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Abstract

The aim of realistic image synthesis is to produce high fidelity im-
ages that authentically represent real scenes. As these images are
produced for human observers, we may exploit the fact that not ev-
erything is perceived when viewing scene with our eyes. Thus, it
is clear that taking advantage of the limited capacity of thehuman
visual system (HVS), can significantly contribute to optimize ren-
dering software.

Global illumination methods are used to simulate realisticlighting
in 3D scenes. They generally provide a progressive convergence to
high-quality solution. One of the problem of such algorithms is to
determine a stopping condition, for deciding if calculations reached
a satisfactory convergence allowing the process to terminate.

In this paper, we propose and we discuss different solutionsto this
important problem. We show different techniques based on the Vi-
sual Difference Predictor (VDP) proposed by Daly [Daly 1993] to
define a perceptual stopping condition for rendering computations.
We use the VDP to measure the perceived differences between ren-
dered images and to guide the Path Tracing rendering to satisfy a
perceptual quality. Also, in a controlled experimental setting with
real subjects, we validate our results.

CR Categories: I.3.3 [Picture image generation]: Display al-
gorithms, Viewing algorithms—; J.4 [Social and BehavioralSci-
ences]: psychology

Keywords: global illumination, computer vision, image synthesis,
perception-driven rendering, Visible Difference Predictor (VDP)

1 Introduction

In recent years, research in computer graphics has been directed
toward new perception-driven techniques for rendering. The main
purpose is to be able to replace human observer by a model that
simulates the same behavior as his visual system.

Our perceptive performance is controlled by our threshold sensitiv-
ity to various features such as: contrast, spatial frequencies, orienta-
tions, shapes, colors... Therefore, when looking at our visual envi-
ronment, we do not perceive all its components with the same per-
formance. Some objects automatically and effortlessly ”pop out”
from their surroundings. Also, some details in image can notbe
perceived. Thus, limits of the human visual system (HVS) capacity
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can be exploited to parameter and to monitor rendering algorithms
based on perceived visual quality. In addition, such techniques can
perform important improvements by focusing computations only on
features judged as visible by the human visual system simulation
[Mitchell 1987; Tumblin and Rushmeier 1993; Myszkowski 1998;
Bolin and Meyer 1999; Volevich et al. 2000; Yee et al. 2001; Reddy
2001; Sundstedt et al. 2004; Farrugia and Péroche 2004; Longhurst
et al. 2006]

Ideally, global illumination rendering process can be stopped when
the current image quality becomes indistinguishable from the fully
converged solution from a human observer.

However, in practice, this fully converged solution is unknown and
it is exactly what we want to get at the end of rendering calculations.
It is clear that in this stage of rendering process, the decision of a
stopping condition appears as an important problem: How andwhat
criteria must be taken into account to define a stopping condition of
rendering calculations ?

In this paper, we suggest a perception-driven rendering technique to
resolve this problem. We investigate, through different approaches,
the application of the Visible Difference Predictor developed by
[Daly 1993], to avoid unnecessary computations.

Our global illumination rendering algorithm is based on Monte
Carlo Path Tracing (MCPT) method. The stochastic sampling
used by this technique generates color variations perceived as noise
[Szirmay-Kalos 1998]. Though, the fact of progressive adding sam-
ples reduces this noise. Consequently it increases the quality of the
calculated image toward a final satisfactory quality solution.

We investigate the VDP to measure the quality of the rendering im-
ages. We decide to terminate computations when they attain asat-
isfactory perceptual quality even though they contain imperceptible
MCPT noise.

The remainder of this paper is structured as follows. We willreview
previous work on perceptual models and perception-driven render-
ing techniques in Section 2. Then, in section 3, we will describe our
experimental method used for psychophysical validation. There-
after, in section 4, we will detail and discuss our approaches to de-
cide a stopping condition of rendering computations based on the
VDP. In addition, we will compare our results with Myszkowski’s
approach [Myszkowski 1998]. Finally, in section 5, we will suggest
some ideas for future work.

2 Previous Work

Standard techniques of realistic rendering rely on physically accu-
rate simulations of light reflection and surface interactions. At the
final, the result of these rendering algorithms will be presented to
human observers, who will examine images with they HVS limits

Recently, considerable efforts have been devoted to understanding
and simulating the visual system behavior (HVS). These researches
showed that HVS can fail to perceive some physics inaccuracyand
be very sensitive to others [Koch and Ullman 1985; Daly 1993;
Sarnoff Corporation 1997; Ferwerda et al. 1997; Niebur and Koch



1998; Sundstedt et al. 2004; Itti 2005; Navalpakkam and Itti2006].
Therefore, new perceptually-based techniques of realistic rendering
aim for perceptual accuracy rather than physical realism.

Various perceptual models have been proposed. One kind usesper-
ceptual quality metrics which modulate the capacity of visual sys-
tem to detect difference between images. The Visible Differences
Predictor (VDP) [Daly 1993] predicts the probability of detection
of differences between two images. It is based on frequency decom-
positions that extract some visual properties such as sensitivity to
contrast, orientations ... The VDP operates only on the achromatic
channel and is very costly to calculate. Thereafter, [Tolhurst et al.
2005] proposed a new multi-resolution visual difference prediction
model that takes into account colors.

The Sarnoff Visual Discrimination Model (VDM) [Sarnoff Corpo-
ration 1997] is also a famous image comparison metric. It operates
in the spatial domain. The key elements of the VDM include spa-
tial resampling wavelets. It was later modified to the Sarnoff JND
metric for color video. For the reason that the VDM operates in
the spatial domain, it avoids the expensive Fourier transformations
which take up to 40 % of the time consumed in the Daly VDP [Li
1997].

[Yee 2004] has proposed an abridged version of the VDP in the
same way as Ramasubramanian [Ramasubramanian et al. 1999],
in which they drop the orientation computation when calculating
spatial frequencies. They also extend the VDP by including the
color domain in computing the differences. This new versionof the
VDP increases speed over the full VDP, which is essential specially
when testing a set of images sequence.

These perceptual metrics have shown much utility in Computer
graphics. [Volevich et al. 2000; Myszkowski 1998] used the VDP
to provide the quantitative measures of perceptual convergence by
predicting and estimating the perceivable differences between the
intermediate and final images. Also, the performance of different
methods of global illumination rendering was measured and com-
pared using the VDP.

[Farrugia and Péroche 2004] proposed a perceptually-based render-
ing method. The rendering accuracy needed per pixel is adjusted
according to a perceptual adaptive metric based on the Multi-scale
Model of Adaptation and Spatial Vision [Pattanaik et al. 1998].
Their goal is to improve rendering time without the viewer being
aware of the difference between the refined image and the reference
image computed with a standard global illumination method.

Another kind of perceptual rendering techniques is based onmodel
of visual attention. [Yee et al. 2001; Sundstedt et al. 2004;
Longhurst et al. 2006] adapted various visual attention models
[Treisman and Gelade 1980; Niebur and Koch 1998; Koch and Ull-
man 1985; Niebur et al. 2001; Navalpakkam and Itti 2006; Itti2005;
Marendaz et al. 2005] in order to accelerate the global illumination
computation in dynamic environments. These models are usedto
dictate where computational effort should be spent during the light-
ing solution. Rendering system then spent more time to calculate
the observer’s regions of interest.

3 Experimental study

In this section, we explain our experimental procedure usedto eval-
uate and to validate our VDP application. The goal of this study is
to measure the threshold of sampling from which observers donot
see any differences between current image and the referenceone
(calculated with very high quality). The results of this experimen-

tation will be then compared with the values given by the VDP from
different applications that we will detail after.

In all of our experiments, we used a Monte Carlo Path Tracing with
the next event algorithm (MCPT) and the number of samples thewe
have used for each pixel is identical. The searched threshold will
then be defined as the number of samples needed.

3.1 First study

In a first stage of this experimental study, we need to get an interval
of the perceptual quality threshold for our test scenes. This will al-
low us to reduce the set of values in which researching the threshold
value.

We presented couples of images (reference, imageI),I in [50..4000]
samples/pixel with a step of 50samples/pixeland a reference im-
age calculated with 10000samples/pixel. In order to reinforce
statistical results, we show the series of images in ascending and
descending order. The results of these first experiments showed
that the perceptual threshold for our test scenes is in[100..2500]
samples/pixel. This interval corresponds to 50% of observers who
do not detect any differences from reference images.

3.2 Second study

The second stage consists in determining more precisely thepercep-
tual threshold values. In addition, we would associate eachvalue of
the perceptual threshold in the previous interval to a percentage of
observers.

The subjects of the experiment were 12 undergraduate students at
the Institute of Technologies at Calais. The average age is 21.0 with
a standard deviation of 3.35.

Subjects were placed at a distance of 0.5 m of the display (19 flat
panel display at resolution 1280x1024, 300 cd/m2). First a calibra-
tion of the screen is done. Then subjects were asked to answerif
they can perceive any difference between a reference and a target
images. The reference and the target images were shown simul-
taneously as long as necessary for the subject to take the decision
to answer. Subject gives his answer by pressing a button on the
computer interface with the mouse.

The reference image is computed with 10000samples/pixel and
target images are computed successively with 100, 500, 900,1300,
1700, 2100, 2500samples/pixel. The same images with the same
sampling density were shown two times to reduce errors.

The order of presentation is counterbalanced with a pseudo-
randomized schedule, and the reference image is shown randomly
at the left or at the right of the target image. This procedureis con-
form to the measure of the differential threshold with the method of
constant stimuli.

Table 1 shows the probability of every subject to perceive a differ-
ence between target and reference images (see Figure 2 for a view
of scenes). We used 4 different scenes, each scene being calculated
with two intensities. This made it possible to study the effect of the
intensity on subjects behavior and VDP results.

The probability to perceive a difference is supposed to follow a sig-
moid law so we can approximate the results with a logit function
[Wichmann and Hill 2001]. The general expression of this equa-
tion 1 is :



p(x) =
c.ea.x+b

1+ea.x+b
(1)

Samples set 100 500 900 1300 1700 2100 2500
BAR 1 1 0,96 0,88 0,67 0,48 0,52 0,44
BAR 2 1 1 0,92 0,83 0,69 0,75 0,71
BOX 1 1 0,67 0,31 0,29 0,15 0,15 0,13
BOX 2 1 0,92 0,71 0,63 0,35 0,58 0,38

OCULIST 1 1 1 1 0,83 0,77 0,56 0,5
OCULIST 2 1 1 1 0,88 1 0,92 0,38
PLANTS 1 1 0,75 0,44 0,35 0,29 0,4 0,25
PLANTS 2 1 0,5 0,42 0,44 0,4 0,33 0,21

Global 1 0,85 0,71 0,61 0,52 0,53 0,37

Table 1: Probability to perceive differences.

Table 2 shows the value a, b and c computed by a logit regression,
r being the regression coefficient.

a b c r
BAR 1 -0,00200 4,007 1,010 -0,940
BAR 2 -0,00178 4,558 1,010 -0,907
BOX 1 -0,00226 2,677 1,010 -0,841
BOX 2 -0,00186 3,489 1,010 -0,873

OCULIST 1 -0,00233 5,415 1,010 -0,940
OCULIST 2 -0,00178 5,474 1,010 -0,767
PLANTS 1 -0,00185 2,743 1,010 -0,797
PLANTS 2 -0,00173 2,457 1,010 -0,752

Global -0,00173 3,276 1,010 -0,867

Table 2: The estimate coefficients of a logit regression for each
scene used in tests.

Figure 1 shows plots from eq. 1 with values from table 2. We
have calculated the value of the sampling percetual thresold which
corresponds to 50% and 10% of the observers which do not see any
differences between reference image and target ones.
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Figure 1: The probability to perceive differences for the different
scenes used in tests.

These data will be used to evaluate our different results andto val-
idate the approaches that we detail in the next section (see table 3).

p = 0.5 p = 0.1
BAR1 2013,31 3104,74
BAR2 2578,98 3808,71
BOX 1 1193,52 2157,21
BOX 2 1882,12 3053,19

OCULIST 1 2333,57 3270,78
OCULIST 2 3093,18 4322,24
PLANTS 1 1490,05 2667,46
PLANTS 2 1435,82 2701,31

Global 1903,55 3166,91

Table 3: The Threshold of sampling which corresponds to 50% and
10% of the subjects who do not see differences between reference
image (10000samples/pixel) and target ones.

4 VDP: application for global illumination

rendering

Algorithm 4.1: ITERATRENDER()

step: Samples added per iteration
CS: Current samples/pixel
MaxSampling: Max number o f Samples

comment: Initial rendering

image2← Rendering(step)
CS← step
repeat






image1← image2
image2← image1+Rendering(step)
CS←CS+step

until CS= MaxSampling

The VDP takes into account important aspects of the HVS that re-
duce the sensitivity to error. First, the sensitivity of HVSto con-
trast decreases with increasing light levels. Then, the sensitivity to
perceive details changes with spatial frequency [Rushmeier et al.
1997; Rushmeier et al. 1995]. The last effect, masking [Ferwerda
et al. 1997], takes into account the variations in sensitivity due to
the signal content of the background.

We integrate the VDP to a MCPT global illumination algorithm.
The VDP is applied to measure the quality of rendered images.It
monitors the rendering process and decides if the calculated quality
needs more perceptual accuracy.

However, the VDP requires two images for comparison. The best
choice for the VDP comparison would be the final converged image
and a partially converged one. However, the former is obviously not
available. So what stage of computation and which image should
be used for VDP comparison to define a stopping condition of ren-
dering computations? In this section, we will describe and discuss
some answers to this question. We have chosen to use a fast version
of the VDP [Yee 2004] which operates in colors space.

All VDP applications that we will present are based on an MCPT
iterative rendering algorithm. Before detailing them, we explain
first the basic idea of an iterative rendering independentlyof per-
ceptual techniques (algorithm 4.1). We set a maximum numberof
cast samples as a stopping condition. For every new iteration, we
do not restart computations but we add some additional samples to
the current samples set.
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Figure 2: The different scenes of tests. The OCULIST scene isprovided by courtesy ofMusée départemental d’archéologie de Bavay. All
images are calculated in resolution 512×512.

4.1 Approach 1: successive comparison

In this first approach, we suggest to replace the maximum number
of cast samples used as stopping condition by a perceptual thresh-
old defined by VDP differences (algorithm 4.2). We evaluate aVDP
comparison between two successive renderings and we stop the cal-
culations whenever the measure of the perceptual error between the
two images becomes smaller than some threshold.

Algorithm 4.2: SUCCCOMPAR(step)

step: Samples added per iteration
CS: Current samples/pixel

comment: Initial rendering

image2← Rendering(step)
CS← step
repeat






image1← image2
image2← image1+Rendering(step)
CS←CS+step

until VDP(image1, image2) ≤ threshold

Discussion: This method gives good results if the chosen sam-
pling step is sufficiently large. Otherwise, the new additional sam-
ples do not sufficiently change the image. Consequently, theVDP
do not detect any visible differences and the rendering calculations
terminate before achieving a perceptually good quality.

Figure 3 shows an example of this problem. The first image is cal-
culated with 150samples/pixel. We add 10samples/pixel to get
the second image. The perceptual difference between these two im-
ages using the VDP is null. However after a number of iterations
we get the third image calculated with 800samples/pixel which is
clearly very different from the two previous ones. This, canexplain

the fluctuations and the irregularities observed in the curves of the
figure 4.a and the figure 4.b.

We have evaluated the successive rendering with VDP comparison
for the BAR 1 scene with different sampling steps. Curves pre-
sented in the figure 4 showed that the stopping rendering stage de-
pends on sampling step. If the step is small, the rendering calcu-
lations terminate rapidly. With a 50samples/pixel sampling step
the differences become null at 400samples/pixel. With a larger
sampling step,i.e. 100 samples/pixel, the VDP continued to de-
tect differences until 1500samples/pixel. These results show the
strong dependence that exists between the capability of theVDP to
detect differences between successive rendering and the sampling
step used.

Furthermore, the value of the ’good’ sampling step is scene de-
pendent. Tests made on all our scenes have showed that its value
can change according to to scene properties. As an example, the
VDP fails to detect differences between successive renderings, at
300 samples/pixels for the OCULIST scene, at 1500samples/pixel
for BAR 1 and 2200samples/pixel for BOX 1 (see figure 4.b).
Choosing 100samples/pixel as the value of sampling step, per-
mits a good stopping stage only for the BOX 1 scene as compared
to the experimental perceptual thresholds (Table 3). As a result, we
can not define a general sampling step which gives a good stopping
condition for all scenes.

4.2 Approach 2: multiple comparisons

As already said, the successive rendering with VDP comparison
approach is very dependent to the sampling step value and thescene
properties. We have searched for another method less sensitive to
the previous constraints.

The main operation in this approach is to compute multiple VDP
comparisons rather than one. We thus calculate a window ofn VDP
measures.
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Figure 3: the image a) is calculated with 150samples/pixel. The image b) is calculated with 160samples/pixel. The image c) is calculated
with 800samples/pixel.
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Figure 4: a) Successive rendering with VDP comparison usingdifferent sampling steps, for the BAR 1 scene. b) Successiverendering with
VDP comparison for different scenes, using a sampling step =100samples/pixel.

For every window, images from imagesIm, Im+1, ...Im+n are com-
pared to the reference imageI(m+n)+1. The stopping condition of
calculations can be decided when then VDP values are lower than
the perceptual VDP threshold. Otherwise, we displace the window
of comparison and we repeat the same treatment (Algorithm 4.3).

Discussion: The iterative rendering with multiple VDP compar-
isons gives a better convergence as compared to the successive com-
parison. It permits to verify the variations of the visible perceptual
differences during several rendering iterations (number of images
in the comparison window). The rendering will be stopped when
these variations are lower than some threshold. It means that the
rendering computations attain a stable perceptual accuracy.

However, this technique is still dependent on the sampling step cho-
sen (see figure 5.a). The larger the sampling stepis, the better the
accuracy of stopping condition. It attains 1300samples/pixel with
50samples/pixelssampling step and 2100samples/pixel with 100
sampling step. Similarly the stopping rendering stage increases
with the window comparison size: 1300 samples/pixel with 5 im-
ages in the comparison window and 2100samples/pixel with 8
images (figure 5.b).

Figure 5.c shows that if we take a window comparison size = 5 im-
ages and the sampling step = 100samples/pixel, we get a good
stopping condition for our test scenes (BAR 1 : 2100, BOX 1 :
1900 and OCULIST 1 : 1700samples/pixel). For the BAR 1 and
the BOX 1 scenes, it corresponds to up 50% of the observer ex-
perimental results and to 30% for the OCULIST 1 scene (Table 3).
We obtained similar results with the other scenes (up to 50% of ob-

server experimental results). The major drawback of this method is
however its computation time. At every iteration we needn VDP
executions which generates an important cost over the full compu-
tations rendering time.

Algorithm 4.3: MULTCOMPAR(step)

step: Samples added per iteration
CS: Current samples/pixel
n : window size
Images[n] : Array o f rendering images
Di f f [n] : Array o f VDP di f f erences
stop: Boolean to stop rendering

repeat
RENDERWINDOW(Images[],CS,step)
IRe f← Rendering(CS+step)
CS←CS+step
VDPWINDOW(Images[], IRe f,Di f f [])
stop← true
i← 0
while ((i < n) and (stop= true))

do







if (Di f f [i] > threshold)
then stop← f alse

i← i +1
until stop= true
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Figure 5: a) VDP multiple comparisons with the BAR 1 scene. a)Window comparison size =5, step sampling = (50,100samples/pixel. b)
Window comparison size =(5,8), step sampling = 50samples/pixel. c) Rendering with multiple VDP comparisons using a sampling step =
100samples/pixel and window comparison = 5 images for BAR1, BOX 1 and OCULIST 1 scenes.

4.3 Approach 3: reverse comparison process

Algorithm 4.4: REVERSECOMPAR(step)

step← Samples added per iteration
CS←Current samples/pixel
n← window size
Images[n]← Array o f rendering images
Di f f [n]← Array o f VDP di f f erences
stop← Boolean to stop rendering

stop← f alse
comment: Initial rendering

IRe f← Rendering(CS+step)
CS←CS+step
repeat


















































RENDERWINDOW(Images[],CS,step)
VDPWINDOW(Images[], IRe f,Di f f [])
Ad just← REGRESSION(Di f f [])
if Ad just> ε

then






image← Rendering(CS+step)
CS←CS+step
INSER(image, Images[])
else stop← true

until stop= true

When we start the calculation of the global illumination solution,
we do not possess the fully converged image. This image is theo-
retically required in order to be compared to the current image and
to decide to terminate the rendering process when they both become
perceptually identical.

We propose in this approach to replace this image with an initial
rendering (obtained after some calculation iterations). Generally,
this rendering has a lower quality than the final image. The solu-
tions then consists to reverse the original comparison process (Al-
gorithm 4.4). Thus, instead to stop the calculations when the dif-
ference between the reference and the current image is negligible,
it will be terminated when this difference attains a peak andsta-
bilizes. That means that the additional sampling does not change
the perceptual quality of the calculated image. Thus, calculation is
considered as fully converged.

Discussion: As shown in the figure 6.a, when the rendering cal-
culations converge, the perceptual differences between the initial
rendering and the current image increases. This differenceattains a
maximal and becomes then linear.

This approach is less sensitive to the sampling step than theprevi-
ous ones. Figure 6.a shows that the two obtained curves with the
BAR 1 scene and different sampling steps, have the same form and
start being linear at the same sampling stage. The two curvesdo
not describe the same VDP difference values since the reference
image is not the same for the two measure sets. When adding 50
samples per pixel at each iteration, we computed the reference im-
age with 50 samples per pixel. 100 samples per pixels were used
for the second reference image, used when adding 100 samplesper
pixel at each iteration. If the same reference image was usedthe
two curves would have been quite equals. This should indicate that
this approach is relatively not sensitive to the initial sampling of the
reference image.

The problem now is to be able to detect when the linear part of each
curve starts and consequently when to stop the iterative rendering
process. One of the statistical techniques which can be usedwhen
evaluating the linear relationship between two variables is the sim-
ple linear regression [Hidiroglou and Patak 2004]. This methodol-
ogy is widely used in business, the social and behavioral sciences,
the biological sciences, and many other disciplines. It is used to
estimate a model which relays two variables and predicts response
of one of variable from the other. A linear regression line has an
equation of the formY = aX+b.

In our case, we would modulate the relationship between the sam-
pling set and the VDP differences. We use the linear regression
to estimate the director coefficient of the line which passesby the
slope and to predict the function linearity.

We calculate the regression coefficient of the N VDP values com-
puted between the initial rendering and them to m+n images. At
every iteration, we insert the new VDP value to recalculate the re-
gression coefficienta. We decide to stop the rendering computa-
tions when the regression coefficient becomes less than somesmall
value (≥ 0 and≤ ε).

In the figure 6.b we show results of the linear regressions. The re-
gressions values increase when the perceptual differencesdecrease.
It becomes steady and near zero when the rendering calculations
attain a peak of a perceptual accuracy.

[Myszkowski 1998] has proposed a method to estimate the per-
ceptual differences between the current rendering (imageI) and the
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Figure 6: a) Results with the BAR scene using different sampling steps: 50 and 100samples/pixel. b) Regression coefficient for test scenes,
the number of VDP values using to calculate the regession coefficient = 5. The reference image is calculated with 100samples/pixel and the
sampling step for each next iteration is 100samples/pixel.

Experimental 50% Experimental 10% Myszkowski approach Reverse comparison
BAR 1 2013,31 3104,74 3800 3300
BAR 2 2578,98 3808,71 4000 3700
BOX 1 1193,52 2157,21 2600 2300
BOX 2 1882,12 3053,19 3400 3000

OCULIST 1 2333,57 3270,78 1800 1600
OCULIST 2 3093,18 4322,24 3400 3100
PLANTS 1 1490,05 2667,46 3000 2700
PLANTS 2 1435,82 2701,31 3200 2900

Table 4: Comparison between experimental thresholds and the VDP reverse comparison results

image completely converged (imageC). He suggests that the VDP
(imageI, imageC) ≃ VDP (imageI, imageαI) with α ≃ 0.5 .

We have evaluated this method to obtain the value ofI for which
the VDP(image, image0.5I) ≃ 0 using 100samples/pixel for the
sampling step. Table 4 shows the results obtained by our approach
evaluated with a regression coefficient≤ 0.1. As compared to the
experimental thresholds, it gives a good estimation of the percep-
tual threshold for the scenes : BAR 1, BAR 2, BOX 1, BOX 2,
PLANTS 1 and PLANTS 2 . Myszkowski’s approach overestimates
the perceptual threshold for these scenes. For the OCULIST 1and
OCULIST 2 scenes, both methods fail to provide a good estimate
of the sampling threshold. Note that this problem is not relied to
the tow approaches but rather to the use of the VDP. thus some new
experiments should be performed in order to understand the reasons
of this result.

From a memory consumption point of view, Myszkowski’s ap-
proach requires to store several images during computationfor
comparisons during the iterative rendering process. In ourapproach
only the reference and current images have to be stored, reducing
considerably the memory consumption. Forthermore our approach
allows is to reduce from 8 to 14% the number of samples to be used.
Because sampling is computationnaly demanding, our approach al-
lows us to obtain converge image fastly.

5 Conclusion

Taking into account the limits of the human visual system (HVS)
capacity can significantly improve realistic rendering algorithms by
guiding the computations to achieve perceptual accuracy.

In this work, we have investigated the application of a fast version

of the VDP [Yee 2004] to monitor the Path Tracing global illumi-
nation rendering. We have proposed and we have discussed dif-
ferent approaches to define a perceptual stopping conditionof Path
Tracing computations. We have shown that thesuccessive compar-
isonmethod depends strongly to the sampling step and to the scene
properties. Themultiple comparisonsapproach can be parameter-
ized to give a good stopping condition but it is costly to calculate.
Then, we have demonstrated thereverse comparisonmethod as
less sensitive to the choice of the application parameters.In ad-
dition, the experimental results showed that our reverse comparison
with linear regression provides a stopping rendering computations
more efficiently and more accurately than Myszkowski’s approach
[Myszkowski 1998].

However, we do not get an optimal result with all the test scenes.
The calculated threshold for the OCULIST scenes is lower than
the experimental one both for our approach and Myszkowski’sone.
This requires a validation of the VDP parameters for this kind of
applications. This problem could be explained by the large num-
ber of textures that appear in this scene. Thus we think that the
VDP could be more sensitive to masking than the HVS. Further-
more [Longhurst and Chalmers 2004] have shown through an ex-
perimental set that the VDP does not give the optimal responses.

In future work we thus plan to perform more systematic psy-
chophysical experiments with more test scenes. This shouldfurther
improve our experimental results and should be used to calibrate
and to validate the VDP for realistic rendering applications. Ad-
ditionally, we plan to combine a perceptual quality metric with a
model of visual attention to guide a selective global illumination
rendering in static and dynamic environments.
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FARRUGIA, J.-P.,AND PÉROCHE, B. 2004. A progressive render-
ing algorithm using an adaptive perceptually based image metric.
Comput. Graph. Forum 23, 3, 605–614.

FERWERDA, J. A., PATTANAIK , S. N., SHIRLEY, P., AND
GREENBERG, D. P. 1997. A model of visual masking for com-
puter graphics.Computer Graphics 31, Annual Conference Se-
ries, 143–152.

GIBSON, S., AND HUBBOLD, R. J. 2000. A perceptually-driven
parallel algorithm for efficient radiosity simulation.IEEE Trans-
actions on Visualization and Computer Graphics 6, 3, 220–235.

HIDIROGLOU, M. A., AND PATAK , Z. 2004. Domain estimation
using linear regression.Survey Methodology 30, 67–78.

ITTI , L. 2005. Models of bottom-up attention and saliency. In
Neurobiology of Attention, G. R. L. Itti and J. K. Tsotsos, Eds.
Elsevier, San Diego, CA, Jan, 576–582.

KOCH, C., AND ULLMAN , S. 1985. Shifts in selective visual
attention: Towards the underlying neural circuitry.Human Neu-
robiology 4(January), 219–227.

L I , B., 1997. An analysis and comparison of two visual discrimi-
nation models.

LONGHURST, P., AND CHALMERS, A. 2004. User validation of
image quality assessment algorithms. InTPCG ’04: Proceed-
ings of the Theory and Practice of Computer Graphics 2004
(TPCG’04), IEEE Computer Society, Washington, DC, USA,
196–202.

LONGHURST, P., DEBATTISTA, K., AND CHALMERS, A. 2006. A
gpu based saliency map for high-fidelity selective rendering. In
AFRIGRAPH 2006 4th International Conference on Computer
Graphics, Vrtual Reality, Visualisation and Interaction in Africa,
ACM SIGGRAPH, 21–29.

MARENDAZ, C., CHAUVIN , A., AND HÉRAULT, J. 2005. A causal
link between scene exploration, local saliency and scene context.
J. Vis. 5, 8 (9), 919–919.

M ITCHELL , D. P. 1987. Generating antialiased images at low
sampling densities. InSIGGRAPH ’87: Proceedings of the 14th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 65–72.

MYSZKOWSKI, K. 1998. The visible differences predictor: appli-
cations to global illumination problems. InEurographics Ren-
dering Workshop, 233–236.

NAVALPAKKAM , V., AND ITTI , L. 2006. An integrated model
of top-down and bottom-up attention for optimal object detec-
tion. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2049–2056.

NIEBUR, E., AND KOCH, C. 1998. Computational architectures
for attention. InThe Attentive Brain, R. Parasuraman, Ed. MIT
Press, Cambridge, Massachusetts, 164–186.

NIEBUR, E., ITTI , L., AND KOCH, C. 2001. Controlling the focus
of visual selective attention. InModels of Neural Networks IV,
L. V. Hemmen, E. Domany, and J. Cowan, Eds. Springer Verlag,
Aug.

PATTANAIK , S. N., FERWERDA, J. A., FAIRCHILD , M. D., AND
GREENBERG, D. P. 1998. A multiscale model of adaptation and
spatial vision for realistic image display.Computer Graphics 32,
Annual Conference Series, 287–298.

RAMASUBRAMANIAN , M., PATTANAIK , S. N., AND GREEN-
BERG, D. P. 1999. A perceptually based physical error met-
ric for realistic image synthesis. InSiggraph 1999, Computer
Graphics Proceedings, Addison Wesley Longman, Los Angeles,
A. Rockwood, Ed., 73–82.

REDDY, M. 2001. Perceptually optimized 3d graphics.IEEE Com-
put. Graph. Appl. 21, 5, 68–75.

RUSHMEIER, H., WARD, G., PIATKO , C., SANDERS, P., AND
RUST, B. 1995. Comparing real and synthetic images: Some
ideas about metrics. InEurographics Rendering Workshop 1995.

RUSHMEIER, H., BARRETT, H., RHEINGANS, P., USELTON, S.,
AND WATSON, A. 1997. Perceptual measures for effective vi-
sualizations. InVIS ’97: Proceedings of the 8th conference on
Visualization ’97, IEEE Computer Society Press, Los Alamitos,
CA, USA, 515–517.

SARNOFF CORPORATION, 1997. Sarnoff JND vision model algo-
rithm description and testing, August. VQEG.

SUNDSTEDT, V., CHALMERS, A., CATER, K., AND DEBAT-
TISTA, K., 2004. Top-down visual attention for efficient ren-
dering of task related scenes.

SZIRMAY-KALOS, L. 1998. Stochastic methods in global illu-
mination - state of the art report. Tech. Rep. TR-186-2-98-23,
Institute of Computer Graphics and Algorithms, Vienna Univer-
sity of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna,
Austria, Aug. human contact: technical-report@cg.tuwien.ac.at.

TOLHURST, D. J., RIPAMONTI , C., PÁRRAGA, C. A., LOVELL ,
P. G., AND TROSCIANKO, T. 2005. A multiresolution color
model for visual difference prediction. InAPGV ’05: Proceed-
ings of the 2nd symposium on Applied perception in graphics
and visualization, ACM Press, New York, NY, USA, 135–138.

TREISMAN, A. M., AND GELADE, G. 1980. A feature-integration
theory of attention.Cognit Psychol 12, 1 (January), 97–136.

TUMBLIN , J.,AND RUSHMEIER, H. 1993. Tone reproduction for
realistic images.IEEE Comput. Graph. Appl. 13, 6, 42–48.

VOLEVICH, V., MYSZKOWSKI, K., KHODULEV, A., AND KOPY-
LOV, E. A. 2000. Using the visual differences predictor to im-
prove performance of progressive global illumination computa-
tions. ACM Transactions on Graphics 19, 2 (April), 122–161.

WICHMANN , F. A., AND HILL , N. J. 2001. The psychometric
function: I. fitting, sampling, and goodness of fit.Perception
and Psychophysics 63, 8 (November), 1293–1313.

YEE, H., PATTANAIK , S., AND GREENBERG, D. P. 2001. Spa-
tiotemporal sensitivity and visual attention for efficientrendering
of dynamic environments. InACM Transactions on Graphics.
ACM Press, 39–65.

YEE, H. 2004. A perceptual metric for production testing.journal
of graphics tools 9, 4, 33–40.


