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Abstract

The heterogeneity of electronic health records model is a ma-
jor problem: it is necessary to gather data from various mod-
els for clinical research, but also for clinical decision support. 
The Observational Medical Outcomes Partnership - Common 
Data Model (OMOP-CDM) has emerged as a standard model 
for structuring health records populated from various other 
sources.  This  model  is  proposed  as  a  relational  database 
schema. However, in the field of decision support, formal on-
tologies  are  commonly  used.  In  this  paper,  we  propose  a 
translation of OMOP-CDM into an ontology, and we explore 
the utility of the semantic web for structuring EHR in a clini-
cal decision support perspective, and the use of the SPARQL 
language for querying health records. The resulting ontology 
is available online.
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Introduction

Electronic health records (EHR) [1] lead to a major progress 
in the storage, the transmission and the standardization of clin-
ical patient data. However, today, many EHR models and for-
mats exist, each software vendor proposing its own. This het-
erogeneity is a huge problem for research studies that need to 
collect  data  from many EHR, but  also for  clinical  decision 
support systems that need to be interfaced with many different 
EHR.

In  the  last  ten  years,  OMOP-CDM (Observational  Medical 
Outcomes Partnership - Common Data Model) [2] from the 
OHDSI (Observational Health Data Sciences and Informatics) 
community emerged  as  a  common and simple EHR model, 
used  to  structure  clinical  data  extracted  from various  other 
EHR,  in  order  to  facilitate  clinical  research  studies.  This 
model is proposed as a relational  database schema. A study 
showed that OMOP-CDM has a higher content coverage than 
three other  similar data models [3].  More recently,  OMOP-
CDM has been considered for clinical decision support [4, 5].

In parallel, formal ontologies and the semantic web [6] have 
emerged as a standard for the formalization of medical knowl-
edge.  Ontologies permit  formal  reasoning but  also facilitate 
the reuse of the data and the knowledge. In particular, the in-
terest  of  ontologies  for  validating  EHR  models  have  been 

shown in the literature [7], and ontologies are commonly used 
in decision support systems.

In this paper, we propose an OWL translation of the OMOP-
CDM model, and we explore the utility of the semantic web 
for structuring EHR in a clinical decision support perspective. 
Our  objective  is  not  to  maintain  a  full  compatibility  with 
OMOP-CDM database,  but  rather to structure an EHR as a 
formal  ontology,  grounding  on  the  experience  of  OMOP-
CDM.  Consequently,  we  will  focus  on  the  clinical  part  of 
OMOP-CDM, and we will not consider the vocabulary part, 
because ontologies offer native support for structuring hierar-
chical  terminologies.  We  will  also  consider  the  use  of  the 
SPARQL language for querying health records, and compare 
it to the SQL language.

Material and methods

Material

We used OMOP-CDM version 6.0 [2]. In OMOP-CDM (Fig-
ure 1), patients and healthy volunteers are represented by the 
Person table. Each Person may have zero, one or several Visit 
Occurrence,  e.g. visits to a GP or hospital stays. Each Visit 
may  be  associated  with  some diagnoses  (Condition  Occur-
rence),  tests  (Measurement),  medical  procedures  (Procedure 
Occurrence),  drug  prescriptions  (Drug  Exposure),  etc.  A 
higher level of abstraction, Eras, is also provided, for facilitat-
ing epidemiological studies. An Era groups one or more simi-
lar time periods in a single entity;  e.g. if a patient was pre-
scribed  metformine for  3  months,  and  then  after  3  months, 
metformine was prescribed again, there are two Drug Expo-
sures (one per prescription),  but a single Drug Era.  OMOP-
CDM provides procedures for computing Eras from the Drug 
Exposures and Condition Occurrences. Both Eras and lower-
level  entities  (Condition  Occurrence,  Drug Exposure,...)  are 
associated with a concept from a medical terminology.

We  used  the  Python  programming  language  for  parsing 
OMOP-CDM specification and generating the OWL ontology, 
with the Owlready ontology-oriented programming module [8, 
9, 10].

Translating the database model to OWL

We translated the OMOP-CDM database model into an OWL 
ontology,  using  a  automatic  Python  script.  Each  table  was 
translated into a class, each field corresponding to an identifier 



into an object  property,  and each  non-identifier  field into a 
data  property.  SQL  datatypes  were  translated  into  XML 
Schema datatypes and assigned to the range of data properties. 
We  also  added  universal  class  restrictions,  and  existential 
class restrictions for fields marked as required in the OMOP-
CDM model. The translation may seem rather straightforward, 
but two difficulties were encountered.

First, contrary to SQL relational databases, OWL ontologies 
support  inheritance.  In  the  OMOP-CDM model  (Figure  1), 
there are some obvious situations where inheritance could be 
used,  e.g. both Person and  Provider  are  humans,  and  share 
identical attributes, such as gender or year of birth. Similarly, 
many OMOP-CDM tables have attributes related to time: the 
date of an event (e.g. a Condition Occurrence) or the start and 
end date of a duration (e.g. a Drug Exposure).

We manually added superclasses, such as Base Person, Event 
or Duration. Then, we wrote an automatic procedure in Python 
that moves any attribute present in all the subclasses of a su-
perclass to that superclass. For instance, since Base Person has 
two subclasses,  Person and Provider,  and since both Person 
and Provider have a gender attribute, then the gender attribute 
will be moved to the Base Person class.

Second, in the OMOP-CDM model, the direction of relation is 
often dictated by the relational database model,  e.g. the rela-
tion between Person and Drug Era is in the Drug Era  Person 
direction,  through the “person_id”  field,  because  each Drug 
Era is associated with a single Person (*-1 relation) while a 
Person may be associated with several Drug Era (1-* relation), 
and the relational model supports only *-1 relations. On the 
contrary,  OWL  ontologies  support  both  types  of  relations. 
Here, we found more intuitive to reverse the relation, in order 
to start from the Person and then to obtain his Drug Era via the 
has_drug_era relation. This places the patient at the center of 
the model.

Moreover, in the database model, fields are defined within a 
given table, e.g. the “person_id” field in the Drug Era table is 
distinct from the “person_id” field in the Condition Era table, 
despite they share the same name. This permits to search for 
the Drug Era associated with a given patient, using the “per-
son_id” field in the Drug Era table. On the contrary, in ontolo-
gies,  properties  are  first-order  entities,  independent  from 
classes.  Thus,  if  we  create  a  “has_person”  object  property 
(corresponding to “person_id” but named using ontology con-
ventions), it will be shared by all Era classes. If we search for 
the Drug Era associated with a given patient, the “has_person” 
property will thus return all Era, and thus we need to select 
only those that  are Drug Era.  In a SPARQL query, this re-
quires two RDF triple patterns:

SELECT ?drug_era {
    ?drug_era a DrugEra .
    ?drug_era has_person <patient_x> .
}

If  we  reverse  the  direction  of  the  relation,  leading  to  the 
“has_drug_era” property,  we can now select specifically the 
Drug  Era  associated  with  a  given  patient,  simplifying  the 
query as follows:

SELECT ?drug_era {
    <patient_x> has_drug_era ?drug_era .
}

Therefore,  we manually defined a list of relation to reverse, 
and then an automatic procedure in Python for reversing those 
relations.
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Figure 1– UML diagram showing the main tables and rela-
tions in OMOP-CDM.

Importing data

We  imported  the  sample  dataset  with  1,000  patients  from 
CMS SynPUF, proposed on the OMOP-CDM website. When 
importing the data,  terminological  concepts were mapped to 
UMLS. We used the UMLS import functions from Owlready2 
to extract  the  terminologies  present  in  OMOP from UMLS 
version 2020AA, and to translate them to ontologies. In these 
ontologies, concepts are represented by classes, in order to al-
low inheritance between concepts. When a concept is present 
in the OMOP data, the corresponding class is instantiated. For 
instance,  if  a patient  has a Condition Occurrence associated 
with the “59621000” SNOMED CT code for Essential hyper-
tension, we create an instance of the “59621000” class and we 
associate it with the Condition Occurrence. The original class 
can be obtained via the rdf:type relation between the instance 
and the class.

Querying the ontology

OMOP-CDM  data  are  usually  accessed  via SQL  queries, 
while SPARQL is commonly used for ontologies. We com-
pared the length and the complexity of the queries in both lan-
guages, using various queries inspired by those proposed on 
the OMOP website  (http://cdmqueries.omop.org/),  or by the 
recommendations of  the STOPP/START guidelines  [11] for 
detecting potentially inappropriate prescribing in the elderly.
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Figure 2– UML diagram showing the main classes and
relations in the ontology translation of OMOP-CDM.

http://cdmqueries.omop.org/


Figure 3– Class hierarchy in the ontology translation of 
OMOP-CDM.

Results

OMOP-CDM ontology translation

Figures 2 and 3 show the general model of the ontology. Com-
pared to Figure 1, notice the presence of inheritance, but also 
the fact that the direction of many relations was changed. The 
ontology consistency was verified using the Pellet reasoners. 
It contains 49 classes, 226 properties and 5,016 RDF triples. 
After importing the OMOP-CDM sample data, we obtained a 
total of 10,795,221 RDF triples, including 3,311,359 for ter-
minologies.

The ontology is available online1 (Apache License 2.0, same 
license as  OMOP-CDM),  as  well  as the Python scripts that 
generated it from the OMOP-CDM CSV specifications2 (GNU 
LGPL license). The script can be customized through global 
variables, e.g. to export only some parts of OMOP-CDM.

Using SPARQL for querying health records

Figure  4  shows  an  example  of  query,  in  both  SQL  and 
SPARQL, inspired by the examples found in the OMOP web-
site. The SQL query is longer and more complex, due to the 
presence of nested queries. The first nested query (SELECT 
DISTINCT  condition.person_id...)  is  motivated  by  the  fact 
that  “age”  appears  three  times  in  the  outer  query  (in  the 
SELECT, the GROUP BY and the ORDER BY clauses). But 
SQL does not allow creating variables and to assign value to 
them. The nested query is thus here to avoid duplicating three 

1 http://www.lesfleursdunormal.fr/static/_downloads/  
omop_cdm_v6.owl

2 https://bitbucket.org/jibalamy/owlready2/src/master/   
pymedtermino2/omop_cdm/

times the  formula for  computing the  “age” 
value. On the contrary, SPARQL allows the 
creations of variable, using the BIND state-
ment,  hence  removing  the  need  for  the 
nested query.

The  second  nested  query  (SELECT 
DISTINCT  descendant_concept_id...)  is 
used to select all descendants of the desired 
concept in the terminology. Thanks to prop-
erty  path  expressions,  SPARQL  offers  an 
easier way to select descendants,  e.g. using 
the  expression  “rdfs:subClassOf*”,  where 
“*” means that zero, one or more subClassOf 
relations  must  exist  between  a  descendant 
concept and the original concept. In addition, 
“/” can be used in property path expressions 
to  chain  several  relations,  e.g. 
“has_concept/a/rdfs:subClassOf*/rdfs:label 
"Fracture  of  bone  of  hip  region"”  means 
that ?condition has for concept an instance of 
a class that is a descendant of a class associ-
ated with the “OMOP Hip Fracture 1” label.

Consequently, with SPARQL, nested queries 
are  no  longer  required  here.  This  arguably 
simplifies the query.

Using Owlready, the SPARQL query can be 
executed  on  the  OMOP  sample  dataset 
(1,000  patients,  about  10  million  RDF 

triples) in about 0.31 second on a recent laptop computer. In 
contrast, the SQL query can be executed on the same dataset 
in  about  0.35  second  using  PostgresQL.  This  suggests  that 
SPARQL and ontologies are as efficient as SQL and relational 
databases.

The semantic web also allows linking the data with other data 
or  knowledge very  easily.  For instance,  the  sample  OMOP 
dataset use RXNORM for coding drug prescriptions, but the 
ATC terminology (Anatomical, Therapeutical Chemical clas-
sification of drugs) may be more practical when dealing with 
therapeutical classes (e.g. proton pump inhibitors, PPI, instead 
of specific active principles such as omeprazole),  especially 
when  implementing  the  rules  found  in  clinical  guidelines. 
With ontologies, it is easy to add relations with ATC in addi-
tion to the existing relations with RXNORM: when importing 
the data, we instantiated the RXNORM classes; we can state 
that the resulting instances also belong to the corresponding 
ATC classes  by  adding  new RDF triples.  On  the  contrary, 
when using database, one would require to add an extra table 
mapping RXNORM to ATC for adding support for the ATC 
terminology. This would complicate queries, with additional 
joints between the concept table and the mapping table.

Figure  5  shows  two  examples  of  rules  extracted  from  the 
STOPP/START clinical guideline [11], and their implementa-
tion in SPARQL. We used SNOMED CT codes for disorders 
and ATC codes for drugs. The first rule detects a simple drug-
disorder  interaction  between  digoxin  and  heart  failure.  The 
second rule is more complex. It involves aspirin, which has 3 
ATC codes; thus, we used a UNION clause for testing the 3 
codes. Moreover, the rule should not be triggered when a PPI 
is prescribed concomitantly. Thus, we used a FILTER NOT 
EXISTS clause to verify the absence of a PPI, with conditions 
on the start and end dates of the two Drug Eras to verify the 
co-occurrence of the two treatments. Both rules were imple-
mented as SELECT queries that returns the patients and the 
Drug Era that should be stopped.

http://www.lesfleursdunormal.fr/static/_downloads/omop_cdm_v6.owl
http://www.lesfleursdunormal.fr/static/_downloads/omop_cdm_v6.owl
https://bitbucket.org/jibalamy/owlready2/src/master/pymedtermino2/omop_cdm/
https://bitbucket.org/jibalamy/owlready2/src/master/pymedtermino2/omop_cdm/


When  implementing  STOPP/START  rules,  we  found  that 
SPARQL lacks the IN SQL keyword.  This keyword allows 
testing whether a value is one of a set of given values. It is a 
shorthand for multiple OR conditions. IN is commonly used 
when several terms correspond to the desired concept, e.g. for 
testing the 3 codes for aspirin in the ATC terminology, one 
may  use  “aspirin  IN  ("BO1AC06",  "AO1AD05", 
"NO1BA01")”. On the contrary, SPARQL has no such key-
word. Thus, in the same situation, we used UNION as seen 
above, which is much longer and less practical.

Finally,  notice that  the precision of the queries remains the 
same with SQL or SPARQL, both queries being semantically 
equivalent and returning the same results.

Discussion

OMOP-CDM was initially developed for gathering in a single 
model clinical data from heterogeneous sources, such as EHR 
from different vendors, in order to facilitate clinical research. 
However, clinical decision support is another situation where 
one may need to merge clinical  data from different models, 
e.g. for a given patient, clinical data may be found in the EHR 
of the GP, but also in the EHR of the hospital and even in the 
pharmacy. In that situation, the use of OMOP-CDM seems a 
relevant  option.  Moreover,  the  high-level  abstractions  pro-
posed in OMOP-CDM with Era are useful for clinical studies, 
but also for decision support. For instance, Drug Eras allow 
computing drug treatment durations, which are sometimes re-
quired  for  supporting  decision  (e.g. for  rule  START E2 in 
STOPP/START).

The use of ontologies for structuring EHR may not be relevant 
for clinical research, because of the huge volume of data in-

volved, and the relational database format is well established 
today in that community. On the contrary,  for decision sup-
port,  the  volume of  data  is  often  lower  (after  the  eventual 
learning phase for machine learning-based systems), because 
decision support deals with a single patient at a time, and on-
tologies are frequently used.

In the literature, a previous tentative exists for translating the 
OMOP-CDM model to an ontology [12]. However, it does not 
focus on the latest version of the model (6.0), and the transla-
tion was limited to a raw conversion from database to OWL, 
without adding inheritance and restrictions as we did, nor re-
versing relations. Finally, since our translation is almost en-
tirely automatic, and performed by a Python script, it will be 
easy  to  update  the  ontology for  future  versions of  OMOP-
CDM.

In the near future, we plan to use the proposed ontology for 
structuring heterogeneous clinical  data in a decision support 
system for  medication reviews.  We also plan  to  implement 
tools for importing into the proposed ontology clinical data in 
standard formats such as HL7 and FHIR.

Conclusions

In this paper, we proposed an OWL translation of the OMOP-
CDM relational database model for electronic health records. 
We successfully used the resulting ontology for importing the 
OMOP sample dataset. We also compared the use of the SQL 
and SPARQL language for querying EHR data. We found that 
SPARQL often permitted simpler queries, thanks to its ability 
to deal with recursion and to define variables, and thanks to 
the ease with which ontologies can be enriched and connected 
to other resources in the semantic web.

Database with SQL:

SELECT gender, age, count(*) num_patients FROM
    ( SELECT DISTINCT condition.person_id, gender.concept_name As GENDER,
                   EXTRACT( YEAR FROM CONDITION_ERA_START_DATE ) - year_of_birth AS age
      FROM condition_era condition
      JOIN ( SELECT DISTINCT descendant_concept_id
             FROM vocabulary.relationship
             JOIN vocabulary.concept_relationship rel USING( relationship_id ) 
             JOIN vocabulary.concept concept1 ON concept1.concept_id = concept_id_1
             JOIN vocabulary.concept_ancestor ON ancestor_concept_id = concept_id_2
            WHERE relationship_name = 'HOI contains SNOMED (OMOP)'
              AND concept1.concept_name = 'Fracture of bone of hip region'
            ) ON descendant_concept_id = condition_concept_id
      JOIN person ON person.person_id = condition.person_id
      JOIN vocabulary.concept gender ON gender.concept_id = gender_concept_id
    )
GROUP BY gender, age ORDER BY gender, age

Ontology with SPARQL:

SELECT ?gender ?age (COUNT(DISTINCT ?patient) as ?num_patients) {
    ?patient omop_cdm:has_condition_era ?condition .
    ?condition omop_cdm:has_concept/a/rdfs:subClassOf*/rdfs:label
                                                    "Fracture of bone of hip region" .
    ?patient omop_cdm:has_gender/a/rdfs:label ?gender .
    ?patient omop_cdm:year_of_birth ?birth_year .
    ?condition omop_cdm:start_date ?start .
    BIND(YEAR(?start) - ?birth_year AS ?age) .
}
GROUP BY ?gender ?age ORDER BY ?gender ?age

Figure 4– A query for listing genders and ages of the patients having hip fracture, in SQL (top) and SPARQL (bottom).
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STOPP B1: Stop digoxin for heart failure with normal systolic ventricular function (no clear evidence of benefit).

SELECT ?patient ?drug_era { # SPARQL query for rule STOPP B1
    ?patient omop_cdm:has_drug_era ?drug_era .
    ?drug_era omop_cdm:has_concept/a/rdfs:subClassOf* atc:C01AA05 .
    ?patient omop_cdm:has_condition_era/omop_cdm:has_concept/a/rdfs:subClassOf* 
snomed:84114007.
}

STOPP C2: Stop aspirin with a past history of peptic ulcer disease without concomitant PPI (proton pump inhibitor).

SELECT ?patient ?drug_era1 { # SPARQL query for rule STOPP C2
    ?patient omop_cdm:has_drug_era ?drug_era1 .
    ?drug_era1 omop_cdm:has_concept/a ?aspirin .
          { ?aspirin rdfs:subClassOf* atc:B01AC06 . }
    UNION { ?aspirin rdfs:subClassOf* atc:A01AD05 . }
    UNION { ?aspirin rdfs:subClassOf* atc:N01BA01 . }
    ?patient omop_cdm:has_condition_era/omop_cdm:has_concept/a/rdfs:subClassOf* 
                                                                         snomed:13200003.
    FILTER NOT EXISTS {
        ?patient omop_cdm:has_drug_era ?drug_era2 .
        ?drug_era2 omop_cdm:has_concept/a/rdfs:subClassOf* atc:A02BC . # PPI
        ?drug_era1 omop_cdm:start_date ?start1 .
        ?drug_era1 omop_cdm:end_date ?end1 .
        ?drug_era2 omop_cdm:start_date ?start2 .
        ?drug_era2 omop_cdm:end_date ?end2 .
        FILTER(?start1 < ?end2 && ?start2 < ?end1) .
    }
}

Figure 5– Two rules extracted from the STOPP/START clinical guideline, and their translation into SPARQL.


