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A perceptual stopping condition for global illumination computations

Nawel Takouachét
LIL
Université du Littoral Cote d’'Opale

Abstract

The aim of realistic image synthesis is to produce high figéin-
ages that authentically represent real scenes. As theggeazae
produced for human observers, we may exploit the fact tha¢wo
erything is perceived when viewing scene with our eyes. Thus
is clear that taking advantage of the limited capacity ofithman
visual system (HVS), can significantly contribute to optimren-
dering software.

Global illumination methods are used to simulate realiiggisting
in 3D scenes. They generally provide a progressive conmeegm®
high-quality solution. One of the problem of such algorithis to
determine a stopping condition, for deciding if calculaiseached
a satisfactory convergence allowing the process to temmina

In this paper, we propose and we discuss different solutiotisis
important problem. We show different techniques based efvth
sual Difference Predictor (VDP) proposed by Daly [Daly 1P&8
define a perceptual stopping condition for rendering comatjmis.
We use the VDP to measure the perceived differences betwaen r
dered images and to guide the Path Tracing rendering tdysatis
perceptual quality. Also, in a controlled experimentatiegtwith
real subjects, we validate our results.

CR Categories: 1.3.3 [Picture image generation]: Display al-
gorithms, Viewing algorithms—; J.4 [Social and Behavioali-
ences]: psychology

Keywords: global illumination, computer vision, image synthesis,
perception-driven rendering, Visible Difference PrediVDP)

1 Introduction

In recent years, research in computer graphics has beectatire
toward new perception-driven techniques for renderinge frain
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can be exploited to parameter and to monitor rendering iétgos
based on perceived visual quality. In addition, such tegines can
perform importantimprovements by focusing computatiamg on
features judged as visible by the human visual system stionla
[Mitchell 1987; Tumblin and Rushmeier 1993; Myszkowski 899
Bolin and Meyer 1999; Volevich et al. 2000; Yee et al. 2001¢&®e
2001; Sundstedt et al. 2004; Farrugia and Péroche 2004H.osat
et al. 2006]

Ideally, global illumination rendering process can be pagpwhen
the current image quality becomes indistinguishable froenfully
converged solution from a human observer.

However, in practice, this fully converged solution is uakm and
itis exactly what we want to get at the end of rendering caltoihs.
Itis clear that in this stage of rendering process, the detisf a
stopping condition appears as an important problem: Hovwdrad
criteria must be taken into account to define a stopping ¢iomddf
rendering calculations ?

In this paper, we suggest a perception-driven renderirfqntgae to
resolve this problem. We investigate, through differemtrapches,
the application of the Visible Difference Predictor deymd by
[Daly 1993], to avoid unnecessary computations.

Our global illumination rendering algorithm is based on Non
Carlo Path Tracing (MCPT) method. The stochastic sampling
used by this technique generates color variations perteis@oise
[Szirmay-Kalos 1998]. Though, the fact of progressive agdiam-
ples reduces this noise. Consequently it increases th#ygobihe
calculated image toward a final satisfactory quality soluti

We investigate the VDP to measure the quality of the rendenn
ages. We decide to terminate computations when they attsdta
isfactory perceptual quality even though they contain iropptible
MCPT noise.

The remainder of this paper is structured as follows. Wenanliew
previous work on perceptual models and perception-drieader-
ing techniques in Section 2. Then, in section 3, we will dibscour

purpose is to be able to replace human observer by a model thatexperimental method used for psychophysical validatioher-

simulates the same behavior as his visual system.

Our perceptive performance is controlled by our threshettsiiv-
ity to various features such as: contrast, spatial fregesnorienta-
tions, shapes, colors... Therefore, when looking at ouratisnvi-
ronment, we do not perceive all its components with the sagne p
formance. Some objects automatically and effortlesslyp”pat”
from their surroundings. Also, some details in image canbwot
perceived. Thus, limits of the human visual system (HVS pcitp
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after, in section 4, we will detail and discuss our approadbede-
cide a stopping condition of rendering computations basethe
VDP. In addition, we will compare our results with Myszkowsk
approach [Myszkowski 1998]. Finally, in section 5, we wilggest
some ideas for future work.

2 Previous Work

Standard techniques of realistic rendering rely on philgieacu-
rate simulations of light reflection and surface interattioAt the
final, the result of these rendering algorithms will be présé to
human observers, who will examine images with they HVS Bmit

Recently, considerable efforts have been devoted to utasheliag
and simulating the visual system behavior (HVS). Thesearebes
showed that HVS can fail to perceive some physics inaccuaady
be very sensitive to others [Koch and Uliman 1985; Daly 1993;
Sarnoff Corporation 1997; Ferwerda et al. 1997; Niebur aodrK



1998; Sundstedt et al. 2004; Itti 2005; Navalpakkam an@Q€i6].
Therefore, new perceptually-based techniques of reafistidering
aim for perceptual accuracy rather than physical realism.

Various perceptual models have been proposed. One kingases
ceptual quality metrics which modulate the capacity of aisys-
tem to detect difference between images. The Visible Difiees
Predictor (VDP) [Daly 1993] predicts the probability of detion
of differences between two images. Itis based on frequeecyrd-
positions that extract some visual properties such astsatysto
contrast, orientations ... The VDP operates only on thecewhtic
channel and is very costly to calculate. Thereafter, [Tahat al.
2005] proposed a new multi-resolution visual differencediction
model that takes into account colors.

The Sarnoff Visual Discrimination Model (VDM) [Sarnoff Quo-
ration 1997] is also a famous image comparison metric. Itatps

in the spatial domain. The key elements of the VDM include spa
tial resampling wavelets. It was later modified to the SdraniD
metric for color video. For the reason that the VDM operates i
the spatial domain, it avoids the expensive Fourier transitions
which take up to 40 % of the time consumed in the Daly VDP [Li
1997].

tation will be then compared with the values given by the VBfPrf
different applications that we will detail after.

In all of our experiments, we used a Monte Carlo Path Traciitly w
the next event algorithm (MCPT) and the number of samplewéhe
have used for each pixel is identical. The searched threshitll
then be defined as the number of samples needed.

3.1 First study

In a first stage of this experimental study, we need to get temval
of the perceptual quality threshold for our test sceness Wi al-
low us to reduce the set of values in which researching thestiuld
value.

We presented couples of images (reference, imabei)50..4000
samplegpixel with a step of 5Gamplegpixeland a reference im-
age calculated with 10008amplegpixel. In order to reinforce
statistical results, we show the series of images in asograind
descending order. The results of these first experimentwesho
that the perceptual threshold for our test scenes {408..2500
samplegpixel. This interval corresponds to 50% of observers who

same way as Ramasubramanian [Ramasubramanian et al. 1999],

in which they drop the orientation computation when caltnta
spatial frequencies. They also extend the VDP by includireg t
color domain in computing the differences. This new versibiine
VDP increases speed over the full VDP, which is essentialiajg
when testing a set of images sequence.

These perceptual metrics have shown much utility in Compute
graphics. [Volevich et al. 2000; Myszkowski 1998] used thHePR/

to provide the quantitative measures of perceptual corves by
predicting and estimating the perceivable differencesveen the
intermediate and final images. Also, the performance o€urkfiit
methods of global illumination rendering was measured amd-c
pared using the VDP.

[Farrugia and Péroche 2004] proposed a perceptuallydhaseler-
ing method. The rendering accuracy needed per pixel is tedjus
according to a perceptual adaptive metric based on the lgicétie
Model of Adaptation and Spatial Vision [Pattanaik et al. 899
Their goal is to improve rendering time without the vieweinige
aware of the difference between the refined image and therefe
image computed with a standard global illumination method.

Another kind of perceptual rendering techniques is basetadel

of visual attention. [Yee et al. 2001; Sundstedt et al. 2004;
Longhurst et al. 2006] adapted various visual attention etsod
[Treisman and Gelade 1980; Niebur and Koch 1998; Koch and Ul
man 1985; Niebur et al. 2001; Navalpakkam and Itti 20062005;
Marendaz et al. 2005] in order to accelerate the global ithation
computation in dynamic environments. These models are tased
dictate where computational effort should be spent dutiedight-

ing solution. Rendering system then spent more time to Ekeu
the observer’s regions of interest.

3 Experimental study

In this section, we explain our experimental procedure tisedal-
uate and to validate our VDP application. The goal of thiglgtis
to measure the threshold of sampling from which observensodo
see any differences between current image and the refeoerece
(calculated with very high quality). The results of this exmen-

3.2 Second study

The second stage consists in determining more precisepettoep-
tual threshold values. In addition, we would associate &attke of
the perceptual threshold in the previous interval to a peege of
observers.

The subjects of the experiment were 12 undergraduate stiden
the Institute of Technologies at Calais. The average agk @s\ith
a standard deviation of 3.35.

Subjects were placed at a distance of 0.5 m of the display 419 fl
panel display at resolution 1280x1024, 300 cd/m2). Firstléo@-

tion of the screen is done. Then subjects were asked to arfswer
they can perceive any difference between a reference anget ta
images. The reference and the target images were shown-simul
taneously as long as necessary for the subject to take tlsatec

to answer. Subject gives his answer by pressing a buttonen th
computer interface with the mouse.

The reference image is computed with 10G0n pleg pixel and
target images are computed successively with 100, 500,150,
1700, 2100, 2508amplegpixel. The same images with the same
sampling density were shown two times to reduce errors.

The order of presentation is counterbalanced with a pseudo-
randomized schedule, and the reference image is shownméyndo
at the left or at the right of the target image. This procedsin-
form to the measure of the differential threshold with thehod of
constant stimuli.

Table 1 shows the probability of every subject to perceivéfard
ence between target and reference images (see Figure 2imva v
of scenes). We used 4 different scenes, each scene beingptedc
with two intensities. This made it possible to study the ffe the
intensity on subjects behavior and VDP results.

The probability to perceive a difference is supposed t@Wok sig-
moid law so we can approximate the results with a logit forcti
[Wichmann and Hill 2001]. The general expression of thisaequ
tionlis:



c.edxtb
p(x) = 14 eaxb @

Samples setl 100 | 500 | 900 | 1300 | 1700 | 2100 | 2500

BAR 1 1 0,9 | 0,88 0,67 | 0,48 | 0,52 | 0,44

BAR 2 1 1 092|083 | 069 | 0,75 | 0,71

BOX 1 1 0,67|031| 0,29 | 0,15 0,15 | 0,13

BOX 2 1 /092|071| 063| 0,35| 0558 | 0,38
OCULIST1 | 1 1 1 0,83 | 0,77 | 0,56 | 0,55
OCULIST2 | 1 1 1 0,88 1 0,92 | 0,38
PLANTS 1 1 0,75 044 0,35 0,29 | 04 | 0,25
PLANTS 2 1 05 )|042| 044 | 04 | 0,33 | 0,21

Global 1 /08]071|061| 052]| 053] 0,37

Table 1: Probability to perceive differences.

Table 2 shows the value a, b and ¢ computed by a logit regressio
r being the regression coefficient.

a b [ r
BAR 1 -0,00200| 4,007 | 1,010 | -0,940
BAR 2 -0,00178| 4,558 | 1,010 | -0,907
BOX 1 -0,00226| 2,677 | 1,010| -0,841
BOX 2 -0,00186| 3,489 | 1,010| -0,873
OCULIST1 -0,00233| 5,415 | 1,010 | -0,940
OCULIST2 -0,00178| 5,474| 1,010 | -0,767
PLANTS 1 -0,00185| 2,743 | 1,010 | -0,797
PLANTS 2 -0,00173| 2,457 | 1,010 -0,752
Global -0,00173| 3,276 | 1,010 -0,867

Table 2: The estimate coefficients of a logit regression farhe
scene used in tests.

Figure 1 shows plots from eq. 1 with values from table 2. We
have calculated the value of the sampling percetual thiesbich
corresponds to 50% and 10% of the observers which do not gee an
differences between reference image and target ones.

1.2

PLANTS 2 o -

Probability to perceive differences

2000 3000 4000
Computation precision in samples/pix

1000 5000 6000

Figure 1: The probability to perceive differences for thifedent
scenes used in tests.

These data will be used to evaluate our different resultsandl-
idate the approaches that we detail in the next section &bée 3).

p=05 p=01
BAR1 2013,31 3104,74
BAR2 2578,98 3808,71
BOX 1 1193,52 2157,21
BOX 2 1882,12 3053,19
OCULIST1 2333,57 3270,79
OCULIST2 3093,18 4322,24
PLANTS1 1490,05 2667,44
PLANTS 2 1435,82 2701,31
Global 1903,55 3166,91

Table 3: The Threshold of sampling which corresponds to 5086 a
10% of the subjects who do not see differences between nefere
image (1000Gamplegpixel) and target ones.

4 VDP: application for global illumination
rendering

Algorithm 4.1: ITERATRENDER)

step: Samples added per iteration
CS: Current samplespixel
MaxSampling Max number of Samples

comment: Initial rendering

image2 — Renderingstep

CS« step

repeat
imagel «— image2
image? — imagel + Renderingstep
CS«— CS+step

until CS= MaxSampling

The VDP takes into account important aspects of the HVS #hat r
duce the sensitivity to error. First, the sensitivity of H#Scon-
trast decreases with increasing light levels. Then, theiteity to
perceive details changes with spatial frequency [Rushretial.
1997; Rushmeier et al. 1995]. The last effect, masking [Eeta
et al. 1997], takes into account the variations in sensjtidue to
the signal content of the background.

We integrate the VDP to a MCPT global illumination algorithm
The VDP is applied to measure the quality of rendered imabes.
monitors the rendering process and decides if the calcltptality
needs more perceptual accuracy.

However, the VDP requires two images for comparison. Thé bes
choice for the VDP comparison would be the final convergedjgna
and a partially converged one. However, the former is otshonot
available. So what stage of computation and which imagelghou
be used for VDP comparison to define a stopping conditionrof re
dering computations? In this section, we will describe aisdiuks
some answers to this question. We have chosen to use a faistrver
of the VDP [Yee 2004] which operates in colors space.

All VDP applications that we will present are based on an MCPT
iterative rendering algorithm. Before detailing them, welain
first the basic idea of an iterative rendering independeuttiger-
ceptual techniques (algorithm 4.1). We set a maximum nurober
cast samples as a stopping condition. For every new itesatie

do not restart computations but we add some additional sl
the current samples set.
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Figure 2: The different scenes of tests. The OCULIST scepeogided by courtesy dflusée départemental d’archéologie de BavAii

images are calculated in resolution 51312.

4.1 Approach 1: successive comparison

In this first approach, we suggest to replace the maximum rumb
of cast samples used as stopping condition by a perceptgahth
old defined by VDP differences (algorithm 4.2). We evalua#®®
comparison between two successive renderings and we gacplth
culations whenever the measure of the perceptual erroeleetthe
two images becomes smaller than some threshold.

Algorithm 4.2: SuccCoMPAR(step

step: Samples added per iteration
CS: Current samplespixel

comment: Initial rendering

image2 — Renderingstep

CS« step

repeat
imagel «— image2
image2 — imagel + Renderingstep
CS«— CS+step

until VDP(imagel,image?) < threshold

Discussion: This method gives good results if the chosen sam-
pling step is sufficiently large. Otherwise, the new addiiosam-
ples do not sufficiently change the image. Consequentlyyibe

do not detect any visible differences and the renderingutations
terminate before achieving a perceptually good quality.

Figure 3 shows an example of this problem. The first imagelis ca
culated with 15G6samplegpixel. We add 10samplegpixel to get
the second image. The perceptual difference between thesmt
ages using the VDP is null. However after a number of iteratio
we get the third image calculated with 88@8mplegpixel which is
clearly very different from the two previous ones. This, eaplain

the fluctuations and the irregularities observed in the &sinf the
figure 4.a and the figure 4.b.

We have evaluated the successive rendering with VDP cosgrari
for the BAR 1 scene with different sampling steps. Curves pre
sented in the figure 4 showed that the stopping rendering steg
pends on sampling step. If the step is small, the renderiloy-ca
lations terminate rapidly. With a 56amplegpixel sampling step
the differences become null at 48amplegpixel. With a larger
sampling stepi.e. 100 samplegpixel, the VDP continued to de-
tect differences until 1508amplegpixel. These results show the
strong dependence that exists between the capability dfEtieto
detect differences between successive rendering and tingling
step used.

Furthermore, the value of the 'good’ sampling step is sceme d
pendent. Tests made on all our scenes have showed thatlts val
can change according to to scene properties. As an exarhple, t
VDP fails to detect differences between successive remgieriat
300 samples/pixels for the OCULIST scene, at 158 plegpixel

for BAR 1 and 2200samplegpixel for BOX 1 (see figure 4.b).
Choosing 100samplegpixel as the value of sampling step, per-
mits a good stopping stage only for the BOX 1 scene as compared
to the experimental perceptual thresholds (Table 3). Asaltiave
can not define a general sampling step which gives a goodiatppp
condition for all scenes.

4.2 Approach 2: multiple comparisons

As already said, the successive rendering with VDP comparis
approach is very dependent to the sampling step value aisd¢ne
properties. We have searched for another method lessiserisit
the previous constraints.

The main operation in this approach is to compute multiplePvD
comparisons rather than one. We thus calculate a window@aiP
measures.



Figure 3: the image a) is calculated with 1&@mplegpixel. The image b) is calculated with 18amplegpixel. The image c) is calculated

with 800samplegpixel.
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Figure 4: a) Successive rendering with VDP comparison udifigrent sampling steps, for the BAR 1 scene. b) Successivdering with
VDP comparison for different scenes, using a sampling stépCsamplegpixel.

For every window, images from imagés, Im+1,...Im+n are com-
pared to the reference ima%n)ﬂ. The stopping condition of
calculations can be decided when th¥DP values are lower than
the perceptual VDP threshold. Otherwise, we displace tinelovi
of comparison and we repeat the same treatment (AlgoritBm 4.

Discussion: The iterative rendering with multiple VDP compar-
isons gives a better convergence as compared to the swecessi-
parison. It permits to verify the variations of the visiblerpeptual
differences during several rendering iterations (numliémages
in the comparison window). The rendering will be stopped mvhe
these variations are lower than some threshold. It meanghba
rendering computations attain a stable perceptual acgurac

However, this technique is still dependent on the sampliey sho-
sen (see figure 5.a). The larger the sampling stepis, therhibt
accuracy of stopping condition. It attains 138m plegpixel with
50samplegpixelssampling step and 21G&mpleg pixel with 100
sampling step. Similarly the stopping rendering stageeiases
with the window comparison size: 1300 samples/pixel withm5 i
ages in the comparison window and 21€8mplegpixel with 8
images (figure 5.b).

Figure 5.c shows that if we take a window comparison size =-5im
ages and the sampling step = 18@mplegpixel, we get a good
stopping condition for our test scenes (BAR 1 : 2100, BOX 1 :
1900 and OCULIST 1 : 1708amplegpixel). For the BAR 1 and

the BOX 1 scenes, it corresponds to up 50% of the observer ex-
perimental results and to 30% for the OCULIST 1 scene (Taple 3
We obtained similar results with the other scenes (up to 508b-o

server experimental results). The major drawback of thighotkis
however its computation time. At every iteration we needDP
executions which generates an important cost over the duatipzi-

tations rendering time.

Algorithm 4.3: MuLTCOMPAR(Step

step: Samples added per iteration
CS: Current samplespixel

n:window size

Images$n] : Array of rendering images
Dif f[n]: Array of VDP dif ferences
stop: Boolean to stop rendering

repeat
RENDERWINDOW(Image§|,CS step
IRef+« RenderingCS+ step
CS«— CS+step
VDPWIiNnDOW(Image§|,IRef,Dif f[])
stop« true
i—0
while ((i < n) and (stop=true))
if (Dif f[i] > threshold
then stop+— false
i—i+1
until stop=true

do
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Figure 5: a) VDP multiple comparisons with the BAR 1 sceneWa)dow comparison size =5, step sampling = (50, %8 plegpixel. b)
Window comparison size =(5,8), step sampling =safnplegpixel. c) Rendering with multiple VDP comparisons using a sangpitep =
100samplegpixel and window comparison = 5 images for BAR1, BOX 1 and OCULISTdnes.

4.3 Approach 3: reverse comparison process

Algorithm 4.4: REVERSECOMPAR(step

step— Samples added per iteration
CS« Current samplespixel

n« window size

Image$n] — Array of rendering images
Dif f [n] < Array of VDP dif ferences
stop«— Boolean to stop rendering

stop« false
comment: Initial rendering

IRef — RenderingCS+ step
CS—CS+step
repeat
RENDERWINDOW(Image$],CS step
VDPWINDOW(Image§], IRef,Dif f[])
Ad just— REGRESSIONDIf f[])
if Adjust> ¢
then
image— RenderingCS+ step
CS— CS+step
INSER(image Image$|)
elsestop— true
until stop=true

When we start the calculation of the global illuminationugimn,
we do not possess the fully converged image. This image & the
retically required in order to be compared to the currenigenand

to decide to terminate the rendering process when they leathrbe
perceptually identical.

We propose in this approach to replace this image with arinit
rendering (obtained after some calculation iterationsgnésally,
this rendering has a lower quality than the final image. THe-so
tions then consists to reverse the original comparisonga®¢Al-
gorithm 4.4). Thus, instead to stop the calculations whendif
ference between the reference and the current image igisegli
it will be terminated when this difference attains a peak atzd
bilizes. That means that the additional sampling does nahgé
the perceptual quality of the calculated image. Thus, tatficun is
considered as fully converged.

Discussion: As shown in the figure 6.a, when the rendering cal-
culations converge, the perceptual differences betweennitial
rendering and the current image increases. This differattaas a
maximal and becomes then linear.

This approach is less sensitive to the sampling step thapréw-
ous ones. Figure 6.a shows that the two obtained curves kgth t
BAR 1 scene and different sampling steps, have the same fodm a
start being linear at the same sampling stage. The two culwes
not describe the same VDP difference values since the refere
image is not the same for the two measure sets. When adding 50
samples per pixel at each iteration, we computed the referien-

age with 50 samples per pixel. 100 samples per pixels wemr use
for the second reference image, used when adding 100 sapwiles
pixel at each iteration. If the same reference image was tieed
two curves would have been quite equals. This should ingliteit
this approach is relatively not sensitive to the initial gdinmg of the
reference image.

The problem now is to be able to detect when the linear pardf e
curve starts and consequently when to stop the iterativierarg
process. One of the statistical techniques which can bewked
evaluating the linear relationship between two variakdehé sim-
ple linear regression [Hidiroglou and Patak 2004]. Thishuodol-
ogy is widely used in business, the social and behaviorahseis,
the biological sciences, and many other disciplines. Itsisduto
estimate a model which relays two variables and predicfsorese
of one of variable from the other. A linear regression lins ha
equation of the forny = aX+bh.

In our case, we would modulate the relationship betweendtre s
pling set and the VDP differences. We use the linear regrassi
to estimate the director coefficient of the line which padseshe
slope and to predict the function linearity.

We calculate the regression coefficient of the N VDP values-co
puted between the initial rendering and théo m+ n images. At
every iteration, we insert the new VDP value to recalculbtere-
gression coefficiend. We decide to stop the rendering computa-
tions when the regression coefficient becomes less than soaié
value (> 0 and< ¢€).

In the figure 6.b we show results of the linear regression® reh
gressions values increase when the perceptual differelecesase.
It becomes steady and near zero when the rendering catmgati
attain a peak of a perceptual accuracy.

[Myszkowski 1998] has proposed a method to estimate the per-
ceptual differences between the current renderimggel) and the
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the number of VDP values using to calculate the regessicfficeat = 5. The reference image is calculated with $8énplegpixel and the

sampling step for each next iteration is 1&4mpleg pixel.

Experimental 50%| Experimental 10%| Myszkowski approach Reverse comparisof
BAR 1 2013,31 3104,74 3800 3300
BAR 2 2578,98 3808,71 4000 3700
BOX 1 1193,52 2157,21 2600 2300
BOX 2 1882,12 3053,19 3400 3000
OCULIST 1 2333,57 3270,78 1800 1600
OCULIST 2 3093,18 4322,24 3400 3100
PLANTS 1 1490,05 2667,46 3000 2700
PLANTS 2 1435,82 2701,31 3200 2900

Table 4: Comparison between experimental thresholds and P reverse comparison results

image completely convergeth{ageQ. He suggests that the VDP
(imagelimageQ ~ VDP (imagel imagex|) with a ~ 0.5 .

We have evaluated this method to obtain the valué fof which

the VDP (imageimagé.5l) ~ 0 using 100samplegpixel for the
sampling step. Table 4 shows the results obtained by oupappr
evaluated with a regression coefficient0.1. As compared to the
experimental thresholds, it gives a good estimation of #reqp-
tual threshold for the scenes : BAR 1, BAR 2, BOX 1, BOX 2,
PLANTS 1 and PLANTS 2. Myszkowski's approach overestimates
the perceptual threshold for these scenes. For the OCULI&T 1
OCULIST 2 scenes, both methods fail to provide a good eséimat
of the sampling threshold. Note that this problem is notecklio
the tow approaches but rather to the use of the VDP. thus seme n
experiments should be performed in order to understancetsons

of this result.

From a memory consumption point of view, Myszkowski's ap-
proach requires to store several images during computdtion
comparisons during the iterative rendering process. lrapproach
only the reference and current images have to be storedgingdu
considerably the memory consumption. Forthermore ourcsgmbr
allows is to reduce from 8 to 14% the number of samples to be use
Because sampling is computationnaly demanding, our apprala
lows us to obtain converge image fastly.

5 Conclusion

Taking into account the limits of the human visual system 8}V
capacity can significantly improve realistic renderingoaithms by
guiding the computations to achieve perceptual accuracy.

In this work, we have investigated the application of a fassion

of the VDP [Yee 2004] to monitor the Path Tracing global ilium
nation rendering. We have proposed and we have discussed dif
ferent approaches to define a perceptual stopping condifiBath
Tracing computations. We have shown thatshecessive compar-
isonmethod depends strongly to the sampling step and to the scene
properties. Thenultiple comparisonapproach can be parameter-
ized to give a good stopping condition but it is costly to cédte.
Then, we have demonstrated theverse comparisomethod as
less sensitive to the choice of the application parametbrsaad-
dition, the experimental results showed that our reversgeawison

with linear regression provides a stopping rendering cdatfans
more efficiently and more accurately than Myszkowski’'s apgh
[Myszkowski 1998].

However, we do not get an optimal result with all the test ssen
The calculated threshold for the OCULIST scenes is lowen tha
the experimental one both for our approach and Myszkowskiés

This requires a validation of the VDP parameters for thisikirh
applications. This problem could be explained by the langen

ber of textures that appear in this scene. Thus we think tiet t
VDP could be more sensitive to masking than the HVS. Further-
more [Longhurst and Chalmers 2004] have shown through an ex-
perimental set that the VDP does not give the optimal regsons

In future work we thus plan to perform more systematic psy-
chophysical experiments with more test scenes. This sHaotthker
improve our experimental results and should be used toretdib
and to validate the VDP for realistic rendering applicasio\d-
ditionally, we plan to combine a perceptual quality metriithwa
model of visual attention to guide a selective global illaation
rendering in static and dynamic environments.
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