
HAL Id: hal-03479322
https://hal.science/hal-03479322v1

Submitted on 14 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Translating the Observational Medical Outcomes
Partnership - Common Data Model (OMOP-CDM)

electronic health records to an OWL ontology
Jean-Baptiste Lamy, Abdelmalek Mouazer, Karima Sedki, Rosy Tsopra

To cite this version:
Jean-Baptiste Lamy, Abdelmalek Mouazer, Karima Sedki, Rosy Tsopra. Translating the Observational
Medical Outcomes Partnership - Common Data Model (OMOP-CDM) electronic health records to an
OWL ontology. MEDINFO 2021 - 18th World Congress of Medical and Health Informatics, Oct 2021,
online, France. �hal-03479322�

https://hal.science/hal-03479322v1
https://hal.archives-ouvertes.fr

Translating the Observational Medical Outcomes Partnership - Common Data Model
(OMOP-CDM) electronic health records to an OWL ontology

Lamy Jean-Baptistea, Abdelmalek Mouazera, Karima Sedkia, Rosy Tsoprab,c,d

a Université Sorbonne Paris Nord, LIMICS, Sorbonne Université, INSERM, UMR 1142, F-93000, Bobigny, France
 b INSERM, Université de Paris, Sorbonne Université, Centre de Recherche des Cordeliers, Information Sciences to support

Personalized Medicine, F-75006 Paris, France
c Department of Medical Informatics, Hôpital Européen Georges-Pompidou, AP-HP, Paris, France

d INRIA Paris, 75012 Paris, France

Abstract

The heterogeneity of electronic health records model is a ma-
jor problem: it is necessary to gather data from various mod-
els for clinical research, but also for clinical decision support.
The Observational Medical Outcomes Partnership - Common
Data Model (OMOP-CDM) has emerged as a standard model
for structuring health records populated from various other
sources. This model is proposed as a relational database
schema. However, in the field of decision support, formal on-
tologies are commonly used. In this paper, we propose a
translation of OMOP-CDM into an ontology, and we explore
the utility of the semantic web for structuring EHR in a clini-
cal decision support perspective, and the use of the SPARQL
language for querying health records. The resulting ontology
is available online.

Keywords:

Medical Records, Electronic Health Records, Biological
Ontologies, SPARQL.

Introduction

Electronic health records (EHR) [1] lead to a major progress
in the storage, the transmission and the standardization of clin-
ical patient data. However, today, many EHR models and for-
mats exist, each software vendor proposing its own. This het-
erogeneity is a huge problem for research studies that need to
collect data from many EHR, but also for clinical decision
support systems that need to be interfaced with many different
EHR.

In the last ten years, OMOP-CDM (Observational Medical
Outcomes Partnership - Common Data Model) [2] from the
OHDSI (Observational Health Data Sciences and Informatics)
community emerged as a common and simple EHR model,
used to structure clinical data extracted from various other
EHR, in order to facilitate clinical research studies. This
model is proposed as a relational database schema. A study
showed that OMOP-CDM has a higher content coverage than
three other similar data models [3]. More recently, OMOP-
CDM has been considered for clinical decision support [4, 5].

In parallel, formal ontologies and the semantic web [6] have
emerged as a standard for the formalization of medical knowl-
edge. Ontologies permit formal reasoning but also facilitate
the reuse of the data and the knowledge. In particular, the in-
terest of ontologies for validating EHR models have been

shown in the literature [7], and ontologies are commonly used
in decision support systems.

In this paper, we propose an OWL translation of the OMOP-
CDM model, and we explore the utility of the semantic web
for structuring EHR in a clinical decision support perspective.
Our objective is not to maintain a full compatibility with
OMOP-CDM database, but rather to structure an EHR as a
formal ontology, grounding on the experience of OMOP-
CDM. Consequently, we will focus on the clinical part of
OMOP-CDM, and we will not consider the vocabulary part,
because ontologies offer native support for structuring hierar-
chical terminologies. We will also consider the use of the
SPARQL language for querying health records, and compare
it to the SQL language.

Material and methods

Material

We used OMOP-CDM version 6.0 [2]. In OMOP-CDM (Fig-
ure 1), patients and healthy volunteers are represented by the
Person table. Each Person may have zero, one or several Visit
Occurrence, e.g. visits to a GP or hospital stays. Each Visit
may be associated with some diagnoses (Condition Occur-
rence), tests (Measurement), medical procedures (Procedure
Occurrence), drug prescriptions (Drug Exposure), etc. A
higher level of abstraction, Eras, is also provided, for facilitat-
ing epidemiological studies. An Era groups one or more simi-
lar time periods in a single entity; e.g. if a patient was pre-
scribed metformine for 3 months, and then after 3 months,
metformine was prescribed again, there are two Drug Expo-
sures (one per prescription), but a single Drug Era. OMOP-
CDM provides procedures for computing Eras from the Drug
Exposures and Condition Occurrences. Both Eras and lower-
level entities (Condition Occurrence, Drug Exposure,...) are
associated with a concept from a medical terminology.

We used the Python programming language for parsing
OMOP-CDM specification and generating the OWL ontology,
with the Owlready ontology-oriented programming module [8,
9, 10].

Translating the database model to OWL

We translated the OMOP-CDM database model into an OWL
ontology, using a automatic Python script. Each table was
translated into a class, each field corresponding to an identifier

into an object property, and each non-identifier field into a
data property. SQL datatypes were translated into XML
Schema datatypes and assigned to the range of data properties.
We also added universal class restrictions, and existential
class restrictions for fields marked as required in the OMOP-
CDM model. The translation may seem rather straightforward,
but two difficulties were encountered.

First, contrary to SQL relational databases, OWL ontologies
support inheritance. In the OMOP-CDM model (Figure 1),
there are some obvious situations where inheritance could be
used, e.g. both Person and Provider are humans, and share
identical attributes, such as gender or year of birth. Similarly,
many OMOP-CDM tables have attributes related to time: the
date of an event (e.g. a Condition Occurrence) or the start and
end date of a duration (e.g. a Drug Exposure).

We manually added superclasses, such as Base Person, Event
or Duration. Then, we wrote an automatic procedure in Python
that moves any attribute present in all the subclasses of a su-
perclass to that superclass. For instance, since Base Person has
two subclasses, Person and Provider, and since both Person
and Provider have a gender attribute, then the gender attribute
will be moved to the Base Person class.

Second, in the OMOP-CDM model, the direction of relation is
often dictated by the relational database model, e.g. the rela-
tion between Person and Drug Era is in the Drug Era Person
direction, through the “person_id” field, because each Drug
Era is associated with a single Person (*-1 relation) while a
Person may be associated with several Drug Era (1-* relation),
and the relational model supports only *-1 relations. On the
contrary, OWL ontologies support both types of relations.
Here, we found more intuitive to reverse the relation, in order
to start from the Person and then to obtain his Drug Era via the
has_drug_era relation. This places the patient at the center of
the model.

Moreover, in the database model, fields are defined within a
given table, e.g. the “person_id” field in the Drug Era table is
distinct from the “person_id” field in the Condition Era table,
despite they share the same name. This permits to search for
the Drug Era associated with a given patient, using the “per-
son_id” field in the Drug Era table. On the contrary, in ontolo-
gies, properties are first-order entities, independent from
classes. Thus, if we create a “has_person” object property
(corresponding to “person_id” but named using ontology con-
ventions), it will be shared by all Era classes. If we search for
the Drug Era associated with a given patient, the “has_person”
property will thus return all Era, and thus we need to select
only those that are Drug Era. In a SPARQL query, this re-
quires two RDF triple patterns:

SELECT ?drug_era {
 ?drug_era a DrugEra .
 ?drug_era has_person <patient_x> .
}

If we reverse the direction of the relation, leading to the
“has_drug_era” property, we can now select specifically the
Drug Era associated with a given patient, simplifying the
query as follows:

SELECT ?drug_era {
 <patient_x> has_drug_era ?drug_era .
}

Therefore, we manually defined a list of relation to reverse,
and then an automatic procedure in Python for reversing those
relations.

Person Drug Era
person_id

Dose Era

Condition Era

Measurement

Drug
Exposure

Provider

person_id

provider_id

Visit
Occurrence Procedure

Occurrence
visit_occurrence_id

person_id

person_id

visit_occurrence_id

visit_occurrence_id

Condition
Occurrencevisit_occurrence_id

*

*

*

*

*

*

*

1

1

1

1
1
1

1

1

*

*

1

Figure 1– UML diagram showing the main tables and rela-
tions in OMOP-CDM.

Importing data

We imported the sample dataset with 1,000 patients from
CMS SynPUF, proposed on the OMOP-CDM website. When
importing the data, terminological concepts were mapped to
UMLS. We used the UMLS import functions from Owlready2
to extract the terminologies present in OMOP from UMLS
version 2020AA, and to translate them to ontologies. In these
ontologies, concepts are represented by classes, in order to al-
low inheritance between concepts. When a concept is present
in the OMOP data, the corresponding class is instantiated. For
instance, if a patient has a Condition Occurrence associated
with the “59621000” SNOMED CT code for Essential hyper-
tension, we create an instance of the “59621000” class and we
associate it with the Condition Occurrence. The original class
can be obtained via the rdf:type relation between the instance
and the class.

Querying the ontology

OMOP-CDM data are usually accessed via SQL queries,
while SPARQL is commonly used for ontologies. We com-
pared the length and the complexity of the queries in both lan-
guages, using various queries inspired by those proposed on
the OMOP website (http://cdmqueries.omop.org/), or by the
recommendations of the STOPP/START guidelines [11] for
detecting potentially inappropriate prescribing in the elderly.

Person Drug Era
has_drug_era

Dose Era

Condition Era

Provider

has_visit_occurrence

has
provider

has_ measurement

has_ condition_era

has_dose_era

has_condition
occurrence

has_ drug
exposure

Base
Person

Duration

Measurement

Drug
Exposure

Procedure
Occurrence

Condition
Occurrence

Visit
Occurrence has_procedure

occurrence

Event

Person

1

1

11

*

*

*

1

*

* 1
1
1

1

*

*

*

*

Figure 2– UML diagram showing the main classes and
relations in the ontology translation of OMOP-CDM.

http://cdmqueries.omop.org/

Figure 3– Class hierarchy in the ontology translation of
OMOP-CDM.

Results

OMOP-CDM ontology translation

Figures 2 and 3 show the general model of the ontology. Com-
pared to Figure 1, notice the presence of inheritance, but also
the fact that the direction of many relations was changed. The
ontology consistency was verified using the Pellet reasoners.
It contains 49 classes, 226 properties and 5,016 RDF triples.
After importing the OMOP-CDM sample data, we obtained a
total of 10,795,221 RDF triples, including 3,311,359 for ter-
minologies.

The ontology is available online1 (Apache License 2.0, same
license as OMOP-CDM), as well as the Python scripts that
generated it from the OMOP-CDM CSV specifications2 (GNU
LGPL license). The script can be customized through global
variables, e.g. to export only some parts of OMOP-CDM.

Using SPARQL for querying health records

Figure 4 shows an example of query, in both SQL and
SPARQL, inspired by the examples found in the OMOP web-
site. The SQL query is longer and more complex, due to the
presence of nested queries. The first nested query (SELECT
DISTINCT condition.person_id...) is motivated by the fact
that “age” appears three times in the outer query (in the
SELECT, the GROUP BY and the ORDER BY clauses). But
SQL does not allow creating variables and to assign value to
them. The nested query is thus here to avoid duplicating three

1 http://www.lesfleursdunormal.fr/static/_downloads/
omop_cdm_v6.owl

2 https://bitbucket.org/jibalamy/owlready2/src/master/
pymedtermino2/omop_cdm/

times the formula for computing the “age”
value. On the contrary, SPARQL allows the
creations of variable, using the BIND state-
ment, hence removing the need for the
nested query.

The second nested query (SELECT
DISTINCT descendant_concept_id...) is
used to select all descendants of the desired
concept in the terminology. Thanks to prop-
erty path expressions, SPARQL offers an
easier way to select descendants, e.g. using
the expression “rdfs:subClassOf*”, where
“*” means that zero, one or more subClassOf
relations must exist between a descendant
concept and the original concept. In addition,
“/” can be used in property path expressions
to chain several relations, e.g.
“has_concept/a/rdfs:subClassOf*/rdfs:label
"Fracture of bone of hip region"” means
that ?condition has for concept an instance of
a class that is a descendant of a class associ-
ated with the “OMOP Hip Fracture 1” label.

Consequently, with SPARQL, nested queries
are no longer required here. This arguably
simplifies the query.

Using Owlready, the SPARQL query can be
executed on the OMOP sample dataset
(1,000 patients, about 10 million RDF

triples) in about 0.31 second on a recent laptop computer. In
contrast, the SQL query can be executed on the same dataset
in about 0.35 second using PostgresQL. This suggests that
SPARQL and ontologies are as efficient as SQL and relational
databases.

The semantic web also allows linking the data with other data
or knowledge very easily. For instance, the sample OMOP
dataset use RXNORM for coding drug prescriptions, but the
ATC terminology (Anatomical, Therapeutical Chemical clas-
sification of drugs) may be more practical when dealing with
therapeutical classes (e.g. proton pump inhibitors, PPI, instead
of specific active principles such as omeprazole), especially
when implementing the rules found in clinical guidelines.
With ontologies, it is easy to add relations with ATC in addi-
tion to the existing relations with RXNORM: when importing
the data, we instantiated the RXNORM classes; we can state
that the resulting instances also belong to the corresponding
ATC classes by adding new RDF triples. On the contrary,
when using database, one would require to add an extra table
mapping RXNORM to ATC for adding support for the ATC
terminology. This would complicate queries, with additional
joints between the concept table and the mapping table.

Figure 5 shows two examples of rules extracted from the
STOPP/START clinical guideline [11], and their implementa-
tion in SPARQL. We used SNOMED CT codes for disorders
and ATC codes for drugs. The first rule detects a simple drug-
disorder interaction between digoxin and heart failure. The
second rule is more complex. It involves aspirin, which has 3
ATC codes; thus, we used a UNION clause for testing the 3
codes. Moreover, the rule should not be triggered when a PPI
is prescribed concomitantly. Thus, we used a FILTER NOT
EXISTS clause to verify the absence of a PPI, with conditions
on the start and end dates of the two Drug Eras to verify the
co-occurrence of the two treatments. Both rules were imple-
mented as SELECT queries that returns the patients and the
Drug Era that should be stopped.

http://www.lesfleursdunormal.fr/static/_downloads/omop_cdm_v6.owl
http://www.lesfleursdunormal.fr/static/_downloads/omop_cdm_v6.owl
https://bitbucket.org/jibalamy/owlready2/src/master/pymedtermino2/omop_cdm/
https://bitbucket.org/jibalamy/owlready2/src/master/pymedtermino2/omop_cdm/

When implementing STOPP/START rules, we found that
SPARQL lacks the IN SQL keyword. This keyword allows
testing whether a value is one of a set of given values. It is a
shorthand for multiple OR conditions. IN is commonly used
when several terms correspond to the desired concept, e.g. for
testing the 3 codes for aspirin in the ATC terminology, one
may use “aspirin IN ("BO1AC06", "AO1AD05",
"NO1BA01")”. On the contrary, SPARQL has no such key-
word. Thus, in the same situation, we used UNION as seen
above, which is much longer and less practical.

Finally, notice that the precision of the queries remains the
same with SQL or SPARQL, both queries being semantically
equivalent and returning the same results.

Discussion

OMOP-CDM was initially developed for gathering in a single
model clinical data from heterogeneous sources, such as EHR
from different vendors, in order to facilitate clinical research.
However, clinical decision support is another situation where
one may need to merge clinical data from different models,
e.g. for a given patient, clinical data may be found in the EHR
of the GP, but also in the EHR of the hospital and even in the
pharmacy. In that situation, the use of OMOP-CDM seems a
relevant option. Moreover, the high-level abstractions pro-
posed in OMOP-CDM with Era are useful for clinical studies,
but also for decision support. For instance, Drug Eras allow
computing drug treatment durations, which are sometimes re-
quired for supporting decision (e.g. for rule START E2 in
STOPP/START).

The use of ontologies for structuring EHR may not be relevant
for clinical research, because of the huge volume of data in-

volved, and the relational database format is well established
today in that community. On the contrary, for decision sup-
port, the volume of data is often lower (after the eventual
learning phase for machine learning-based systems), because
decision support deals with a single patient at a time, and on-
tologies are frequently used.

In the literature, a previous tentative exists for translating the
OMOP-CDM model to an ontology [12]. However, it does not
focus on the latest version of the model (6.0), and the transla-
tion was limited to a raw conversion from database to OWL,
without adding inheritance and restrictions as we did, nor re-
versing relations. Finally, since our translation is almost en-
tirely automatic, and performed by a Python script, it will be
easy to update the ontology for future versions of OMOP-
CDM.

In the near future, we plan to use the proposed ontology for
structuring heterogeneous clinical data in a decision support
system for medication reviews. We also plan to implement
tools for importing into the proposed ontology clinical data in
standard formats such as HL7 and FHIR.

Conclusions

In this paper, we proposed an OWL translation of the OMOP-
CDM relational database model for electronic health records.
We successfully used the resulting ontology for importing the
OMOP sample dataset. We also compared the use of the SQL
and SPARQL language for querying EHR data. We found that
SPARQL often permitted simpler queries, thanks to its ability
to deal with recursion and to define variables, and thanks to
the ease with which ontologies can be enriched and connected
to other resources in the semantic web.

Database with SQL:

SELECT gender, age, count(*) num_patients FROM
 (SELECT DISTINCT condition.person_id, gender.concept_name As GENDER,
 EXTRACT(YEAR FROM CONDITION_ERA_START_DATE) - year_of_birth AS age
 FROM condition_era condition
 JOIN (SELECT DISTINCT descendant_concept_id
 FROM vocabulary.relationship
 JOIN vocabulary.concept_relationship rel USING(relationship_id)
 JOIN vocabulary.concept concept1 ON concept1.concept_id = concept_id_1
 JOIN vocabulary.concept_ancestor ON ancestor_concept_id = concept_id_2
 WHERE relationship_name = 'HOI contains SNOMED (OMOP)'
 AND concept1.concept_name = 'Fracture of bone of hip region'
) ON descendant_concept_id = condition_concept_id
 JOIN person ON person.person_id = condition.person_id
 JOIN vocabulary.concept gender ON gender.concept_id = gender_concept_id
)
GROUP BY gender, age ORDER BY gender, age

Ontology with SPARQL:

SELECT ?gender ?age (COUNT(DISTINCT ?patient) as ?num_patients) {
 ?patient omop_cdm:has_condition_era ?condition .
 ?condition omop_cdm:has_concept/a/rdfs:subClassOf*/rdfs:label
 "Fracture of bone of hip region" .
 ?patient omop_cdm:has_gender/a/rdfs:label ?gender .
 ?patient omop_cdm:year_of_birth ?birth_year .
 ?condition omop_cdm:start_date ?start .
 BIND(YEAR(?start) - ?birth_year AS ?age) .
}
GROUP BY ?gender ?age ORDER BY ?gender ?age

Figure 4– A query for listing genders and ages of the patients having hip fracture, in SQL (top) and SPARQL (bottom).

Acknowledgements

This work was funded by the French Research Agency (ANR)
through the ABiMed project [grant number ANR-20-CE19-
0017-02].

References

[1] Kataria S, Ravindran V. Electronic health records: a criti-
cal appraisal of strengths and limitations. The journal of
the Royal College of Physicians of Edinburgh.
2020;50(3):262–268.

[2] Reich C, Ryan P, Belenkaya R, Natarajan K, Blacketer C.
OMOP Common Data Model Specifications; 2018.

[3] Garza M, Del Fiol G, Tenenbaum J, Walden A, Zozus
MN. Evaluating common data models for use with a longi-
tudinal community registry. J Biomed Inform.
2016;64:333–341.

[4] Unberath P, Prokosch HU, Gründner J, Erpenbeck M,
Maier C, Christoph J. EHR-Independent Predictive Deci-
sion Support Architecture Based on OMOP. Applied clini-
cal informatics. 2020;11(3):399–404.

[5] Gruendner J, Schwachhofer T, Sippl P, Wolf N, Erpenbeck
M, Gulden C, et al. KETOS: Clinical decision support and
machine learning as a service - A training and deployment
platform based on Docker, OMOP-CDM, and FHIR Web
Services. PloS one. 2019;14(10):e0223010.

[6] Schulz S, Jansen L. Formal ontologies in biomedical
knowledge representation. Yearb Med Inform. 2013;8:132–
46.

[7] Martínez-Costa C, Schulz S. Validating EHR clinical mod-
els using ontology patterns. J Biomed Inform.
2017;76:124–137.

[8] Lamy JB. Owlready: Ontology-oriented programming in
Python with automatic classification and high level con-
structs for biomedical ontologies. Artif Intell Med.
2017;80:11–28.

[9] Lamy JB. Ontologies with Python. Apress; 2021.

[10] Lamy JB. Ontology-Oriented Programming for Biomedi-
cal Informatics. Studies in health technology and infor-
matics (STC). 2016;221:64–68.

[11] O’Mahony D, O’Sullivan D, Byrne S, O’Connor MN,
Ryan C, Gallagher P. STOPP/START criteria for poten-
tially inappropriate prescribing in older people: version 2.
Age Ageing. 2015;44(2):213–8.

[12] Pacaci A, Gonul S, Sinaci AA, Yuksel M, Laleci Erturk-
men GB. A Semantic Transformation Methodology for
the Secondary Use of Observational Healthcare Data in
Postmarketing Safety Studies. Frontiers in pharmacol-
ogy. 2018;9:435.

Address for correspondence

Jean-Baptiste Lamy <jean-baptiste.lamy@univ-paris13.fr>, Bureau
149, UFR SMBH, 74 rue Marcel Cachin, 93017 Bobigny cedex,
France

STOPP B1: Stop digoxin for heart failure with normal systolic ventricular function (no clear evidence of benefit).

SELECT ?patient ?drug_era { # SPARQL query for rule STOPP B1
 ?patient omop_cdm:has_drug_era ?drug_era .
 ?drug_era omop_cdm:has_concept/a/rdfs:subClassOf* atc:C01AA05 .
 ?patient omop_cdm:has_condition_era/omop_cdm:has_concept/a/rdfs:subClassOf*
snomed:84114007.
}

STOPP C2: Stop aspirin with a past history of peptic ulcer disease without concomitant PPI (proton pump inhibitor).

SELECT ?patient ?drug_era1 { # SPARQL query for rule STOPP C2
 ?patient omop_cdm:has_drug_era ?drug_era1 .
 ?drug_era1 omop_cdm:has_concept/a ?aspirin .
 { ?aspirin rdfs:subClassOf* atc:B01AC06 . }
 UNION { ?aspirin rdfs:subClassOf* atc:A01AD05 . }
 UNION { ?aspirin rdfs:subClassOf* atc:N01BA01 . }
 ?patient omop_cdm:has_condition_era/omop_cdm:has_concept/a/rdfs:subClassOf*
 snomed:13200003.
 FILTER NOT EXISTS {
 ?patient omop_cdm:has_drug_era ?drug_era2 .
 ?drug_era2 omop_cdm:has_concept/a/rdfs:subClassOf* atc:A02BC . # PPI
 ?drug_era1 omop_cdm:start_date ?start1 .
 ?drug_era1 omop_cdm:end_date ?end1 .
 ?drug_era2 omop_cdm:start_date ?start2 .
 ?drug_era2 omop_cdm:end_date ?end2 .
 FILTER(?start1 < ?end2 && ?start2 < ?end1) .
 }
}

Figure 5– Two rules extracted from the STOPP/START clinical guideline, and their translation into SPARQL.

