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Abstract 

How do the temporal dynamics of neural activity encode highly coordinated visual motor behaviour? 

To capture the millisecond-resolved neural activations associated with fine visual-motor skills, we 

devised a co-registration system to simultaneously record electroencephalogram and handwriting 

kinematics while participants were performing four handwriting tasks (writing in Chinese/English 

scripts with their dominant/non-dominant hand). The neural activation associated with each stroke 

was clearly identified with a well-structured and reliable pattern. The functional significance of this 

pattern was validated by its significant associations with language, hand and the cognitive stages and 

kinematics of handwriting. Furthermore, the handwriting rhythmicity was found to be synchronised 

to the brain’s ongoing theta oscillation, and the synchronisation was associated with the factor of 

language and hand. These major findings imply an implication between motor skill formation and the 

interplay between the rhythms in the brain and the peripheral systems. 

Keywords: EEG; ERP; neural entrainment; handwriting; fine motor control  
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1. Introduction 
Fine motor skills remain among the most awe-inspiring abilities of humans, and neuroscientists and 

robotics engineers strive to understand and replicate these processes (Akkaya et al., 2019; Sejnowski, 

2020). Handwriting, shaped by decades of training and exercise, is a representative example of highly 

efficient fine motor control in humans. Yet this skill is highly complex due to the involvement of visual 

integration, spatial skills, short- and long-term memory and language processing (J. Danna & J.-L. Velay, 

2015; S. Palmis, J. Danna, J.-L. Velay, & M. Longcamp, 2017; Rapp & Fischer-Baum, 2015). Therefore, 

handwriting provides an ideal research venue for the study of neural mechanisms associated with fine 

motor control through investigation of its interactions with other cognitive processes. 

The development of cognitive models and the study of the neuroanatomical substrates of handwriting 

have a long history (Exner, 1881; van Galen, 1991). In most models, handwriting is seen as a series of 

hierarchical and modular neural cognitive subprocesses that form a closed loop (Ellis, 1982; Margolin, 

1984; Rapp & Fischer-Baum, 2015; van Galen, 1991). First, the grapheme (e.g., which letter to write) 

is identified. Then, the brain evokes a motor programme from long-term memory that encodes the 

sequence of strokes forming the character, which then commands the downstream effectors to draw 

the consecutive strokes (Kadmon harpaz, Flash, & Dinstein, 2014; S. Palmis, J. Danna, J. L. Velay, & M. 

Longcamp, 2017; Rapcsak & Beeson, 2002). Finally, perception of the writing outcome, including vision 

and proprioception, serves as an online feedback guidance to maintain the legibility and aesthetics of 

the written content (J. Danna & J. L. Velay, 2015; Hepp-Reymond, Chakarov, Schulte-Monting, Huethe, 

& Kristeva, 2009). Decades of training and exercise fully automatise the handwriting process and equip 

it with specialised and distributed neural networks (Dufor & Rapp, 2013; Longcamp et al., 2014; 

Planton, Jucla, Roux, & Démonet, 2013; Vinci-Booher, Cheng, & James, 2019). 

The question of how the various cognitive subprocesses described above are implemented and 

orchestrated remains unanswered. How these subprocesses are then encapsulated into a precisely 

controlled series of movements is also unknown. To answer these two questions, we argue that the 

fast timescale temporal dynamics of the neural activities associated with elementary handwriting 

processes must first be identified and characterised. However, most handwriting and brain research 

has been based on functional magnetic resonance imaging, which does not allow the study of rich 

temporal dynamics. In addition, no studies relying on electrophysiological measurements have yet 

examined the detailed neural activation patterns associated with elementary processes in handwriting 

movements, although some studies have looked into the power spectrum of neurophysiological 

activities aggregated over a long duration of neural signal during handwriting (Kao, Leong, & Gao, 2002; 

Ose Askvik, van der Weel, & van der Meer, 2020). To study these elementary neural processes, we 

first need to define and capture the behavioural events associated with them so that the neural 

activation pattern can be characterised. This characterisation will enable experimental studies of its 

relationships with other cognitive processes or constructs to answer the first question.  

Answering the second question regarding efficiency may involve a theoretical perspective on the 

coupling of dynamical systems. As studies have shown, precision in the fine motor control of 

handwriting encompasses both spatial and temporal aspects (Plamondon, 1995b; Teulings, Mullins, & 

Stelmach, 1986; Tucha, Tucha, & Lange, 2008), implying the existence of general laws governing the 

spatiotemporal coordination of this skill. Several models have proposed computational principles that 

allow efficient coordination of the effectors to generate complex handwriting patterns (Athènes, 

Sallagoïty, Zanone, & Albaret, 2004; Edelman & Flash, 1987; Hollerbach, 1981; Plamondon, 1995a). 

The general principle is that handwriting patterns, although complex, can be generated by a dynamical 

system governed by a few parameters, thus substantially reducing the computational load on the 

neural circuits. Previous work has demonstrated that the coupling of two non-linear oscillators, along 
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with a few modulation parameters, is sufficient to generate a variety of patterns resembling 

handwriting (André, Kostrubiec, Buisson, Albaret, & Zanone, 2014; Athènes et al., 2004; Hollerbach, 

1981). The oscillator model is biologically plausible, as it coincides with the biophysical properties of 

spring muscle (Latash, 2018; Zatsiorsky & Prilutsky, 2012). It is also supported by the intrinsic 

rhythmicity of handwriting, which starts from an early age (Nutt, 1917; Pagliarini et al., 2017). In 

support of this, temporal coupling between oscillatory brain activities and the electromyogram during 

handwriting has been evidenced (Butz et al., 2006; Saarinen, Kujala, Laaksonen, Jalava, & Salmelin, 

2020). More generally, a behavioural activity displaying a rhythmicity can be coupled with the brain – 

which also displays prominent oscillations – through neural entrainment (Lakatos, Gross, & Thut, 

2019). Neural entrainment has been extensively shown to have functional significance, e.g., in 

modulating attention and speech intelligibility (Ding & Simon, 2014; Ghitza, 2012; Kerlin, Shahin, & 

Miller, 2010; Kösem et al., 2018; Riecke, Formisano, Sorger, Başkent, & Gaudrain, 2018; Zalta, Petkoski, 

& Morillon, 2020; Zion Golumbic et al., 2013; Zoefel & VanRullen, 2015). This strongly suggests that 

the entrainment between the ongoing neural dynamics and handwriting production is thus a plausible 

mechanism, which may be related to the cost efficiency of a skilled handwriting process. To investigate 

this question, it is important to first lay out possible scenarios about the relationship between 

handwriting behavioural events and the brain activity. If an efficient brain-behaviour coupling is 

achieved, as would be expected in skilled handwriting, the handwriting activity may be able to utilize 

the ongoing brain resource in a way that little additional energy is incurred. This may be manifested 

by a synchronisation between the spontaneous brain oscillations and handwriting rhythmicity, which 

forms the first scenario. The second scenario is that the handwriting behavioural events generate 

separate neural activity that is additive to the spontaneous activity, thus substantially changing its 

power, and such additive effect would be associated with cognitive factors such as demand on 

handwriting. 

Based on the two above mentioned rationales, we explored the neural dynamic activation associated 

with elementary handwriting processes and the association between ongoing oscillatory brain activity 

and handwriting processes. To capture the relevant neural activation, we developed an 

electroencephalography (EEG) and handwriting movement co-registration system. We instructed the 

participants to continuously write scripts on a tablet in a natural manner. From the handwriting stream, 

we defined and precisely marked the key events of the basic stroke-writing units, which allowed us to 

examine their neural correlates. We found that the derived neural activations showed a rich and highly 

reliable dynamic pattern, which was associated with language, hand, cognitive stages and kinematics 

of handwriting. Our analysis of the oscillatory dynamics of the identified neural activation revealed a 

synchronisation between the brain activity and handwriting movements mainly located in the brain’s 

4 Hz theta band. The synchronisation effect was further shown to be associated with factors of 

language and hand, which implied an interesting link between the brain-behaviour coupling in 

rhythmicity and complex visual motor behaviour. 

 

2. Materials and method 

2.1. Participants 
The participants were 11 healthy right-handed university students (six men, Mage = 29.9 (±2.9) years) 

recruited in Hong Kong. One participant was excluded due to poor signal quality (impedance > 

200kOhm). All participants were native Chinese speakers from mainland China and were fluent in 

English (They started learning English as second language from primary school). Their handwriting 

activities in schools and life were highly dominated by Chinese and they barely had handwriting 
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experience with left hands. All participants had normal or corrected-to-normal vision and had no 

history of mental diseases. The research was approved by the Human Research Ethics 

Committee (HREC) of the University of Hong Kong. Written consent was obtained from each 

participant.  

2.2. Instrumentation and setup 
Handwriting movements were recorded using a digitising tablet (HUAWEI MediaPad M5 Pro; screen 

resolution: 2560 x 1600 pixels; diagonal size: 10.8 inches; aspect ratio: 16:10) equipped with an active 

stylus with 4096 levels of pressure sensitivity. The tablet was placed in landscape orientation on an 

angle-adjustable tablet holder on a desk with the angle set to 40 degrees. Participants were required 

to write on the tablet while their handwriting trajectories and EEG signals were simultaneously 

recorded at sampling rates of 60 Hz and 1000 Hz, respectively. EEG signals were collected using a 32-

channel amplifier (BrainAmp, Brain Products GmbH, Germany) referenced to the ground electrode. 

EEG electrodes were placed on the cap according to the 10-20 international system. 

The synchronisation between EEG amplifier and tablet was implemented via a desktop computer 

running a customized Python routine. Specifically, the tablet was connected to the desktop computer 

through a USB port so that the Python routine could monitor events broadcasted by the tablet via 

Android Logcat command-line tool. Once capturing a key event from the tablet, the Python routine 

will send this event to the EEG amplifier through a parallel port. During the handwriting process, our 

self-developed tablet app generated several important event logs for each point in the handwriting 

trajectory: x, y coordinates; a timestamp; force; and state codes for pen-down (touching the screen), 

pen-move, and pen-up (leaving the screen). Only the time marker for the first pen-down event of 

writing each sentence was sent to the online EEG stream for synchronisation (Figure 1A). The 

remaining pen-down events (corresponding to the initial points of each single stroke) in the sentence 

were derived offline according to the event logs generated by the tablet. The integrated experimental 

setup is illustrated in Figure 1.  
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Figure 1. Illustration of the experimental setup and task. (A) Co-registration and synchronisation of handwriting movements 
and electroencephalogram (EEG) traces. The two streams were synchronised by sending the time marker of the first pen-
down event of each trial (the first large red dot) to the online EEG stream. The remaining pen-down events for all strokes 
within the same trial (indicated by the remaining small red dots) were derived offline according to event logs generated by 
the tablet. (B) Dictation task procedure. 

 

2.3. Stimulus and task design 
The data were recorded in a sound-attenuated room. The participants were seated in a comfortable 

posture squarely facing the tablet on the desk with a sight distance of approximately 35 cm. They were 

asked to take dictation sentence by sentence, using the stylus to write on a designated area of the 

tablet screen (Figure 1B). The experiment was divided into four tasks, each of which contained 30 non-

repeated trials of sentence dictation: (1) writing in Chinese with the dominant hand (DC), (2) writing 

in English with the dominant hand (DE), (3) writing in Chinese with the non-dominant hand (NDC) and 

(4) writing in English with the non-dominant hand (NDE). The four tasks were pseudo-randomised 

across participants and ensured hand alternation between adjacent tasks to avoid fatigue. The Chinese 

Synchronise

See you after class

1. Trial starts
Listen to the sentence

3. Start writing
Pen touches the screen

See you after class

4. Finish writing 
Proceed to next trial

2. Finish listening 
Prepare to write

A

B
Send trigger to EEG

See
Pen-Down event

Pen-Up event
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characters and English words used in the dictation sentences were simple and common ones. All 

participants were required to get familiar with the sentences before the experiment. 

To ensure homogeneity and fluency in the handwriting processes, the participants were instructed to 

(1) write stroke by stroke carefully and avoid using a scribbled writing style, (2) write a new character 

if an error occurred, instead of crossing out the erroneous one, and (3) stop writing when there was 

no space left. There was no time limit for each trial, and the participants could begin writing whenever 

they felt ready. An example of a dictation task trial is shown in Figure 1B. 

2.4. Neural activation associated with a single stroke 
The EEG signals were pre-processed and analysed using a MATLAB and EEGLAB plugin (Delorme & 

Makeig, 2004). The raw EEG data were first down-sampled to 250 Hz and filtered by an EEGLAB in-

built bandpass FIR filter (zero-phase, non-causal, filter order: 827 data points, corresponding to 3.3 

seconds) within 1 and 45 Hz. Independent component analysis was applied and the MARA algorithm 

(Winkler, Haufe, & Tangermann, 2011) was used to automatically identify and remove artifacts using 

a default cut-off probability of 0.5. 

2.4.1. Temporal pattern of writing ERPs 
The pen-down time points (see the red dots in Figure 1A), which represent the initial point of writing 

each stroke, were used to generate an average ERP for each of the four different tasks separately (i.e., 

writing in Chinese/English with the dominant/non-dominant hand). The ERP epoch ranged from -500 

to 1000 ms after the time point of the pen-down event. As the pen-down event corresponded to the 

beginning of writing a stroke, it was assumed that there was motor preparation activity before time 

zero. Therefore, -500 to -200 ms prior to pen-down event was used for baseline correction. This ERP 

was referred to as the ‘writing ERP’ throughout the article. A hand-related brain asymmetrical pattern 

was supposed to be observed in the writing ERPs from different hands. After exploring the parameters 

that best revealed this hand-related asymmetrical pattern, we filtered the ERP at the band of 20 Hz – 

30Hz and obtained the scalp map between -55 ms and -25 ms for the comparison of left and right-

hand patterns. The asymmetry pattern can also be revealed in other time windows and larger 

frequency bands, but not in the original unfiltered ERP as it is overwhelmed by the high-amplitude, 

low-frequency ERP components. 

2.4.2. Time-frequency representation of writing ERPs 
In addition to ERPs, a time-frequency analysis was conducted to examine the neural activity pattern 

in the frequency domain. Wavelet transformation (based on Morse wavelet with the symmetry 

parameter (gamma) equal to 3 and the time-bandwidth product equal to 60) was applied across the 

electrodes to every single-trial from -500 to 1000 ms after the pen-down time point. The wavelet 

coefficients from 1Hz to 45Hz were averaged across the single trials in their complex form. The moduli 

of the averaged complex values were obtained and visualised to reveal the dynamic neural activation 

across different frequencies, which cannot be visualised by the average ERP.  

2.4.3. Reliability of writing ERPs 
To examine the reliability of the stroke-associated neural activation characterised by ERPs, we applied 

the split-half correlation approach. The Pearson’s correlation coefficients of the average ERPs from 

odd-numbered and even-numbered trials were first computed for each participant and task. The 

obtained values were then corrected by using the Spearman–Brown formula to adjust for the reduced 

correlation due to half splitting. The mean split-half reliability for each task conditions was obtained 

by averaging across all participants (Kappenman, Farrens, Luck, & Proudfit, 2014). 



8 
 

2.5. Validation of writing ERPs 

2.5.1. Modulation of writing ERPs by cognitive factors 
To examine whether the amplitude of the writing ERPs depended on language and hand across the 

four tasks, we applied Linear Mixed Model (LMM) to the average amplitudes of single trials across all 

tasks and participants. We tested the effects separately on two brain regions (the central region 

covering the motor cortices and the posterior region covering the visual cortices) in three different 

time windows (pre-, peri- and post-writing). The central region included the electrodes Fz, Cz, FC1 and 

FC2 while the posterior region involved Oz, O1 and O2. The three time windows were -200 to -50 ms, 

0 to 50 ms and 200 to 300 ms, representing the neural activation before, during and after the event 

of writing a stroke, respectively. The LMM was conducted using the lme4 (Bates, Mächler, Bolker, & 

Walker, 2015) and lmerTest (Alexandra, Per, & Rune, 2017) packages in R (RCoreTeam, 2020), with 

language, hand and their interaction specified as fixed effects, and the participants’ intercept as 

random effects. To rule out the possibility that language and hand effects were caused by stroke 

length, the stroke length was also specified as an independent variable in the following model.  

Amplitude ~ 1 + language + hand + language*hand + strokeLength + (1|participant) 

2.5.2. Cross-validation of the effects of cognitive factors on modulating writing ERPs  
To validate the cross-individual robustness of the language and hand effects revealed by the linear 

mixed model, we further conducted a cross-validation statistical analysis that trains the LMM based 

on a subset of data to predict the held-out data. Two ways of splitting the data for cross-validation 

were conducted: one is splitting all participants into two halves and the other is splitting the trials into 

two halves. The details of applying these two ways of cross-validation are described as follows. 

For the participant-based data splitting, we split the participants into two halves for training and 

testing the performance of the model. To separately evaluate the effects of each factor (e.g., language, 

hand) based on this cross-validation approach, we conducted the cross-validation analysis on the 

following five models that were organized in a way that one new factor (or interaction) is appended 

to the previous model: 

Model 1: Amplitude ~ 1 + (1|participant) 

Model 2: Amplitude ~ 1 + language + (1|participant) 

Model 3: Amplitude ~ 1 + language + hand + (1|participant) 

Model 4: Amplitude ~ 1 + language + hand + language*hand + (1|participant) 

Model 5: Amplitude ~ 1 + language + hand + language*hand + strokeLength + (1|participant) 

The cross-validation procedures were conducted as follows. First, we fitted all five models on half of 

participants and then used the other half to evaluate the performance of these models. As the total 

number of valid participants is 10 in this study, there are 252 combinations (𝐶10
5 ) for the selection of 

training set. Then, we calculated the prediction error from the held-out participants using the fitted 

models. The prediction error was calculated as the mean squared error (MSE) between the predicted 

values and real values. It is worth to note that before calculating MSE, the prediction error for each 

participant was demeaned because the random effect in intercept cannot be predicted by the fitted 

models. To evaluate the effect of a specific factor (or interaction), we statistically compared the 

prediction errors from the two adjacent models (e.g., to evaluate language effect, we compared Model 

1 and Model 2) following the procedures below: (1) calculating the prediction errors from all 252 

combinations for each model; (2) statistically comparing the difference between the two arrays of 

prediction errors. The underlying hypothesis is that if one model is statistically better than the other, 



9 
 

it should generate a statistically lower MSE. As the 252 values obtained from each model are not 

normally distributed, we conducted non-parametric Wilcoxon test to compare the adjacent models to 

determine the significance of each factor (or interaction). The results of statistical significance based 

on Wilcoxon test were reported. 

For the second way of splitting training and testing sets, the procedures applied were entirely the 

same as the first way except for the way of splitting data. In this analysis, we randomly selected half 

trials from each participant to serve as training set and used the remaining half trials as testing set. 

Since there are a huge number of combinations to half split the trials, we decided to use 252 randomly 

drawn combinations to be consistent with the first splitting-participants approach. 

In addition, we also investigated whether the order of introducing factors influences the results of 

factor effects by changing the language factor in Model 2 into hand. The results showed that the order 

did not affect the statistical conclusion, so here we reported the results based on the above five 

models. 

2.5.3. Modulation of writing ERPs by cognitive stage 
To examine to what degree writing ERPs reflect different stages during the writing of a complex 

character, we applied LMM to the DC task to test the effect of the stroke order on the amplitude of 

writing ERPs. This analysis served to demonstrate the existence of the effect of different handwriting 

stages on the writing ERP, we tested the effect on all electrodes in the time window (200 to 300 ms) 

in which the effect was predominantly shown. The strokes were labelled based on whether they were 

the initial stroke of a Chinese character during participants’ actual writing. The LMM lmer model was 

specified as follows. 

Amplitude ~ 1 + strokeType + (1|participant) 

2.5.4. Cross-validation of the effect of cognitive stage on writing ERPs 
In this analysis, we applied the splitting-participants approach to cross validate the effect of cognitive 

stage (initial versus non-initial strokes). The procedures applied here were the same as the one 

described for cross-validation of cognitive factors in 2.5.2, except that only two models were involved 

here because there was only one factor being examined. The two models were specified as below and 

we conducted this cross-validation analysis on each single electrode. 

Model 1: Amplitude ~ 1 + (1|participant) 

Model 2: Amplitude ~ 1 + strokeType + (1|participant) 

Different from the models for examining cognitive factors, there is only one single factor involved in 

the model for examining the effect of cognitive stage. In this sense, we also investigated to what 

degree this effect exists at the single participant level. To this end, we applied independent two sample 

t-test between initial and non-initial strokes within each participant on every electrode. The 

consistency at single participant level may also reflect the robustness of the effect of cognitive stage 

across participants. 

2.6. Synchronisation between theta oscillation and handwriting 
To examine the synchronisation between brain oscillation and handwriting movements, we first 

bandpass-filtered (zero-phase, non-causal, filter order: 415 points) the EEG data at 3-5 Hz and 

generated the writing ERPs time-locked to pen-down events as described above to visually observe 

the difference between conditions. Next, we calculated the phase and amplitude of theta oscillation 

(4 Hz) surrounding every pen-down event (from -200 to 800 ms) using Fourier transform on Fz 
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electrode (closest to the centre of theta). The phase distribution of theta across the trials and 

participants was visualised on a polar axis to show the distribution bias. The bias (non-uniformity) of 

the phase distribution within a single task and between different tasks was tested by the Rayleigh test 

and Harrison–Kanji tests, respectively, using the CircStat toolbox (Philipp, 2009). Visualisation of the 

phase distribution was implemented using the CircHist toolbox (Zittrell, 2019). The two-tailed t-test 

was used to test the difference in theta amplitude (averaged from single trials) between tasks.  

We estimated the source activations of the theta oscillation based on the grand averaged ERPs (from 

-500 ms to 1000 ms) that were bandpass-filtered at 3 to 5 Hz across the four tasks, using Brainstorm 

(Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011). The default ICBM152 anatomy was used to compute 

the head model, and the noise variance was regarded as identical. A default EEG electrode position 

set for 32 channels was used for source estimation. The electrode positions were automatically 

calibrated to the surface of the head model. The OpenMEEG BEM algorithm (cortex surface) and the 

Minimum Norm Imaging algorithm (current density) were used to compute the forward modelling and 

physiologically plausible EEG sources, respectively.  

2.7. Encoding of handwriting kinematics in the ongoing neural signal 
In addition to analyses at the level of ERP, we further investigated the association between 

handwriting kinematics and ongoing neural activity by calculating the cross-correlation between the 

two time series: the kinematic variables associated with each point in the handwriting trajectory and 

the continuous EEG signal down-sampled to the handwriting sampling rate during writing each 

sentence. We included three kinematics variables: velocity, pen-touch force and length of unfinished 

stroke (LUS). At each time point during writing a stroke, there is a remained segment of a stroke to be 

finished. LUS was defined as the length of the unfinished segment of the current stroke at every time 

point. LUS was analysed here because it carries information related to the length of a stroke and the 

cognitive activity at different time points of writing a stroke would be different. On this basis, we 

expected the neural activation (including planning and online coordination) to be dependent on stroke 

length. The cross-correlation was calculated for each electrode separately, with a maximum lag of 800 

ms. The calculation was conducted on each sentence, and the results were averaged across all 

sentences. To further evaluate the statistical significance of the cross correlations, we also calculated 

the cross correlation results from a surrogate data. The surrogate data was generated by temporally 

reversing the EEG data and thus is not expected to have any association with the kinematic streams. 

 

3. Results 

3.1. Basic kinematic characteristics of handwriting 
Table 1 summarises the descriptive statistics of the basic kinematic characteristics of stroke writing.  

Differences related to language and hand are clearly shown: the average stroke length and duration 

is longer in English than in Chinese, and the velocity and maximum force are strongly dependent on 

hand due to the difference in dexterity.  

Table 1. Descriptive statistics for stroke characteristics in each task (mean (standard deviation)). 

Stroke 
characteristic 

DC 
N = 2033 (±95.44) 

DE 
N = 1261 (±46.43) 

NDC 
N = 2126 (±76.38) 

NDE 
N = 1365 (±152.67) 

Length 
(pixel) 

73.14 (±11.33) 110.65 (±16.23) 77.92 (±9.54) 114.62 (±16.24) 

Duration 
(ms) 

186.97 (±25.27) 325.68 (±76.56) 286.64 (±70.14) 515.03 (±93.60) 
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Mean velocity 
(pixel/ms) 

0.40 (±0.10) 0.35 (±0.07) 0.29 (±0.07) 0.23 (±0.03) 

Max force 
(n.a.) 

0.53 (±0.12) 0.58 (±0.09) 0.43 (±0.09) 0.43 (±0.07) 

Note: DC: dominant hand, Chinese; DE: dominant hand, English; NDC: non-dominant hand, Chinese; NDE: non-dominant hand, 
English; N is the number of strokes identified; Duration is the time taken to write a stroke. Max force represents the pressure 
of touch and is normalised between 0 (no touch) and 1 (full touch) used in Android system. 

3.2. Neural activation associated with single strokes 
Based on the assumption that writing a stroke is the basic action unit during handwriting, we expected 

to find a specific neural activation pattern encompassing the writing process of each stroke. This 

activation was presumed to include motor preparation, execution and visual processing, and to be 

consistent from stroke to stroke and subject to variation related to the stroke properties. Figure 2 A–

D shows the event-related potentials (ERPs) averaged from the single-trial EEG segments time-locked 

to pen-down events, i.e., the first points of each stroke, together with the scalp topographies averaged 

from three time windows marked in green. In line with our assumption, conspicuous ERP waveforms 

were found for all conditions. The ERP featured a sharp spike at around 12 ms after the pen-down 

event and pre- and post-event activities covering the peri-event time from approximately -200 to +300 

ms. The most positive-directed ERPs were observed over the posterior region (Oz, O1 and O2) and the 

most negative-directed ERPs were located in the centro-frontal regions (Fz, FC1, FC2, and Cz). This 

neural activation will be termed as “writing ERP” hereafter. 

As temporal ERP provides a limited representation of activation patterns in different frequency bands, 

we further used wavelet analysis to show the time-frequency representation of the writing ERP. The 

results were averaged across all electrodes, and the grand average patterns are shown in Figure 2 E–

H. Three predominant clusters of transient oscillatory activity in the beta (13–30 Hz), alpha (8–12 Hz), 

and theta (3-7 Hz) bands can be clearly identified. The beta cluster, localised around the time of the 

pen-down event, corresponds to the spike activity shown in the temporal ERPs. The activity shown in 

this spike activity displays a clear hand-related asymmetry (Figure 2 I) consistent with previously 

reported pattern (Ouyang, Herzmann, Zhou, & Sommer, 2011), which validates the neural origin of 

the writing ERP. The theta cluster is longer lasting and much stronger for the dominant hand, 

suggesting a critical role of theta oscillation during dexterous handwriting – a mechanism we will 

analyse in depth later.  
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Figure 2. Writing ERPs and their time-frequency representations time-locked to first points of strokes (red dots as shown on 
the characters/letters). (A) – (D) Grand averaged ERPs for different electrodes in four different tasks, and scalp topographies 
averaged from three different time windows: -200 to -50 ms, 0 to 50 ms and 200 to 300 ms. (E) – (H) Time-frequency 
representations of the writing ERPs averaged across all electrodes. (I) Hand-related asymmetrical pattern of motor activity 
component. 

The split-half reliability values of the single-trial writing ERPs for the four task conditions (dominant 

hand, Chinese [DC]; dominant hand, English [DE]; non-dominant hand, Chinese [NDC]; and non-

dominant hand, English [NDE]) were 0.86 (±0.07), 0.80 (±0.10), 0.86 (±0.13) and 0.86 (±0.10), 

respectively, showing a very high level of consistency across trials. To visualise the cross-trial 

consistency, the single trial writing ERPs from one participant in a DC task are shown in Figure 3. 

 

Figure 3. Single-trial writing ERPs from one participant in a dominant hand, Chinese task (middle). The single trials are from 
two representative electrodes (Oz and Cz), located in the posterior (top) and centro-frontal regions (bottom).  
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3.3. Validation of the writing ERPs 
If the writing ERPs indeed represent the neural activation of the visual, motor, and cognitive processes 

underlying handwriting, it should be modulated by factors that affect these processes. To test this, we 

applied linear mixed model to test the effects of language, hand, their interaction and stroke length 

on the amplitudes of the writing ERPs at three different time windows. The stroke length was included 

as an independent variable in the model in order to exclude the confounding effects of low-level 

physical features on factors of language and hand. The results (Table 2) confirmed that the factors of 

language and hand had significant modulation effects on the amplitude of the writing ERP even after 

the stroke length effect had been regressed out. Hand showed significant effects in the peri- and post-

event (pen-down) time windows in the centro-frontal region, and in the post-event window in the 

posterior region. Language showed a significant effect in the post-event window in the centro-frontal 

region. Besides, we also observed the interaction effects between language and hand across the entire 

course in the centro-frontal region and in the post-event window in the posterior region. The 

difference in spatial distribution and time course between language and hand effects suggests the 

differential cognitive engagement between the factors of language and hand. 

Due to the small number of participants, we conducted additional cross-validation analyses (see 

Method) to examine if the factor effects are significant when the model is trained on half of the 

dataset and is used to predict the held-out data. We conducted two ways of splitting the data (see 

Method). The statistical significance of the effects based on the cross-validation tests are reported in 

the column ‘cv’ in Table 2.  

Table 2. Fixed effects estimated using linear mixed model (LMM). 

 [-200 to -50 ms] [0 to 50 ms] [200 to 300 ms] 

   CI (95%)     CI (95%)     CI (95%)   

 b SE L H t CV b SE L H t CV b SE L H t CV 

Posterior region (Oz, O1 and O2) 

(Intercept) -.17 .22 -.60 .25 -.79 × .18 .33 -.46 .82 .55 × .65 .26 .13 1.16 2.46* × 

Language .06 .14 -.22 .34 .44  -.29 .19 -.66 .07 -1.58  -.28 .16 -.59 .03 -1.76 # ^ 

Hand .08 .13 -.18 .33 .58  -.15 .17 -.49 .18 -.91  -.52 .14 -.80 -.24 -3.59*** ^ 

Language * hand -.07 .09 -.24 .10 -.80  .12 .12 -.11 .34 1.00  .30 .10 .10 .49 3.00** ^ 

Stroke length .00 .00 .00 .00 .97  .00 .00 .00 .00 1.24  .00 .00 .00 .00 6.98*** # ^ 

Centro-frontal region (Fz, Cz, FC1 and FC2) 

(Intercept) .26 .14 -.01 .53 1.85 × -.70 .19 -1.07 -.32 -3.62*** × -.62 .17 -.97 -.28 -3.57*** × 

Language .11 .09 -.07 .29 1.24 # ^ .23 .12 -.00 .46 1.95 # ^ .43 .10 .23 .63 4.19*** # ^ 

Hand -.05 .08 -.21 .12 -.55 # ^ .35 .11 .14 .56 3.22**  .48 .09 .30 .67 5.12***  

Language * hand -.14 .06 -.25 -.03 -2.49* ^ -.21 .07 -.35 -.07 -2.85** ^ -.32 .06 -.45 -.19 -4.96*** # ^ 

Stroke length -.00 .00 -.00 .00 -3.74*** # ^ -.00 .00 -.00 -.00 -6.73*** # ^ -.00 .00 -.00 -.00 -6.06*** # ^ 

Note: b: co-efficient in the linear mixed model; SE: standard error; CI: confidence interval. L: low; H: high; t: t statistics, ***: 
p<.001; **: p<.01; *: p<.05 (from the original linear mixed model); cv: results of significance from cross-validation analysis; #: 
significant (p<.05) for participant-based splitting approach; ^: significant (p<.05) for trial-based splitting approach; x: not 
applicable for cross-validation analysis. 

To examine the degree to which writing ERPs reflect different cognitive stages, we compared the 

neural activations generated by the initial and non-initial strokes of Chinese characters containing 

multiple strokes (Figure 4). Initial strokes should entail more cognitive preparation (e.g., grapheme 

retrieval and motor planning), compared with subsequent strokes for the same character. As shown 

in Figure 4, the ERP amplitudes were larger for initial strokes over a large portion in the time course 

and spatial locations. The results showed that the difference in average amplitudes in the time window 

of 200 to 300 ms between two stages was significant over the majority of the electrodes (see 

Supplementary Information, SI) and it displayed the strongest effect over posterior region (Oz: t = -

10.60, p < .001; O1: t = -10.69, p < .001; O2: t = -10.15, p < .001). The cross-validation test also 

confirmed the significant effect of cognitive stage on modulating writing ERPs (see SI), and this effect 

was robust at single participant level (see SI). These results suggest that writing ERPs are indicative of 

different cognitive stages in handwriting. 
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Figure 4. Grand averaged writing event-related potentials (ERPs) generated from the pen-down events of initial and non-
initial strokes of Chinese characters in a dominant hand, Chinese task, together with scalp topographies for three different 
time windows: -200 to -50 ms, 0 to 50 ms and 200 to 300 ms. 
 

3.4. Entrainment of theta oscillation to handwriting 
The descriptive differences in theta power between conditions as shown in the grand average (Figure 

2 E–H) may originate from three different data scenarios at single trial level: (1) the power of the 

single-trial theta oscillation was larger or (2) the single-trial theta oscillation was more phase-

synchronised to the pen-down event or (3) a combination of both. As different scenarios may be 

supported by fundamentally different neural mechanisms, we sought to further unveil the data 

characteristics with greater details. To this end, we first examined the writing ERPs in the theta band 

(3–5 Hz). As shown in Figure 5 A–D, the theta scalp topographies have a typical frontal location 

(Cavanagh & Frank, 2014; Kropotov, 2009), and the theta oscillation appears longer lasting for the 

dominant hand, echoing with the results in Figure 2 E-H.  

To examine the phase synchronisation of the single-trial theta oscillation to the process of writing 

single strokes, we calculated the phase at 4Hz from Fz from the single trials surrounding the pen-down 

events (-200 ms to 800 ms). The phase distribution of theta (4 Hz) is shown in Figure 5 E–H. Statistical 

testing (Rayleigh’s test) showed that the distribution bias was significant for all task conditions (DC: Z 

= 262.40, p < .001; DE: Z = 64.36, p < .001; NDC: Z = 14.42, p < .001; NDE: Z = 15.59, p < .001). The bias 

of phase distribution is stronger in dominant hand conditions with a higher probability in the range of 

180° to 270° (Kuiper’s test showed a significant difference between the dominant and non-dominant 

hands. DC vs NDC: Kuiper statistics = 6.37, p < .001; DE vs NDE: Kuiper statistics = 2.90, p < .001). 

Interestingly, significant difference between Chinese and English only exist in dominant hand (DC vs. 

DE: Kuiper statistics = 2.91, p < .001; NDC vs NDE: Kuiper statistics = 0.98, p > .05). The individual results 

of the statistical tests (Rayleigh’s and Kuiper’s tests) are shown in Supplementary Information. 
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Figure 5. Theta oscillation during the fine motor control of stroke writing. (A)–(D) Writing ERPs bandpass-filtered in the theta 
band during the four tasks. (E)–(H) Phase distribution of theta oscillation measured in probability. The black line denotes the 
average phase angle, and the black arc denotes the 95 % confidence interval of average phase angle. (I) Mean and standard 
error of the mean for theta oscillation amplitude across the four tasks. (J) Neural source estimation of theta oscillation in 
writing ERPs at the pen-down time point (time zero). Note: DC, dominant hand, Chinese; DE, dominant hand, English; NDC, 
non-dominant hand, Chinese; NDE, non-dominant hand, English. 

Then, we examined the difference in the amplitude of single-trial theta oscillation across the four 

conditions. The average theta amplitude of each task as well as the mean and SEM across participants 

are shown in Figure 5 I. The t-test found no significant difference in the average amplitude between 

the dominant and non-dominant hands (DC vs NDC: t(9) = .47, p = .647; DE vs NDE: t(9) = 1.07, p = .313) 

or between Chinese and English (DC vs DE: t(9) = -.68, p = .512; NDC vs NDE: t(9) = -1.30, p = .226).  

We further conducted source localisation of the theta oscillation. The results show that the neural 

sources of theta oscillation were distributed predominantly within BA6 (the premotor cortex and 

supplementary motor area), an area engaged in the planning and control of complex and coordinated 

movements (Nachev, Kennard, & Husain, 2008; Nachev, Wydell, O’Neill, Husain, & Kennard, 2007). 

3.5. Encoding of handwriting kinematics in the ongoing neural signal 
Finally, we characterised the cross-correlations between continuous neural activity and three 

handwriting kinematics streams during writing each sentence. The results illustrated in Figure 6 reveal 

clear structures in the cross-correlograms, and the magnitude is substantially higher than the results 

from surrogate data (light green areas behind the curves). The clear temporal structures in cross-

correlogram support the close association between the neural and behavioural streams. The 

association appears to be centred in the centro-frontal regions, just as the 4 Hz theta oscillation 

identified above. 
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Figure 6. Cross-correlations between continuous neural signals and three types of kinematic signal (velocity, force and length 
of the unfinished stroke [LUS]) during writing each sentence. Different traces represent different electrodes. Oz and Cz are 
shown in red and blue respectively. The topographical patterns are spatial distribution of cross-correlation coefficients from 
all electrodes at the peaks or troughs closest to the zero lags. The upper and lower limits of the cross-correlation calculated 
from the surrogate EEG data were marked by the light green shadow behind the curves. 

 

4. Discussion 
The aim of this work was to investigate and present the basic characteristics of dynamic neural activity 

associated with stroke production during handwriting as a manifestation of complex fine motor 

control in everyday life, and to examine their cognitive associations. Based on the EEG-handwriting 

co-registration system, we identified a highly reliable and structured neural activation pattern with 

centro-frontal distribution time-locked to single stroke production during handwriting. We termed 

this activation “writing ERP”. This study is the first to identify such a clear neural activation associated 

with elementary handwriting processes. The activation was shown to be associated with major 

cognitive factors of language and hand. In addition, we found a rhythmicity synchronisation between 

EEG and handwriting activity predominantly at 4 Hz. Statistically, this synchronisation effect mainly 

accounts for the difference in the writing ERPs generated by the four different tasks manipulated in 

language and hand, which implied an important role of the rhythmicity features of both brain and 

handwriting activity that may be linked to complex visual motor functions and skills. Finally, a cross-

correlation analysis demonstrated a close association between neural activity and handwriting 

kinematics, which further supported the value of this new paradigm in cognitive research studying 

visual motor processes. 

4.1. Basic motor action unit during handwriting and its associated neural activation 
Our exploration of handwriting-associated neural activation was driven by the assumption that the 

handwriting process is composed of elementary, dissociable action events. The stroke has been 

proposed as the basic action unit during handwriting (Plamondon, 1995a, 1995b, 1998) based on 

behavioural modelling. However, a stroke is not always easy to define, especially in cursive 

handwriting (Kandel, Álvarez, & Vallée, 2006; Maarse & Thomassen, 1983; Teulings, Thomassen, & 

van Galen, 1983; Wing, 1978). A generalised and well-accepted definition of a stroke is ‘the trajectory 

between successive minima of the absolute velocity’ (Brooks, Cooke, & Thomas, 1973; Teulings, 1996, 
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p. 578). This kinematics-based definition allows the capture of similar neural processes across a variety 

of individualised handwriting styles or skills. In this study, we incorporated convenient tablet 

technology and defined a stroke as the trajectory between a pair of adjacent pen-down and pen-up 

events as recorded by the tablet (Xiaolin & Dit-Yan, 1997), namely, a planned and produced unbroken 

movement. Although this working definition does not strictly correspond to the kinematic definition 

of a stroke, it guarantees that the initial point (pen-down) is the start of a kinematic stroke and 

captures the relevant neural activation of planning and execution, despite that additional strokes 

might occur at a later stage.  

As our results show, using the initial point of a stroke to derive the neural activation associated with 

the basic action unit in handwriting led to our discovery of the reliable writing ERPs. This well-

structured ERP may serve as the foundation for future research on handwriting-related neural 

dynamics. Although the writing ERP is clearly structured, its amplitude is much smaller than a typical 

visual or auditory ERP in which the peak amplitude can reach 10 μV (Calcus, Tuomainen, Campos, 

Rosen, & Halliday, 2019; Cohen, Ortego, Kyroudis, & Pitts, 2020). The reason for this may be that 

handwriting is a natural task paradigm in which the discrete cognitive events are too densely 

distributed and overlapping with each other which may cause inter-event interfering and suppression, 

unlike traditional task paradigms with well-separated serial stimulus presentation. Our current 

paradigm provides a novel and reliable solution for identifying meaningful events by generating a large 

number of trials from natural behaviour, thus compensating for the low signal-to-noise ratio and 

providing reliable neural signals for the study of subtle neural processes such as fine motor control. 

4.2. Modulation of writing ERPs by cognitive factors 
If writing ERPs represent the neural processes of fine motor control activity during handwriting, it 

should be modulated by cognitive factors that directly affect the relevant neural processes. We 

identified three main factors that are highly likely to have a modulation role: language, hand and the 

cognitive stages of handwriting. 

Chinese and English, representing logographic and alphabetic language systems, respectively, were 

used as two forms of written language to examine the language effect. Chinese is a meaning-based 

writing system constructed from complex morphemes that lack phoneme mapping, whereas English 

is a sound-based writing system built on graphemes with systematic grapheme–phoneme mapping 

rules (Cook, 2004; DeFrancis, 1989; Mattingly, 1992; Wang, Perfetti, & Liu, 2005). This may affect the 

memory retrieval stage that interferes with the motor process. In addition, Chinese and English scripts 

have very different morphologies (Figure 2). Chinese scripts comprise complex character blocks, each 

composed of interlaced and mostly straight strokes, whereas English scripts have lower spatial 

complexity and mostly cursive strokes (Kao et al., 2002). Culturally, the writing of Chinese characters 

requires each character block to be well shaped and harmonious, which may impose an extra 

coordination process. These differences in script characteristics may lead to substantially different 

interference with the action unit of stroke production. In addition to the difference between writing 

systems, another possible factor that may contribute to the language effect in this study is the 

difference in cognitive demand of handwriting between using primary and secondary language as all 

participants included in this study were native Chinese who learned English as their second language. 

The hand effect is more straightforward because it is directly associated with dexterity (Bernard, 

Taylor, & Seidler, 2011; Hammond, 2002). Ample evidence has shown that manual dexterity depends 

on hand (Mathew, Sarlegna, Bernier, & Danion, 2019). At neural levels, handwriting with non-

dominant hand has been shown to trigger a larger and more bilateral neural recruitment than 

handwriting with dominant hand (Potgieser, van der Hoorn, & de Jong, 2015). Interestingly, 
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handedness has also been reported to influence the language ability construct, possibly due to brain 

lateralisation of language processing (Gao, Wang, Yu, & Chen, 2015; McManus, 1999). Therefore, we 

think that the dexterity factor should be the major cause of the hand effect we found on the writing 

ERP, given that the participants barely had handwriting experience with their non-dominant hands. 

The substantial difference in dexterity was also clearly reflected in the handwriting outcome (see 

examples in Figure 2, 5). 

Finally, the cognitive stage of writing a complex character is also expected to modulate the writing 

ERP because more strokes have to be held in the motor buffer before writing initial strokes as 

compared to non-initial ones (van Galen, 1991), which has been proposed as a mechanism of parallel 

processing of serial movements in the brain (Averbeck, B. B., Chafee, M. V., Crowe, D. A., & 

Georgopoulos, A. P., 2002). Based on this view, we would expect significant difference in writing ERPs 

between initial and non-initial strokes in a Chinese character as it usually comprises many strokes. In 

addition, initial and non-initial strokes have different baseline activities: one is preceded by inter-

character activity and the other by inter-stroke activity. This difference in baseline neural states may 

also contribute to the ERP differences. 

We tested the language and hand effects using a LMM that also included the low-level confounding 

factor of stroke length. The original LMM revealed significant effects of these two cognitive factors in 

the amplitude of writing ERP in the post-event time window (200 – 300 ms). In the time window near 

the pen-down event (0 – 50 ms), hand displayed a main effect over the centro-frontal region, 

suggesting a link to the motor control processes. As compared to the main effects, the interaction 

effects between language and hand appeared to be more widespread across space and time. However, 

it has to be noted that the cross-validation analysis (especially the one based on splitting participants) 

did not yield full consistency with the significance results generated by the original LMM analysis 

applied on the full dataset (Table 2). This implies a high level of cross-individual variability which 

rendered a low fit of the models trained from a subset of the data in explaining the held-out data. It 

is also a limitation of the present study that only involves ten participants. However, the interaction 

effect (between language and hand) robustly existed across all analyses in the post-stimulus time 

window (200 – 300 ms) in centro-frontal area. Assuming that the hand factor mainly captures dexterity 

in handwriting, one possible interpretation of the interaction effects is that the spatial complexity of 

language scripts has differential effects on neural cognitive process of handwriting between the two 

hands. The spatial complexity here refers to the organization styles of Chinese and English scripts, 

which we assumed that the former is much complex, and such complexity may be the major factor 

accounting for language effect. However, there are certainly many other cognitive processes related 

to the two languages that may also contribute to the language effect, which requires more specific 

experimental design to investigate in the future. 

In terms of cognitive stages, we examined Chinese characters because in Chinese handwriting, the 

stroke and character represent distinct hierarchical levels, given that a character comprises many 

strokes. As such, the neurocognitive processes associated with the initial and non-initial strokes of a 

character should be quite different because the initial strokes are accompanied by memory retrieval 

and motor planning for the entire character, whereas the non-initial strokes may be more associated 

with executive activities. In line with this assumption, the results showed that the initial strokes 

generated stronger and better-shaped ERP activation, whereas non-initial strokes generated weaker 

and more oscillatory activity (Figure 4). The effect of cognitive stages on ERP was robust as revealed 

by the cross-validation analysis and by individual-based t tests. 
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4.3. Theta entrainment as a neural indicator of dexterity in fine motor control during 

handwriting? 
Fine motor skills are highly complex human abilities requiring extremely precise control of effectors in 

coordination with sensory feedback. Many such skills require years of training to achieve dexterity 

(Gardner & Broman, 1979; Mathiowetz, Rogers, Dowe-Keval, Donahoe, & Rennells, 1986; Poole et al., 

2005; Waldron & Anton, 1995). Handwriting, especially in Chinese, takes decades to develop from 

basic legibility to decent dexterity and finally calligraphy. The difference in dexterity between the two 

hands is an embodiment of this decades-long training (Andersen & Siebner, 2018; Walker & 

Henneberg, 2007). Undoubtedly, complex neural architecture, including neuroanatomical circuits and 

pathways, must be formed through prolonged training to support dexterous handwriting. Skilled 

behaviour usually leads to a reduced amplitude in neural activity. However, this does not appear to 

be true for writing ERPs, as those generated by dominant hands were greater in amplitude. This result 

appears to contradict the low-cost theory but echoes with an earlier work that also revealed enhanced 

theta power in brain activity after training in Chinese brush writing (Kao et al., 2002). This seemingly 

contradictory result may be explained by the theta entrainment phenomenon as we elaborate below. 

Theoretically, event-locked average ERPs can be generated by two mechanisms: being evoked or being 

induced by the event (Woodman, 2010). In the former case, the ERP is an additional activation elicited 

by an event. In the latter case, the ERP is formed by the re-organisation of ongoing activity (e.g., phase 

resetting). The latter case appears to be a more cost-efficient mechanism because it utilises existing 

resources and activities. Neural entrainment is a form of reorganising ongoing neural activity by 

coupling it with external behaviour or stimuli (Obleser & Kayser, 2019; Will & Berg, 2007). Many neural 

entrainment phenomena are associated with selective attention (Clayton, Yeung, & Cohen Kadosh, 

2015; Obleser & Kayser, 2019). Neural entrainment entails an oscillatory activity with a distinctive 

frequency (Obleser & Kayser, 2019). We propose that neural entrainment may occur during dexterous 

handwriting, based on the following rationales: (1) When high handwriting dexterity has been 

achieved, the handwriting process appears rhythmic, peaking at 5 Hz, with individual differences 

(Sarah Palmis et al., 2017; Teulings & Maarse, 1984). This type of rhythmicity may partly explain the 

pleasant feeling of flow during many types of fine motor control activities (typing, video game playing, 

music instrument playing). (2) Dexterity should lead to a more cost-efficient neural process, and the 

utilisation of ongoing activity is a form of cost efficiency. 

From the time-frequency representation of the writing ERP (Figure 2 E–H), we did observe strongly 

enhanced oscillation power in the theta band in the dominant hand conditions, compared with the 

non-dominant hand conditions. Our statistical analysis results showed that the increased theta power 

in the dominant hand was mainly accounted for by phase synchronisation, which is in line with the 

hypothesis that theta entrainment indexes dexterity. Moreover, the phase distribution in the 

dominant-hand Chinese writing was significantly more biased than in the dominant-hand English 

writing, which is also compatible with the hypothesis, as all participants were native Chinese speakers 

whose handwriting experiences were intensively dominated by Chinese handwriting. 

The motor association of theta in the present work coincides with one of the functional roles of 

hippocampal theta that has been associated with voluntary motor behaviour in animal models (Bland, 

1986) and in humans (Tomassini, Ambrogioni, Medendorp, & Maris, 2017). The coordination function 

can be seen as active top-down control. A large body of research has shown that the theta wave, 

measured by scalp EEG displaying a central frequency of 4 to 8 Hz with a mid-frontal scalp map, plays 

a crucial role in top-down cognitive control and sustaining attention and memory (Cavanagh & Frank, 

2014; Clayton et al., 2015; Fiebelkorn, Pinsk, & Kastner, 2018; Kamiński, Brzezicka, Mamelak, & 

Rutishauser, 2020; Knudsen & Wallis, 2020; Ullsperger, Fischer, Nigbur, & Endrass, 2014). Similar to 
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the entrainment to handwriting rhythmicity, the theta wave has been extensively shown to be 

entrained to human speech rhythmicity, a process that modulates attention to and increases the 

intelligibility of speech (Ding & Simon, 2014; Ghitza, 2012; Kerlin et al., 2010; Riecke et al., 2018; 

Zion Golumbic et al., 2013; Zoefel & VanRullen, 2015). Interestingly, the writing rhythmicity in our data 

displays a characteristic frequency of 4 to 5 Hz, matching the typical frequency of speech across 

different languages (Chandrasekaran, Trubanova, Stillittano, Caplier, & Ghazanfar, 2009; Ding et al., 

2017; Tilsen & Johnson, 2008). Such writing rhythmicity occurs only in highly skilled handwriting with 

dominant hands. Similarly, speech is undoubtedly a highly skilled motor ability that is (implicitly) 

subject to lifelong training and involves a complex set of articulators and laryngeal structures. Indeed, 

the entrainment between brain and speech is not confined to speech perception, but also to speech 

production (Ruspantini et al., 2012). Ruspantini et al. showed a clear oscillatory coupling between the 

sensorimotor cortex and mouth muscle activity. Along the same line, many studies have reported 

oscillatory coherence between brain activity and continuously recorded body movements, including 

self-paced finger movements, handwriting, hand movements and keyboard typing at various 

frequencies, mostly below 10 Hz (Butz et al., 2006; Duprez, Stokkermans, Drijvers, & Cohen, 2020; 

Gross et al., 2002; Jerbi et al., 2007; Saarinen et al., 2020). Strikingly, a study showed that the 

intermittent correction-related sub-movements during free motor control in monkeys was driven by 

intrinsic brain rhythms (Hall, de Carvalho, & Jackson, 2014). These pieces of evidence collectively 

support a framework of brain and body interplay with a rhythmic core, which may be governed by the 

universal dynamics theory (Klimesch, 2018). 

Integrating all the findings listed above, we propose a theory that rhythmicity is a manifestation of 

high skilfulness in fine motor control. This skilfulness exploits the intrinsic brain oscillation such that 

skilful behavioural rhythmicity is eventually coupled with intrinsic brain oscillatory activity. In this vein, 

the degree of dexterity in handwriting (or any other fine motor skill) can be indexed by the degree of 

phase entrainment. Our statistical results are largely in favour of this theory. The theta phase was 

more synchronised to stroke onset in dominant-hand writing –more so in Chinese than in English. The 

sustained theta could be a result of synchronised theta playing a top-down coordination and 

monitoring role. That said, the writing ERP is a combination of both evoked and induced (phase-reset) 

neural activity. This finding provides a finer-grained explanation of a previously observed theta wave 

enhancement during handwriting (Ose Askvik et al., 2020) and decrease of low frequency band power 

due to increase of motor task demand (Van Galen, Van Doorn, & Schomaker, 1990). However, finer-

grained experimentation that targets at more specific processes and variables would need to be 

designed to firmly support the role of entrainment in motor dexterity, which we will discuss in the 

limitation section below. 

Our finding that the entrained theta covers the centro-frontal region and is localised in the SMA and 

pre-SMA areas is in contrast to the abovementioned brain-body coherence studies, which observed 

the effects mostly in the primary motor areas. However, it coincides with the fact that the SMA and 

pre-SMA are constantly activated during speech production (Alario, Chainay, Lehericy, & Cohen, 2006; 

Lima, Krishnan, & Scott, 2016). Furthermore, based on the functional roles of the SMA and pre-SMA 

in the control of voluntary and complex movements (Nachev et al., 2008; Nachev et al., 2007), we 

propose that theta entrainment may also be a manifestation of active motor control under its general 

role of top-down control, which needs to be tested in the future.   

4.4. Direct association between neural signal streams and writing kinematic signals 
The cross-correlation analysis is complimentary to the event-based approach because certain neural 

activities may not be associated with discrete events but rather with an ongoing dynamic state that 

co-varies with external continuous variables – in the present case, the kinematic variables of 
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handwriting. The neural association and encoding of basic kinematic features in visual information 

and motor processes has already been confirmed, both macroscopically and microscopically (Jerbi et 

al., 2007; Lauren, Catherine, & John, 2005). We have confirmed the moment-to-moment association 

between neural activity and writing kinematics with a novel finding that the association appears to 

occur in centro-frontal region (Figure 6). Further investigation is needed to determine whether this 

association stems from active control or simply from the neural coding of movement kinematics. This 

association may shed light on the development of brain–computer interfaces that aim to decode 

motor-related information from non-invasive measurements of brain signals. 

4.5. Artifact issue 
Artifact issue remains for data interpretation. As the handwriting paradigm contains a major motor 

component, it may be speculated that the neural activity is a manifestation of muscle artifacts 

(Muthukumaraswamy, 2013) generated by hand and finger movements. However, the following 

evidence contradicts this assumption: (1) The writing ERPs exhibited a structured pattern located in 

centro-frontal region, suggesting their neural origin. An artifact due to external physical sources (e.g., 

speech, muscle vibrations) is unlikely to exhibit a structured scalp map localised in a specific functional 

area. (2) Cognitive factors (e.g., language, hand, cognitive stages) significantly affected the writing 

ERPs even after the low-level effect (stroke length) was regressed out. If the neural activity was an 

artifact, we would expect only low-level features (not cognitive factors) to affect the activation pattern. 

(3) We conducted a specific experiment to test the pattern of the handwriting-generated artifact. In 

this experiment, we asked the participant to either write a sentence or remain still during 30 time 

slots. We then analysed the difference in the scalp maps of spectral activity between these two 

conditions. The results showed that the handwriting session clearly generated an artifact pattern 

across different frequency bands (Figure S1, SI). This scalp pattern resembled a typical artifact feature 

radiating from one side of the scalp to the other, potentially due to the stretching of the cap by the 

muscle vibration. Most importantly, this artifact showed no resemblance to the pattern of the writing 

ERPs. 

4.6. Limitations 
The present study was mainly dedicated to presenting the temporally-resolved neural dynamics 

underlying the handwriting processes and its cognitive associations. Aside from this main goal, there 

are several issues and limitations remained to be separately addressed in future work, which we 

summarized here. First, the factors of language and hand are very coarse factors. Although they served 

to demonstrate the cognitive association of the writing ERPs, this design is not able to probe the 

functional signature of the handwriting-related neural activation at a finer-grained level of cognitive 

processes such as visual, motor, central cognition, memory, and so on. Studying of them requires more 

specific designs with clearly targeted and isolated cognitive factors, and with stricter control of low-

level variables. 

The sample size of this study is another issue that constrains the interpretability of subtle effects, one 

example being the amplitude difference in single trial theta between conditions. A larger scale study 

would be needed to more strongly support the claim of pure phase synchronisation. Related to the 

small sample size issue, we conducted several additional analyses to assess the robustness of the 

results related to the cognitive factors (language and hand) and cognitive stage (initial versus non-

initial strokes) effect. The cross-validation results confirmed a consistent interaction effect between 

language and hand in post-stimulus time window in centro-frontal region and a consistent effect of 

cognitive stage. The main effects of language and hand were significant in the original LMM analysis 

but were not robustly shown in cross-validation analysis. Study with larger sample size will be needed 

in this regard. Nevertheless, the association of handwriting ERPs with cognitive factors were 
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confirmed, which serves as a validation of them for studying visual motor processes and neural 

mechanisms therein. In addition to the cross-validation analysis, we also separately reported the 

results of main figures and table in this paper derived from odd and even trials of the original data in 

SI. 

Another issue worth to note is the eye movements activities during the naturalistic handwriting 

process. Their engendered artifacts seemed to have been cleaned in our data as no ocular pattern can 

be seen from the scalp maps of writing ERPs. However, the eye movements associated with strokes 

will inevitably generate visual processes associated with the motor processes for writing each single 

stroke, which complicates the interpretation of the writing ERPs. High spatial resolution technologies 

such as fMRI may be resorted to for tackling this limitation. 

4.7. Implications for future research 
The development of a new paradigm, discovery of elementary neural activation and elaboration of 

the neural dynamics underlying handwriting in this work may provide a new venue for the study of 

fine motor control processes in the brain. We have demonstrated that through a deliberate design, 

subtle yet reliable neural activation can be tracked, and its functional signature can be analysed to 

study complex behaviours in naturalistic settings. The ability to reliably characterise the neural 

characteristics underlying visual motor abilities may also benefit intervention research. Lastly, the 

close association between a non-invasively recorded neural stream and a handwriting movement 

stream suggests the potential to retrieve the handwriting content by decoding the neural signals using 

advanced machine learning approaches, similar to the decoding of human speech directly from neural 

activity (Anumanchipalli, Chartier, & Chang, 2019).   
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