
HAL Id: hal-03479582
https://hal.science/hal-03479582v1

Submitted on 14 Dec 2021 (v1), last revised 27 Dec 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Planning with Biological Neurons and Synapses
Francesco d’Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale,

Christos H Papadimitriou

To cite this version:
Francesco d’Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H Papadim-
itriou. Planning with Biological Neurons and Synapses. [Research Report] Inria & Université Cote
d’Azur, CNRS, I3S, Sophia Antipolis, France; Gran Sasso Science Institute (L’Aquila, Italie); Depart-
ment of Computer Science, Columbia University, New York. 2021. �hal-03479582v1�

https://hal.science/hal-03479582v1
https://hal.archives-ouvertes.fr


Planning with Biological Neurons and Synapses

Francesco d’Amore1, Daniel Mitropolsky2, Pierluigi Crescenzi3, Emanuele Natale1, and Christos
H. Papadimitriou2

1Université Côte d’Azur, Inria, CNRS, I3S, Sophia Antipolis, France
2Department of Computer Science, Columbia University, New York, USA

3Gran Sasso Science Institute, L’Aquila, Italia
{francesco.d-amore,emanuele.natale}@inria.fr

{dgm2144,christos}@columbia.edu
pierluigi.crescenzi@gssi.it

December 14, 2021

Abstract

We revisit the planning problem in the blocks world, and we implement a known heuristic for this task.
Importantly, our implementation is biologically plausible, in the sense that it is carried out exclusively
through the spiking of neurons. Even though much has been accomplished in the blocks world over the
past five decades, we believe that this is the first algorithm of its kind. The input is a sequence of symbols
encoding an initial set of block stacks as well as a target set, and the output is a sequence of motion
commands such as “put the top block in stack 1 on the table”. The program is written in the Assembly
Calculus, a recently proposed computational framework meant to model computation in the brain by
bridging the gap between neural activity and cognitive function. Its elementary objects are assemblies
of neurons (stable sets of neurons whose simultaneous firing signifies that the subject is thinking of an
object, concept, word, etc.), its commands include project and merge, and its execution model is based
on widely accepted tenets of neuroscience. A program in this framework essentially sets up a dynamical
system of neurons and synapses that eventually, with high probability, accomplishes the task. The purpose
of this work is to establish empirically that reasonably large programs in the Assembly Calculus can
execute correctly and reliably; and that rather realistic — if idealized — higher cognitive functions, such
as planning in the blocks world, can be implemented successfully by such programs.

1 Introduction
How does intelligence happen? How can reasoning, problem-solving, decision-making, planning, empathy, language,
art be achieved through the activity of neurons and synapses? Despite tremendous advances over the past decades in our
understanding of neural mechanisms — increasingly assisted and propelled by machine learning — we are still very
far from answering the overarching question: how does the brain beget the mind? The difficulty lies in the huge gap of
scale and methodology between Experimental Neuroscience and Cognitive Science. This frustration was articulated in
a most eloquent way by Nobel laureate Richard Axel, who declared in a 2018 interview [1]: “We do not have a logic
for the transformation of neural activity to thought and action. I consider discerning [this logic] as the most important
future direction in Neuroscience”.

The Assembly Calculus (AC) is a recently proposed formal computational system [19]. As far as we know, it is the
only computational system in the literature whose explicit purpose is to bridge through computation the gap between
neurons and intelligence — that is to say, to function as Axel’s logic. The basic data item of the AC is the assembly
of neurons, a large stable set of neurons believed to represent an idea, object, word, etc., while its operations (project,
associate, merge, etc.) create and manipulate assemblies in response to stimuli and other brain events. Importantly,
these operations can be provably simulated through the activity of stylized neurons and synapses. All said, the AC is a

1



Turing complete computational system founded firmly on the basic principles of Neuroscience. In the next section, we
provide a comprehensive introduction to the AC; however, the interested reader may want to read [19].

So, is the AC the bridging “logic” sought by Axel? One avenue for pursuing this important question is to demon-
strate empirically that reasonably complex cognitive phenomena can be formulated and implemented in the AC frame-
work. Indeed, in the original paper [19] it was argued that aspects of language generation can be handled by the
operations of the AC, while in a very recent paper [17], a Parser implemented in the AC was demonstrated to analyze
syntactically reasonably complex sentences of English, and it was argued that it can be generalized to more complex
features as well as other natural languages.

Our contribution in this paper is to demonstrate that a program in the AC is capable of implementing reasonably
sophisticated stylized planning strategies – in particular, heuristics for solving tasks in the blocks world [10, 21]. A
blocks-world configuration is defined by a set of stacks, where a stack is a sequence of unique blocks, each sitting on
top of the previous one. A stack of size one is just a block sitting on the table (see e.g. Fig. 1-A). A configuration can
be manipulated by moving a block from the top of a stack (or from the table) to the top of another stack (or to the
table). A task in the blocks world is the following: Given a starting configuration Cinit and a goal configuration Cgoal,
find a sequence of actions which transforms Cinit into Cgoal. It was shown in [11] that solving a task in the blocks
world with the smallest number of actions is NP-Complete, and it was observed that the following provides a simple
2-approximation strategy: Move to the table all blocks that are not in their final positions, and then move these blocks
one by one to their final positions.

Here we implement this strategy in the AC. From the exposition of this implementation and demonstration —
which happens to employ representations and structures of a different style from those needed for language tasks
[19, 17] — we believe that it will become clear that more complicated heuristics for solving related tasks can be
similarly implemented in the AC.

In fact, the kind of representations needed for planning, involving long “chains” of assemblies linked through strong
synaptic connections, reveals a limitation of the AC which was not apparent before: we find empirically that there are
limits — depending on the parameters of the execution model, such as the number of excitatory neurons per brain
area, synaptic density, synaptic plasticity, and assembly size — on the length of such chains that can be implemented
reliably. As chaining is also used in the Turing machine simulation demonstrating the completeness of the AC [19],
such limitations are significant because they bound from above the space complexity — and therefore the parallel time
complexity — of AC computations. We briefly discuss and quantify this issue in the experimental validation section.

1.1 Related Work
Terry Winograd introduced the blocks world half a century ago as the context for his language understanding system
SHRDLU [24], but since then blocks-world planning has been widely investigated, primarily because such tasks appear
to capture several of the difficulties posed to planning systems [10, 11]. There has been extensive work in AI on blocks
world problems, including recently on leveraging ANNs for solving them, and learning to solve them from examples
(e.g., the Neural Logic Machines of [7], or Neural Turing Machines, which are used for related problem-solving tasks
[9]).

Bridging the gap between low-level models of neural activity in the brain and high-level symbolic systems mod-
elling cognitive processes is a fundamental open problem in artificial intelligence and neuroscience at large [8, 6].
Several computational cognitive-science papers address the problem of solving (or learning to solve) block-worlds
tasks in higher-level computational models of cognition, such as ACT-R or SOAR (see for instance [14, 16, 18]). In
contrast to the present paper, however, these works utilize high-level languages and data structures for the programming
of these systems, without providing a link, as we do, to the behavior of stylized neurons and synapses, in an effort to
remain as faithful as possible to the ways animal brains would solve these tasks.

Less related to our problem is the literature on block stacking (see, for example, [12, 22]). These papers the focus
on the ability of humans and chimpanzees to place a block on top of an existing tower without toppling it.

Finally, it is worth mentioning some previous works on solving planning tasks through spiking neural networks,
such as [20, 2], in which the attention is more focused on learning world models.

2 The Assembly Calculus
The Assembly Calculus (AC) [19] is a computational system for modeling a dynamical system of firing neurons. In
this system, there is a finite number of areas, each containing n neurons. The neurons of an area form a random Erdős-

2



Operation Input Semantics
activateBlock (b) Block number b Makes the assembly of the block b in the area BLOCKS fire
disinhibitArea (A) Set A of areas Disinhibit all the areas in A
disinhibitFiber (P ) Set P of pairs of areas Disinhibit the fibers between any pair of areas in P
inhibitArea (A) Set A of areas Inhibit all the areas in A
inhibitFiber (P ) Set P of pairs of areas Inhibit the fibers between any pair of areas in P
isAssembly (a) Area a Verify whether there is an active assembly in the area a
project (a1, a2) Areas a1 and a2 Executes a projection of (the active assembly in) the area a1 to the area a2
strongProject() Executes a strong projection involving all the disinhibited areas and fibers

Table 1: The AC operations (primitive and non primitive) used in the paper.

Rényi directed graph Gn,p, where p is the probability that two neurons of the area are connected. Moreover, certain
ordered pairs of areas are connected one to another through an Erdős-Rényi directed bipartite graph Gn,p. The directed
connections between areas are called fibers.

In the AC, neurons in an area A fire in discrete time steps, and are subject to stylized forms of inhibition and
plasticity. For what concerns inhibition, at any time step, we assume only kA of the n neurons fire, that is, the ones that
previously received the highest total input from all other areas — these kA neurons are sometimes called the winners.
Plasticity is modelled by assuming that, if, at a given time step, neuron x fires and, at the next time step, an out-neighbor
neuron y of x fires, then the weight of the synapse from x to y (which is 1 at the beginning) is multiplied by (1 + βA),
where βA > 0. In the original definition of the AC, a process of homeostasis was also modelled through a periodic
renormalization, at a different time scale, of the synaptic weights, in order to avoid the generation of huge weights.
Such process is of course part of any realistic brain system, also providing a mechanism for forgetting. We will not
implement here this feature of the model.

Lastly, yet importantly, the AC allows inhibiting and disinhibiting areas and fibers at different time steps. The
exact mechanism through which areas and fibers are (dis)-inhibited may vary; in a recent paper modeling syntactic
processing using the AC, [17] model specific neurons as having (dis)-inhibitory effects on areas or fibers. In this work,
(dis)-inhibition is always determined by which areas and fibers fired at the previous time step.

The most important emergent object in the AC is the assembly, that is, a stable set of kA highly interconnected
neurons in an area A. It is emergent in the sense that assemblies are not a primitive of the model; instead, they are
formed through its more basic operations. Assemblies are by now well known and widely studied in neuroscience, and
are thought to represent concepts, ideas, objects, words, etc., and are increasingly believed in recent years to play a
central role in cognitive processes [4], often called “the alphabet of the brain” [5]. In terms of classical thinking in AI,
one could think of assemblies as the boundary in the brain between sub-symbolic and symbolic computation.

The AC makes possible to perform certain operations with assemblies, described next — in fact, it is through these
operations that assemblies are created, in a way that guarantees high connectivity. In [19], the authors demonstrate,
both mathematically and through simulation, that these operations are “possible” in the sense that they can be stably
performed with high probability in the dynamical system of neurons outlined in the previous paragraphs. In this paper,
we mostly make use of one of these operations: projection of an assembly in an area into another assembly in another
area.

Let us assume that an assembly x of kA neurons of the area A has just fired into an area B (presumably through a
disinhibited fiber going from A to B), and assume that B was quiescent at that time (no neurons were firing). This will
result in a set w1 of kB neurons (the winners) firing at the next time step. Next, the neurons in B will receive inputs not
only from the kA neurons of the assembly in A, which will continue to fire, but also from the neurons in w1 through
recurrent connections within B: this will result in a set w2 of kB neurons, (the new winners) firing at the next time
step, and so on. It has been proved that, under appropriate values of the parameters n, kA, kB , β, and p, this process
converges with high probability to an assembly y of kB neurons in B, which is called the projection of x into B and
can be thought as a copy of x in B such that, from now on, y will fire every time x fires.

For a complete description of the AC the reader is referred to [19], where in addition to stability of various assem-
bly operations, it is also proved that, under certain assumptions, this computational system is capable of performing
arbitrary computations as long as the space required does not exceed n

kA
(under much milder assumptions,

√
n
kA

).

In this paper, similarly to the Parser of [17], our AC programs work by projecting between all pairs of disinhibited
areas along disinhibited fibers at each time step. For brevity, this operation, i.e. a simultaneous set of projections
between multiple areas, is called strong projection.

3



Our AC programs are described with the operations in Table 1. Inhibition and disinhibition are primitives of the
AC system, whereas strong projection (tantamount to a set of simultaneous projections) is an emergent property of
the AC’s dynamical system. We use several other such “emergent” operations, i.e., that are not primitives of the AC
system, but can be stably implemented with its basic operations. For example, we will make use of an operation which
allows us to verify whether in a specific area there exists a stable assembly (as the result of a projection). In Table 1, we
summarize the operations (primitive and non primitive) of the AC system, that we will use in this paper. Note that the
block activation operation is a special operation, which causes an assembly (in a special area BLOCKS) corresponding
to the named block to fire.

3 The Blocks World AC Program
A blocks world (BW) configuration is a set of stacks, where each stack is a sequence of blocks, from top to bottom.
Each block is assumed to be a unique integer between 1 and s. Two BW configurations, the initial and the target
configuration, constitute the input to the AC program (see Figure 1-A). We shall at first concentrate on configurations
with a single stack — already a meaningful problem — and we shall eventually graduate to multiple stacks (see
subsection 3.5 below). We next describe four AC programs: (a) a program that takes the input — a sequence of integers
representing a stack — and creates a list-like structure, in a set of brain areas and fibers, for representing the stack; (b) a
program that removes the top block of a stack thus represented; (c) a program that adds a new block to the represented
stack; and (d) a program for computing the intersection of two stacks represented this way, that is, the longest common
suffix of the two sequences, read from bottom to top.

All four programs work on a common set of brain areas connected with bi-directional fibers: the area BLOCKS
contains a fixed assembly for every possible block (these assemblies are special, in that each can be activated explicitly
as the presentation of the corresponding number in the input). There are four other areas used in our AC programs:
HEAD, NODE0, NODE1, and NODE2. HEAD is connected to the NODE0 area via fibers, while each NODE area is con-
nected to BLOCKS, and to each other in the shape of a triangle: NODE0 is connected with NODE1, which is connected
with NODE2, which is connected with NODE0 (see Figure 1-B). All of these areas are standard brain areas of the AC
system, containing n randomly connected neurons of which at most k fire at any time.

3.1 The Parser

Algorithm 1: PARSER (S)

input: a stack S of blocks b1, b2, . . . , bs.

1 disinhibitArea ({BLOCKS,HEAD,NODE0});
disinhibitFiber ({(HEAD,NODE0) , (NODE0,BLOCKS)});

2 activateBlock (b1); strongProject();
3 inhibitArea ({HEAD}); inhibitFiber ({(HEAD,NODE0) , (NODE0,BLOCKS)});
4 foreach i with 2 ≤ i ≤ s do
5 p = (i− 2) mod 3; c = (i− 1) mod 3;
6 disinhibitArea ({NODEc}); disinhibitFiber ({(NODEp,NODEc) , (NODEc,BLOCKS)});
7 activateBlock (bi); strongProject();
8 inhibitArea ({NODEp}); inhibitFiber ({(NODEp,NODEc) , (NODEc,BLOCKS)});
9 end

10 inhibitArea
({

BLOCKS,NODE(s−1) mod 3

})
;

The parser (see Algorithm 1) processes each block in a stack sequentially, starting from the top. When it analyses
the first block (see lines 1-3), the three areas BLOCKS, HEAD, and NODE0, and the fibers between HEAD and NODE0

and between NODE0 and BLOCKS are disinhibited. The block assembly is then activated and a strong projection is
performed, thus creating a connection between the assembly in BLOCKS corresponding to the block and an assembly
in NODE0, and between this latter assembly and an assembly in HEAD (see the red dashed lines in Figure 1-C1).
Successively, the HEAD area and the fibers between HEAD and NODE0 and between NODE0 and BLOCKS are inhibited.
For each other block in the stack (see lines 5-8), the NODE area next to the one (i.e., NODEi mod 3) currently disinhibited

4



(i.e., NODEi+1 mod 3) is disinhibited, and the fibers between this NODE area and the BLOCKS area and between the two
NODE areas are disinhibited. The next block assembly is then activated and a strong projection is performed, creating
a connection between the assembly in BLOCKS and an assembly in the NODE area just disinhibited, and between
this latter assembly and the assembly previously activated in the previous NODE area (see the red dashed lines in the
figures 1-C2,C3,C4). After this and before the next block, this latter NODE area and the fibers between it and the NODE
area after it, and those between the NODE area after it and the BLOCKS area, are inhibited.

The final data structure is a chain of assemblies starting from an assembly in HEAD and passing through assemblies
in the NODE areas (see Figure 1-C6). Note that this chain can contain more than one assembly in the same NODE area:
for instance, in Figure 1-C6, the chain contains two assemblies in NODE0 and NODE1. Each assembly in the chain is
also connected to the assembly in BLOCKS corresponding to a block in the stack. For instance, the sequence of such
assemblies in Figure 1-C6 corresponds to the sequence of blocks 4, 5, 3, 1, 2, which is exactly the sequence of blocks
in the stack from top to bottom (see the left part of Figure 1-A). Note that Algorithm 1 uses a constant number of brain
areas (that is, five), independently of the number of blocks in the stack.

3.2 Removing the Top Block
In order to implement in AC the algorithm which transforms an input stack of blocks into a target stack of blocks,
we start by describing an AC program to remove a block from the top of a stack. This program uses the same areas
and fibers of the parser described in the previous section (see Figure 1-B), with the addition of fibers between HEAD
with NODE1, and HEAD with NODE2. Intuitively, these fibers are needed to allow changing the head of the chain
representing the current stack, without having to shift all the assemblies one position to the left.

The AC program, which “removes” the block from the top of the stack, uses the connections created by the parser
in order to activate the assembly in the NODE1, which is connected to the block just below the top block (that is block
5 in Figure 1-D1,D2). This is done by projecting from the HEAD into NODE0, and projecting from NODE0 into the
NODE1 (see Figure 1-D1). Through strong projection, the program successively creates a new connection from the
active assembly in the NODE1 area to a new assembly in the HEAD area (see the red dashed line in Figure 1-D2).

Note that the connections between the light gray assemblies in Figure 1-D2 are still active, but they will not be
used in the future since the last active assembly in the HEAD area is now connected to the assembly in the NODE1 area.
These connections, indeed, might later disappear because of a process of homeostasis, which can be modeled in the AC
system through a sort of “renormalization” (as described in [19]). In a certain sense, the system will slowly “forget”
which block was on the top of the stack, before a removal operation.

The removal of the top block can be repeated as many times as the number of blocks in the stack. The only
difference is that the activation of the assembly in NODE corresponding to the block below the top one is done by
projecting HEAD into the NODE area corresponding to the top block, and then projecting from this NODE area to the
one following it (in modular arithmetic).

In order to maintain an updated representation of the blocks world configuration, we use four additional brain areas
to store the chain of blocks which have been removed and that, hence, are currently on the table. This chain can be
implemented in the AC system exactly the same way we did when parsing a stack of blocks. Then, when we want to
read the current data structure stored in the AC system, we examine the stack of blocks represented in HEAD and the
NODE areas, as well as the chain of blocks on the table in the additional areas.

3.3 Putting a Block on Top of the Stack
The second operation we need in order to implement a minimal planning algorithm for the blocks world problem is
putting a block on top of the stack. The AC program, for this operation first projects the block from in BLOCKS into
the NODE area preceding (in modular arithmetic) the NODE area currently connected to HEAD, and then projects the
newly created assembly into HEAD (see Figure 1-E1). Successively, the program executes a strong projection between
the four areas in order to correctly connect them (see Figure 1-E2). Once again, an active connection between the
HEAD area and a NODE area will still exist after the execution of the AC program, but this connection will not be used
in the future.

5



4

5

3

1

2

Table

4

1

2

3

5

Table

A

BLOCKS

NODE0 NODE1 NODE2

HEADS

B

BLOCKS
Block 4

NODE0 NODE1 NODE2

HEADS

C1

BLOCKS
Block 4

Block 5

NODE0 NODE1 NODE2

HEADS

C2

BLOCKS
Block 4

Block 5

Block 3

NODE0 NODE1 NODE2

HEADS

C3

BLOCKS
Block 4

Block 5

Block 3

Block 1

NODE0 NODE1 NODE2

HEADS

C4

BLOCKS
Block 4

Block 5

Block 3

Block 1

Block 2

NODE0 NODE1 NODE2

HEADS

C5

BLOCKS
Block 4

Block 5

Block 3

Block 1

Block 2

NODE0 NODE1 NODE2

HEADS

C6

BLOCKS

Block 4

Block 5

NODE0 NODE1

HEADS

D1

BLOCKS

Block 4

Block 5

NODE0 NODE1

HEADS

D2

BLOCKS

Block 4

Block 5

NODE0 NODE1

HEADS

E1

BLOCKS

Block 4

Block 5

NODE0 NODE1

HEADS

E2

Figure 1: A. Two BW configurations. In the rest of the figure, we consider the BW configuration shown on the left. B.
The five areas used by the parser AC program, along with the connections through fibers. C1-6. The behavior of the
parser AC program. The black solid lines denote the fibers of Figure B which are disinhibited. The red dashed lines
denote the newly created connections between assemblies in different areas, while the black dotted lines denote the
connections previously created. D1-2. The behavior of the AC program which removes the block from the top of a
stack, with input the data structure resulting from the parser execution (only the areas involved in the remove operation
are shown). The black solid lines denote the fibers which are disinhibited. The red dashed lines denote the newly
created connections between assemblies in different areas, while the black dotted lines denote the already existing
connections. E1-2. The behavior of the AC program which put the block 4 on top of the stack, above the block 5. The
black solid lines denote the fibers which are disinhibited. The red dashed lines denote the newly created connections
(unidirectional and bidirectional) between assemblies in different areas, while the black dotted lines denote the already
existing connections.

6



3.4 Computing the Intersection of Two Stacks
The pop and put operations described in the previous two sections are sufficient to implement a simple planning
algorithm, which consists in moving all the blocks on the table (by using pop), and by then moving the blocks on the
table on top of the stack (by using put) according to the target stack.

In order to improve this algorithm and execute the two-approximation algorithm described in the introduction, we
need an AC program which implements a third operation, that is, finding the intersection of two stacks. This operation
looks for the common sub-stack of the two stacks (starting from the bottom) and return the highest block in this
sub-stack. Then only the blocks above this block have to be moved on the table and reassembled in the right order.

In a nutshell, this can be achieved in AC by first reaching the bottom of the two stacks which have to be compared,
and then proceeding upwards until we find two different blocks, or the end of one of the two stacks.

3.5 Multiple Stacks
So far in this exposition we have concerned ourselves with configurations consisting of one stack. In our experiments
(see the next section) we have implemented up to five stacks by employing a different set of four areas for each stack.
This is a bit unsatisfactory, because it implies that the maximum number of stacks that can be handled by the brain is
encoded in the brain architecture. There is a rather simple — in principle — way to achieve the same effect by re-using
the same four areas; we have an initial implementation of this idea, which we intend to test in the future.

With multiple stacks one has to solve the matching problem: identifying pairs of stacks in the input and output that
must be transformed one to the other. Naively, this can be done by comparing all pairs of stacks, but this entails effort
that is quadratic in the number of stacks. This latter strategy is the one currently employed in our experiments. In the
future, we intend to test a more principled way, based on hashing the stacks into their bottom element, and attending
to any collisions.

4 Experiments
A software system for programming in the AC, as well as implementations of the algorithms described in this paper,
have been written in Julia [3]. We make use of the Java generator for BW configurations available at [15], based on [21].
We ran experiments on over 100 blocks-world configurations, with up to five stacks and 10, 20, and 30 blocks. The
algorithm worked correctly in every instance. We have used various settings of the parameters n, k, p, β – a particularly
good set of parameters is n = 106, k = 50, p = 0.1, β = 0.1. Interestingly, the algorithms do not work in all parameter
settings, because of limits on the chaining operation (see the next discussion). The Julia source code can be found at
[13].

In general, the amount of rounds of strong project (parallel spikings of neurons) needed to carry out the BW tasks
seems to be around 35 spikes per block processed (parse, popped, or pushed), which, assuming roughly 50 Hz spikes
for excitatory neurons in the brain, is around 1.4 seconds per operation.

Limits of the AC. An unexpected finding of our simulations is that they are stable only under very specific parameter
settings. The bottleneck of the planning algorithms is in parsing the chain of blocks, that is, memorizing the sequence
of blocks so they can be read out reliably. In isolation we call this operation “chaining”.

The results in this section, which describe some properties and limits of chaining, can be viewed as theoretical
properties of the AC. First, we find it is only possible to chain a rather limited number of blocks. For instance, even
though with n = 106 and k = 50 there is, at least in theory, space for 106/50 = 200000 non-overlapping assemblies,
even with strong p and β, we can only reliably chain up to 20 blocks. This is illustrated in Figure 2a, which shows
how many of s blocks were successfully read out after chaining. Generally, for higher values of n (and a higher n : k
ratio), longer portions of the chain tend to be correctly stored, but the operation is highly noisy: in some trials it will
fail and then succeed for a longer chain. Indeed, unlike the assembly operations described in [19] (Project, Merge, and
so on) which are either stable with overwhelming probability under appropriate parameters, or do not succeed if the
parameters are not appropriately strong, chaining appears to push the computational power of the AC to its limits, and
often succeeds or fails between repeated trials with the same parameters.

One can also look at a related property: after chaining, how many of the assemblies in the NODEi areas during
readout are “strong” in the sense that they pass ISASSEMBLY() with a high threshold (i.e. firing those k neurons
recursively results in the same set of k winners)? Interestingly, this proportion, which is significantly less than the

7



(a)

(b)

(c)

Figure 2: Experiments on the “chaining” operation, the bottleneck of the AC planning algorithm. (a) shows number
of blocks correctly chained for various chain length; (b) shows number of “strong” assemblies formed in chaining;
(c) shows maximal chain length that is correctly parsed for varying k. (b) and (c) show averages over 50 trials per
parameter setting (exact numbers, including sample standard deviation, are provided in the appendix). In these charts,
p = β = 0.1 was used, in (a) and (b) k = 50.

8



maximum of s, does not change significantly when we vary n, p, β– there appears to be a natural proportion of strong
assemblies formed during chaining (Figure 2b).

Finally, in Figure 2c we varied k and found the maximally long chain that succeeded completely. These experiments
again showed that for higher n : k ratio, longer chains are possible, and that for each setting of n there is a narrow
window of optimal k that allows for the longest chains– above of this range, as we increase k the maximum chain does
not change, i.e. it appears to settle to some natural lower bound. A more thorough analysis of chaining is an important
direction in AC theory, since such maneuvers could be subroutines in various cognitive processes (for instance, [17]
suggest using it for processing chains of identical parts of speech, such as multiple adjectives in a noun phrase).

5 Conclusions and Future Directions
The aim of this work is not so much to produce a performing system, but to demonstrate experimentally that reason-
ably large and complex programs in the assembly calculus can execute correctly and reliably, and in particular can
implement in a natural manner planning strategies for solving instances of the blocks world problem. In fact, the im-
plementation of these strategies is based on the realization of a list-like data structure which makes use of a constant
number of brain regions. Confirming theoretical insights, we have experimentally found that the structure’s reliability
depends on the ratio between the number of neurons and the size of the assemblies in each region — even though the
dependency was a bit more constraining than we had expected. The reasons and extent of this shortcoming must be the
object of further investigation.

We have also shown how simple manipulations of the data structure (such as the top, pop, and append operations)
can be realized by making use of a constant number of brain regions. These manipulations allowed us to implement
planning strategies based on two basic kinds of moves, that is, moving the block from the top of a stack to the table,
and putting a block from the table to the top of a stack. All our programs work for an arbitrary number of blocks and a
bounded number of stacks — while current work involves implementing a version with an arbitrary number of stacks.

After syntactic analysis in language and blocks world planning, what comes next as a compelling stylized cognitive
function, which could be implemented in the AC? There is work currently in submission dealing with learning though
assemblies of neurons. Two further realms of cognition come to mind, and they happen to be closely related: Reasoning,
as well as planning and problem solving in less specialized domains than BW. It would be interesting to figure out the
most natural way for assemblies and their operations to carry out deductive tasks, and, even more ambitiously, to carry
out planning in the context of logical and constraint-based formalisms of planning, see for example [23].

Acknowledgements
CHP’s research was partially supported by NSF awards CCF1763970 and CCF1910700, by a research contract with
Softbank, and a grant from CAIT. Furthermore, the authors are grateful to the OPAL infrastructure from Université
Côte d’Azur for providing resources and support.

References
[1] R. Axel. Q&A. Neuron, 99(6):1110–1112, Sept. 2018. doi: 10.1016/j.neuron.2018.09.003.

[2] R. Basanisi, A. Brovelli, E. Cartoni, and G. Baldassarre. A generative spiking neural-network model of goal-
directed behaviour and one-step planning. PLOS Computational Biology, 16(12):1–32, 12 2020.

[3] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical computing. SIAM
review, 59(1):65–98, 2017.

[4] G. Buzsáki. Neural Syntax: Cell Assemblies, Synapsembles, and Readers. Neuron, 68(3):362–385, Nov. 2010.

[5] G. Buzsáki. The Brain from Inside Out. Oxford University Press, Oxford, reprint edition edition, Jan. 2021.

[6] M. Chady. Modelling higher cognitive functions with hebbian cell assemblies. In J. Hendler and D. Subramanian,
editors, Proceedings of AAAI/IAAI 1999, July 18-22, 1999, Orlando, Florida, USA, page 943. AAAI Press, 1999.

9



[7] H. Dong, J. Mao, T. Lin, C. Wang, L. Li, and D. Zhou. Neural logic machines. In International Conference on
Learning Representations, 2019.

[8] R. Doursat. Bridging the Mind-Brain Gap by Morphogenetic ”Neuron Flocking”: The Dynamic Self-Organization
of Neural Activity into Mental Shapes. In AAAI Fall Symposia, 2013.

[9] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines, 2014.

[10] N. Gupta and D. S. Nau. Complexity results for blocks-world planning. In Proceedings of the Ninth National
Conference on Artificial Intelligence - Volume 2, AAAI’91, page 629–633. AAAI Press, 1991.

[11] N. Gupta and D. S. Nau. On the complexity of blocks-world planning. Artificial Intelligence, 56(2):223–254,
1992.

[12] M. Hayashi. Stacking of blocks by chimpanzees: developmental processes and physical understanding. Animal
Cognition, 10:89–103, 2007.

[13] jBrain. https://github.com/piluc/jBrain, 12 2021.

[14] W. G. Kennedy and J. G. Trafton. Long-term symbolic learning in soar and act-r. In Proceedings of the Seventh
International Conference on Cognitive Modeling, page 166–171, 2006.

[15] V. Koeman. The blocks world. https://github.com/eishub/blocksworld#readme, 2020. [Online; last access 08-
September-2021].

[16] U. Kurup. Design and use of a bimodal cognitive architecture for diagrammatic reasoning and cognitive model-
ing. Ph.D. diss., Graduate School of the Ohio State University, 2008.

[17] D. Mitropolsky, M. J. Collins, and C. H. Papadimitriou. A Biologically Plausible Parser. In Transactions of the
Association for Computational Linguistics, Aug. 2021. arXiv: 2108.02189.

[18] A. I. Panov. Behavior planning of intelligent agent with sign world model. Biologically Inspired Cognitive
Architectures, 19:21–31, 2017.

[19] C. H. Papadimitriou, S. S. Vempala, D. Mitropolsky, M. Collins, and W. Maass. Brain computation by assemblies
of neurons. Proceedings of the National Academy of Sciences, 117(25):14464–14472, 2020.

[20] E. Rueckert, D. Kappel, D. Tanneberg, D. Pecevski, and J. Peters. Recurrent spiking networks solve planning
tasks. Scientific Reports, 6, 2016.

[21] J. Slaney and S. Thiébaux. Blocks world revisited. Artificial Intelligence, 125(1):119–153, 2001.

[22] M. Tian, T. Luo, and H. Cheung. The development and measurement of block construction in early childhood: A
review. Journal of Psychoeducational Assessment, 38(6):767–782, 2020.

[23] D. E. Wilkins. Practical Planning: Extending the Classical AI Planning Paradigm. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1988.

[24] T. Winograd. Procedures as a representation for data in a computer program for understanding natural language.
Technical report, Massachusetts Inst Of Tech Cambridge Project Mac, 1971.

A More Details on the Experiments
The operation of parsing works in every possible instance we tried provided that the constraints shown in the subsection
on the limits of AC are met. We tried parsing randomly generated BW configurations with 10, 20, and 30 blocks
divided in multiple stacks, with the following parameters: n = 4 × 106 neurons, p = 0.1, β = 0.1, k = 50. The
intersect operation needs two parsed stacks as input, and runs correctly each time the parsing operation of the stacks
works correctly. Removing the top block (that is, the pop operation) and putting on top of a stack (that is, the put
operation) run as well in the aforementioned settings. The used machine is a DELL laptop with an Intel(R) Core(TM)

10



i7-8665U CPU @ 1.90GHz processor, 32GB Ram, running Fedora 33. The input BW configurations are specified in
the bw instances folder at [13].

Stricter constraints are needed for the whole planning operation. Since the previous operations have to be run
many times and one after the other other, the graph representing the brain and its connectivity grows quite quickly.
On a machine like the one described above, only BW configurations with at most 10 blocks are well handled (good
parameters to test this are the same as for parsing). Otherwise, the program requires too much time in order to be
completed, even with the same set of parameters. For the planning with 10 blocks, we used a machine Dell R940
quad-Xeon SP Gold 6148 @ 2.40GHz (80 cores) with 1024 GB of RAM.

In the case of BW configurations with 10 blocks, we have verified the correctness of the AC programs implementing
the two planning algorithms (the one without and the one with the intersect operation) on 100 BW configurations
randomly chosen, such that each stack has at most 7 blocks, to avoid chaining issues (these configurations are specified
in the file planning inputs.txt). The execution on all these instances correctly run and finished in reasonable
time.

Due to the discussion on the limits of AC (i.e., the limits on the maximum chain lengths), in the case of BW con-
figurations between 20 and 30 blocks, we have limited ourselves to verify the correctness of the implementation of the
basic operations used by the two algorithms, that is, the parser, the pop, the push, and the intersect operations (roughly
30 simulations). All runs were completed in reasonable time (few minutes - up to 20 in the case of more demanding
operations) without errors. Also in this case, we used n = 4× 106 neurons for each brain area. We remark that the 20
and 30 blocks must be split among several stacks of maximum length up to 7, otherwise the parsing procedure may fail
with the above number of neurons (these BW configurations are specified in the file operation inputs.txt).

The verification of the entire planning algorithms in the case of 20 and 30 blocks (even split among several stacks of
up to 7 blocks each) requires more memory and time, due to the large computations needed to represent “bigger” brains.
After running the planning algorithms in these cases, nevertheless, we observed that the initial actions performed by
the brain were correct, which makes us believe that the algorithms would also correctly work in its entirety.

Limits of the AC. Table 2 shows the outcome of the experiments on chaining. In particular, it shows the mean number
of blocks (over 50 runs) we can chain with n = 105, 5 × 105, 106 neurons for each brain area, k = 50 (the number
of neurons an assembly is composed of), and the standard deviation. With 106 neurons, we can reliably chain up to
10, 11 blocks, but it’s better if the number of blocks is less than 8. If we lower the number of neurons, less blocks can
be reliably parsed.

Table 3 shows the outcome of the experiments on the ratio between n and k which can chain the higher number of
blocks. The best reliability is obtained when k increases together with n. For n = 105, 20 ≤ k ≤ 30 seems to be best.
For n = 5× 105, 106, 30 ≤ k ≤ 40 works better. The means and the standard deviations are obtained over 50 runs of
the experiment.

In order to execute these experiments, the reader can execute the following terminal command:

julia experiments/chaining_experiments.jl

11



Neurons Blocks Mean Std Neurons Blocks Mean Std Neurons Blocks Mean Std
105 1 1 0 5 · 105 1 1 0 106 1 1 0
105 2 2 0 5 · 105 2 2 0 106 2 2 0
105 3 3 0 5 · 105 3 3 0 106 3 3 0
105 4 3,96 0,28 5 · 105 4 4 0 106 4 3,96 0,28
105 5 4,68 0,94 5 · 105 5 4,88 0,63 106 5 5 0
105 6 5,08 1,86 5 · 105 6 6 0 106 6 5,92 0,57
105 7 5,96 2,13 5 · 105 7 6,72 1,21 106 7 6,96 0,28
105 8 6,5 2,64 5 · 105 8 8 0 106 8 7,88 0,63
105 9 7,22 3,22 5 · 105 9 8,88 0,85 106 9 8,78 1,3
105 10 6,36 3,86 5 · 105 10 9,16 2,22 106 10 9,6 1,81
105 11 6,42 4,53 5 · 105 11 10,32 1,91 106 11 10,74 1,38
105 12 6,84 4,4 5 · 105 12 11,22 2,47 106 12 10,84 2,57
105 13 8,04 4,69 5 · 105 13 12,1 2,77 106 13 12,36 2,45
105 14 5,66 4,98 5 · 105 14 13,22 2,74 106 14 11,78 4,26
105 15 7,18 5,46 5 · 105 15 12,58 4,52 106 15 12,42 4,51
105 16 5,14 4,89 5 · 105 16 13,66 4,35 106 16 14,18 3,77
105 17 6,9 5,82 5 · 105 17 14,22 5,41 106 17 13,96 5,03
105 18 6,24 5,25 5 · 105 18 13,82 6,73 106 18 15,22 4,99
105 19 5,86 4,78 5 · 105 19 15,52 5,87 106 19 15,08 6,19
105 20 6,44 5,91 5 · 105 20 15,72 6,25 106 20 14,62 6,66
105 21 6,58 4,99 5 · 105 21 14,14 8,16 106 21 16,72 6,87
105 22 4,94 4,55 5 · 105 22 14,08 7,85 106 22 15,8 7,69
105 23 5,32 5,73 5 · 105 23 17,42 7,85 106 23 16,02 8,04
105 24 4,44 3,97 5 · 105 24 16,36 7,51 106 24 17,94 7,88
105 25 5,78 5,07 5 · 105 25 15,86 9,67 106 25 17,34 9,2
105 26 3,2 2,85 5 · 105 26 18,36 9 106 26 18,62 9,24
105 27 3,78 4,11 5 · 105 27 14,94 10,15 106 27 18,52 9,36
105 28 5,68 4,76 5 · 105 28 17,76 10,88 106 28 16,78 9,76
105 29 3,7 3,42 5 · 105 29 15,26 9,08 106 29 20,88 10,21
105 30 4,96 4,18 5 · 105 30 15,12 10,13 106 30 18,5 11,14
105 31 3,46 3,72 5 · 105 31 16,42 12 106 31 18,44 11,79
105 32 4,9 3,87 5 · 105 32 16,92 10,97 106 32 17,88 11,87
105 33 4,04 3,81 5 · 105 33 14,16 11,63 106 33 14,62 11,38
105 34 3,7 3,59 5 · 105 34 13,68 10,82 106 34 15,54 12,04
105 35 4,62 4,7 5 · 105 35 16,48 11,78 106 35 19,34 11,9
105 36 4,4 4,16 5 · 105 36 15,56 12,73 106 36 17,04 12,71
105 37 4,12 3,49 5 · 105 37 16,54 12,67 106 37 16,08 12,29
105 38 4,46 3,88 5 · 105 38 13,84 12,86 106 38 16,64 13,46
105 39 3,58 3,24 5 · 105 39 15 12,68 106 39 18,9 13,67

Table 2: Table for the chain length experiment. We check if n ∈ {105, 5 ·105, 106} neurons for brain area are sufficient
to parse a stack of a given number of blocks. Here, the mean number of correctly parsed blocks and its standard
deviation are shown over 50 runs of the experiment.

12



Neurons k Mean Std Neurons k Mean Std Neurons k Mean Std
105 10 1,04 0,28 5 · 105 10 1,04 0,28 106 10 1,04 0,28
105 20 8,36 4,25 5 · 105 20 8,32 5,22 106 20 8,96 4,47
105 30 8,68 3,03 5 · 105 30 15,04 6,38 106 30 19,4 6,93
105 40 7,24 2,93 5 · 105 40 17,24 5,68 106 40 17,76 6,13
105 50 7,32 2,47 5 · 105 50 14,68 5,53 106 50 15 5,51
105 60 6,56 2,43 5 · 105 60 12 4,15 106 60 13,68 5,01
105 70 5,4 2,06 5 · 105 70 10,04 2,98 106 70 13,48 4,92
105 80 5,92 1,99 5 · 105 80 9,04 3,86 106 80 12,12 4,34
105 90 5,52 1,97 5 · 105 90 9,16 3,1 106 90 11,52 3,87
105 100 4,92 1,98 5 · 105 100 7,92 2,83 106 100 10,08 3,96
105 110 5,28 1,57 5 · 105 110 8,52 2,82 106 110 10,36 3,73
105 120 4,56 1,58 5 · 105 120 8 2,92 106 120 10,24 3,38
105 130 4,52 1,64 5 · 105 130 6,6 2,56 106 130 8,52 4,05
105 140 4,24 1,33 5 · 105 140 7,4 2,71 106 140 8,04 2,78
105 150 3,88 1,15 5 · 105 150 7,2 2,43 106 150 8,16 2,97
105 160 4,12 1,08 5 · 105 160 6,32 2,12 106 160 8,16 3,23
105 170 3,68 1,19 5 · 105 170 6,08 2,18 106 170 7,8 3,21

Table 3: Table for the max chain length experiment. We check, for a given number of k (the number of neurons an
assembly is composed of), the maximum chain length the brain can correctly parse, with n ∈ {105, 5 · 105, 106}
neurons in each area of the brain. Here, the mean number of the maximum chain length correctly parsed blocks and its
standard deviation are shown over 50 runs of the experiment.

13


