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Abstract: Vibration analysis aims at identifying potential failures of a rotating machinery
from the monitoring of its vibration levels, i.e., by measuring the vibrations and comparing them
to known failure vibration signals. For the diagnostic of gearboxes, new demodulation methods
have recently been introduced in acoustic and signal processing. This new approach yields the

problem of writing/factorizing a matrix M as Y ., D;uv; = (Diu ... D,u) (’U{ UTT)T,
where the D;’s are fixed matrices, u (resp., v;) is a row (resp., column) vector to be determined
and ¢ = 1,...,r. In this paper, using module theory and homological algebra, we study this

rank factorization problem. More precisely, we characterize the general solutions of this family of
polynomial systems. Finally, the results we develop are effective in the sense of computer algebra.
Thus, they can be implemented in standard computer algebra systems handling polynomial systems
and basic homological algebra methods (e.g., the Singular system, the GAP library CapAndHomalg,
the Maple package OREMODULES).
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Sur les solutions générales d’un probléme de factorisation relative
au rang

Résumé : L’analyse vibratoire a pour but d’identifier de potentiels défauts d’'une machine tournante
grace & la surveillance de ses niveaux de vibration, c’est-a-dire, grace a la mesure de ses vibrations et
a leur comparaison avec des signaux de défauts connus. Pour le diagnostic d’engrenages, de nouvelles
méthodes de démodulation ont récemment été introduites en acoustique et en traitement du signal.
Cette nouvelle approche a permis ’étude du probléme consistant & écrire/factoriser une matrice M sous
la forme de Y., D;uv; = (Diu ... Dy u) (v? vf)T, ot les D; sont des matrices fixées, u (resp.,
v;) est un vecteur colonne (resp., un vecteur ligne) a déterminer et ¢ = 1,...,r. Dans ce papier, en
utilisant la théorie des modules et 1’algébre homologique, nous étudions ce probléme de factorisation
relative au rang. Plus précisément, nous caractérisons les solutions générales de cette famille de systémes
polynomiaux. Finalement, les résultats obtenus sont effectifs au sens du calcul formel. Ainsi, ils peuvent
étre implantés dans des systémes standards de calcul formel permettant I'étude effective des systémes
polynomiaux et des méthodes élémentaires d’algébre homologique (par exemple, le systéme Singular, la
librairie CapAndHomalg de GAP, le package OREMODULES écrit en Maple).

Mots-clés : systémes polynomiaux, factorisation relative au rang, matrice centrohermitiennes, théorie
des modules, algébre homologique, problémes de démodulation, détection et surveillance des défauts
d’engrenages, analyse vibratoire
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1 Introduction

Before motivating and stating the main problem studied in this paper, let us first introduce a few standard
notations.

Let K denote a field, R a commutative unital ring and R™*"™ the R-module formed by all the
m X n matrices with entries in R. If M € R™*", then we can consider the R-homomorphisms M. :
R — R™*L and .M : RY*™ — RYX™ respectively defined by (M.)(n) = M n for all n € R™*! and
(.M)(\) = AM for all A € R**™. Their kernels, images and cokernels R-modules are respective denoted
by kerg (M.), img (M.), cokerg (M.), and kerg (.M), imgr (.M) and cokerg (.M) [24]. A matrix M is said
to have full column rank (resp., full row rank) if kerg(M.) = 0 (resp., kerg (.M) = 0). If M € K™*™,
then the rank of M, i.e., dimg(imk(M.)), is denoted by rankk(M). Let I, be the identity matrix, i.e.,
the n x n matrix with 1 on the first diagonal and 0 elsewhere, and J,, the exchange n x n matrix, i.e.,
the n x n matrix with 1 on the second diagonal and 0 elsewhere. The diagonal matrix with the elements
of a list L on the first diagonal is denoted by diag(L). Finally, M € C™*" then M (resp., M*) denotes
the conjugate matriz (vesp., the adjoint matriz, i.e., M~ € C"*™),

Within the frequency domain (see, e.g., [23]), the toothed gearbox vibration [2I] can be interpreted
as a modulation process of a high-frequency carrier with a low-frequency modulation [3| 4 [I3] [14]. For
gearboz fault surveillance, one has to separate these two time-domain signals and compare them to known
failure vibration signals. To solve this problem, (amplitude, amplitude & phase) demodulation methods
[23] have naturally been introduced in [I3] [T4]. Within this approach, the toothed gearbox vibration is
measured and Fourier coefficients of this periodic real-valued time signal are computed and stored into
a so-called centrohermitian matrix M € C™*™ [12] 20], namely, a complex matrix which satisfies the
identity M = J,, M J,. More precisely, if s is the T-periodic real-valued signal of the toothed gearbox

N : , ‘ 2mijt )
vibration, then s can be expressed by its Fourier series s(t) = > ..z cj(s)e” T, where the Fourier
—2mijt _

coefficients of s, defined by c;(s) = £ fOT s(t)e— T dt, j € Z, satisty ¢;(s) = c_;(5) = c_;(s) for j € Z.
The vectors C; = (c_y(s) ... co(s) ... ci(s))” € CRHDX1 [ >0, and the matrix

Cq@pti)tp -+ Cp oo Cog(@pti)tp
M= Cq2p+1) -+ €O - C_g(2p+1) c C(2p+1)x(2q+1)’ p, q >0,
Cq@p+1)-p -+ C—p -+ C—q(2p+1)-p

satisfy the relations C; = Ja;41 C;J; (note that J; = 1) and M = Jop+1 M Jag41, which shows that
C; and M are centrohermitian matrices. Given r + 1 fixed centrohermitian matrices D+,...,D, €
C@r+tx2p+1) and M e CRrtD*(2a+1)  the corresponding demodulation problem then aims at deter-
mining if there exist a centrohermitian column vector u € C?+VU*1 and r centrohermitian row vectors
v1,. .., v, € C1X(2atD) gatisfying the following equation:

For instance, the amplitude demodulation (resp., phase demodulation) problem corresponds to r = 1 and
Dy =I5y (vesp., r =2, Dy = Iz pyq and Dy = 274 f.diag(—p,...,0,...,p), where f. > 0). For more
details, see [13] [14].

Problem (|1)) can be generalized as follows. Given M € K™*™ and Dy, ..., D, € K®™*™ find a column
vector u € K™*! and row vectors v; € KX, i =1,...,r, satisfying . This problem will be called rank
factorization problem since M can then be factorized as follows

U1
M= (Diu ... Dyu) : ,

RR n® 9438



4 Dagher € Hubert & Quadrat

where the rank of M must be less than or equal to r. The goal of this paper is to study the solutions of
this rank factorization problem using algebraic and computer algebra methods.

A result due to Lee [20] shows that the set of centrohermitian matrices can be bijectively mapped
onto the set of real matrices by a certain (unitary) transformation . Hence, the demodulation prob-
lem (1) can be transformed into a similar problem over K = R for the transformed real matrices
©(M),p(D1),...,¢(Dy). The real solutions u, and {vi,}i—1,.. , of the latter problem can then be
transformed back to obtain the centrohermitian solutions u = ¢~ (uy) and {v; = ¢! (v;,)}iz1,...» of
(1)). For more details, see [I7, [I8]. Hence, the demodulation problems can be reduced to solving the rank
factorization problem for K = R.

For fixed matrices M, D+, ..., D,, defines a system of m n quadratic equations in m-+rn unknowns
— the entries of the vectors u and v; for ¢ = 1,...,r. Hence, different (effective) algebraic geometry
methods can be used to study the rank factorization problem . For instance, see, e.g., [9, 11, 19, 25]
and the references therein.

In this paper, we exploit the bilinear structure of in v and v = (UlT UTT)T to effectively
characterize the general solutions of . In particular, we find again a class of solutions — the ones with
full row rank matrices v — characterized in [15, [I6] [I'7, [I8] using linear algebra methods. Our effective
approach uses standard module theory, homological algebra and computer algebra methods [9] 1T 24].
The general solutions can be computed using standard computer algebra systems that contain both
elimination theory for polynomial systems (e.g., Grébner or Janet basis techniques) and basic homological
methods such as Singular [II], the GAP library CapAndHomalg [I], or Maple package OREMODULES [5].

The paper is organized as follows. In this section, the notations, the context and the rank factorization
problem are introduced. In Section [2] we first restrict the rank factorization problem to a particular class
of solutions — those with full row rank v — and state again the results obtained in [I5] 16, 17, 18]
which only use linear algebra and module theory methods. In Section [3] using module theory and basic
homological algebra, we explain how the results obtained in Section[2] can be extended to characterize the
general solutions of the rank factorization problem. Explicit examples, computed with the CapAndHomalg
[1], using the Singular computer algebra system [11], illustrate the main results of the paper. Finally,
in Section 4] we end the paper by explaining problems that will be studied in the future.

2 Characterization of a particular set of solutions

2.1 A few remarks

In this section, we state preliminary remarks on the rank factorization problem . As stated in Sec-
tion |1} the rank factorization problem corresponds to a system of mn quadratic equations in m+rn
unknowns, namely, the entries of the vectors v € K™*! and v; € K1*™, i =1,..., r. Hence, this problem
belongs to the realm of (effective) algebraic geometry (see, e.g., [9, 11, 19] and the references therein).
For n = 1, using » > 1, we note that m + r > m, which shows that defines a system with
more unknowns than equations. For n > 2, the sign of mn — (m + rn) is the sign of the function

U(m,n,r) =m — (1—|— ﬁ) rand m —2r < ¥(m,n,r) < m —r. In particular, if m > 2r, then

defines a system with more equations than unknowns.

In what follows, we shall suppose that M, Dy, ..., D, are not 0 and we use the notations:
U1

A(u) == (Dl u ... DT U) S I‘(”‘"’XT7 v = c KTXTL. (2)
Uy

The rank factorization problem can then be rewritten as follows:
A(u)v = M. (3)

The bilinear structure in u and v is emphasized in . Under the form , clearly corresponds to a
factorization problem for the matrix M.

Inria



On the general solutions of a rank factorization problem 5

Remark 1. If (u, v) is a solution of (3)), then (Au, A~!v) is also a solution for all A € KX = K\{0}. Hence,
K* defines a group action on the solution space of (3) and the orbit O, ) = {(Au, A™'v) | A € K*} can
be considered instead of the solution (u, v) only.

Remark 2. A natural approach is to transform into a multi-homogeneous polynomial system over

a multi-projective space [25]: Writing v = (ve1 ... Ven) (resp., M = (Me1 ... May)), where ve; €
K™1 (resp., Mo; € K™*1) denotes the i*" column of v (resp., M), can be rewritten as A(u)vie =
M,g; for i = 1,...,n. Introducing new variables ug and vg; for ¢ = 1,...,n, and the matrix M; =
ug (Vo1 Me1 ... von Mey), the change of variables u +— u/ug and ve; <— vei/Voi, @ = 1,...,n, in the
equations A(u) vie = M,; for i = 1,...,n then yields the following multi-homogeneous polynomial system

A(U) v = Mh (4)
of degree (1,1) with respect to the partition {ug,u1,. .., un} U{vo;, v1;,...,vr;} of the variables. Note

(uo,u1,...,uy) (resp., (voj,v1j,...,vr;)) is a point of the projective space P™(K) (resp., P"(K)). Then,
the solutions of can be sought in the multi-projective space [25]:

P™(K) x P"(K) x ... x P"(K).

n

In this paper, we shall not follow the approaches briefly described in Remarks [} and [2} They will be
studied elsewhere. In this paper, we follow an approach that we now explain.

2.2 Characterization of particular solutions

We briefly state again results obtained in [2), (15, [I6] 17, 18] which characterize a particular class of
solutions of . These results use linear algebra and module theory. In Section (3] using also homological
algebra, this approach will be generalized to characterize the general solutions of .

First note that the existence of the vectors u € K™*! and v; € KI*", § = 1,...,r, satisfying is
equivalent to the existence of u € K™*! such that:

img (M.) C img(A(u).). (5)

Indeed, implies that the columns M,;’s of M belong to img(A(w).), i.e., implies the existence of vectors
vei € K™ satisfying A(u)ve; = Me;, i = 1,...,n, which yields A(u)v = M, where v = (Vo1 ... Vep) €
K™*™_ Conversely, clearly yields (). then shows that a necessary condition on M for the solvability
of the rank factorization problem (1)) is:

rankg (M) < rankg(A(u)) < min{m,r}. (6)

In what follows, we shall note { = rankg(M). Hence, if [ is not less than or equal to min{m,r}, no
solution of exists. The name rank factorization problem comes from and @ Finally, note that
u € K™*! has to be chosen so that not all the [ x [ minors of A(u) vanish.

Let us now suppose that has a solution. In what follows, we investigate when a solution (u, v)
exists with a full row rank matrix v (i.e., the rows of v are K-linearly independent). Recall that the
matrix v has full row rank if and only if it admits a right inverse t € K*"*" ie., vt = I.. Hence, if a
solution (u, v) of (3) exists with a full row rank matrix v, then yields A(u) = M ¢, which shows that
img (A(u).) = img(M.), i.e., u € K™*! is such that:

1. Diju€img(M.) fori=1,...,r.
2. rankg (A(u)) = rankg (M), i.e., dimg(spang{D; u}i=1, . ,) = I.

Let us study these two conditions and characterize the solutions of satisfying them.

Let us first suppose that img (M.) # K™*!. Set p = m—1 > 0. Let L € KPX™ be a full row rank matrix
whose rows define a basis of kerx(.M), i.e., kerx(.M) = img(.L). Then, we get L M = 0, which shows
that imk (M.) C kerg(L.). Now, dimg(kerg(L.)) = m — p = | = rankg(M) yields kergx(L.) = img(M.).

RR n® 9438



6 Dagher € Hubert & Quadrat

Hence, the first above condition is equivalent to the system of linear equations (L D;)u=0,i=1,...,r,
i.e., u € kerg(N.), where N is given by:

LD,
N = : € Kprxm, (7)

LD,
Set d = dimg (kerk(N.)). Let Z € K™*4 be a full column rank (namely, the columns of Z are K-linearly
independent) whose columns define a basis of kerx(N.). In other words, we have kerk(N.) = img(Z.).

Thus, the first above condition is equivalent to v = Z 1) for all 1) € K4¥1. Substituting this expression
into Condition 2 above, we are led to determining;:

P = {¢ € K" | rankp (A(Z¢)) =1} .

If d =0, then Z =0 and A(Z¢) = A(0) = 0, showing that img(A(u).) = imk(M.) is never satisfied,
and thus, has no solutions (u, v) with full row rank matrices v.

Secondly, if img (M.) = K™*1 then Condition 1 is satisfied and we have d = m, Z = I,,.

To explicitly characterize v, let X € K™*! be a full column rank whose columns define a basis of
img (M.), i.e., imk(M.) = imk(X.). Hence, there exist Yo; € KI*1, i =1,...,n, such that M,; = X Y, for
i=1,...,n, whichyields M = XY, where Y = (Yq1 ... Ya,,) € KX". Now, we have D; Z ) € kerx(L.) =
img (M.) = img (X.) for all ¢ € K¥1, which shows that there exists a unique matrix W; € K¢ such that
D, Z=XW,fori=1,...,r. We then get:

Vipe KU A(ZY)=(D1Z¢ ... D, Z¢) =X (Wit ... W)

Let B(v)) = (Wit ... W) € KX for all 1 € K. Thus, we have A(Z ) = X B(v) for all ¢ € K¢¥1L.
Since X has full column rank, we get:

P={ve K| ranky (B(1)) = l}. (8)

Note that P is not empty if at least one of the [ x [ minors of B(v) is not 0. Since the columns W; ¢ of
the matrix B(v)) are linear forms in 4, the [ x [ minors of B(v) are either 0 or homogeneous polynomials
in ¢ of degree I. Hence, if » € P then Ay € P for all A € K*. Moreover, using (@, e, I <r, P
characterizes the v’s which are so that B(¢)) admits a right inverse E,, € K%' i.e., B(¢)) Ey, = I;. Using
again that X has full column, we get:

Vip e KX A(ZyY)v=M <= XB)v=XY <= B()v=Y.

Hence, if ¢ € P, then v, = Ey Y € K™*" is a particular solution of the linear inhomogeneous system
B()v =Y. Let Cy € K™*("=U be a full column matrix whose columns define a basis of kerx(B(¢)).),
ie., kerk(B(¢).) = imk(Cy.). Then, we obtain the following solutions of (I)):

’ (r=0)xn
VoeP, VY eK S — Cw(}/)' 9)

Note that the matrix (E, Cy) € K™*" is invertible. Hence, v has full row rank if and only if so has
T
the matrix (YT Y’ T) . Let sum up the above results.

Theorem 1 ([I5]). Let D; € K™*™ fori=1,...,r and M € K™*™ be such that:
I = rankk (M) < min{m,r}.

Let L € Km=Uxm be q full row matriz whose rows define a basis of ker (.M) (with the convention that

L=0ifl=m), N=((LD)" ... (LDT)T)T € KP™xm gnd Z € K™*? be a full column matriz whose
columns define a basis of kerk (N.), where d = dimg (kerk (N.)). In particular, Z = I, if | = m. Moreover,

Inria



On the general solutions of a rank factorization problem 7

let X € K™ be a full column matriz whose columns define a basis of imk(M.) and Y € KX™ the unique
matrix such that M = XY . Finally, let W; € KiXd be the unique matrices such that D; Z = X W; for
i=1,...,7r, and:

= ... P)T €KL B=Wivy ... D) € KX,

If the linear cone P = {1/1 € K1 | rankg (B(v)) = l} is mot empty, then (@) are solutions of (@), where
Ey € K™ is a right inverse of B(v) and Cy, € K™= is a full column matriz whose columns define a
basis of ker(B(1).). If l =r, then Cy = 0 and (9) is unique.

The matriz v defined by @ has full row rank if and only if the matriz Y' € KI=DX" is chosen so

T
that (YT Y'") €K™ has full row rank.
Finally, the results do not depend on the choice of bases for the different K-vector spaces.

Let us more precisely study P. To do that, we first introduce a few notations. Let R = Klz1, ..., 24]
be the commutative polynomial ring in z1,..., 74 with coefficients in K, = (21 ... 24)7, and B =
Wiz ... Wex) € RX". According to @, we have [ < r, i.e., B is a wide matrix. If 7 denotes the
ideal of R defined by all the [ x [ minors of B, then either Z is reduced to 0 or Z can be generated by
homogeneous polynomials g1, . .., g; of degree I. If V(Z) = {¢p € KI*1 |V P € T: P(¢)) =0} is the affine
algebraic set associated with Z, then:

P = K\ V(D).

Let us consider the R-module B = cokerg(B.) = R/ (BR™!). Note that the 0%-Fitting ideal
Fitto(B) of B is the ideal of R generated by all the ! x | minors of B [9 22], i.e., Z = Fitto(B). If
anng (B) ={a € R|Vbe B:ab=0} is the annihilator of B, then we have

anng (B)! C Fitto(B) C anng (B) = /anng (B) = \/Fitty(B),

where VI = {a €ER|3keZ:a" e I} is the radical of Z. For more details, see, e.g., [9, 22]. In
particular, if K is an algebraically closed field (e.g., K= C), then Vk(Z) = Vk(anng (B)).

Corollary 1 ([2]). Let W; € KX4 i =1,... r, be the matrices defined in Theorem R =Kl[z1,...,24],
r=(x; ... 20)T, B= Wix ... W,x) € R™", B = cokerg(B.), T = Fitto(B), and anng(B) the
annihilator of B. Then, the linear cone P, defined in Theorem[d], is the complementary of the algebraic
set Vk(Z) in the affine space K1, and thus, P is a quasi-affine algebraic set. Finally, if K is an
algebraically closed field, then Vk(Z) = Vk(anng (B)).

Example 1. Let us consider the following matrices:

1 0 0 O 00 0 O 0 0 0 1
00 0 O 01 0 O 0 0 0 0
Di=to 00 0o | 5 loo 10| P[0 000]
0 00 -1 00 0 O -1 0 0 O
0 0 0O 1001
0 0 1 0 00 0 O
Di=to 100" ™ o000
0 0 00 100 1
Then, we have m = n = r = 4. We can easily check that I = rankk (M) = 1 and:
(1) 100 —1 Bl
X = , Y=1001, L=[0 10 0 |, z= ,
0 0
1 0 01 O 1

Wy=-1, Wy=0, Wz=1 W,=0.
We have d =1, ¢ = ¢ € K, R=K[xy] and B = (—z; 0 x; 0) € RY*. Considering the R-module

B=TR/(BR**1) =R/I, where T = Fitto(B) = anng (B) = (x1) denotes the ideal of R generated by 1,
Vk(Z) = {0} and P =K\ {0}. f weset W=(-1 0 1 0),then B=z; W, F=1/2(-1 0 1 0)T

RR n® 9438



8 Dagher € Hubert & Quadrat

is a right inverse of W, and thus, for ¢ € P, Ey = w;l F' is a right inverse of B(¢). Computing a basis
of kerg (W.), we get kerg(W.) = imk(C.), where

1 0 O
o=| 1 o o |ex® (10)
00 1

and thus, kerk (B(1).) = imk(C.) for all 1) € P. Then, (9) defines solutions of (@), i.e.:

5
w=z0=| ¢ |
Ve eP=K\{0}, VY €K _1w

v = Y'.

1
21

O = O
_= O O O

o = O

S o oo
S o o
o= oo
o O = O

Finally, all the solutions (u, v) of (3|) with full row rank matrices v can be written as @ for all Y/ € K3%4

satisfying the following condition:
w(( 1)) 0

If ¢1,...,9: are homogeneous polynomials generating Z, i.e., Z = (¢1,...,9:), then we have P =
KU\ Vi({g1, - -+, 9:)) = U'_, D(gi), where D(g;) = {¢p € K¥1 | gi(¢) # 0} is the distinguished open
Zariski set defined by g; [9, [19]. For instance, if [ = r, then t = 1, g1 = det(B) and P = D(g1). If
T # (0), then, as explained in [2], on each D(g;), regular closed-form solutions of can be obtained
using effective module theory (see, e.g., [IL 5] T1]).

The complete study of these closed-form solutions still need to be finalized since it is related to
well-known open problems in module theory such that:

1. Testing if a stably free R,,-module is free, where R,, = {a/g¥ | a € R, k € Z>¢} is the localization
of the polynomial ring R at the multiplicatively closed set {gf}kezzo [9].

2. Effectively computing bases of finitely generated free R,4,-modules (i.e., possible extensions of the
well-known Quillen-Suslin theorem) [9) [10].

3. Effective computation of minimal sets of generators of ideals [9].

The first two points are related to the characterization of the minimal integer s > r — [ such that a
matrix C' € Ry *® exists satisfying kerg, (B.) = img, (C.). Indeed, it can be shown that the R 4,-module
kerg, (B.) is stably free of rank r — [ [2] In partlcular the first two points can be eﬂectwely solved in
the following particular cases:

o g, € K\ {0}, i.e., Ry, = R, by effective versions of the Quillen-Suslin theorem [9] 10].

e g; = x; by an extension of the Quillen-Suslin theorem to generalized Laurent polynomial ring. See
[10] and the references therein.

r =1+ 1 since stably free modules of rank 1 over a commutative ring are free [9 [10].

e d =1 since R = K[z1] is a principal ideal domain and stably free R-modules (e.g., kerg(B.)) are
free [24] and bases of free R-modules can be computed using Smith normal forms [10].

e d = 2 since kerg (B.) is then a projective R = K[z1, zo]-module [9, 24], and thus, a free R-module
by the Quillen-Suslin theorem.

The third point is related to finding a minimal set of generators for Z, and thus, a minimal cover of
K9*1 by distinguished open sets of the form D(g;). We have the following facts:

Inria



On the general solutions of a rank factorization problem 9

o If u(Z) denotes the number of elements of a minimal set of generators of Z, then we know that
i(Z) = pu (Z/Z*), where Z/I? is the conormal R/Z-module [2].

e d =1 since R = K[z] is principal and Z can be generated by an element of R.

For the connections between these issues and the rank factorization problem, see [2].

Finally, for the demodulation problems studied in vibration analysis, as explained in Section [1} the
matrices M and D;, i = 1,...,r, are centrohermitian, and the solutions v and v;, ¢ = 1,...,r are also
sought to be centrohermitian. We refer the readers to [I7, [I8] for extensions of the above results to this
particular situation. See also [16].

3 General solutions

The goal of this section is to extend the approach explained in Section [2] to characterize the general
solutions of the rank factorization problem . To do that, we shall use standard results on module
theory and homological algebra [9] [I11 [24].

3.1 Case where M has full row rank

Let us first consider the case where M has full row rank, i.e., img(M.) = K™*1. Then, we have m < n
and there exists N € K"*™ such that M N = I,,,. Then, yields A(u) (v N) = I, i.e., the matrix
A(u) has full row rank and m < r. Conversely, let us suppose that there exists u € K™*! such that
A(u) € K™*" has full row rank. Then, there exists E, € K™ such that A(u) E, = I,,, which yields
A(u) (B, M) = M and shows that has a solution. Thus, is solvable if and only if u € K™*! exists
such that A(u) has full row rank. We have to characterize the following set:

U= {ueK"™"|rankg(A(u)) =m}.

Remark 3. If M has full row rank, then following the approach of Section [2.2] we then have d = m,
Z=Intv=u=(u ... up)', X =1,, Y = M and W; = D, for i = 1,...,r, which shows that
B(¢) = A(u) and U = P.

Let R = K[z1, ..., z;] be the commutative polynomial ring in the variables 1, . . ., z,, with coefficients
inK, z=(x; ... 2,)7 and A= (Dyx ... D,x) € R™*". Moreover, let Z = (Mi)iz1,... 71/ (m! (r—m)1) DE
the ideal of R formed by all the m x m minors m;’s of A. Note that m; is either 0 or a homogeneous
polynomial of degree m. Then, we clearly have:

U = K™\ Vi (T).

Hence, the rank factorization problem has solutions if and only if Vk(Z) # K™, If K is an infinite
algebraically closed field, then the last condition is equivalent to Z # (0).

Example 2. Let us consider the following matrices:

10 -1 -2 -3 —4
(o h) e () e (B )

T

Then, we have m=n=r=2,z = (z; z2)', and:

_ 717172502 73$1741‘2
- $1+2$2 31’1+4£L'2

) = det(A) =0 = Z=(0) = U=0.

Hence, the corresponding rank factorization problem has no solutions.

Remark 4. Note that U is the complementary of the algebraic set Vk(Z) in the affine space K™*1, i.e.,
U is a quasi-affine algebraic set.
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10 Dagher € Hubert & Quadrat

Let us now suppose that Z # (0) and let hq,...,hs € R be such that Z = (hq,...,hs). Then, we
have U = |J;_, D(h;), i.e., {D(h;)}i=1,.. s is a cover of U by distinguished open subsets. If u € D(h;) =
{v € K™*1 | h;(1) # 0}, then we have rankg (A(u)) = m, which shows that there exists a right inverse
Fp, € K™ of A(u) on D(h;). To compute such a right inverse, we can consider the localization R, =
{a/hF | a € R, k € Z5¢} of the polynomial ring R and the R-module A = cokerg (A.) = R™*1/(AR™1)
finitely presented by the matrix A. Then, we have Z = Fitto(A) and anng (A)™ C Fittg(A) C anng (A)
(see, e.g., [9,19]). Thus, we have h; A =0, and thus, S, lA =0, where S, 1A {m/hf |me A keZ}
denotes the localization of A at Sy, (see, e.g., |9, [19] 24]) Applying the right exact covariant functor
Rp, ®r - (since Ry, is a flat R-module; see, e.g., [9] 24]) to the ewact sequence of R-modules

A.

Rr><1 Rmxl o A 0

we obtain the following split exact sequence of Rp,-modules (see, e.g., [9] 24]):
Ryxt A gmxt D82 gl g —

Hence, there exists a right inverse Fj,, € Rrxm of the matrix A4, i.e., A F},, = I,,,. Using the fact that Ry,
is a noetherian ring (see, e.g., |9 19, 24]), then kerg, (A.)isa ﬁnltely generated Rp,-module. Hence, let

Ch, € Rth satisfy kerg, (A.) =img, (Cp,.). Then, all the solutions of (3) on D(h;) are defined by:

u e D(hl),
VY e REX™ 12
hi { U:FhiM+Chi Y'. ( )

Using U = |J;_, D(h;), we finally obtain an explicit characterlzatlon of all the solutions of (3| . foru e U,
there exists ¢ € {1,...,s} such that u € D(h;) and (12 then defines all the solutions of (3]) over the
distinguished open set D(hi).

Remark 5. The matrix F}, can be computed by, for instance, the LocalLeftInverse command of
the OREMODULES package [5] or the PreInverse command of the CapAndHomalg library [I]. The
matrix Cj, can be computed by, for instance, the SyzygyModule command of OREMODULES or the
WeakKernelEmbedding command of CapAndHomalg.

Example 3. Let us consider the following matrices:

15 14 13 1 -1 1 2 1 3
M‘<24 20 16)’ Dl_(l 1 ) D2_(—1 2)’ D3‘(4 3)'
Then, we have [ = rankx(M) =2 = m < r =3 = n. In particular, M has full row rank. Let us consider
R = K[z, 75] and the R-module A = R**!/(AR3*!) finitely presented by:

- [ x1—®m2 T1+2x2 x4+ 312 2x3
A—(D1$ Dg.’L‘ D3x)_(x1+z2 7:L'1+2$2 4I1+3I2)€R ’

We can check that Z = Fitto(A) = (2%, 1 22, 23). Hence, we have:
U=K""\ V(T =KZ>'\{0 0)"}=D(23) UD(z122) UD (23) .

Moreover, we have:

66 6
97 x4 97 x4
38 331 23 3
97z, 9742  9Txy 9742
7 2, 17T 21
97Tz, 9722 9Tz, 9742 Inria

Fpp = €RG? RFp =1,
1
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55 5
194 x5 194 x5
33 21 3 51
wa: - R3X27 RFa::v:I7
Lo 1942y " 104z, 194z, 194z | e 1o 02
11 7 1 n 17
97$2 971’1 97‘%2 971’1
_ 35T _ L 85 x1 L
38823  2m, 38813  2m,
e | 2o o3 s1e o, o RE2 R, -
@ = | 38822 ' 388z, 38843 388z, | - es 0 MHed T2
7 x1 11 1724 1
7+ - 2
19422 " 97Tz, 19423 ' 97
If we note
51’% + 12561 ) )
C=| —323+5z120+623 | € R,
—212 — 423

then we have kerR 1(A) = imgp -1 (C.) for h = 2%, 21 z2 and 23, which shows that all the solutions of
are of the form of . '

VueD(2f), VY R1§3, v=FizM+CY),,

Vu € D(xy x3), VY’ R1X3 v=Fy ., M +CY]

1 T2 Tl x2? xr1 T2

2 1x3 _
VueD(23), VY;g Rx§7 U—ngM—i—CY;%.

(13)

The determinants of the matrices Uy, = (F, C), where h = x%, Tq To O x%, are 1, which shows that U,
is invertible. Hence, the v’s defined by of one of the three forms listed in have full row rank if and

only if so have (MT Y’T) where h = 2%, 21 x5 or 3.

For instance, if we consider the solution of (3} . defined by u = (1 1)7 and
1 2 3
v=|[1 2 3 (14)
3 21

then u € D (23) = (K\ {0}) xK, u € D(z1 22) = (K\ {0})?, and u € D (23) =K x (K\ {0}), and we can
check again that we have:

61 50 39
_ ’ o _ 2
v="Fyu M+CY}, Yl = ( - 97) :
169 A7 19
=F, . M cY! , Y/2 _ _ _
V= P MO 0an Y ( 388 194 388)
81
- / ’
v="Fy M+CY}, Yl = (194 194).
(

The matrix v defined by has not full row rank (det v = 0), which is consistent with:

det << ]V{ )) =0, h:x%, 1 Ta, 9:3
Yy,

Let us now consider the case where the matrix M has not full row rank, i.e., img(M.) # K™*1. Set
p=m—1>0, where | = rankx(M), and let L € KP*™ be a full column rank matrix whose rows define
a basis of the K-vector space kerg(.M).

3.2 General case
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12 Dagher € Hubert & Quadrat

Remark 6. The matrix L generates the compatibility conditions of the inhomogeneous linear system
M n = ¢, where ( is a fixed vector of K™*!. Indeed, a necessary (and sufficient) condition on ¢ for the
solvability of M n = ( is then L = 0.

3.2.1 Characterization of kerg(Q.)

Suppose that a solution (u, v) of exists and set Q(u) = L A(u) € KP*". Then, and LM =0
yield Q(u)v = L M = 0, which shows that the columns of the matrix v belong to kerk(Q(u).). Hence,
u € K™*1 necessarily satisfies that kerk(Q(u).) is not reduced to 0.

In linear algebra, it is well-known that dimk(cokerk(Q(w).)) + r = dimk(kerg(Q(w).)) + p, which
yields dimg (kerk (Q(w).)) > r —p. Hence, if r > p, i.e., if the matrix Q(u) is wide, then kerk(Q(u).) is not
reduced to 0 for all u € K™*1. But, if r < p, i.e., if the matrix Q(u) is tall or square, then kerk(Q(u).)
can be reduced to 0 for almost all u € K™*1. The u’s for which kerk(Q(u).) is not reduced to 0 are the
common K-zeros of all the r x r minors of Q(u).

We can state again the general definition of the Fitting ideals Fitt;’s (see, e.g., [9, 22]).

Definition 1. Let R = K[z1,..., 2], M € R**" and M = R¥*"/(R** M) be the R-module finitely
presented by M. The Fitting ideals Fitt;(M)’s of M are defined by:

e Fitt;(M) is the ideal of R generated by all the (r—i)x (r—i) minors of the matriz M for1 <r—i < s.
o Fitt;(M) = (0) for s <r —i.
e Fitt;(M) =R forr —i<0.

Let R = K[z1,...,2n), 2 = (1 ... o), A = (Diz ... D,x) € R™X", Q = LA € RP*".
Moreover, let Q = cokerg (.Q) = RY"/(R'*P Q) be the R-module finitely presented by Q. Hence, we
have the following exact sequence of R-modules:

Q

RIxP R*r s Q 0. (15)

Then, Fitt;(Q) is the ideal of R generated by all the (r — ) x (r — 4) minors of @ for 1 < r —i < p.
Thus, Fitto(Q) is either the ideal generated by all the r X r minors of @ € RP*" if r < p, or (0) if r > p.
Note that Fitto(Q) is generated by homogeneous polynomials of degree r if r < p, and is reduced to (0)
if » > p. In the latter case, we then have Vi (Fittg(Q)) = K™*1. The fact that kerk(Q(u).) is not reduced
to 0 is thus equivalent to u € Vk(Fitto(Q)).

Lemma 1. With the above notations, a necessary condition for the solvability of (@ is u € Vk(Fittg(Q)),
where Fittg(Q) is the ideal of R formed by the homogeneous polynomials of degree r defined by all the
r x r minors of Q € RU™=DX" ifr <m —1, or (0) if r >m — L.

Remark 7. We can easily check again that following chain of Fitting ideals holds

(0) C Fitty(Q) C Fitt1(Q) C ... C Fitt,_1(Q) C R, (16)

(see, e.g., [9, 11, [19]) which yields the following chain of affine algebraic sets of K™*1:

Vi (Fitt,_1(Q)) C Vk(Fitt,_2(Q)) C ... C Vk(Fitto(Q)) C Vk((0)) = K™*1, (17)

We note that Fitt,_1(Q) is the ideal of R generated by all the 1 x 1 entries of the matrix @ =

(LDyx ... LD, x),ie., Vk(Fitt,—1(Q)) = {u e K"™*' | LD;u=0, i=1,...,7}, and thus, we get that

Vk (Fitt,1(Q)) = kerk(N.), where the matrix N is defined by (7). Hence, the approach stated again in
Section [2] corresponds to considering:

u € Vk(Fitt,_1(Q)) C Vk(Fitto(Q)).

Finally, 0 € Vk(Fitt,—1(Q)), which shows that Vk(Fitto(Q)) # 0, and thus, Fitto(Q) # R.

Inria



On the general solutions of a rank factorization problem 13

In what follows, we shall simply note Fittq(Q) by J. To algebraically emulate the fact that u belongs
to Vk(J), we shall work over the non trivial factor noetherian ring S = R/J of R. Let ¢ : R — S
be the canonical epimorphism of K-algebras which maps r € R onto its residue class ¢(r) € S, simply
denoted by 7. For [ € Z~(, we can define the R-homomorphism:

id®e¢:R*Y — Shxt
n=0 ...m)’ — T=@ ... W)

Let 7(Q) = cokerg (Q.) = RP*1/(QR"™!) be the so-called Auslander transpose of Q [9]. Applying the
right exact covariant functor S ®% - to the exact sequence of R-modules

(18)

Q.

0 T(Q) ] Rpxl Rr><17

defining a finite presentation of 7(Q), we obtain the following exact sequence of S-modules

ids ® K 1 id5®Q.

0 SpX S7'><17

S®r T(Q)

with the notation (ids ® Q)(7) = Qn for all n € R"™!. For more details, see, e.g., [9, 24]. We simply
note ids ® Q. by @. so that we then have:

VneR™ Qu=@Qn. (19)

Since S is a noetherian ring, kers(Q.) is a finitely generated S-module [9, 24]. Thus, if kers(Q.) # 0,
then there exists K € 8"*7 is such that kers(Q.) = ims(K.). To prove that kers(Q.) # 0 (even when
kerg (Q.) = 0), we shall use McCoy’s theorem stated again below.

Theorem 2 (Theorem 6, p. 63, [22]). Let Q@ € RP*" and F a non-zero R-module. A necessary and
sufficient for the existence of 0 # n € F" satisfying Qn = 0 is that there exists a non-zero element ¢ of
F that is annihilated by the determinantal ideal ,.(Q) defined by all the r x r minors of Q if r < p, or
0) if r > p, i.e., u¢ =0 for all u € U, (Q).

Corollary 2. Let M € K™X" be such that imx(M.) # K™*1 and L € KPX™ be a full row rank matriz
satisfying kerg(.M) = img(.L), where p = m — rankg(M). Let D; € K™*™ for i = 1,...,r, R =
Kzt ..o, 2= (z1 ... )T, A= (D1z ... D,x) € R™", Q = LA € RPX", Q = cokerg(.Q),
J = Fittg(Q) and S = R/J. Then, we have kers(Q.) # 0, and thus, there exists a non-zero matriz
K € 8™ such that kers(Q.) = img(K.).

Proof. Recall that J = 4,.(Q) is a proper ideal of R so that S = R/J is a non-zero R-module. McCoy’s
theorem, i.e., Theorem [2| shows that kers(Q.) # 0 if and only if there exists 0 # s € S such that is =0
foralli € J. If r > p, then J = (0) and 0 # 1 € S satisfies 0 x 1 = 0, which shows that kers(Q.) # 0
(see the comment before Lemma . Now, if » < p, then J = (m;)i=1,....a, where {m;},=1 . o denotes
the set of all the r x r minors of @ and o = p!/(r! (p — r)!). The result holds since 0 # 1 € S satisfies
m; x1=0fori=1,... a. O

Remark 8. A matrix K € S™*? satisfying kers(Q.) = ims(K.) can be obtained using the Ker (resp.,
WeakKernelEmbedding) command of Singular [I1] (resp., CapAndHomalg [1]).

Example 4. Let R = Q[z] and Q = cokerg(.Q)) be the R-module finitely presented by:
. X + 1 O 2%2
Q= ( 0 r—1 ) € R¥2.

Since @ has full column rank, we have kerg (Q.) = 0. Clearly, J = Fitto(Q) = (22 — 1) and if we set
S =R/J, then we can check again that kers(Q.) = img(K.), where K is defined by:

_(zT-1 0 2%2
(750 e

Note that K is the cofactor matriz of Q and we can check again that Q K = det(Q) I = 0.
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Remark 9. Considering S as a R-module and applying the left ezact contravariant functor homg(-,S)
to , we obtain the exact sequence of R-modules

prl Q.

St <™ homp (Q,S) <—— 0,

which shows that kers(Q.) = homg(Q,S), where homg (9, S) inherits a S-module structure defined by
(fs)(q) = f(g)sforall s € S, f € homg(Q,S) and ¢ € Q [9, 24]. Note that the finitely presented
R-module homg (Q,S) can be effectively characterized (see, e.g., [11,[6]) and K can be computed using
Singular [II], CapAndHomalg [I] or OREMORPHISMS [7].

Example 5. We consider again Example We can check again that the R-module homgz(Q,S) is
generated by the two generators g; = (0 T+ 1) and g = (z — 1 0)7 which satisfy the relations
(Z—1)g1 =0and (T+ 1) g2 = 0 [7]. Hence, the matrix K = (g1 g2) is such that kers(Q.) = img(K.).
We find again the result obtained in Example [4]

Example 6. As explained above Lemma [I} if » > p = m — [, then J = (0), and kergx(Q(u).) # 0 for
all u € Vk(J) = K™*!. Equivalently, we have S = R and 1 € R is annihilated by the generator 0 of 7,
which shows that kerg (Q.) # 0 by Corollary 2 A matrix K can be computed by effective elimination
theory (e.g., Grobner basis methods) over the polynomial ring R = K[z, ..., z,,]. Finally, the fact that
kerr (Q.) # 0 can also be proved by considering the Euler-Poincaré characteristic [9,24] of exact sequence

of R-modules
Q.

0<—T(Q) =<— Rpx! Rr*1 kers(Q.) <— 0,

i.e., rankg (kerg(Q.)) — r + p — rankg (7(Q)) = 0, where rankg (M) is the rank of a finitely generated
R-module M defined as the dimension of the finite-dimensional K(x1, ..., 2;)-vector K(z1, ..., z;) @r M
[9, 24], and K(z1,...,2;) is the field of fractions of R, i.e., the field of rational functions in z1,...,Zy,
with coefficients in K. Thus, rankg (kerg(Q.)) > r —p > 0, which shows again that kerg (Q.) # 0 and
the existence of K € R"*9, where ¢ > r — p > 0, satisfying kerg (Q.) = img (K.).

Remark 10. If 0 # 7 € kers(Q.) (e.g., n is a column of K), i.e., if Qn = 0 and 7§ # 0, then
LAn=Qne JP' and n ¢ J* If u € Vk(J), then L A(u)n(u) = 0, where A(u) denotes the
substitution of z = w in A, which shows again that 0 # n(u) € kerk(Q(u).).

Remark 11. Considering the ascending chain formed by the Fitting ideals and using the notations
Ji = Fittg(Q) for k=0,...,r—1,and J = Jo, then, for k =1,...,r—1, we have the following standard
short exact sequences of K-algebras:

Pk

0

N[N R/T R/ T 0.

Noting S = R/Jy for k = 0,...,r — 1, with § = Sy, we have the ring epimorphisms ¢ : S — Sk.
Thus, Sy inherits a S-module structure defined by s.s; = @i (s) si for all s € S and for all s € Sg. If
Ji # R, i.e., if S is not the trivial ring, then kers, (Q.) # 0 since all the (r — k) x (r — k) minors of Q
vanish in S, and thus, so do all the 7 X r minors of Q. Equivalently, it is a consequence of Theorem [2]
by considering the fact that 1 € Sy satisfies m; x 1 =0fori=1,...,a, where J = (my,...,mq) C Tk,
ie., J C Jp = anng(Sk). Therefore, if we note ¢1(Q) = (pr(Qij))1<r1<j<p € Sp~", then there exists
a non-zero matrix K € S, % such that kers, (px(Q).) = img, (Kj.). For instance, we can consider
k =r — 1, which corresponds to the approach developed in Section [2.2] (see Remark [7)).

3.2.2 Construction of the matrix B as a pullback

As explained in Section [2|, the full row matrix L € KP*™ where p = m — [, is such that kerx(L.) =
img (M.). Hence, we have the following exact sequence of K-vector spaces:

0 Kp><1 L. Km><1 M. KnX1.

By definition of the matrices X € K™*! and Y € K" (see Section , we have M = XY, where the
columns of X define a basis of img(M.), i.e., imk(M.) = imk(X.) and kerg(X.) = 0. Hence, we have

Inria
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keri (M.) = kerg(Y.). Moreover, since img(X.) C img(M.), there exists H € K"*! such that X = M H,
which yields X = XY H, i.e., Y H = I; since X has full column rank. Thus, img(Y.) = K1 and Y has
full row rank. Hence, we have the commutative exact diagram of finite-dimensional K-vector spaces:

0 Kp><1 L. Km><1 M. Kn><1
I
0 Kp><1 L. Km><1 X. Kl><1 0.
0

The second horizontal short exact sequence of finite-dimensional K-vector spaces of the above commutative
exact diagram splits [24], i.e., there exist U € K™*P and V € K!*™ such that:

L
U X) ( " ) = I, (20)

Since K is a field and the matrices (U X)) and (LT VT)T are square, is equivalent to:

(f/)(U X):(% 2):%. (21)

Using the fact that S is a K-vector space and applying the ezact functor S ®k - [9) 24] to the above
diagram, we obtain the following commutative exact diagram of S-modules:

0 Sp><1 L. Sm><1 . M. Sn><l
I
0 Sp><l L. Sm><1 X. Slxl 0.
0

Using Q@ = LA, QK =0 and kers(X.) =0, L(AK) =0, i.e., img((AK).) C kers(L.) = img(X.),
which shows that there exists a unique matrix B € S**? satisfying:

AK =XB. (22)

Hence, we have the following commutative exact diagram of S-modules:

0<—  gpxl L. gmxi_ M. gnx1 (23)
Y.
0= gpxt L gmx1i_ X gix1 0.
A. B.
0~ S®r T(Q) Jds®r opx1 @ grx1 K. ggx1

Using the identity V' X = I; coming from , then yields:
B=VAK. (24)

Since B is unique, it does not depend on a chosen left inverse V' of X.
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Remark 12. This result can be checked again by considering a second left inverse V' of X, i.e., V! X = I,.
Then, we have (V' — V)X = 0, which shows that the rows of V' — V belong to kerk(.X) = img(.L),
which shows that there exists L' € K!XP such that V/ = V + L' L, which, using Q = LA and Q K = 0,
finally yields VVAK=VAK+ L (LA)K =V AK.

Note also that using Q K = LAK =0 and , ie, XV =1, — UL, we get again:
XB=X(VAK)=AK-U(LAK)=AK.

Remark 13. Note that the construction of the commutative exact diagram corresponds to finding
an R-algebra S for which the pullback |9 24] of the S-homomorphisms A. : S"*! — §™X! and X. :
Sl — §mx1 is non-trivial, i.e., kers (A X).) # 0.

Remark 14. Using the notations defined in Remark let us explain the connections between the
matrices K € 8™ and Ky, € S; % for k = 1,...,r — 1, respectively defined by kers(Q.) = ims(K.) and
kers, (pr(Q).) = img, (Ki.) for k =1,...,7 — 1, as well as the connections between the matrices By, =
Vor(A) Ky € S,lquk for k=0,...,7—1, with the notation gg = q. We first note that ¢,_1(Q) = 0, which
yields K,_1 = I,., and thus, A = X B by . This identity corresponds to the identity A(Z v) = X B(v)
for all v € K¢*! obtained in Section Now, considering Sy, as a S-module (see Remark and applying

Q.

the covariant functor S, ®s - to the exact sequence of S-modules SP*! Srxt < K gax1 , we

er(Q). S},gxl Pr(K). ngl , namely7 sDk(Q) <Pk(K) = 07 with the

notations ¢y (K) = (¢r(Kij))1<ri<j<p € S ¢ for k = 1,...,r — 1. Hence, we have img, (px(K).) C
kers, (pr(Q).) = imgs, (Kj.), and thus, there exists Ly € Sf**? such that:

get the compler of Sk-modules S,le

(pk(K):KkLk, /{321,...,7’—1.

Repeating the same arguments as above with S instead of S, we obtain the existence of a matrix
By, =V ¢pi(A) K, € 8% making commuting the exact diagram where S is now replaced by Sk.
Hence, we finally obtain:

op(B) =V r(A)op(K) =V pr(A) Ky Ly = By L, k=1,...,r—1. (25)

3.2.3 Characterization of the existence of a right inverse for the matrix B

Since kerg(Q.) = imgs(K.), u € Vk(J) and v € kerg(Q(u).), we now have to characterize the existence of
a matrix T of size ¢ X n such that v = K T satisfies Av = M. See Remark
Using and the fact that X has full column rank, we have:

Av=(AK)T=X(BT)=M=XY < BT =Y. (26)

Using the fact that Y has a right inverse H € K"*! ie., Y H = I, then implies that B (T H) = I,
i.e., B has a right inverse. Conversely, if B has a right inverse F, then T' = E'Y satisfies BT =Y. Hence,
BT =Y is equivalent to the existence of a right inverse E of B. Note that this right inverse E can have
entries in a localization 7 of the ring S.

To characterize the solutions of the rank factorization problem 7 we have to determine when B €
S defined by , has a right inverse with entries in a ring 7 containing S.

Let B = cokers(B.) = 81 /(B S8%*1) be the S-module finitely presented by B., i.e., defined by the
following finite presentation:

St B g7 . 0. (27)

Remark 15. Let us show that, up to isomorphism, the S-module B does not depend on the choice of
the bases defining L and X, and on the choice of a generating set of kers(Q.) defining K. Let L' € KP*™
be a matrix defined by another basis of kerg (.M). Hence, there exists an invertible matrix © € KP*P such
that L' = © L. Similarly, let X’ € K™*! be a matrix defined by another basis of imy(M.). Hence, there
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On the general solutions of a rank factorization problem 17

exists an invertible matrix I' € K% such that X’ = X T. Finally, let Q' = L’ A=0Q and K’ € 8"*7 be
such that kers(Q’.) = img(K'.). We clearly have kers(Q’.) = kers(Q.), and thus, img(K’.) = img(K.),
which shows that there exists A € S7%7 such that K’ = K A. Let B’ € 8'4¢ be such that A K’ = X' B'.
Using A K = X B and the fact that X has full column rank, we then get:

XT'B =X'B =AK'=AKA=XBA = T'B' = BA.

If B’ = cokerg(B’.), then we have the following commutative exact diagram of S-modules

Sa'x1 B’ gix1 o’ B 0
qul B. Sl><1 g B 0,

where vy : B — B is the S-homomorphism defined by v(o’(11)) = (T ) for all u € S*!. Since I' € K!*!
is an invertible matrix, «y is an isomorphism and vy~ *(c(v)) = o/(I'"! v) for all v € S'*!. Hence, the ideals
Fitt;(B)’s only depend on the matrices M and D;’s, and not on particular choices of bases or generating
sets defining the matrices L, X and K. Finally, using Definition [l we note that we have:

Fitt;(B) = Fitt; (cokers (.BT)), i=0,...,L (28)

Let 7 be a ring containing S. Applying the right exact covariant functor 7 ®g - to the above exact

sequence [9, 24], we obtain the following exact sequence of T-modules:

qaxt B, g1 M9 o op
Note that T ®s B = cokery(B.) = 0, i.e., BT?*! = 71 if and only if there exists a matrix £ € T9%!
satisfying B F = I}, i.e., if and only if the matrix B has a right inverse with entries in 7. Therefore, we
now have to investigate when the 7-module T ®s B is reduced to 0.

We state again that a prime ideal p of T is such that the factor ring 7 /p is an integral domain
(i.e., has no non-trivial zero divisors). A T-module M is said to be projective of constant rank t if the
Tp ={t/s |t €T,s ¢ p}module M, = {m/s | m € M, s ¢ p} (ie., the localization of M at the
multiplicatively closed set S = T \ p) is a free module of rank r, i.e., M, = 7?, for all prime ideals p of
T. For more details, see [9, [19].

0. (29)

Proposition 1 (Proposition 20.7, [9]). A finitely presented T -module M is projective of constant rank
r if and only if Fitt, (M) =T and Fitt,_; (M) = (0).

Note that 0 is a projective T-module of rank 0. Hence, Proposition [I] shows that we have T ®g B =
cokery(B.) = 0 if and only if Fittg(cokerr(B.)) = T.
The next proposition is a direct consequence of the right exact covariant functor 7 ®g .

Proposition 2 (Corollary 20.5 of [9]). Let L be a finitely presented S-module and T a ring containing
S. Then, we have Fitt;(T ®s L) = T ®s Fitt; (L), for all i > 0, where T @g Fitt;(L) denotes the ideal of
T generated by the ideal Fitt;(L) of S.

Using Proposition [2| we obtain that T ®s B 2 cokers(B.) = 0 if and only if we have:
Fitto(cokerr(B.)) = T ®s Fitto(cokers(B.)) = T ®s Fittg(B) = T.

Corollary 3. With the above notations, the matriz B € S admits a right inverse with entries in a
ring T containing S if and only if the ideal of T generated by Fitto(B) is T.

Let Z = Fitto(B) = (h1,...,hg)s, where {h;};=1,.. 5 is a set of generators of Z.

If T =(0), i.e., hy = ... = hg = 0, then no right inverse of B exists, and thus, Problem has no
solutions. Now, suppose that Z # (0) and h; # 0 for i = 1,..., 8. According to Corollary 3| the matrix B
has a right inverse with entries in 7 if and only if there exist t; € T, ¢ =1,..., 3, satisfying the following
Bézout equation:

> tihi=1. (30)
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18 Dagher € Hubert & Quadrat

Remark 16. Note that {h;},=1.. g defines a partition of unity of the spectrum Spec(T) formed by all the
prime ideals p of 7 and endowed with the Zariski topology, and 7 ®s B = 0 if and only if 75, ®s B = 0 for
i=1,...,3, where Ty, denotes the localization of T at the closed multiplicatively closed {h¥ | k € Z>¢}
(see Exercises 2.19 and 2.20 of [9]).

Remark 17. As recalled after Theorem [1] (see [9, 22]), we have:

anng(B)! C Fittg(B) C anng(B) = {s € S|Vbe B:sb=0} = \/anng(B) = \/Fitty(B)
In particular, we have h; B =0 for i = 1,...,3, and anng(B) = (0) if and only if Fitto(B) = (0) since
anng (B) C \/anng(B).
Finally, generators of anng(B) can be computed by, e.g., Singular and CapAndHomalg.

We suppose that h; is not a nilpotent element of S, namely, h¥ # 0 for all k € Z>o. Then, we can
consider t; = h; ' and t; = 0 for i # j in . Let Sy, = {s/hF | s € S, k € Z>} be the localization
of the ring S at the multiplicatively closed set {h¥}rez.,, and Sh_il[j’ = {b/hF | b € B, k € Z>o} the
Sh,-module defined by the localization of B at {hf}rez., [9, 24]. Using h; B = 0 (see Remark . we
have S, 18 = 0. Localizing (2 , i.e., applying the exact functor Sp, ®s - to (Sp, is a flat S-module),
we get the following split exact sequence of Sp,,-modules [9], 24]

Ch. .
gixl — s ogxl lexl
<~—©p; <~— 9,

i

S, 'B=0,

h hj-

i’ i

where the matrices Cj,, € Sﬁjt is such that kers, (B.) =img, (Ch,.), En, € ngl is a right inverse of B,
Le., BE,, =1, and Fy,, € 8,7 is such that Cy, Fy, + Ep, B =1I,.

Remark 18. The matrices Cy,, E}, and Fj, can be computed by CapAndHomalg [1].

We note that T}, = Ep,, Y € §*™ is a particular solution of BT =Y. If T € §}*" is another solution
of BT =Y, then B(T —T,) = 0, and thus, there exists Y’ € Sif" such that T = Ep, Y + Cp, Y.
Conversely, E, Y + Cp,, Y’ are solutions of BT =Y for all Y’ € SZX” Hence, T(Y') = Ep, Y + C, Y’
defines the general solution of BT =Y for all Y’ € SZX" Thus, all the solutions v € §*" of Av =M
are of the form:
VY €8, o, (Y) =K (EpY +CyY').

We have the following commutative exact diagram of Sp,;-modules

0 S},;m L. S,’ZXl M. 3;7;?1 (31)
l"
0<—ng1 L. S;ZXl X. 8}[:;1 0
A,T BNE v
0~ Sp. or T(Q) ds), ®K S}[;xl S};Xl K. SZin
St

up to the fact that the homomorphisms Y. and E},. do not form a complex.
Using that § = R/J, with the notation , we can write h; = g;, where g; € R\ J.

Remark 19. If R, = {a/gF | a € R, k € Z>0} is the localization of R at the multiplicatively closed
set {gF}rez., and jgl is the ideal of R, generated by 7, then we can check that p : Sp, — Ry, /Ty,

defined by
s r+J T
Vs= €S, ER, — | = = — ’
sTrEd ' p(’%f) p(gi“rj) g "

is a ring isomorphism. For more details, see, e.g., Rule 4.16 on page 83 of [19].
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The u’s corresponding to vy, are then the elements of Vk(J) which are such that g;(u) # 0, i.e.,
u € Vk(T)\ (Wk(T) N Vk({g:))), ie, u € Vk(T) \ V(T + (gi)), where J + (g;) denotes the ideal of
R generated by J and g¢;. Note that if h; = g}, where ¢} € R, then J + (g;) = J + (g¢;), and thus,
Vk(J + (g;)) does not depend on the choice of the representative g; of h;. Finally, we note also that
gi ¢ V/J since h; is not a nilpotent element of S.

Remark 20. If h; is an nilpotent element of S, then h¥ = 0 for a certain integer k, which yields g* € 7,
ie., g; € v J. Thus, we have V(T + (g:)) = Vk(J), Vk(T) \ Vk(T + (g:)) = 0, i.e., there is no solution,
which is consistent with the fact that S, is then the trivial ring 0.

Hence, the solutions of are then defined by:

)

u=x € Vk(I)\ k(T +(9:),
’Uhi(Y/):K(EhiY-l-ChiY/),VY/ES;LZ(n, i=1,...,06.

Remark 21. If K is an algebraic closed field, then the smallest affine algebraic set containing the
quasi-affine algebraic set Vi (J) \ Vk(J + (gi)), namely, its Zariski closure is defined by

Vi(I)\ V(T + (g:) = W(T = (T + (9:))™),

where J : (J + (g:))°° denotes the saturation of J with respect to J + (g;) defined by:

T (T +(g:))° ={a€R|Ik€Zz0: a(T +{g:))* C T}
={aeR|Ike€Zs0: agf e T}.
See, e.g., [9, [19]. This saturation can be computed with, e.g., Singular or CapAndHomalg. Finally, we

note that g¥ ¢ J for all k € Z> since g; ¢ V/J, and thus, 1 ¢ J : (T + (g:))>°, i.e., T : (T + {g:))> is
not equal to R, which shows that Vi (J) \ Vk(J + (g:)) # 0.

Let us note Zr = (g1, - .., g3)r the ideal of R generated by the g;’s. Hence, we have:

B
U=Vk(T)\ (T +Ir)=Vk(T)\ (Vk(T)NVk(ZIr)) = Vk(T) \ m (Vk(T) N Vk({g:)))

=1

B B
= (I VKT +(90) = U DA VK(T +492)) = U V(DA V(T + (g,

=1 el

where I denotes the set formed by the g;’s for i = 1,..., 8 which are such that g; ¢ v/J since, otherwise,
we have V() \ Vk(J + (g:)) = 0 by Remark 20}
Let us now sum up the results obtained above in the following theorem.

Theorem 3. Let D; € K™*™ fori=1,...,r and M € K™*™ be such that:
I = rankk (M) < min{m,r}.

Let X € K™% be a full column rank matriz such that img(M.) = img(X.), i.e., the columns of X
define a basis of imk(M.). Let V € KIX™ be any left inverse of X. Moreover, let Y € K™ be such that
M = XY. Hence, kerg(M.) = kerg(Y.) and Y has full row rank.

Let L € Km=Dx™ pe g full row matriz whose rows define a basis of kery (.M) (with the convention that
L=0ifl=m), R=K[z1,...,2m], 2= (z1 ... 2)T, A= (D12 ... D,z) ER™*", Q = LA¢c RP*",
Q = RY>*"/(RY™PQ), J = Fitto(Q) the 0™ Fitting ideal of the R-module @ (J = (0) if r > p or if
l=m), and S =R/T. Then, we have kers(Q.) # 0.

Let K € 8™ be such that kerg(Q.) = ims(K.), B = VAK € 8%, B = §>1/(B87') be the
S-module finitely presented by B and Z = Fitto(B) defined by (@) Then, we have:

1. If T = (0), then Problem (3) has no solution.
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2. If T = (h1,...,hg)s # (0), then for all the h;’s, i = 1,...,8, which are not nilpotent, we have
Sh, ®s B =0, where Sp, = {s/hF | s € S, k € Z>o} is the localization of S at the multiplicatively
set {hF | k € Z>o}, i.e., B has a right inverse Ej,, € Sq , namely, BEy, = I;. Let Cp, € Sth be
such that kers, (B.) = ims, (Ch,.). Let g; € R\ J be such that its residue class g; in S = R/j
satisfies g; = h;. Then, the commutative exact diagram (31) holds and solutions of Problem (@ are
of the form:

w= 1 € UelT) \ Vil + {9) )
vn, Y') =K (Bp, Y +Cp, Y'), VY € 87"

Moreover, if we denote by Ir = (g1, ..., 9p)r the ideal of R generated by the g;’s, then the solution
ezists on the following quasi-affine algebraic set

U= V(TN \ (T + Tr) = [J (T V(T + (92),

where I denotes the set formed by the g;’s for i = 1,..., 3 which are such that g; ¢ /J. Finally,
the rank factorization problem has no solution if and only if I = (.

Remark 22. The results of Section B.1] obtained for a full column rank matrix M can be seen as a
particular case of Theorem [3] Indeed, if M has full row rank, then L = 0 and X = I,,,, which yields
Q=LA=0and kerg(Q.) = R™!, ie., K = I, and thus, B = A, B = A, Q = cokerg(.Q) = R'*",
anng (Q) = (0), which, using since Fitto(Q) C anng(Q), implies that J = Fittg(Q) = (0), and thus,
S =R and:

U=TV(I\ V(T +T) =K\ W), I=7TIr=Fittg(A)=(hy,...,hs).

Thus, Problem has a solution if and only if Vik(Z) # K™*!, which, in the case of an infinite algebraic
closed field K, is equivalent to Z # (0).

In Algorithm [T} we present a pseudocode summarizing Theorem [3] It can easily be implemented in
standard computer algebra systems such as, for instance, Singular or CapAndHomalg. For an explicit
example handled with CapAndHomalg, see Appendix of [§].

Example 7. Let us consider the following matrices:

46 10 10
v=(ia) m=(av) »=(52)

Then, we have m=n=2,l=1<r=2,p=m—-I0l=1<r, and:

L=(3 -2), X_<§>, Y_<1 ;)

For all u = (u; wug)? € K2*! we have:

A(u) = (Dru Dyu) = < v > , LAMw)=Bur—2uz 3u; —4ug).

U9 2UQ
Now, L A(u) = 0 yields u = 0, which shows that no solutions (u, v) of Problem exist where v have
full row rank. Hence, the results stated in Section Section [2| cannot be used.

Let us characterize the general solutions of Problem (3). Let us note R = Q[z1,x2], x = (1 x2)7T,
A= (Dix Dgz) € R**2, Q=LAc R, and Q@ = RY™?/(RQ). We can check again that J =
Fittg(Q) = (0) and Fitt;(Q) = (321 — 229,321 — 413) = R. Hence,we have Vi(Fitto(Q)) = K>*!1 and
S =7R/J =R. Now, we can check again that kerg (Q.) = img (K.), where K € R?*! is defined by:

-3 4
K = R
31‘1 —QQZQ
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Algorithm 1 RankFactorizationProblem

1: procedure RANKFACTORIZATIONPROBLEM(D; € K™*™ . D, € K™*™ )M e Km*™)
2: Define R = K[z1,..., 2], 2= (21 ... )T, A= (D2 ... D,x) € R™*"

3: Compute a basis of kerg(.M) to get a full row rank matrix L € KP*™ satisfying

kerK(.M) = 1mK(L)

4: Define Q = L A € RP*" and the finitely presented R-module Q = cokerg (.Q)

5: Compute the ideal J = Fitto(Q) and define the ring S = R/J

6: Compute K € 89 such that kers(Q.) = img(K.)

7 Compute a basis of imy (M.) to get a full column rank matrix X € K™*! satisfying

HnK(M) = 1mK(X)

8: Compute a full row rank matrix ¥ € KX such that M = XY

9: Compute a left inverse V € K™ of X

10 Define B =V AK € 8% and the finitely presented S-module B = cokers(B.)

11: Compute the ideal Z = Fitto(B) = (h1,...,hg), where hy,... ,hg € S (see (28))

12: if 7 = (0) then the rank factorization problem has no solution

13: else

14: I=0

15: fori+1,...,8do

16: if h; is nilpotent then ¢ : =17+ 1

17: else

18: Define the localization Sy, of S at the multiplicatively closed set {h¥}rez.,
19: Compute a right inverse Ej,, € 8,37,” of B
20: Compute Cy, € S}* such that kers, (B.)=ims, (Cp,.)
21: Define g; € R to be an element in the residue class of h; € S and T :=T U {g;}
22: end if
23: end for
24: end if
25: return Z, 7, K, Y, I, {Ej, }ier and {C}, }ier defining the solutions

26: end procedure
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Using the left inverse V' = (1/4 0) of X, we then obtain:

21’1%2 1
AK = :>B:VAK:*IE1I2.
31‘11‘2 2

Hence, we get the following commutative exact diagram of R-modules:

0 R L. R2x1 <M—~R2><1
| | |
0 R~ R X R 0
N
0 T(Q) R g K g 0.

Let us now consider the cyclic R-module B = R/(B) = K[z, z2|/{x1 z2). Then, we get Z = Fittg(B) =
(B) = (x1x3), which shows that hy = z125 and Ej,, = B~! = 1/(z123). Since kerg(B.) = 0, the
solutions of Problem are of the form:

u=(r1 w2)T €U =KP1\ Vk({z122)) = (K x K¥) x (KX x K),

1 ( 2(=3x1+4mx2) 3(—3w1 +4x5) )

—KE,Y =
! m 2311 —222)  3(3z1 — 22)

2%1 T2

We can verify that (31 — 222 321 —4x2)v = 0, which shows again that all the solutions (u, v) of
Problem (3)) are such that the v’s have not full row rank. Finally, we note that U = Vk((0) : (z1 22)*°),
where (0) : (z1 72)*° = (0), and thus, we find again that U = K2*1.

Example 8. Let us consider the following matrices:

0 0 0 2 5 3 0 0 30 0 O

3 0 01 00 00 0 0 0
Dlz ) D2: ) M =

0 0 0 O 05 2 0 12 0 0

0 0 0 2 03 2 0 12 0 0

Wehave m=4,n=3,l=1<r=2and p=m —1=3>r. Moreover, we get:

., Y=(6 0 0.

NN O Ot

2£U4 5%14‘3%2

A= (Dyz Dya)— | 2T1Ho 0 € RV2,
0 Sx2+ 223
214 3xo+ 223
—6x4 101 — 929 — 1023

Q=LA=| 3x1+x4 0 € R3*2,

-2 Tq 2 i)
and let Q = RY*2/(R1*2 Q) be the R-module finitely presented by Q. Then, we have:

Fittg(Q) = ((10x1 — 9x2 — 10a3) (3z1 + @4), (221 — 322 — 233) 24, (31 + 24) T2),
Fitt1(Q) = (1, z2, 3, T4).
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A necessary condition for the existence of a solution of Problem (3f) is then u € Vi (Fitto(Q)). For instance,
we can take u = (u1 uz u; —3uz/2 —3u)T,u=(u; 0 u; ug))T oru=(0 wux wuz 0)T. Let
us note J = Fitto(Q), S = R/J and 7; the residue class of z; in S for i = 1,...,4. Then, we can check
again that the following matrix

K:(m 0 23:1_2333)68“3

Ty 3T1+T4 31’4

is such that kers(Q.) = img(K.). We then get the identity A K = X B, where:
RS L__ . 1x3
B=|-23T4+7374 37173+ T34 ?.1'21‘44-31'31}4 eS80,

Let us denote by B = §/(BS83**!) = §/(By, B2, B3) 5 the S-module finitely presented by B, where
B; stands for the i*® entry of B. Then, using Bs = 3 By, we have Z = Fitto(B) = (B1, Ba)s. Thus, we
have to consider the following two cases:

o If hy = By, then Ej,, = (hy' 0 0)7 € 8", where Sp, = {s/h} | s € S, k € Z>¢}, satisfies
BE,, =1.1f g1 =24 (522/2+4 23) € R, i.e.,, By = g1, then

672

00

v=KE,Y=| "
SR
hy

is such that u € Vk(J) \ Vk(J + (g1)) and v is a solution of Problem (3)). More generally, if we
consider the following matrix

3 0
Ch,=1| 0 —675 €8?
~1 973+ 673 + 271

which satisfies kers, (B.) = ims, (Ch,.), then a solution (u, v) of Problem is defined by u €
V(I \VK(T + (g1)) and v = K (Ep, Y + Cp,, Y') for all Y’ € S 7%

o If hy = By, then Ey, = (0 hy' 0)T € 82:1, where Sy, = {s/h5 | s € S, k € Z>0}, satisfies
BE, =1.If go = 3 (321 + x4), i.e., Bo = ga, then

0 0 0
v=KEp,Y = 6(373+Ts)
T 00
2

is such that u =z € Vk(J) \ Vk(J + (g2)) and v form a solution of Problem (3). More generally, if
we consider the following matrix

3 0
Ch,=| 0 =311 |es?
—-1 373+

which satisfies kers, (B.) = img,, (Ch,-), then a solution (u, v) of Problem (3)) is defined by u =
2 € Vk(T)\ V(T + (g2)) and v = K (E},, Y +C, Y') for all Y’ € 82:3.

Moreover, we have the following commutative diagram of S},-modules:
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0 Stk M gpa
| I
0 T 0
0<——8p, @2 T(Q) SSIXI = S§2! K Si?;jl 0.

Finally, note that Fitt1(Q) = (21, z2, x3, 24), i.e., Vk(Fitt1(Q)) = kerk(N.) = 0, which shows that
all the solutions of Problem are such that the v’s have not full row rank.

Remark 23. We continue Remarks and Let By, = cokers, (Bj.) be the Sp-module finitely
presented by Bjy. Applying the right exact covariant functor S ®s - to the exact sequence of
S-modules, we obtain the following exact sequence of Sg-modules

idsk Ro

B).
»x(B) S]ch1 Sk ®884>0a

gx1
Slc

ie., Sk ®s B = cokerg, (¢r(B).). Using Proposition 2| we then have:
Sk ®s Fitto(B) = Fitto (S ®s B) = Fittg(cokers, (¢r(B).)).

Using , i.e., or(B) = By Ly, and the Laplace expansion theorem for computing the determinant of a
product of two matrices, we obtain:

Sk ®s Fitto(B) = Fittg (cokergk (g@k (B))) C Fittg (Bk) N Fitto(COkergk (Lk)) - Fitto(Bk).
If we note Zj, = Fitto(By) for k=1,...,r — 1, then we have Sy ®s Z C Zj, for k=1,...,r — 1.

Example 9. We continue Example Let = (21 ... 24)7, R = Q[z1, ..., 24],

T 0 Ty 0
- _ 0 0 a3 4x4
A=D1z ... Dyx) = 0 —25 0  —u € R**%,
—T4 0 —I1 0
Q = R4 /(RY*3Q) be the R finitely presented by the following matrix
0 —I3 0 —T2
Q=LA= 0 Lo 0 r3 | € R¥,

1+ 24 0 X1+ 24 0
the Fitting ideals of Q defined by:

J = Jo = Fitte(Q) = (0),

)
(71 4 x4) (23 — 23)),

Ji = Fitt; (Q) = (
Jo = Fitta(Q) = (23 — 23, 23 (21 + 34), 22 (21 + 74)),
J3 = Fittg(Q) = <1‘2, x3, T1 +$4>.

Then, the rank of @ on Vk(J%) is less than or equal to 3 — k for k =0,...,3.

Let us consider the rings S = R/Ji for k = 0, ..., 3, with the notation So =S = R, and ¢, : S — Sk
the canonical ring epimorphisms for £ = 1,2, 3. In what follows, the residue class T; (resp., v (Z;)) of z; in
S (resp., Sk) will simply be denoted by z;. Let K be the matrices satisfying kers, (pr(Q).) = ims, (K%.)
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for k=0,...,3, where Qg = @ and:

1 1 0 0 0
_ 0 4x1 _ 0 0 —w3(r1+24) @2 (71 + 24) 4x4
K— _1 GS 5 Kl — _1 mg_xg 0 0 681 5
0 0 0 2o (x1 +24)  —x3(x1 + 24)
1 0 0 0 0 0 0
_ 0 0 —x3 O Z2 0 T+ T4 4AXT _
K= z3 0 x93 0 0 0 €57 Ks=1L.

0 0 To 0 —x3 x1+x4 0
Then, we have the identity ¢ (K) = Ky, Ly, where:
Li=1 0 0 0F, ZLo=(1 0 0 0 0 0 00, Ly=(1 0 —1 0).
Using the left inverse V.=(0 0 0 1) of X, then we get:

B:VAK:$1—$4€87

By =V (A) Ky = (1 —24 x4(z3—23) 0 0)6811“,
BQZV(pQ(A)KQZ(.%‘l—$4 x3xy 0 014 0 O 0)6821><7,
Bs=Vp3(A) K3 = (—x4 0 x4 0)€Si*%

We can check again that ¢ (B) = By Ly for k = 1,2,3. Introducing the finitely presented Si-modules
By, = cokers, (By.) for k = 1,2, 3, we then have:

T= Fitto(B) = <I1 — $4>5,

Il = Fitto(Bl) = <x1 — T4, Ty (x% — x§)>31 = <JJ1 - Z‘4>51,
IQ = Fltto(BQ) = <131 — T4, T3 Ty, T2 £I?4>32 = <SC1 — I4>327
Ig = Fltto(Bg) = <£U1,.’E4>53 = <£L’4>53.

Then, we can check again that S ®s Z = (1 — x24)s, = Ij, for k =1,2,3.
We first consider Z. Let g = 1 — x4 and consider the localization S, = S[g~!] of S. Then, B has
the (right) inverse E, = ¢~ ! and Cy = 0 since kers,(B.) = 0. Hence, the corresponding solutions of

Problem are defined by:

u=(z1 ... 24)T €U = K>\ V({21 — 24)),

1 00 1

1 0 00 0
v=KEY=——— | T g
0 00 0

Now, we consider the ideal Z; of S1, g = 21 — x4 and the localization S;, = S;[g™!] of S;. Then, By
has a right inverse E;, =g~'(1 0 0 0)T € S;,**" and

0 0 a3—a%
00

“u=101 o €81,""
10 0

satisfies kers,,(B1.) = ims, (C1y.). Let us define the following quasi-affine algebraic set:

Ur = Vk(((z1 +24) (23 — 25))) \ V(21 + 24) (23 — 23), 21 — 24))
T X1 T 0 T T
_ X2 o X2 \ T2 X2 )
- I3 ’ xro ’ —X9 T3 ’ i) ’ —X9
RR n° 9438 - T4 T4 0 1 1
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Then, the corresponding solutions of Problem are defined by:

u = (21 ... 2q)T €Uy,
v =K (EgY +CigY)
1 0 0 1 0 0 x3 — a3
_ 1 0 0 0 O n xo (21 +x4)  —x3 (21 + 24) 0 v
T1 — Ta -1 0 0 -1 0 0 x3 — 23 L
0 0 0 O —x3 (21 +24) 22 (21 + 24) 0
VY €S,

Consider the ideal Zy of Sy, g = 1 — 24 and the localization Sy, = Sa[g~'] of Sz. Then, By has a
right inverse Ea; =¢~'(1 0 0 0 0 0 0)" € 8p"™" and

8
w
8

2

ng = € Sgg7><6

_ O OO0 o oo
O = O O O OO
SO R, OO OO
S ODO O OO
O OO OO NN
O OO NO O

satisfies kers,, (Bz.) = ims,, (C2y.). Let us define the following quasi-affine algebraic set:

Uy =
V({23 — 23, 3 (21 4 24), 22 (21 + 24))) \ V(23 — 23, 23 (21 + 24), 22 (21 + 24), 21 — 74))
T T T T 0 0
_ 0 To o 0 ) T2
o 0 ’ o ’ —X9 \ 0 ’ X9 ’ —XT9
T4 —x1 —x1 T 0 0

Then, the corresponding solutions of Problem are:

u = (21 ... 24)T €Uy,
v = KQ (EQgY+ng Yg)
1 0 0 1 0 0 0 0 =z 3
_ 1 0 0 0 O 4 T+ x4 0 r9 —x3 0 0 v
n X1 — T4 -1 0 0 -1 0 0 0 0 I3 X2 2
0 0 0 O 0 r1+T4 —T3z Xy 0 0
VY; € Sy,

Finally, the solutions obtained in Example |1| correspond to S5 = R/J3, Sz, = S3 [w;l], Es,, =
2xzy) ' (-1 0 1 0)Te S;;Zl, kers,, (Bs.)=img,, (C.), where C is defined by . Hence, we find
again since we have:

—X4

Us = Vi((z2, z3, x1 + 4)) \ Vk((22, 23, 1 + 24, T4)) = 0 | 24 #£0

4 Conclusion

In this paper, we have studied the general solutions of a rank factorization problem appearing as a demod-
ulation problem in gearbox vibration analysis [I3] [I4]. More precisely, using module theory, homological
and computer algebra methods, we have shown how to characterize the general solutions of this rank
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factorization problem. The results obtained in [I5] [T6] [I7] (18], characterizing a special class of solutions
of the problem, can be found again as particular cases. The characterization of the general solutions ob-
tained in this paper is effective and can be obtained by modern computer algebra systems. In particular,
the GAP library CapAndHomalg [I] was used to handle the examples studied in this paper.

Many important issues still have to be investigated in the future such as the algebraic (projective)
geometric interpretation of the rank factorization problem and of its solutions. Moreover, symbolic-
numeric methods based on, e.g., the rational univariate representation (RUR) and root isolation, will be
used in the future to get certified numerical solutions.

In applications to vibration analysis, as explained in Section [I} the complex matrices D;’s and M
are centrohermitian and the rank factorization problem can be transformed into an equivalent rank
factorization problem for real matrices ¢(D;)’s and ¢(M). In practice, the matrices D;’s are explicitly
known contrary to M which is only measured. The matrix M is usually corrupted by perturbations and
noise. Hence, in the non-exact case, i.e., when M is not supposed to be exactly known, one usually prefers
to consider the optimization problem

arg min
u€CH,,,1(C), v;€CH1,m (C)

, (33)
Frob

T
Z Dz uUv; — M
i=1
where the Frobenius norm of a complex matrix A is defined by:

| Allgpor, = V/ trace(A*A).

Using the fact that the transformation ¢ can be defined by means of unitary matrices and the Frobenius
norm is invariant by unitary transformations, we thus obtain:

iy, cCH, ,(C), v;eCHy,m (C) 12 iy Diwvi — Ml

= Min, eRrnx1, y;,eR1xm ||Z::1 P(Di) up vip — (M)l gy, -

For more details, see [I8]. Thus, the optimization problem is reduced to a real polynomial opti-
mization problem. This problem will be studied in a future work using symbolic-numeric methods. The
results obtained here on the structure of the solution space of the rank factorization problem are good
assets to investigate this real polynomial optimization problem (e.g., obtaining good initial conditions for
the optimization algorithms).

Finally, in the future, we also want to analyze the continuity of the method proposed in this paper with
respect to certain variations of the matrix M observed in practice. This study can yield an interesting
alternative to the previous real polynomial optimization problem.
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5 A worked example with CapAndHomalg

In this Appendix, we demonstrate how the GAP library CapAndHomalg [I] can be used to effectively solve
the rank factorization problem studied in this paper. We consider again Example[9] Using the notebook of
TJulia, we display below the different command lines and the corresponding results. For more examples,
we refer the reader to the webpage dedicated to the effective aspects of the rank factorization problem:

https://who.paris.inria.fr/Alban.Quadrat/RankFactorizationProblem.html
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[1]: using CapAndHomalg

GAP 4.11.0 of 29-Feb-2020

GAP https://www.gap-system.org

Architecture: x86_64-apple-darwinl9.6.0-julia64-kv7-v1.5

Configuration: gmp 6.1.2, Julia GC, Julia 1.5.3, readline

Loading the library and packages ...

Packages: AClib 1.3.2, Alnuth 3.1.2, AtlasRep 2.1.0, AutoDoc 2019.09.04,
AutPGrp 1.10.2, CRISP 1.4.5, Cryst 4.1.23, CrystCat 1.1.9,
CTblLib 1.2.2, FactInt 1.6.3, FGA 1.4.0, Forms 1.2.5,
GAPDoc 1.6.3, genss 1.6.6, I0 4.7.0, IRREDSOL 1.4, LAGUNA 3.9.3,
orb 4.8.3, Polenta 1.3.9, Polycyclic 2.15.1, PrimGrp 3.4.0,
RadiRoot 2.8, recog 1.3.2, ResClasses 4.7.2, SmallGrp 1.4.1,
Sophus 1.24, SpinSym 1.5.2, TomLib 1.2.9, TransGrp 2.0.5,
utils 0.69

Try '7?7help' for help. See also '7copyright', '7cite' and '7authors'

CapAndHomalg v1.0.3

Imported OSCAR's components GAP and Singular_jll

Type: 7CapAndHomalg for more information

[2]: LoadPackage( "IntrinsicModules" )

[3]: Q = HomalgFieldOfRationalsInSingular ()
[3]: GAP: Q

[4]: R = Q["x1..4"]

[4]: GAP: Q[x1,x2,x3,x4]

[5]: Mmat = HomalgMatrix( "[1, O, O, 1, O, O, O, O, O, O, O, O, 1, O, O, 11", 4, 4, R,
=)

[5]: GAP: <A 4 x 4 matrix over an external ring>

[6]: Display( Mmat )

>

1,0,0,1
0,0,0,0,
0,0,0,0,

1,0,0,1
[71: D1 = HomalgMatrix( "[1, O, O, O, O, O, O, O, O, O, O, O, O, O, O, -11", 4, 4, R)
[7]: GAP: <A 4 x 4 matrix over an external ring>

[8]: Display( D1 )
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[9]:

[9]:

[10]:

[11]:

[11]:

[12]:

[13]:

[13]:

[14]:

[15]:

[15]:

[16]:

[16]:

[17]7:

>

,-1
D2 = HomalgMatrix( "[O, O, O, O, O, 1, O, O, O, O, -1, O, O, O, O, O]", 4, 4, R)
GAP: <A 4 x 4 matrix over an external ring>

Display( D2 )

O O O O

D3 = HomalgMatrix( "[O, O, O, 1, O, O, O, O, O, O, O, O, -1, O, O, O]", 4, 4, R )
GAP: <A 4 x 4 matrix over an external ring>

Display( D3 )

D4 = HomalgMatrix( "[O, O, O, O, O, O, 1, O, O, -1, O, O, O, O, O, O]", 4, 4, R)
GAP: <A 4 x 4 matrix over an external ring>

Display( D4 )

0,0, 0,0,

0,0, 1,0,

03_1’030)
0,0, 0,0

n = NrRows( Mmat )

4

x = HomalgMatrix( "[x1, x2, x3, x4]", n, 1, R )
GAP: <A 4 x 1 matrix over an external ring>

Amat =UnionOfColumns( D1 * x, D2 * x, D3 * x, D4 * x )
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[17]: GAP: <An unevaluated 4 x 4 matrix over an external ring>
[18]: Display( Amat )

x1, 0, x4, 0,
0, x2, 0, x3,
0, -x3,0, -x2,
-x4,0, -x1,0
[19]: ColsR = CategoryOfColumns( R )
[19]: GAP: Columns( Q[x1,x2,x3,x4] )
[20]: M = Mmat / ColsR
[20]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4] )>
[21]: L = WeakCokernelProjection( M )
[21]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4] )>
[22]: Display( L )
Source:
A column module over Q[x1,x2,x3,x4] of rank 4
Matrix:
0,0,1,0,
O 3 1 3 O b 0 b
1,0,0,-1
Range:
A column module over Q[x1,x2,x3,x4] of rank 3
A morphism in Columns( Q[x1,x2,x3,x4] )
[23]: X = WeakKernelEmbedding( L )
[23]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4] )>
[24]: Display( X )

Source:
A column module over Q[x1,x2,x3,x4] of rank 1

Matrix:
15
0,
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Range:
A column module over Q[x1,x2,x3,x4] of rank 4

A morphism in Columns( Q[x1,x2,x3,x4] )

[25]: Y = Lift( M, X )
[25]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4] )>
[26]: Display( Y )

Source:
A column module over Q[x1,x2,x3,x4] of rank 4

Matrix:
1,0,0,1

Range:
A column module over Q[x1,x2,x3,x4] of rank 1

A morphism in Columns( Q[x1,x2,x3,x4] )

[27]: A = Amat / ColsR

[27]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4] )>
[28]: KA = WeakCokernelProjection( A )

[28]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4] )>
[29]: Display( KA )

Source:
A column module over Q[x1,x2,x3,x4] of rank 4

Matrix:
(an empty O x 4 matrix)

Range:
A column module over Q[x1,x2,x3,x4] of rank O

A morphism in Columns( Q[x1,x2,x3,x4] )

[30]: Q = PreCompose( A, L )
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[30]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4] )>
[31]: Display( Q )

Source:
A column module over Q[x1,x2,x3,x4] of rank 4

Matrix:
0, -x3,0, -x2,
0, x2, 0, x3,

x1+x4,0, x1+x4,0

Range:
A column module over Q[x1,x2,x3,x4] of rank 3

A morphism in Columns( Q[x1,x2,x3,x4] )

[32]: J = FittingIdeal( O, LeftPresentation( UnderlyingMatrix( Q ) ) )
[32]: GAP: <A zero (left) ideal>

[33]: ColsS = CategoryOfColumns( R )

[33]: GAP: Columns( Q[x1,x2,x3,x4] )

[34]: KS = WeakKernelEmbedding( Q )

[34]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4] )>

[35]: Display( KS )

Source:
A column module over Q[x1,x2,x3,x4] of rank 1

Matrix:
1,

0,

-1,

0

Range:
A column module over Q[x1,x2,x3,x4] of rank 4

A morphism in Columns( Q[x1,x2,x3,x4] )

[36]: BS = Lift( PreCompose( KS, A ), X )
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[36]:

[37]:

[38]:

[38]:

[39]:

[40] :

[40]:

[41]:

[42] :

[42]:

[43]:

GAP: <A morphism in Columns( Q[x1,x2,x3,x4] )>
Display( BS )

Source:
A column module over Q[x1,x2,x3,x4] of rank 1

Matrix:
x1-x4

Range:
A column module over Q[x1,x2,x3,x4] of rank 1

A morphism in Columns( Q[x1,x2,x3,x4] )

I = FittingIdeal( O, LeftPresentation( UnderlyingMatrix( BS ) ) )

GAP: <A principal torsion-free (left) ideal given by a cyclic generator>
Display( I )

x1-x4

A (left) ideal generated by the entry of the above matrix

C = WeakKernelEmbedding( BS )
GAP: <A morphism in Columns( Q[x1,x2,x3,x4] )>
Display( C )

Source:
A column module over Q[x1,x2,x3,x4] of rank O

Matrix:
(an empty 1 x O matrix)

Range:
A column module over Q[x1,x2,x3,x4] of rank 1

A morphism in Columns( Q[x1,x2,x3,x4] )

T = R["t"] / g"t*x(x1-x4) - 1"
GAP: Q[x1,x2,x3,x4][t]/( x1*t-x4xt-1 )

ColsT = CategoryO0fColumns( T )
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[43]: GAP: Columns( Q[x1,x2,x3,x4][t]/( xl*t-x4*t-1 ) )

[44]: BT = BS / ColsT

[44]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( xl*t-xd4*t-1 ) )>
[45]: ET = Prelnverse( BT )

[45]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( xl*t-xd4*t-1 ) )>
[46]: Display( ET )

Source:
A column module over Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1 ) of rank 1

Matrix:
t

modulo [ x1*t-x4*t-1 ]

Range:
A column module over Q[x1,x2,x3,x4]1[t]/( x1*t-x4*t-1 ) of rank 1

A morphism in Columns( Q[x1,x2,x3,x4][t]1/( xl*t-x4*t-1 ) )

[47]1: YT = Y / ColsT

[47]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4] [t]/( xl*t-x4*t-1 ) )>
[48]: KT = KS / ColsT

[48]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4] [t]/( xl1*t-x4*t-1 ) )>
[49]: SolT = PreCompose( YT, PreCompose( ET, KT ) )

[49]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4] [t]/( xl*t-x4*t-1 ) )>
[50]: Display( SolT )

Source:
A column module over Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1 ) of rank 4

Matrix:

t, 0,0,t,
0, 0,0,0,
-t,0,0,-t,
0, 0,0,0
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[51]:

[51]:

[52]:

[52]:

[53]:

[53]:

[54]:

[54]:

[55]:

[56] :

[56]:

[57]1:

modulo [ x1*t-x4*xt-1 ]

Range:
A column module over Q[x1,x2,x3,x4][t]/( x1*t-x4%t-1 ) of rank 4

A morphism in Columns( Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1 ) )

MT = M / ColsT

GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1 ) )>
AT = A / ColsT

GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( xl*t-x4*t-1 ) )>
PreCompose( SolT, AT ) == MT

true

CT = WeakKernelEmbedding( BT )

GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( x1*t-x4xt-1 ) )>
Display( CT )

Source:
A column module over Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1 ) of rank O

Matrix:
(an empty 1 x O matrix)

Range:
A column module over Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1 ) of rank 1

A morphism in Columns( Q[x1,x2,x3,x4][t]/( xl*t-x4*t-1 ) )

J1 = FittingIdeal( 1, LeftPresentation( UnderlyingMatrix( Q ) ) )
GAP: <A torsion-free (left) ideal given by 4 generators>

Display( J1 )

0,

-x1%x272+x1*x372-x2" 2*x4+x3"2*x4,

0,

x1*x272-x1*%x372+x272%x4-x3"2*x4

A (left) ideal generated by the 4 entries of the above matrix
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[58]:

[58]:

[59]:

[59]:

[60] :

[60] :

[61]:

[61]:

[62]:

[63]:

[63]:

[64] :

S1=R/J1

GAP: Q[x1,x2,x3,x4]/( -x1%x272+x1%x372-x2"2*x4+x3"2*x4,
X1%x272-x1%x372+x272%x4-x372%x4 )

ColsS1 = Category0fColumns( S1 )

GAP: Columns( Q[x1,x2,x3,x4]/( -x1*x2"2+x1%x3"2-x2"2%x4+x3"2*x4,
x1*x272-x1*%x372+x2"2*%x4-x3"2*x4 ) )

QS1 = Q / ColsSi

GAP: <A morphism in Columns( Q[x1,x2,x3,x4]/( -x1*x272+x1*x372-x2"2*x4+x3"2*x4,
x1*x272-x1*x372+x2"2*%x4-x3"2%x4 ) )>

KS1 = WeakKernelEmbedding( QS1 )

GAP: <A morphism in Columns( Q[x1,x2,x3,x4]/( -x1*x272+x1*x372-x2"2%x4+x3"2%x4,
X1%x272-x1*x372+x272%x4-x3"2%x4 ) )>

Display( KS1 )

Source:
A column module over Q[x1,x2,x3,x4]/( x1%x272-x1%x372+x2"2*x4-x3"2*x4 ) of rank
4

Matrix:

1, 0O, 0, 0,

0, 0, -x1*x3-x3*x4 ,x1*x2+x2*%x4,
-1,x272-x372,0, 0,

0, O, x1*x2+x2*x4, -x1*x3-x3*x4

modulo [ x1*x272-x1*x3"2+x2"2%x4-x3"2*x4 ]

Range:

A column module over Q[x1,x2,x3,x4]1/( x1%*x2"°2-x1%x3"2+x2"2*x4-x3"2*%x4 ) of rank
4

A morphism in Columns( Q[x1,x2,x3,x4]/( -x1*x272+x1*x372-x2"2*x4+x3"2*x4,
x1%x272-x1%x372+x2"2%x4-x3"2%x4 ) )

AS1 = A / Colssi

GAP: <A morphism in Columns( Q[x1,x2,x3,x4]/( -x1*x272+x1*x372-x2"2*x4+x3"2*x4,
x1*x272-x1*%x3"2+x2"2%x4-x3"2%x4 ) )>

XS1 = X / ColsSi
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[64] :

[65] :

[65]:

[66] :

[671:

[671:

[68]:

[69] :

[69]:

[70]:

GAP: <A morphism in Columns( Q[x1,x2,x3,x4]/( -x1*x272+x1*x372-x2"2*x4+x3"2*x4,
x1*x272-x1*%x3"2+x2"2%x4-x3"2%x4 ) )>

BS1 = Lift( PreCompose( KS1, AS1 ), XS1 )

GAP: <A morphism in Columns( Q[x1,x2,x3,x4]/( -x1*x272+x1*x372-x2"2*x4+x3"2*x4,
x1*x272-x1*x372+x2"2%x4-x3"2%x4 ) )>

Display( BS1 )
Source:
A column module over Q[x1,x2,x3,x4]1/( x1%*x2"°2-x1%x3"2+x2"2*x4-x3"2%x4 ) of rank

4

Matrix:
x1-x4,%x2"72%x4-x3"2*xx4,0,0

modulo [ x1%*x27°2-x1%*x3"2+x2"2%x4-x3"2%x4 ]
Range:
A column module over Q[x1,x2,x3,x4]/( x1%x272-x1%x372+x2"2*x4-x3"2*x4 ) of rank

1

A morphism in Columns( Q[x1,x2,x3,x4]/( -x1*x2"2+x1%x372-x2"2%x4+x3"2%x4,
x1*x272-x1*x3"2+x2"2%x4-x3"2%x4 ) )

I1 = FittingIdeal( O, RightPresentation( UnderlyingMatrix( BS1 ) ) )
GAP: <A principal torsion-free (right) ideal given by a cyclic generator>
Display( I1 )

x1-x4

modulo [ x1%*x27°2-x1%*x3"2+x2"2%x4-x3"2%x4 ]

A (right) ideal generated by the entry of the above matrix

annl = Annihilator( RightPresentation( UnderlyingMatrix( BS1 ) ) )

GAP: <A non-zero principal torsion-free (right) ideal given by a cyclic
generator>

Display( annl )

x1-x4

modulo [ x1*x272-x1*x3"2+x2"2%x4-x3"2*x4 ]
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A (right) ideal generated by the entry of the above matrix

[(71]: TS1 = S1["t"] / g"t*(x1-x4) - 1"

[71]: GAP: Q[x1,x2,x3,x4][t]/( -x1*x2"2+x1*x372-x2"2*x4+x3"2*x4,
X1%x272-x1*x372+x2"2%x4-x3"2%x4, x1¥t-xd*t-1 )

[72]: ColsTS1 = CategoryOfColumns( TS1 )

[72]: GAP: Columns( Q[x1,x2,x3,x4][t]/( -x1*x2"2+x1*x3"2-x2"2*x4+x3"2*x4,
x1*x272-x1*x372+x2" 2%x4-x3"2%x4, x1*t-x4*t-1 ) )

[73]: BTS1 = BS1 / ColsTS1

[73]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/(
-x1*x272+x1%x372-x2" 2%x4+x3"2%x4, x1*x272-x1*x3"2+x2"2*%x4-x3"2*x4, x1*t-x4*t-1 )
)>

[74]: ETS1 = Prelnverse( BTS1 )

[74]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/(
-x1*x272+x1%x372-x2"2%x4+x3"2%x4, x1%x272-x1%x372+x2"2*x4-x3"2*x4, x1xt-x4*t-1 )
)>

[75]: Display( ETS1 )

Source:
A column module over Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1,
x1%x272-x1%x3"2+x2"2%x4-x3"2%x4, 2%x2"2*x4*t-2%x3"2*x4*t+x2°2-x3"2 ) of rank 1

Matrix:
t!

>

0
O;
0

modulo [ x1*t-x4*t-1, x1*x272-x1%x372+x2"2*%x4-x3"2*x4,
2xx2 " 2kx4*t -2%x3 " 2*kx4*t+x272-x372 ]

Range:
A column module over Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1,
x1%x272-x1%x3"2+x2" 2%x4-x3"2%x4, 2%x2"2*x4*t-2*x3"2*x4*t+x2°2-x3"2 ) of rank 4

A morphism in Columns( Q[x1,x2,x3,x4][t]/( -x1*x272+x1%x372-x2"2%x4+x3"2*x4,
x1%x272-x1%x3"2+x2"2%x4-x3"2*x4, x1*t-x4*t-1 ) )

[76]: YTS1 =Y / ColsTS1
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[76]:

[771:

[771:

[78]:

[78]:

[79]:

[80]:

[80]:

[81]:

GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/(
-x1%x272+x1%x372-x2" 2%x4+x3"2%x4, x1*x2"2-x1*x3"2+x2"2%x4-x3"2*%x4, x1*t-x4*t-1 )
)>

KTS1 = KS1 / ColsTS1

GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/(
-x1*x272+x1%x372-x2" 2%x4+x3"2%x4, x1*x272-x1*x372+x2"2*x4-x3"2*x4, x1*t-xd4*t-1 )
)>

SolTS1 = PreCompose( YTS1, PreCompose( ETS1, KTS1 ) )

GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/(
-x1*x272+x1%x372-x2"2%x4+x372%x4, x1*x272-x1%x372+x2"2*x4-x3"2*x4, x1xt-x4*t-1 )
)>

Display( SolTS1 )

Source:
A column module over Q[x1,x2,x3,x4][t]/( x1xt-x4*t-1,
x1%x272-x1%x3"2+x2" 2%x4-x3"2%x4, 2*x2"2*x4*t-2*x3"2*x4*t+x2"2-x3"2 ) of rank 4

Matrix:

t, 0,0,t,
0, 0,0,0,
-t,0,0,-t,
0, 0,0,0

modulo [ x1*t-x4*t-1, x1*x272-x1*x372+x2"2*x4-x3"2*x4,
2%x2" 2k x4 ¥t -2xx3 " 2*kx4*t+x2"2-x372 ]

Range:
A column module over Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1,
x1*x272-x1%x3"2+x2" 2%x4-x3"2%x4, 2*x2"2*x4*t-2*x3"2*x4*t+x272-x3"2 ) of rank 4

A morphism in Columns( Q[x1,x2,x3,x4] [t]/( -x1*x272+x1*%x372-x2"2%x4+x3"2%x4,
x1%x272-x1%x3"2+x2" 2%x4-x3"2*x4, x1*t-x4*xt-1 ) )

MTS1 = M / ColsTS1

GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/(
-x1*x272+x1%x372-x2"2%x4+x3"2%x4, x1%x272-x1%x372+x2"2*x4-x3"2*x4, x1xt-x4*t-1 )
)>

ATS1 = A / ColsTS1
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[81]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/(
-x1%x272+x1%x372-x2" 2%x4+x3"2%x4, x1*x2"2-x1*x3"2+x2"2%x4-x3"2*%x4, x1*t-x4*t-1 )
)>

[82] : PreCompose( SolTS1, ATS1 ) == MTS1
[82]: true
[83]: CTS1 = WeakKernelEmbedding( BTS1 )

[83]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/(
-x1*x272+x1%x372-x2"2%x4+x3"2%x4, x1*x272-x1*x372+x2"2*x4-x3"2*x4, x1*t-xd*t-1 )
)>

[84]: Display( CTS1 )

Source:
A column module over Q[x1,x2,x3,x4][t]/( x1*xt-x4*t-1,
x1%x272-x1%x3"2+x2"2%x4-x3"2%x4, 2*x2"2*x4*t-2%x3"2*x4*t+x2"2-x3"2 ) of rank 3

Matrix:
0,0,x272-x3"2,
0,0,2,

0,1,0,
1,0,0

modulo [ x1*t-x4*t-1, x1*x272-x1%*x372+x2"2*%x4-x3"2%x4,
2xx2" 2kx4*t-2%x3 " 2*kx4*t+x272-x372 ]

Range:
A column module over Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1,
x1%x272-x1%x3"2+x2" 2%x4-x3"2%x4, 2%x2"2*x4*t-2*x3"2*x4*t+x2"2-x3"2 ) of rank 4

A morphism in Columns( Q[x1,x2,x3,x4][t]/( -x1*x272+x1%x372-x2"2%x4+x3"2*x4,
x1%x272-x1%x3"2+x2"2%x4-x3"2*x4, x1*t-x4*t-1 ) )

[85]: solTS1 = PreCompose( CTS1, KTS1 )

[85]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/(
-x1*x272+x1%x372-x2" 2%x4+x3"2%x4, x1*x272-x1*x372+x2"2*x4-x3"2*x4, x1*t-xd*t-1 )
)>

[86]: Display( solTS1 )
Source:

A column module over Q[x1,x2,x3,x4][t]/( x1xt-x4*t-1,
X1*x272-x1*x372+x2"2%x4-x3"2*x4, 2%x2"2*x4*t-2%x3"2*x4*t+x272-x3"2 ) of rank 3
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Matrix:

0, 0, x272-x372,
x1*x2+x2%x4, -x1*x3-x3%x4,0,

0, 0, x272-x372,

-x1*x3-x3*x4,x1*x2+x2*x4, 0

modulo [ x1*t-x4xt-1, x1*x272-x1*x372+x272*x4-x3"2*x4,
2xx272xx4*xt-2%x3" 2%x4*t+x2"2-3x372 ]

Range:
A column module over Q[x1,x2,x3,x4][t]/( x1xt-x4*t-1,
x1*x272-x1*%x372+x272*x4-x3"2%x4 , 2%x2"2%x4¥t-2%x3"2*x4*t+x2°2-x3"2 ) of rank 4

A morphism in Columns( Q[x1,x2,x3,x4] [t]/( -x1*x272+x1*x372-x2"2*x4+x3"2*x4,
x1*x272-x1%x3"2+x2"2%x4-x3"2*x4, x1*t-x4*t-1 ) )

[87]: checkl = PreCompose( solTS1, ATS1 )

[87]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/(
-x1%x272+x1%x372-x2"2%x4+x3"2%x4, x1*x2"2-x1*x3"2+x2"2%x4-x3"2*%x4, x1*t-x4*t-1 )
)>

[88]: Display( checkl )

Source:
A column module over Q[x1,x2,x3,x4]1[t]/( x1xt-x4*t-1,
x1*x272-x1%x372+x2"2%x4-x3"2%x4, 2*x2"2*x4*t-2*x3"2*x4*t+x272-x3"2 ) of rank 3

Matrix:
0,0,0,
0,0,0,
0,0,0,
0,0,0

modulo [ x1*t-x4*t-1, x1*x272-x1*x372+x272*x4-x3"2*x4,
2%x27 2% x4xt -2%x3 " 2% x4*t+x272-x372 ]

Range:
A column module over Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1,
x1*x272-x1%x3"2+x2"2%x4-x3"2%x4, 2*x2"2*x4*t-2*x3"2*x4*t+x272-x372 ) of rank 4

A morphism in Columns( Q[x1,x2,x3,x4][t]/( -x1*x272+x1%x372-x2"2*x4+x3"2*x4,
x1*x272-x1%x3"2+x2"2%x4-x3"2*x4, x1*t-xd*t-1 ) )

[89]: J2 = FittingIdeal( 2, LeftPresentation( UnderlyingMatrix( Q ) ) )

[89]: GAP: <A torsion-free (left) ideal given by 18 generators>
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[90]: Display( J2 )
0,
0,

0,

0,
-x272+x372,
0,
-x1*x3-x3*x4,
0,
-x1*x2-x2*x4,
x1*x3+x3*x4,
0,
-x1*x2-x2*x4,
-X1%x2-x2%x4,
0,
-x1*x3-x3*x4,
x1*x2+x2%x4,
0,
-x1*x3-x3*x4

A (left) ideal generated by the 18 entries of the above matrix
[91]: 82 =R / J2

[91]: GAP: Q[x1,x2,x3,x4]/( -x272+x372, -x1*x3-x3*x4, -x1*x2-x2%x4, x1*x3+x3*x4,
-x1*x2-x2%x4, -x1%x2-x2%x4, -x1*x3-x3*x4, x1*x2+x2*x4, -x1*x3-x3*x4 )

[92]: ColsS2 = Category0fColumns( S2 )

[92]: GAP: Columns( Q[x1,x2,x3,x4]/( -x272+x372, -x1*x3-x3*x4, -x1*x2-x2*x4,
x1*x3+x3*%x4, -x1*x2-x2*x4, -x1*x2-x2*%x4, -x1*x3-x3*x4, x1*x2+x2*x4, -x1*x3-x3*%x4
) )

[93]: QS2 = Q / ColsS2

[93]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4]/( -x272+x372, -x1%x3-x3%*x4,
-x1%x2-x2*%x4, x1*x3+x3*x4, -x1*x2-x2*x4, -x1*x2-%x2*%%x4, -x1*x%3-x3*%4,
x1*x2+x2*x4, -x1*x3-x3*x4 ) )>

[94]: KS2 = WeakKernelEmbedding( QS2 )

[94]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4]/( -x272+x372, -x1*x3-x3%*x4,
-x1*x2-x2%x4, x1*x3+x3*x4, -x1*x2-x2*%x4, -x1*xX2-32%x4, -x1*x33-%3*%4,

x1*x2+x2*x4, -x1*x3-3x3*%x4 ) )>

[95]: Display( KS2 )
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Source:
A column module over Q[x1,x2,x3,x4]/( x1*x3+x3*x4, x272-x372, x1*x2+x2*x4 ) of
rank 7

Matrix:

i, 0, 0, 0, 0, O, 0,

0, 0, -x3,0, x2, 0, x1+x4,
-1,x3,0, x2,0, O, 0,

0, 0, x2, 0, -x3,x1+x4,0

modulo [ x1*x3+x3*x4, x272-x372, x1*x2+x2*x4 ]

Range:
A column module over Q[x1,x2,x3,x4]/( x1*x3+x3*x4, x272-x3"2, x1*x2+x2*x4 ) of
rank 4

A morphism in Columns( Q[x1,x2,x3,x4]/( -x272+x372, -x1*x3-x3*x4, -x1*x2-x2%x4,
x1*x3+x3%x4, -x1*x2-x2*%x4, -x1*x2-x2*%x4, -x1*x3-x3*x4, x1*xX2+x2*x4, -x1*xX3-%x3*%X4

) )

[96]: AS2 = A / ColsS2

[96]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4]/( -x272+x372, -x1%x3-x3%*x4,
-x1*x2-x2*%x4, x1*x3+x3*x4, -x1*x2-x2*x4, -x1*x2-x2*x4, -x1*x3-x3%*%x4,
x1*x2+x2*x4, -x1*x3-x3*%x4 ) )>

[97]: XS2 = X / ColsS2

[97]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4]/( -x272+x372, -x1*x3-x3*x4,
-x1*x2-x2%x4, x1*x3+x3*x4, -x1*x2-%x2*%x4, -x1*xX2-32%%x4, -x1*x33-%3*%x4,
x1*x2+x2*x4, -x1*x3-x3*%x4 ) )>

[98]: BS2 = Lift( PreCompose( KS2, AS2 ), XS2 )

[98]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4]/( -x272+x3"2, -x1*x3-x3*x4,
-x1*x2-x2*%x4, x1*x3+x3*x4, -x1*x2-x2*x4, -x1*x2-x2*x4, -x1*x3-x3*x4,
X1*x2+x2%x4, -x1*x3-x3*x4 ) )>

[99]: Display( BS2 )

Source:
A column module over Q[x1,x2,x3,x4]/( x1*x3+x3*x4, x272-x3"2, x1*x2+x2*x4 ) of

rank 7

Matrix:
x1-x4,x3%x4,0,x2%xx4,0,0,0

modulo [ x1*x3+x3*x4, x272-x372, x1*x2+x2*x4 ]
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Range:
A column module over Q[x1,x2,x3,x4]1/( x1*x3+x3*x4, x272-x372, x1*x2+x2*x4 ) of
rank 1
A morphism in Columns( Q[x1,x2,x3,x4]/( -x272+x372, -x1*x3-x3*x4, -x1*x2-x2%x4,

x1*x3+x3*x4, -x1*x2-x2%x4, -x1*x2-%x2*x4, -x1*x3-x3*x4, x1*x2+x2*x4, -x1*x3-%33*%x4

) )

[100]: I2 = FittingIdeal( O, RightPresentation( UnderlyingMatrix( BS2 ) ) )
[100]: GAP: <A principal torsion-free (right) ideal given by a cyclic generator>
[101]: Display( I2 )

x1-x4

modulo [ x1*x3+x3*x4, x272-x372, x1*x2+x2*x4 ]

A (right) ideal generated by the entry of the above matrix

[102]: ann2 = Annihilator( RightPresentation( UnderlyingMatrix( BS2 ) ) )

[102]: GAP: <A non-zero principal torsion-free (right) ideal given by a cyclic
generator>

[103]: Display( ann2 )
x1-x4
modulo [ x1*x3+x3*x4, x272-x372, x1*x2+x2*x4 ]

A (right) ideal generated by the entry of the above matrix

[104]: TS2 = S2["t"] / g"t*x(x1-x4) - 1"

[104]: GAP: Q[x1,x2,x3,x4][t]/( -x272+x372, -x1*x3-x3*x4, -x1*x2-x2%x4, x1*x3+x3*x4,
-x1*x2-x2*%x4, -x1*x2-x2*x4, -x1*x3-x3*%x4, x1*x2+x2*x4, -x1*x3-x3*x4, x1*t-x4*t-1

)

[105]: ColsTS2 = CategoryOfColumns( TS2 )

[105]: GAP: Columns( Q[x1,x2,x3,x4][t]/( -x272+x372, -x1*x3-x3*x4, -x1*x2-x2%*x4,
x1*x3+x3%x4, -x1*x2-x2*%x4, -x1*x2-x2*x4, -x1*x3-x3*x4, Xx1*x2+x2%*x4,

-x1*x3-x3%x4, x1l*t-x4*t-1 ) )

[106]: BTS2 = BS2 / ColsTS2
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[106] :

[107]:

[107]:

[108]:

[109]:

[109]:

[110]:

[110]:

GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( -x272+x372, -x1*x3-x3*x4,
-x1*x2-x2*%x4, x1*x3+x3*x4, -x1*x2-x2*x4, -x1*x2-x2*x4, -x1*x3-x3*x4,
x1*x2+x2*%x4, -x1*x3-x3*x4, x1*t-x4*t-1 ) )>

ETS2 = PreInverse( BTS2 )

GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( -x272+x372, -x1*x3-x3*x4,
-x1*x2-x2*%x4, x1*x3+x3*x4, -x1*x2-x2*x4, -x1*x2-%x2*%x4, -x1*x3-xX3*%34,
x1*x2+x2*%x4, -x1%x3-x3*%x4, x1*t-x4*t-1 ) )>

Display( ETS2 )

Source:
A column module over Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1, x1*x3+x3*x4, x272-x372,
x1*x2+x2*%x4, 2*xx3*x4*t+x3, 2*x2*x4*t+x2 ) of rank 1

Matrix:

modulo [ x1*t-x4*t-1, x1*x3+x3*x4, x272-x372, x1*x2+x2*x4, 2*x3*x4*t+x3,
2xx2*x4*t+x2 ]

Range:
A column module over Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1, x1*x3+x3*x4, x272-x3"2,
X1*x2+x2*%x4, 2*x3*x4xt+x3, 2*xx2*x4*t+x2 ) of rank 7

A morphism in Columns( Q[x1,x2,x3,x4][t]/( -x272+x372, -x1*x3-x3*x4,
-x1%x2-x2%x4, x1*x3+x3*%x4, -x1*x2-32*%x4, -x3x1*xX2-32*%%x4, -x1*x3x3-%3*%4,
x1*x2+x2%x4, -x1%x3-x3%x4, x1*t-x4*t-1 ) )

YTS2 = Y / ColsTS2

GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( -x272+x372, -x1*x3-x3*x4,
-x1*%x2-x2%x4, x1*x3+x3*x4, -x1*x2-%x2*%x4, -x1*xX2-32%x4, -xX1*x33-%3*%4,
x1*x2+x2*x4, -x1%x3-x3%x4, x1*¥t-xd*t-1 ) )>

KTS2 = KS2 / ColsTS2
GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( -x272+x372, -x1*x3-x3*x4,

-x1*x2-x2*%x4, x1*x3+x3*x4, -x1*x2-x2*x4, -x1*x2-x2*x4, -x1*x3-x3*x4,
x1*x2+x2*%x4, -x1*x3-x3*x4, x1*t-x4*t-1 ) )>
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[111]: SolTS2 = PreCompose( YTS2, PreCompose( ETS2, KTS2 ) )

[111]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( -x272+x372, -x1*x3-x3*x4,
-x1*x2-x2*%x4, x1*x3+x3*x4, -x1*x2-x2*x4, -x1*x2-x2*x4, -x1*x3-x3*%x4,
x1*x2+x2*%x4, -x1%x3-x3%x4, x1*t-x4*%t-1 ) )>

[112]: Display( SolTS2 )

Source:
A column module over Q[x1,x2,x3,x4][t]/( xi1*t-x4*t-1, x1*x3+x3*x4, x272-x372,
X1*x2+x2*%x4, 2*xx3*x4xt+x3, 2*xx2*x4*t+x2 ) of rank 4

Matrix:

t, 0,0,t,
0, 0,0,0,
-t,0,0,-t,
0, 0,0,0

modulo [ x1*t-x4*t-1, x1*x3+x3*x4, x272-x372, x1*x2+x2*x4, 2*x3*x4*t+x3,
2xx2*x4*t+x2 ]

Range:
A column module over Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1, x1*x3+x3*x4, x272-x372,
x1*x2+x2*%x4, 2*xx3*x4*t+x3, 2*x2*x4*t+x2 ) of rank 4

A morphism in Columns( Q[x1,x2,x3,x4][t]1/( -x272+x372, -x1*x3-x3*x4,

-x1*x2-x2%x4, x1*x3+x3*x4, -x1*x2-32*%x4, -x3x1*x2-32%%x4, -x1*x3x3-%3*%4,
x1*x2+x2*x4, -x1%x3-x3*x4, x1*t-x4*t-1 ) )

[113]: MTS2 = M / ColsTS2

[113]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4]1[t]/( -x272+x372, -x1*x3-x3*x4,
-x1*%x2-x2%x4, x1*x3+x3*x4, -x1*x2-%x2*%x4, -x1*xX2-32%x4, -xX1*%33-%3*%4,
x1*x2+x2*x4, -x1%x3-x3%x4, x1*¥t-xd*t-1 ) )>

[114]: ATS2 = A / ColsTS2

[114]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( -x272+x372, -x1*x3-x3*x4,
-x1*x2-x2*%x4, x1*x3+x3*x4, -x1*x2-x2*x4, -x1*x2-x2*x4, -x1*x3-x3%*x4,
x1*x2+x2*%x4, -x1*x3-x3*x4, x1*t-x4*t-1 ) )>

[115]: PreCompose( SolTS2, ATS2 ) == MTS2

[115]: true

[116]: CTS2 = WeakKernelEmbedding( BTS2 )
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[116]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( -x272+x372, -x1*x3-x3*x4,
-x1*x2-x2*%x4, x1*x3+x3*x4, -x1*x2-x2*x4, -x1*x2-x2*x4, -x1*x3-x3*x4,
x1*x2+x2*%x4, -x1*x3-x3*x4, x1*t-x4*t-1 ) )>

[117]: Display( CTS2 )

Source:
A column module over Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1, x1*x3+x3*x4, x272-x3"2,
X1*x2+x2*x4, 2*x3*x4*xt+x3, 2*xx2*x4*t+x2 ) of rank 6

Matrix:
0,0,0,0,x3,x2,
0,0,0,0,2, O,

modulo [ x1*t-x4*t-1, x1*x3+x3*x4, x272-x372, x1*x2+x2*%x4, 2%x3*%x4*t+x3,
2%x2%x4*t+x2 ]

Range:
A column module over Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1, x1*x3+x3*x4, x272-x3"2,
x1*x2+x2%x4, 2xx3*x4*t+x3, 2*x2*xx4*t+x2 ) of rank 7

A morphism in Columns( Q[x1,x2,x3,x4][t]/( -x272+x372, -x1%x3-x3*x4,
-x1%x2-x2*%x4, x1*x3+x3*%x4, -x1*x2-x2*%x4, -x1*x2-3x2*x%x4, -x1*x3-%x3*%4,
x1*x2+x2%x4, -x1%x3-x3*x4, x1*t-x4*t-1 ) )

[118]: so0lTS2 = PreCompose( CTS2, KTS2 )

[118]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( -x2"2+x372, -x1%x3-x3*x4,
-x1*x2-x2*%x4, x1*x3+x3*x4, -x1*x2-x2*x4, -x1*x2-%x2*x4, -x1*x3-x3*%x4,
x1*x2+x2*%x4, -x1%x3-x3*%x4, x1*t-x4*t-1 ) )>

[119]: Display( solTS2 )
Source:

A column module over Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1, x1*x3+x3*x4, x272-x3"2,
x1*x2+x2%x4, 2%x3*x4*t+x3, 2*x2*x4*t+x2 ) of rank 6

Matrix:

0, 0, 0, 0, x3,x2,
x1+x4,0, x2, -x3,0, O,
0, 0, 0, 0, x3,x2,
0, x1+x4,-x3,x2, 0, O
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modulo [ x1*t-x4*t-1, x1*x3+x3*x4, x272-x372, x1*x2+x2*x4, 2*x3*x4*t+x3,
2%x2%x4*t+x2 ]

Range:
A column module over Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1, x1*x3+x3*x4, x272-x372,
x1*x2+x2%x4, 2*%x3*x4*t+x3, 2*%x2*x4*t+x2 ) of rank 4

A morphism in Columns( Q[x1,x2,x3,x4][t]/( -x272+x372, -x1*x3-x3*x4,
-x1kx2-x2%x4, x1*x3+x3*x4, -x1*x2-32*%x4, -x3x1*x2-32*%%x4, -x1*x3x3-%3*%4,
x1*x2+x2*x4, -x1%x3-x3*x4, x1*t-x4*t-1 ) )

[120]: check2 = PreCompose( solTS2, ATS2 )

[120]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4]1[t]/( -x272+x372, -x1*x3-x3*x4,
-x1*%x2-x2%x4, x1*x3+x3*x4, -x1*x2-%x2*%x4, -x3x1*xX2-32%%x4, -x1*x33-%3*%4,
x1*x2+x2*x4, -x1%x3-x3%x4, x1*t-x4*t-1 ) )>

[121]: Display( check2 )

Source:
A column module over Q[x1,x2,x3,x4][t]/( x1*t-x4*t-1, x1*x3+x3*x4, x272-x3"2,
x1*x2+x2%x4, 2¥%x3*x4*t+x3, 2*x2*x4*t+x2 ) of rank 6

modulo [ x1*t-x4*t-1, x1*x3+x3*x4, x272-x372, x1*x2+x2*x4, 2%x3*x4*t+x3,
2%x2%x4*t+x2 ]

Range:
A column module over Q[x1,x2,x3,x4][t]/( x1xt-x4*t-1, x1*x3+x3*x4, x272-x372,
x1*x2+x2*x4, 2*xx3*%x4¥t+x3, 2*¥x2*x4*t+x2 ) of rank 4

A morphism in Columns( Q[x1,x2,x3,x4][t]/( -x272+x372, -x1%x3-x3*x4,

-x1*x2-x2*%x4, x1*x3+x3*x4, -x1*x2-x2*x4, -x1*x2-3x2*x%x4, -x1*x3-x3*%4,
x1*x2+x2%x4, -x1%x3-x3%x4, x1*t-x4*t-1 ) )

[122]: J3 = Fittingldeal( 3, LeftPresentation( UnderlyingMatrix( Q ) ) )
[122]: GAP: <A torsion-free (left) ideal given by 12 generators>
[123]: Display( J3 )

Os
x3,
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[124]:

[124]:

[125]:

[125]:

[126]:

[126]:

[127]:

[127]:

[128]:

[129]:

x1+x4,
0,
x1+x4,
0

A (left) ideal generated by the 12 entries of the above matrix

S3 =R/ J3

GAP: Q[x1,x2,x3,x4]/( x3, x2, x2, x3, x1+x4, x1+x4 )

ColsS3 = Category0fColumns( S3 )

GAP: Columns( Q[x1,x2,x3,x4]/( x3, x2, x2, x3, x1+x4, x1+x4 ) )

QS3 = Q / ColsS3

GAP: <A morphism in Columns( Q[x1,x2,x3,x4]/( x3, x2, x2, x3, x1+x4, x1+x4 ) )>
KS3 = WeakKernelEmbedding( QS3 )

GAP: <A morphism in Columns( Q[x1,x2,x3,x4]1/( x3, x2, x2, x3, x1+x4, x1+x4 ) )>
Display( KS3 )

Source:
A column module over Q[x1,x2,x3,x4]1/( x3, x2, x1+4x4 ) of rank 4

modulo [ x3, x2, x1+x4 ]

Range:
A column module over Q[x1,x2,x3,x4]/( x3, x2, x1+x4 ) of rank 4

A morphism in Columns( Q[x1,x2,x3,x4]1/( x3, x2, x2, x3, x1+x4, x1+x4 ) )

AS3 = A / ColsS3
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[129]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4]/( x3, x2, x2, x3, x1+x4, x1+x4 ) )>
[130]: XS3 = X / ColsS3

[130]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4]/( x3, x2, x2, x3, x1+x4, x1+x4 ) )>
[131]: BS3 = Lift( PreCompose( KS3, AS3 ), XS3 )

[131]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4]/( x3, x2, x2, x3, x1+x4, x1+x4 ) )>
[132]: Display( BS3 )

Source:
A column module over Q[x1,x2,x3,x4]/( x3, x2, x1+x4 ) of rank 4

Matrix:
-x4,0,x4,0

modulo [ x3, x2, x1+x4 ]

Range:
A column module over Q[x1,x2,x3,x4]/( x3, x2, x1+x4 ) of rank 1

A morphism in Columns( Q[x1,x2,x3,x4]1/( x3, x2, x2, x3, x1+x4, x1+x4 ) )

[133]: I3 = FittingIdeal( O, RightPresentation( UnderlyingMatrix( BS3 ) ) )
[133]: GAP: <A principal torsion-free (right) ideal given by a cyclic generator>
[134]: Display( I3 )

x4

modulo [ x3, x2, x1+x4 ]

A (right) ideal generated by the entry of the above matrix

[135]: ann3 = Annihilator( RightPresentation( UnderlyingMatrix( BS3 ) ) )

[135]: GAP: <A non-zero principal torsion-free (right) ideal given by a cyclic
generator>

[136]: Display( ann3 )
-x4

modulo [ x3, x2, x1+x4 ]
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[137]:

[137]:

[138]:

[138]:

[139]:

[139]:

[140]:

[140] :

[141]:

[142] :

[142]:

[143]:

A (right) ideal generated by the entry of the above matrix

TS3 = S3["t"] / g"t*x4 - 1"

GAP: Q[x1,x2,x3,x4][t]/( x3, x2, x2, x3, x1+x4, x1+x4, x4*t-1 )

ColsTS3 = Category0fColumns( TS3 )

GAP: Columns( Q[x1,x2,x3,x4][t]/( x3, x2, x2, x3, x1+x4, x1+x4, x4*xt-1 ) )
BTS3 = BS3 / ColsTS3

GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( x3, x2, x2, x3, x1+x4, x1+x4,
x4xt-1 ) )>

ETS3 = Prelnverse( BTS3 )

GAP: <A morphism in Columns( Q[x1,x2,x3,x4]1[t]1/( x3, x2, x2, x3, x1+x4, x1+x4,
x4*xt-1 ) )>

Display( ETS3 )

Source:
A column module over Q[x1,x2,x3,x4]1[t]/( x3, x2, x1+x4, x4*t-1 ) of rank 1

Matrix:
0,

Os
t’
0
modulo [ x3, x2, x1+x4, x4*xt-1 ]

Range:
A column module over Q[x1,x2,x3,x4]1[t]/( x3, x2, x1+x4, x4*t-1 ) of rank 4

A morphism in Columns( Q[x1,x2,x3,x4][t]1/( x3, %2, %2, x3, x1+x4, x1+x4, x4*t-1
) )

YTS3 = Y / ColsTS3

GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( x3, x2, x2, x3, x1+x4, x1+x4,
x4xt-1 ) )>

KTS3 = KS3 / ColsTS3
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[143]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( x3, x2, x2, x3, x1+x4, x1+x4,
x4xt-1 ) )>

[144]: SolTS3 = PreCompose( YTS3, PreCompose( ETS3, KTS3 ) )

[144]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4]1[t]/( x3, x2, x2, x3, xl+x4, x1+x4,
x4*t-1 ) )>

[145]: Display( SolTS3 )
Source:
A column module over Q[x1,x2,x3,x4][t]/( x3, x2, xl1+x4, x4*t-1 ) of rank 4
Matrix:
0,0,0,0,
0,0,0,0,
t’oio,t,
0,0,0,0
modulo [ x3, x2, x1+x4, x4*xt-1 ]
Range:
A column module over Q[x1,x2,x3,x4][t]/( x3, x2, x1+x4, x4*t-1 ) of rank 4
A morphism in Columns( Q[x1,x2,x3,x4][t]1/( x3, %2, %2, x3, x1+x4, x1+x4, x4*t-1
) )

[146]: MTS3 = M / ColsTS3

[146]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( x3, x2, x2, x3, x1+x4, x1+x4,
x4xt-1 ) )>

[147]: ATS3 = A / ColsTS3

[147]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4]1[t]/( x3, x2, x2, x3, xl+x4, x1+x4,
x4*xt-1 ) )>

[148]: PreCompose( SolTS3, ATS3 ) == MTS3

[148]: true

[149]: CTS3 = WeakKernelEmbedding( BTS3 )

[149]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( x3, x2, x2, x3, xl+x4, x1+x4,
x4*t-1 ) )>

[150]: Display( CTS3 )
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Source:
A column module over Q[x1,x2,x3,x4][t]/( x3, x2, x1+x4, x4*t-1 ) of rank 3

Matrix:
0,0,1,
0,1,0,
0,0,1,
1,0,0

modulo [ x3, x2, x1+x4, x4*xt-1 ]

Range:
A column module over Q[x1,x2,x3,x4][t]/( x3, x2, x1+x4, x4*t-1 ) of rank 4

A morphism in Columns( Q[x1,x2,x3,x4][t]/( x3, x2, x2, x3, x1+x4, x1+x4, x4*t-1
) )

[151]: s0lTS3 = PreCompose( CTS3, KTS3 )

[151]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( x3, x2, x2, x3, xl+x4, x1+x4,
x4*t-1 ) )>

[152]: Display( solTS3 )

Source:
A column module over Q[x1,x2,x3,x4]1[t]/( x3, x2, x1+x4, x4*t-1 ) of rank 3

Matrix:
0,0,1,
0,1,0,
0,0,1,
1,0,0

modulo [ x3, x2, x1+x4, x4xt-1 ]

Range:
A column module over Q[x1,x2,x3,x4][t]/( x3, x2, x1+x4, x4*t-1 ) of rank 4

A morphism in Columns( Q[x1,x2,x3,x4][t]1/( x3, x2, x2, x3, x1+x4, x1+x4, x4*t-1
) )

[1563]: check3 = PreCompose( solTS3, ATS3 )

[153]: GAP: <A morphism in Columns( Q[x1,x2,x3,x4][t]/( x3, x2, x2, x3, x1+x4, x1+x4,
x4xt-1 ) )>

[154]: Display( check3 )
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[]:

Source:
A column module over Q[x1,x2,x3,x4][t]/( x3, x2, x1+x4, x4*t-1 ) of rank 3

Matrix:
0,0,0,
0,0,0,
0,0,0,
0,0,0

modulo [ x3, x2, x1+x4, x4*xt-1 ]

Range:
A column module over Q[x1,x2,x3,x4][t]/( x3, x2, x1+x4, x4*t-1 ) of rank 4

A morphism in Columns( Q[x1,x2,x3,x4][t]/( x3, x2, x2, x3, x1+x4, x1+x4, x4*t-1
) )
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