier domain are written using
capital letters, whereas quantities in the time domain
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Figure 11: Top and bottom plots represent respec-
tively the threshold pressures and threshold frequen-
cies given by the linear stability analysis (blue) and
the continuation method (orange) vs. the lips’ reso-
nance frequency in the case of a euphonium. The cir-
cles identify the value of f` corresponding to a local
minimum of blowing pressure. In the case of the sec-
ond regime, the easiest note playable is given by the
minimum of the continuation method (orange curve),
since its minimal threshold mouth pressure is lower
than the one given by the linear stability analysis
(blue curve). The first two regimes on the left of
each plot represent respectively the pedal note and
the ghost note.

are written using small letters.

Starting from equation (5), we have P (ω) =
Zfit(ω)U(ω) by definition of the input impedance.
Since Zfit represents the impulse response of the res-
onator, the inverse Fourier transform of Zfit has to be
real. Thus, Zfit is hermitian-symmetric, that is to say
Zfit(−ω) = Z∗fit(ω). The pressure in the mouthpiece
in the time domain p can then be inferred by taking
the inverse Fourier transform of P :

p(t) = F−1 [P (ω)] (t)

=
1

2π

∫
R
Zfit(ω)U(ω)ejωt dω

=
1

2π

N∑
n=1

(∫
R

Cn
jω − sn

U(ω)ejωt dω

+

∫
R

C∗n
jω − s∗n

U(ω)ejωt dω

)
=

1

2π

N∑
n=1

(∫
R

Cn
jω − sn

U(ω)ejωt dω

+

∫
R

C∗n
−jω′ − s∗n

U(−ω′)e−jω′t dω′
)
,

with ω′ = −ω. U being also hermitian-symmetric, we
have:

p(t) =
1

2π

N∑
n=1

(∫
R

Cn
jω − sn

U(ω)ejωt dω

+

∫
R

(
Cn

jω′ − sn
U(ω′)ejω

′t

)∗
dω′

)

=
1

2π

N∑
n=1

2Re

(∫
R

Cn
jω − sn

U(ω)ejωt dω

)

=
1

2π

N∑
n=1

2Re (pn(t)) ,

where pn is the complex component of the pressure
in the mouthpiece p, whose dynamical behaviour is
linked to Cn and sn:

Pn(ω) =
Cn

jω − sn
U(ω)⇒ ṗn(t)− snpn(t) = Cnu(t).

B Dimensionless variables and
equations

From a numerical point of view, it is reasonable to
make equations dimensionless in order to prevent the
variables from varying on a too-large scale, especially
when using the continuation method in AUTO. In all
that follows, most dimensionless quantity are written
with a tilde ‘∼’ unless otherwise stated.

The dimensionless variables of the system
(
h̃, p̃, ũ

)
,

the dimensionless time t̃, the dimensionless mouth
pressure γ, the dimensionless lips’ resonance fre-
quency θ` and the dimensionless modal parameters
(κn, σn) are defined as follows :

h̃ =
h

h0
; p̃ =

p

p0
; ũ =

Zc
p0
u ;

t̃ = ω0t ; γ =
pm
p0

; θ` =
ω`
ω0

;
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κn =
Cn
ω0

; σn =
sn
ω0
,

where h0 is given in table 1, ω0 = Im (s4) /4 is the
quarter of the fourth resonance angular frequency
of the resonator (chosen as so because the fourth
resonance frequency appears to be quite similar be-
tween instruments of the same tube length, such as a
trombone and a euphonium for instance), so that p0
can be defined in a similar way as the closure pres-
sure for woodwind instruments [Colinot et al., 2019]:
p0 = µω2

0h0. Given the new set of variables, the state
vector is now:

X̃ =

({
X̃m

}
m∈J1,2(N+1)K

)
=
(
h̃;
˜̇
h; {Re(p̃n)}n∈J1,NK ; {Im(p̃n)}n∈J1,NK

)
,

so the equation (9) is now written as:

F̃ : X̃ 7→



X̃2

− θ`
Q`
X̃2 − θ2`

(
X̃1 − H̃

)
+ γ − 2

∑N+2
n=3 X̃n

Re
[
σ1

(
X̃3 + jX̃N+3

)
+ κ1ũ(X̃)

]
Re
[
σ2

(
X̃4 + jX̃N+4

)
+ κ2ũ(X̃)

]
...

Re
[
σN

(
X̃N+2 + jX̃2(N+1)

)
+ κN ũ(X̃)

]
Im
[
σ1

(
X̃3 + jX̃N+3

)
+ κ1ũ(X̃)

]
Im
[
σ2

(
X̃4 + jX̃N+4

)
+ κ2ũ(X̃)

]
...

Im
[
σN

(
X̃N+2 + jX̃2(N+1)

)
+ κN ũ(X̃)

]



,

with ũ now written as:

ũ : X̃ 7→ ζ×
X̃1 +

√
X̃2

1 + η

2
×

(
γ − 2

∑N+2
n=3 X̃n

)
4

√(
γ − 2

∑N+2
n=3 X̃n

)2
+ η

,

and eventually ζ = wZc

ω0

√
2h0

%µ the dimension-
less lip-opening height at rest, defined similarly to
[Gilbert et al., 2020].
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