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Abstract

Optimal Transport (OT) has become a popular tool in machine
learning to align finite datasets typically lying in the same
vector space. To expand the range of possible applications,
Co-Optimal Transport (Co-OT) jointly estimates two distinct
transport plans, one for the rows (points) and one for the
columns (features), to match two data matrices that might use
different features. On the other hand, Gromov Wasserstein
(GW) looks for a single transport plan from two pairwise
intra-domain distance matrices. Both Co-OT and GW can be
seen as specific extensions of OT to more complex data. In
this paper, we propose a unified framework, called Optimal
Tensor Transport (OTT), which takes the form of a generic
formulation that encompasses OT, GW and Co-OT and can
handle tensors of any order by learning possibly multiple
transport plans. We derive theoretical results for the resulting
new distance and present an efficient way for computing it. We
further illustrate the interest of such a formulation in Domain
Adaptation and Comparison-based Clustering.

1 Introduction
Comparing two probability measures in the form of empir-
ical distributions is at the core of many machine learning
tasks. Optimal Transport (OT) (Villani 2008; Peyré, Cuturi
et al. 2019) is a popular tool that allows such comparisons for
datasets typically lying in a common vector space. Given two
point clouds and a metric allowing to evaluate the transporta-
tion cost between two samples, the goal of OT is to learn
the transport plan that minimizes the alignment cost between
the two sets, resulting in the so-called Wasserstein distance.
OT has been shown to be of great interest when dealing with
machine learning tasks. For example, unsupervised Domain
Adaptation (DA) aims at benefiting from labeled data of a
source domain to classify examples drawn from a different
but related target domain. The DA theory prompts us to re-
duce the shift between the source and the target distributions,
a task that can be addressed by aligning the two datasets using
OT (Courty et al. 2016, 2017; Shen et al. 2018; Damodaran
et al. 2018). OT has also been successfully used in genera-
tive adversarial networks (GAN) (Goodfellow et al. 2014)
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to minimize the divergence between training data and sam-
ples drawn from a generative model, leading to the WGAN
(Arjovsky, Chintala, and Bottou 2017; Gulrajani et al. 2017).

In order to expand the range of possible applications, differ-
ent variants have been proposed in the OT literature to tackle
more complex settings. While the standard OT scenario as-
sumes that the two datasets lie in the same feature space,
Gromov Wasserstein (GW) (Memoli 2007; Mémoli 2011;
Peyré, Cuturi, and Solomon 2016) extends the framework
to incomparable spaces by allowing the alignment of two
distributions when only the within-dataset pairwise distances
are available. This approach is particularly well suited to deal
with graphs described by their adjacency matrices (Xu et al.
2019; Xu, Luo, and Carin 2019; Chowdhury and Mémoli
2019). The GW discrepancy has been used efficiently in
various applications such as heterogeneous DA (Yan et al.
2018), word translation (Alvarez-Melis and Jaakkola 2018)
or GAN (Vayer et al. 2019; Bunne et al. 2019). Recently,
Co-Optimal Transport (Co-OT) (Redko et al. 2020) extended
the OT theory to datasets lying in different vector spaces.
The idea is to jointly learn two transport plans. The first one
aligns the examples as in standard OT while the second one
aligns the most similar features. This has been shown to be
of particular interest in heterogeneous DA and co-clustering.

Motivation and Contribution. While GW and Co-OT
already cover a wide range of problems, we claim that many
other scenarios are not covered by these two extensions. Let
us suppose that both the source and target distributions are
represented by a collection of graphs of the same size (in
terms of nodes) but of different structure (in terms of edges).
This is typically the case of two graphs evolving over time.
In this case, the goal of OT would be to jointly align both
the two collections of graphs and the nodes. It turns out that
GW would be only able to handle the special case where
there exist a known one-to-one correspondence between the
graphs of the two collections. Another application is inspired
from comparison-based learning. Let us consider a source
and a target distribution represented by a set of users who
watched movies, users providing a list of triplet comparisons
of the form “movie xi is closer to xj than to xk”. In this case,
neither GW nor Co-OT is able to align the two distributions
because of the nature of this triplet-based representation. A
last example comes from computer vision, where one may
want to align two collections of images while preserving
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Figure 1: (Left) Transport plan T 1 between 400 images (only
digits 0 and 1) of MNIST and USPS datasets; (Right) (top
left) An example from MNIST and (bottom right) an example
from USPS with a 90° right rotation; (top right) the OT plan
T 2 between the rows of MNIST and USPS; (bottom left)
the OT plan T 3 between the columns of MNIST and USPS;
the arrows explain how to match the pixels between the two
datasets using T 2 and T 3 obtained with OTT.

some inner structural information in rows and columns. It is
worth noting that these three applications share a common
characteristic: they can be represented in the form of third-
order tensors. To solve OT tasks on such complex structures,
it is necessary to design a framework generalizing the OT
theory. This is the main contribution of this paper.

We propose Optimal Tensor Transport (OTT), a new OT
formulation that can handle datasets represented as tensors of
any order by potentially learning multiple transport plans.
The underlying idea is to jointly match the different di-
mensions of each tensor with respect to their weights. Fig-
ure 1 illustrates this on a transportation problem between
images from the MNIST (LeCun et al. 1998) to the USPS
dataset (Friedman et al. 2001). Three transport plans are op-
timized in this scenario. T 1 is used to match the points (on
the left), T 2 and T 3 preserve the structure by respectively
mapping the pixel rows and pixel columns jointly (figure on
the right). OTT effectively matches digits of the same class
while only using supervision from the MNIST dataset. Note
that the pixel-level transport plans are both close to the iden-
tity meaning that the structure of the images is automatically
retrieved. We further illustrate this behaviour by extending
this experiment in the supplementary material. From a the-
oretical perspective, we show that OTT encompasses both
Co-OT and GW as well as standard OT. We also show that
OTT can be seen as a distance between tensors of any order
and thus it can be used to compute tensor barycenters. From
an algorithmic point of view, we propose an efficient opti-
mization scheme based on a stochastic mirror descent that
allows a drastic reduction of the computational complexity.

The rest of this paper is organized as follows: Section 2
recalls some preliminary knowledge on OT, Co-OT and GW.
Section 3 is dedicated to the introduction of our optimal
tensor transport (OTT) setting. Section 4 proposes an efficient
algorithm for solving OTT. We derive theoretical properties
in Section 5 before presenting experimental results on DA
and Comparison-based Clustering tasks in Section 6 .

2 Preliminary Knowledge
In this section, we recall the standard OT (Villani 2008;
Peyré, Cuturi et al. 2019), the GW (Memoli 2007; Peyré, Cu-
turi, and Solomon 2016), and the Co-OT (Redko et al. 2020)
formulations. Let p and q be two histograms of respective
dimensions I and K. The set of coupling transport plans
is defined as Upq = {T ∈ RI×K

+ |T1K = p, T>1I = q}
where 1R is a vector of ones of dimension R. The goal in
discrete OT is to learn one (in standard OT and GW) or
two (in Co-OT) transport plans. Note that for the sake of
clarity, we only consider the discrete case here. Nevertheless,
all the formulations presented in this section, as well as
OTT, can be straightforwardly extended to the continuous
case by replacing the sums by integrals over the compared
distributions. In this case, the transport plans take the form of
joint continuous measures. To prepare for our generalization,
we unify the formulations below. In particular, we introduce
subscripts and superscripts that are usually not used in
the standard formulations. We denote the (R−1)-simplex
∆R = {(xr)r∈J1,RK ∈ RR

+|
∑R

r=1 xr = 1}.

Optimal Transport (Villani 2008). Let X and Y be two
datasets defined over the same feature space X (e.g. X =
RF ), with respectively I1 ∈ N and K1 ∈ N points with
weights p1 ∈ ∆I1 and q1 ∈ ∆K1 . The optimal transport plan
between X and Y is obtained by solving:

min
T 1∈Up1q1

I1∑
i1=1

K1∑
k1=1

L(Xi1 , Yk1)T 1
i1k1

(1)

where Xi1 is example i1 in dataset X . Here, L is a loss func-
tion which measures the cost of aligning two examples Xi

and Yk. An extension of OT which is conceptually different
from what is covered in this article is the multi-marginal
OT (Carlier 2003; Moameni 2014; Pass 2015; Friedland
2020) that aligns R ≥ 3 datasets simultaneously: L becomes
a function of R parameters and T 1 an R-order tensor.

Co-Optimal Transport (Redko et al. 2020). Co-Optimal
Transport also aims at transporting points from two datasets
X and Y . However, contrary to standard OT, these datasets
may have different feature spaces X ⊆ RI2 and Y ⊆ RK2 of
respective dimensions I2 and K2 and equipped with weights
p2 ∈ ∆I2 and q2 ∈ ∆K2

. The goal is to jointly match the
points with a first transport plan T 1 and the features with a
second one T 2. The Co-OT formulation is as follows:

min
T1∈U

p1q1

T2∈U
p2q2

I1,I2∑
i1,i2=1

K1,K2∑
k1,k2=1

L(Xi1i2 , Yk1k2
)T 1

i1k1
T 2
i2k2

(2)

where Xi1i2 is the value of feature i2 for example i1.

Gromov Wasserstein (Memoli 2007). Instead of having
features describing the examples, let us consider that we
only have access to within-dataset pairwise similarities or
dissimilarities, that is X and Y are now square matrices of
dimensions I1 × I1 and K1 × K1. It means that the two
datasets may have different feature spaces, as in Co-OT, but
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Figure 2: Various formulations of OTT with, each time, the two datasets and the different transport plans (best viewed in color).
The subscripts of OTT correspond to the indices of the transport plans used in each dimension.

since these feature spaces are implicit, it is sufficient to learn
a single transport plan T 1. The GW formulation is:

min
T 1∈Up1q1

I1,I1∑
i1,i2=1

K1,K1∑
k1,k2=1

L(Xi1i2 , Yk1k2)T 1
i1k1

T 1
i2k2

(3)

where Xi1i2 is the (dis)similarity between examples i1 and
i2. It is typical, for both Co-OT and GW, to use a compar-
ison/loss function L (often the squared difference) that op-
erates on two numbers. In Co-OT, L compares the value of
a feature from one point in X with one feature from a point
in Y . In GW, it compares an entry of the pairwise matrix X
to one in Y . Both formulations can be extended by allowing
L to compare more complex entries such as F -dimensional
vectors in RF . As illustrated in the top row of Figure 2, cor-
responding to the formulations of Equations (1), (2), and
(3), although OT, Co-OT and GW solve different problems,
they still share common principles. Below, we propose a new
generalized OT formulation that encompasses all of them.

3 Optimal Tensor Transport (OTT)
Given the notational complexity involved in our generic for-
mulation, let us first explain the intuition behind the sub-
scripts associated with OTT as illustrated in Figure 2. Both
Co-OT and GW work on matrices (that is tensors of order
D = 2) and thus will be represented with 2 digits. Since
Co-OT uses A = 2 different transport plans T 1 and T 2,
computing Co-OT boils down to solving OTT12 as defined
below. On the other hand, GW uses the same plan T 1 for
both dimensions, thus corresponding to OTT11. Note that
dimensions that share a transport plan must have the same
sizes. Thus, GW (OTT11) deals with square matrices.

Starting to generalize, when working with tensors of or-
der D, a given OT extension considers A ≤ D transport
plans and associates a transport plan (index) to each di-
mension. This is done by specifying an affectation function
f : J1, DK � J1, AK or equivalently, a D-tuple of transport
plan indices, that is f ∈ J1, AKD. For instance, Co-OT uses
f = (1, 2) which corresponds to the subscript in OTT12.

For a given f ∈ J1, AKD, we can now detail our OTTf

formulation (denoted OTT when no ambiguity arises) that
defines a distance between two datasetsX and Y , represented
as orderD+1 tensors of respective size (If(1)...If(D), F ) and
(Kf(1)...Kf(D), F ). The first D dimensions will be matched
between the two datasets using the transport plans, while the
last dimension (F ) is the feature dimension used to compare
2 points with the loss L. To simplify the rest of the paper, we
will suppose that F = 1, as done in Co-OT and GW above.
The OTT distance between X and Y relies on finding a
list of optimal transport plans (T a)a∈J1,AK under constraints
on the marginals defined respectively by the weight vectors
(pa)a∈J1,AK and (qa)a∈J1,AK. OTT is defined as:

OTTf (X,Y, (pa)a, (q
a)a) = min

∀a Ta∈Upaqa

Ef (X,Y, (T a)a)

where Ef
(
X,Y, (T a)a∈J1,AK

)
= (4)

If(1),...,If(D)∑
i1,...,iD=1

Kf(1),...,Kf(D)∑
k1,...,kD=1

L(Xi1...iD , Yk1...kD
)

D∏
d=1

T
f(d)
idkd

where Xi1...iD is the entry at position i1...iD in the tensor X .
From this general formulation and looking at Equations 1,

2 and 3 with the support of Figure 2, one can check that
OT corresponds to OTT1 (with F possibly > 1), Co-OT is
equivalent to OTT12 and GW corresponds to OTT11. Our
OTT formulation makes it possible to handle new forms of
datasets as illustrated in the second row of Figure 2. In the
experiments (see Section 6), we will specifically consider
two versions of OTT, each with order 3 tensors: (i) OTT111

corresponds to datasets of triplets (like GW but with triplets
instead of pairs); (ii) OTT112 works with datasets that are col-
lections of adjacency matrices. Figure 1 gives an illustration
of a third kind of datasets, where OTT123 has been applied to
collections of images, like Co-OT but with three dimensions.

It is worth mentioning that the question that we tackle here
is reminiscing of another problem in the literature: the D-
regular hypergraphs (Berge 1984) matching. Such a problem
is indeed equivalent to OTT in the particular case where all
the transport plans are identical. But it uses either a different



formulation or different constraints on the matching. Zass
and Shashua (2008) proposes to find a soft matching between
D-regular hypergraphs, with uniform inequality constraints,
using a Kullback-Leibler objective function. Duchenne et al.
(2011) also matches hypergraphs, with a formulation similar
to OTT but uses only row constraints on the matching matrix.
Finally, (Peyré et al. 2016) and (Ning and Georgiou 2014)
propose to represent examples as PSD matrices and to align
those matrices using a single transport plan where each entry
is also a PSD matrix instead of a real value.

4 Algorithm to Solve OTT
In this section, we detail how to efficiently solve the main op-
timization problem behind Equation 4. The most used method
for solving GW is called EGW (Peyré, Cuturi, and Solomon
2016). It can be seen as a Mirror Descent scheme (Beck and
Teboulle 2003) with the Kullback-Leibler divergence on a reg-
ularized version of GW: minT∈Up1q1

E(T ) +KL(T, p1q1>).
The idea of the Mirror Descent algorithm is to interpret the
usual gradient descent, at a point x, as a minimization of the
sum of a linearization of the desired function h: 〈∇xh, • 〉
plus a regularization term ε‖x − • ‖22. Instead of using the
Euclidean distance, Peyré, Cuturi, and Solomon (2016) use
the KL divergence. Thus, at a point T 1, Peyré, Cuturi, and
Solomon (2016) show that the minimization becomes equiva-
lent to the entropy regularized OT problem (Cuturi 2013):

min
T∈Up1q1

〈∇T 1E , T 〉+ εKL(T, p1q1>). (5)

Xu et al. (2019) based on the work of Xie et al. (2020) change
the uniform distribution p1q1> in Equation (5) to the previ-
ous transport plan T 1. In fact, this is equivalent to applying
a Mirror Descent algorithm on the original GW problem
(see Equation (3)) instead of the regularized one (see supple-
mentary material for more details). Thus, to solve the OTT
problem, we use a Mirror Descent algorithm with the KL
divergence. When the goal is to find multiple transport plans,
we propose to use an alternating approach, similar to the
Co-OT solver, where each transport plan is optimized in turn
while the others remain fixed. In summary, we combine the
ideas of existing solvers for Co-OT and GW and apply an
alternate Mirror Descent algorithm with the KL divergence
for OTT, with the main bottleneck being the computation
of the gradient of E . The pseudo-code of our approach is
presented in Algorithm 1. The main steps are the following:

Algorithm 1: OTT

Require: datasets X,Y , weights (pa)a∈J1,AK, (q
a)a∈J1,AK, loss

function L, nb. of samples M , regularization ε
1: ∀a ∈ J1, AK, T a = paqa>

2: for s= 0 to S-1 do
3: for a= 1 to A do
4: ∇̂TaE =M samples of the gradient using Equation (7).
5: T a = minT∈Upaqa

〈
∇̂TaE , T

〉
+ εKL(T, T a)

6: end for
7: end for

Step 1: We initialize the transport plans (line 1) with the
marginal product.

Step 2: We compute the gradient of E . For the sake of clarity,
we assume that the aligned tensors are “cubic”, that is all
their dimensions are of the same size N . In this case, the
overall gradient with respect to T a is a N2 matrix:

∇TaE =
∑

{d′|f(d′)=a}

If(1),...,If(d′−1)

If(d′+1),...,If(D)∑
i1,...,id′−1=1
id′+1,...,iD=1

Kf(1),...,Kf(d′−1)

Kf(d′+1),...,Kf(D)∑
k1,...,kd′−1=1
kd′+1,...,kD=1

L
(
Xi1...id′−1, • ,id′+1...iD ,
Yk1...kd′−1, • ,kd′+1...kD

) D∏
d=1|d 6=d′

T
f(d)
idkd

. (6)

Note that computing the overall gradient exactly would be
too expensive. Indeed, a naive approach leads to O(N2D)
operations which is prohibitively high. To simplify the com-
putation, a first idea would be to generalize the approach
used for GW by Peyré, Cuturi, and Solomon (2016) to our
problem. This would reduce the complexity to O(ND+1)
for a particular class of functions L, notably the square loss.
We provide a proof of this approach in the supplementary
material. Nevertheless, this remains too expensive as soon as
D = 3. Thus, instead, we propose to use a stochastic Mirror
Descent (Zhou et al. 2017; Zhang and He 2018; Hanzely
and Richtárik 2021). This idea was used for the GW prob-
lem by Kerdoncuff, Emonet, and Sebban (2021) and we
generalize it to our OTT problem. The main idea is to no-
tice that the gradient of E with respect to T a can be seen
as a sum of expectations over matrices of size N2, denoted
(Cd′){d′|f(d′)=a}, such that:

P
(
Cd′ = L

(
Xi1...id′−1, • ,id′+1...iD ,
Yk1...kd′−1, • ,kd′+1...kD

))
=

D∏
d=1|d6=d′

T
f(d)
idkd

with

If(1),...,If(d′−1)

If(d′+1),...,If(D)∑
i1,...,id′−1=1
id′+1,...,iD=1

Kf(1),...,Kf(d′−1)

Kf(d′+1),...,Kf(D)∑
k1,...,kd′−1=1
kd′+1,...,kD=1

D∏
d=1
d6=d′

T
f(d)
idkd

= 1

since ∀a ∈ J1, AK,
∑Ia,Ka

i,k=1 T
a
ik = 1. The gradient can then

be reformulated as:

∇TaE =
∑

{d′|f(d′)=a}

E
(
Cd′
)
. (7)

It means that one may obtain an unbiased estimate of the
gradient in O(MN2) operations where M is the number of
samples to estimate the expectations.
Step 3: The last step (line 5) requires to solve a regularized
OT problem, that can be efficiently solved using a Sinkhorn
solver (Xu et al. 2019; Cuturi 2013).

We refer the interested reader to Peyré, Cuturi, and
Solomon (2016) and Xu et al. (2019) for an analysis of the
efficiency of the Mirror Descent algorithm, and to Kerdon-
cuff, Emonet, and Sebban (2021) for investigations on the
precision of the stochastic approximation of the gradient. We
also provide in the supplementary material an experiment
specific to our new formulation to show how well the gradient
is approximated with an increasing order D of the tensors.



5 Theoretical Results
In this section, we derive two main theoretical results. The-
orem 1 shows that as long as the cost function is a proper
distance, then OTT is a distance between D-order tensors.
Thus, we can naturally define an OTT barycenter between
tensors. Theorem 2 states that the optimal barycenter can be
found in closed form for particular loss functions.
Theorem 1. OTT is a distance between weighted tensors (X ,
(pa)a∈J1,AK) and (Y , (qa)a∈J1,AK) represented in canonical
form (Definition 1 in the supplementary material), for any
affectation function f , as long as L is a proper distance.

The proof is provided in the supplementary material. This
result notably extends the distance proof of Co-OT (Redko
et al. 2020) to matrices of different sizes and to non-uniform
weights. Even though their comparison with OTT is out of
the scope of this paper, notice that other distances exist be-
tween higher-order tensors (De Lathauwer, De Moor, and
Vandewalle 2000; Liu, Liu, and Chan 2010; Lai et al. 2013).

Since OTT is a distance, we can define an OTT barycenter
between several tensors with any affectation function f .
Definition 1. (OTT barycenter) Assume that we are given
B ≥ 1 weighted tensors of sizes ((Kb

a)a∈J1,AK)b∈J1,BK de-

noted
(
Xb ∈ RKb

f(1)...K
b
f(D) , (qa,b ∈ ∆Kb

a
)a∈J1,AK

)
b∈J1,BK

.

Let λ ∈ ∆B be the weights quantifying the importance of
each tensor. For fixed size (Ia)a∈J1,AK and weights (pa ∈
∆Ia)a∈J1,AK, the OTT barycenter is defined as

min
X∈RIf(1)...If(D)

B∑
b=1

λbOTT(X,Xb, (pa)a, (q
a,b)a). (8)

Note that the barycenter could also be defined in a similar
manner with the marginals (pa)a∈J1,AK not fixed.

To solve Problem (8), we propose to minimize alterna-
tively the objective function w.r.t. X and (T a,b)a∈J1,AK, the
transport plans between X and Xb. The latters can be found
independently for each b ∈ J1, BK using Algorithm 1. In-
terestingly, X can be obtained in closed form for particular
loss functions, which generalizes, in particular to Co-OT, a
known result for OT and GW (Peyré, Cuturi, and Solomon
2016). This is summarized in the next theorem.
Theorem 2. Assume that the loss L is continuous and
can be written as L(x, y) = f1(x) + f2(y) − h1(x)h2(y)

with four functions (f1, f2, h1, h2) such that f ′1
h′1

is invert-
ible. Further assume that L(x, y) −→

x→±∞
+∞. For fixed

((T a,b)a∈J1,AK)b∈J1,BK, for all (id ∈ J1, If(d)K)d∈J1,DK, the
optimal solution X∗i1,...,iD of Problem (8) is equal to

(
f ′1
h′1

)−1 B∑
b=1

λb

Kb
f(1),...,K

b
f(D)∑

k1,...,kD=1

h2(Xb
k1...kD

)

D∏
d=1

T
f(d),b
idkd

p
f(d)
id

 .

In particular, when L is the squared euclidean distance,

X∗i1,...,iD =

B∑
b=1

λb

Kb
f(1),...,K

b
f(D)∑

k1,...,kD=1

Xb
k1...kD

D∏
d=1

T
f(d),b
idkd

p
f(d)
id

.

Note that to obtain a barycenter using loss functions that
are not covered by Theorem 2, for example the absolute loss,
one can resort to a gradient based optimization scheme.

In the next section, we present experiments focused on
3D-tensors alignments. Nevertheless, it is worth noticing that
our theoretical results and Algorithm 1 hold for any tensor
order and thus might be used with D = 4, for example in
comparison based learning tasks (Ghoshdastidar, Perrot, and
von Luxburg 2019) or to match hypergraphs (Berge 1984).

6 Experiments
In this section, we illustrate the interest of OTT on two dif-
ferent tasks1. First, following the success of OT in Domain
Adaptation (Courty et al. 2016), we propose to predict the
genres of recent movies based on labeled older movies by
relying only on users preferences. We advantageously use
a 3D-tensor formulation to take into account the particular-
ity of each user. In a second experiment, we use the OTT
barycenter in a Comparison-Based Clustering task.

6.1 Domain Adaptation (DA)
We consider a DA task on the Movielens dataset (Harper and
Konstan 2015). The goal is to adapt a model learned on old
movies (source) to predict the genres of new movies (target).

Datasets. We build two 3-orders tensor Xs (source) and
Xt (target) based on the ratings of the users. The entry
(i, j, k) in Xs (and similarly for Xt) is 1 if the user i pre-
ferred the movie j over the movie k, −1 if the movie k is
preferred over the movie j and 0 if the user i cannot choose.
As the users did not rate every movie, we use the 0.33 per-
centile of their personal rates as a default rating. For both the
new and old movies, we identify 4 different groups of movies:
Thriller/Crime/Drama (T ), Fantasy/Sci-Fi (F ), War/Western
(W ), and Children’s/Animation (C). We then create 6 pair-
wise binary classification datasets of 200 movies each by
selecting 2 classes among the four aforementioned ones. We
assume that we have access to all the labels for the old movies
(source) but only to a single random label per class for the
new movies (target). The goal is to learn a model that is as
accurate as possible on the target. Since many movies have
a small number of ratings and many users only rated a few
movies, we focus on the 100 users with the highest number
of ratings and the 200 most rated films for those users.

Baselines. Even though OTT122 is, to the best of our
knowledge, the first algorithm that allows direct DA on such
tensor-based datasets, we still propose various baselines by
reducing the Xs and Xt tensors into matrices by averag-
ing along one dimension. Rdm is a first naive baseline that
simply outputs random labels. For the next three baselines,
we average over the user dimension. Then, SVM applies a
SVM (Cortes and Vapnik 1995) classifier only on the tar-
get domain, using the columns of the matrix as features.
S-GWL (Xu, Luo, and Carin 2019) interprets the obtained
matrices as adjacency matrices of graphs and matches the
nodes of the two graphs. GW (Peyré, Cuturi, and Solomon

1The code to reproduce all the experiments is available online:
https://github.com/Hv0nnus/Optimal Tensor Transport

https://github.com/Hv0nnus/Optimal_Tensor_Transport


Table 1: Accuracy on 6 DA tasks with the hyperparameters
found using the unsupervised proposed method. To evaluate
the best possible performance reachable by each method,
AVGbest displays the accuracy with the best hyperparameters
using the ground truth of the target domain.

Datasets SVM S-GWL GW Co-OT OTT

T,F 62.5 63.0 62.0 72.0 80.8±1
T,C 69.0 77.0 78.0 83.0 97.0±0
T,W 32.5 61.0 63.0 65.5 71.3±5
F,C 74.5 72.0 74.0 74.0 70.2±4
F,W 53.0 53.0 60.5 47.0 67.9±2
C,W 60.0 57.0 52.0 67.5 76.8±6

AVG 58.6 63.8 64.9 68.2 77.3±3

AVGbest 58.6 66.3 71.0 70.7 78.9±3

Time (s) 0.1 94 673 4 5940

2016) solves the GW problem directly on the obtained ma-
trices. The last baseline, Co-OT, uses a matrix obtained by
averaging over one movie dimension, which leads to a ma-
trix (users, movies). The two axes are then mapped jointly
between the new and old movies. For all the methods that
provide a transport plan T between the movies, the class of
a target movie ytj is predicted via label propagation (Redko
et al. 2019a) of the source label ys, that is ytk = ysT • k.
The stochastic methods are run 10 times and the mean and
standard deviation are reported.

Experimental setup and hyperparameter tuning. As
the initialization is key to avoid local minima, we take advan-
tage of both the labels and our stochastic algorithm by sam-
pling only the labelled points in the source and target for the
first gradient estimation. The squared euclidean loss is used
for L and we estimate the gradient of OTT using M = 1000
samples. S is set to 1000 iterations in Algorithm 1. For each
method that uses the OT Sinkhorn solver, notably OTT, we re-
place it with the semi-supervised algorithm OTDA proposed
by Courty et al. (2016) which adds a lp − l1 regularization to
take advantage of the available source labels. In DA, tuning
the hyperparameters is often key as there is not enough target
labeled movies. As the goal of DA is to reduce the divergence
between the two datasets (Ben-David et al. 2007; Redko et al.
2019b), we can use the distance between the source and
the target as a criterion to choose the hyperparameters for
each method. To compute the OTT distance, we resort to
the sampling scheme already used to approximate the GW
distance in Kerdoncuff, Emonet, and Sebban (2021). The
Kullback-Leibler regularization parameter ε of the Sinkhorn
method (Cuturi 2013) is selected in the range [10−5, 102]
and the class regularization η of OTDA (Courty et al. 2016)
in [10−4, 101]. The hyperparameters selection is limited to
24 hours for each method and dataset.

Results. The accuracy of each method is reported in Ta-
ble 1. OTT achieves better performances than the other base-
lines on 5 out of 6 datasets. This result was expected as OTT
is the only method which takes full advantage of the 3D struc-
ture of the data. Interestingly, OTT still behaves better than

the baselines even when one uses the ground truth over the
target domain to tune their hyperparameters (that would be
cheating) as shown in the line AVGbest of Table 1.

We now analyze the impact of the different hyperparame-
ters on the accuracy. We report the results on each dataset in
the supplementary material and only consider the global av-
erage in Figure 3. The leftmost plot displays the accuracy for
increasing values of the KL regularization parameter ε. The
black markers correspond to the lowest achieved distance for
each method. It is worth noting that this usually corresponds
to a reasonable accuracy, which supports our hyperparameter
tuning procedure. We notice a similar behaviour for the η
parameter of OTDA as reported in the supplementary mate-
rial. In Figure 3 (middle), we report the target accuracy with
respect to the number of target labels available. We can notice
that OTT is always better, even in the completely unsuper-
vised scenario. Lastly, in the experiments reported in Table 1,
we never use the fact that the users comparing the movies are
the same for both old and new movies. Here, we study the im-
pact of making this information available. To this end, we fix
the transport plan for an increasing number of users. Figure 3
(right) shows that this information greatly improves the target
accuracy of the methods that can handle it, especially OTT.
Interestingly, as indicated with the black marker, the smallest
distance is achieved with the highest number of known pair-
ings, which corresponds to the highest number of constraints
on the users transport plan. This supports the key assumption
of this experiment: a good matching between users leads to
a better matching of similar movies. This also highlights a
limit of a mirror descent-based solver as it struggles to find
the global minimum without this additional information.

6.2 Comparison Based Clustering
In this second series of experiments, we show that OTT
barycenters can be used competitively to address an unbal-
anced comparison-based clustering task.

Comparison-based learning deals with the problem of
learning from examples when neither an explicit represen-
tation nor a pairwise distance matrix is available (Vikram
and Dasgupta 2016; Ukkonen 2017; Emamjomeh-Zadeh and
Kempe 2018; Perrot, Esser, and Ghoshdastidar 2020). In-
stead, it is assumed that only triplet comparisons of the form
“example xi is closer to xj than to xk” are available. This
field stems from the fact that relative judgments are usually
easier than absolute ones for human observers (Shepard 1962;
Young 1987; Stewart, Brown, and Chater 2005). For example,
triplet-based queries are easier to answer than exact distance
estimations. Given a set of examples and a given number of
triplet comparisons, a dataset can be represented as a third
order tensor where the entry (i, j, k) contains 1 if example xi
is closer to xj than to xk and −1 otherwise. In comparison
based clustering, the goal is to identify relevant groups in
the examples, using only the information contained in the
aforementioned tensor. As the three dimensions of the cubic
tensor correspond to the same points we will use the same
tranport plan for all the dimensions, that is OTT111.

Setting. To show the interest of our method for clustering
unbalanced triplet datasets, we take inspiration from the ex-
perimental setup of Perrot, Esser, and Ghoshdastidar (2020).
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Figure 3: Target accuracy averaged over all the datasets. The shadow area represents the standard deviation for the stochastic
methods. When relevant, the black symbols correspond to the parameter values achieving, for each method, the lowest distances
between the datasets on average. (Left) Target accuracy for various values of ε. (Middle) Target accuracy for an increasing target
supervision. (Right) Target accuracy for an increasing number of similar known users who rated both old and new movies.

Table 2: ARI (in percentage) for unbalanced comparison-
based clustering on MNIST. Each line corresponds to the
average over 10 combinations of classes, each run 10 times.

nb. points
per class AddS3 AddS3s t-STE t-STEs OTT

200,20,20 43±12 80±17 56±7 91±4 91±4
30,3,1 28±9 82±17 49±14 91±14 89±14
30,3,3 37±13 78±23 52±09 93±19 87±19

300,30,10 28±4 83±07 48±10 89±4 89±04

AVG 34±9 81±16 51±10 91±8 89±10

For a given dataset, we find the OTT111 barycenter (b = 1) of
size (I1, I1, I1) where I1 is the number of clusters that we are
looking for. The intuition is that similar examples should be
sent by the transport plan to the same point in the barycenter
since the latter summarizes the initial points.

Datasets. We consider some 3-class unbalanced subsam-
ples of the MNIST dataset (LeCun et al. 1998). For a given
number of examples per class (for example, 200,20,20), we
consider 10 random draws for the 3 classes and, for each
of these, we further consider 10 random draws for the ac-
tual images. Given N points in each unbalanced dataset, we
randomly select N log(N)3 triplets of the form d(xi, xj) >
d(xi, xk) as suggested by Perrot, Esser, and Ghoshdastidar
(2020). The distance between two digits is the euclidean dis-
tance after an UMAP projection in 2 dimensions. To simulate
a real dataset, some noise is added by randomly flipping
d(xi, xj) > d(xi, xk) to d(xi, xj) < d(xi, xk) with proba-
bility 0.1 for each triplet selected.

Baselines. We use two main triplet clustering baselines:
(i) t-STE (Van Der Maaten and Weinberger 2012) which
projects the triplets into a vector space followed by k-
means (Lloyd 1982), and (ii) AddS3 (Perrot, Esser, and
Ghoshdastidar 2020) which estimates a pairwise similarity
matrix also followed by k-means. Moreover, as the OT for-
mulation requires the marginal as a prior, we assume that the
proportions of the clusters are known. To stay fair, we pro-
pose two variants (AddS3s, t-STEs) of the previous baselines

where we replace the k-means step by an OT barycenter step
which takes the marginal information into account.

Hyperparameters. We use default hyperparameters, re-
ported in the supplementary material, for t-STE, AddS3, and
OTT with the KL regularization parameter set to ε = 0.1.
To ensure convergence, we also set the number of samples
M = 100 and the number of iteration S = 500 between each
of the 20 barycenter updates. Finally, to take advantage of
the closed form derived in Theorem 2, we use the squared
euclidean loss for OTT.

Results. The Adjusted Rand Index (ARI) (Hubert and Ara-
bie 1985) between the predicted clusters and the ground truth
is displayed in Table 2. Overall, OTT has better performances
than AddS3s on average on all datasets while being slightly
worse than t-STEs. Furthermore, for both AddS3 and t-STE,
using the unbalancedness information improves the perfor-
mances. The closeness between our approach and t-STEs

is further investigated in the supplementary material, where
we show a theoretical connection between t-STE and the
OTT barycenter. The choice of the unbalanced setting is mo-
tivated by the fact that the two other baselines do not take
into account this information during their first step, while
OTT directly uses it in its unique step.

7 Conclusion
We presented OTT, a new OT formulation that can be used to
align high dimensional tensors using potentially several trans-
port plans. OTT generalizes various existing OT problems,
such as GW and Co-OT, by defining a new tensor distance.
We proposed an efficient algorithm to solve the underlying
problem and demonstrated the competitiveness of OTT in DA
and Comparison-based clustering. While our new approach
unlocks new applications, this comes with a cost. First, de-
spite having access to a solver that drastically reduces the
computational complexity of the formulation, it still does not
scale well on large datasets with high order tensors. Finally,
we leave for future work a natural extension, Fused-OTT,
inspired by Vayer et al. (2020), that would combine several
OTT problems together. This approach could allow us to
align datasets that are independently represented by multiple
tensors of potentially different orders.
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Hanzely, F.; and Richtárik, P. 2021. Fastest rates for stochas-
tic mirror descent methods. Computational Optimization and
Applications.
Harper, F. M.; and Konstan, J. A. 2015. The movielens
datasets: History and context. Acm transactions on interac-
tive intelligent systems.
Hubert, L.; and Arabie, P. 1985. Comparing partitions. Jour-
nal of classification.
Kerdoncuff, T.; Emonet, R.; and Sebban, M. 2021. Sampled
Gromov Wasserstein. Machine Learning.
Lai, Z.; Xu, Y.; Yang, J.; Tang, J.; and Zhang, D. 2013. Sparse
tensor discriminant analysis. IEEE transactions on Image
processing.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE.
Liu, Y.; Liu, Y.; and Chan, K. C. 2010. Tensor distance
based multilinear locality-preserved maximum information
embedding. IEEE Transactions on neural networks.
Lloyd, S. 1982. Least squares quantization in PCM. IEEE
transactions on information theory.
Memoli, F. 2007. On the use of Gromov-Hausdorff Distances
for Shape Comparison. In Eurographics Symposium on Point-
Based Graphics. The Eurographics Association.
Mémoli, F. 2011. Gromov–Wasserstein distances and the
metric approach to object matching. Foundations of compu-
tational mathematics.
Moameni, A. 2014. Multi-marginal Monge–Kantorovich
transport problems: A characterization of solutions. Comptes
Rendus Mathematique.
Ning, L.; and Georgiou, T. T. 2014. Metrics for matrix-valued
measures via test functions. In 53rd IEEE Conference on
Decision and Control, 2642–2647. IEEE.
Pass, B. 2015. Multi-marginal optimal transport: theory and
applications. ESAIM: Mathematical Modelling and Numeri-
cal Analysis.
Perrot, M.; Esser, P. M.; and Ghoshdastidar, D. 2020.
Near-optimal comparison based clustering. arXiv preprint
arXiv:2010.03918.
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Supplementary Material: Optimal Tensor Transport

In this supplementary material, we provide details on the various results presented in the main paper as well as complementary
experiments. It is organised as follows. First, in Section 1 we illustrate the interest of our method compared to Co-OT. Then, in
Section 2, we formally show that the approach of Xu et al. (2019) used for GW is a Mirror Descent algorithm. In Section 3, we
formally investigate the computational complexity of the sampling approach for the gradient approximation with D ≤ 2. In
Section 4 we provide the proofs of the different theoretical results. Finally, in Section 5, we provide details on the hyperparameters
used in the experiments as well as additional results.

Notations
To simplify the notations, we will use the following shortcuts:

∑
∀d id

=

If(1),...,If(D)∑
i1,...,iD=1

,
∑
∀d 6=d′ id

=

If(1),...,If(d′−1)

If(d′+1),...,If(D)∑
i1,...,id′−1=1
id′+1,...,iD=1

and
∏
d 6=d′

=

D∏
d=1
d 6=d′

. (1)

1 Illustration of the difference between OTT and Co-OT
In this section, we provide the same pixel transportation image as the one provided in (Redko et al. 2020) for Co-OT, but for
both Co-OT and OTT123. The idea is to create an image of size 28 by 28 (the same size as the MNIST images) with a different
color in each pixel and then to use the transport plans learned to map MNIST onto USPS to transform this image. It gives us new
images (one for Co-OT and one for OTT) of the same size as the USPS images that illustrate how both methods alter the pictures
when performing transportation. This is illustrated Figure 1. Note that the transport plans used for OTT are the ones used in
Figure 1 in the main paper.

For Co-OT, many pixels carry no information as we use only 0 and 1 labels, thus the colored USPS image has some coherence
only in the middle of the image. On the other hand, with OTT123 we force columns to be mapped on (whole) columns and rows
to be mapped on (whole) rows. By doing so, OTT can extrapolate using the row/column structure inherent to images and the
color visualisation is much smoother than for Co-OT.

2 Mirror Descent
In this section, we prove that the method proposed by (Xu et al. 2019) is a Mirror Descent algorithm on the original GW
problem. More specifically, we prove that Equation (7) in their Section 3.1 is the same step as the step used in a Mirror Descent
algorithm (Beck and Teboulle 2003) with Kullback-Leibler divergence. The Mirror Descent method, at a given point Ts at the
iteration s, searches for the next minimum Ts+1 with,

Ts+1 = argmin
T∈Uµν

〈∇TsE , T 〉+ εKL(T, Ts). (2)

Which is equivalent to,
Ts+1 = argmin

T∈Uµν
〈∇TsE − εlog(Ts), T 〉+ ε 〈T, log(T )〉 . (3)

The only difference is the missing factor 2 in (Peyré, Cuturi, and Solomon 2016) that should be here due to the derivative, but
both problems are equivalent with a re-scaling of ε by a factor 2.

3 Complexity of the gradient computation of OTT
We prove in this section that the gradient of OTT, which is necessary for the Mirror Descent algorithm (Beck and Teboulle 2003),
can be computed in a time complexity of O(ND+1) for particular loss functions. This generalizes a known result for GW (Peyré,
Cuturi, and Solomon 2016). Note that, in the main paper, we propose a more efficient approach based on sampling. We only
mention this result for the sake of comparison with state of the art approaches.

Here, we assume that the feature dimension F is small and that every other dimension of the tensor is N to simplify the
notations. We also assume that the order of the tensor D is fixed and small and we analyze the time complexity only with respect
to N . First, we recall the gradient of E using the notations introduced at the start of this supplementary material:

∇TaE =
∑

{d′|f(d′)=a}

∑
∀d6=d′ id

∑
∀d6=d′ kd

L(Xi1...id′−1, • ,id′+1...iD , Yk1...kd′−1, • ,kd′+1...kD )
∏
d6=d′

T
f(d)
idkd

. (4)



Figure 1: (Left) MNIST image with a color associated with each pixel. (Middle and Right) USPS image colored by the
transportation of the left image by the transport plans found with Co-OT and OTT123 respectively. Few rows and columns are
deleted in this representation as they have no mass.

We suppose that the loss L is continuous and can be written as L(x, y) = f1(x) + f2(y) − h1(x)h2(y) with four functions
(f1, f2 : RF � R) and (h1, h2 : RF � RF ). This is notably the case for the squared Euclidean distance or the Kullback-Leibler
divergence. As each element of the first sum in Equation (4) will be computed independently, we can fix d′. We thus have to
compute the following term,∑

∀d6=d′ id

∑
∀d6=d′ kd

f1(Xi1...id′−1, • ,id′+1...iD )
∏
d6=d′

T
f(d)
idkd

+
∑

∀d6=d′ id

∑
∀d 6=d′ kd

f2(Yk1...kd′−1, • ,kd′+1...kD )
∏
d 6=d′

T
f(d)
idkd

+
∑

∀d6=d′ id

∑
∀d 6=d′ kd

h1(Xi1...id′−1, • ,id′+1...iD )h2(Yk1...kd′−1, • ,kd′+1...kD )
∏
d 6=d′

T
f(d)
idkd

. (5)

Note that Xi1...id′−1, • ,id′+1...iD is a vector of size (N, 1, F ) and as f1 is applied only on the features dimension,
f1(Xi1...id′−1, • ,id′+1...iD ) is a vector of size (N, 1). Similarly, f2(Yk1...kd′−1, • ,kd′+1...kD ) is a vector of size (1, N). As the
gradient is a (N ×N) matrix, the sum between the first two terms should be understood as a broadcasting sum. The same holds
for h1(Xi1...id′−1, • ,id′+1...iD ) and h2(Yk1...kd′−1, • ,kd′+1...kD ) of size (N × F ) and (F × N), the product is a matrix of size
(N ×N). The first two double sums can be computed as,∑

∀d6=d′ id

f1(Xi1...id′−1, • ,id′+1...iD )
∏
d6=d′

p
f(d)
id

+
∑

∀d6=d′ kd

f2(Yk1...kd′−1, • ,kd′+1...kD )
∏
d6=d′

q
f(d)
kd

. (6)

There is D − 1 sums, each of them operating over N indices. Hence, the complexity of each sum is O(ND−1N). As a
consequence, the overall complexity of Equation (6) is O(ND).

The last term requires several tensor/matrix multiplications as it can be reformulated as,

∑
∀d6=d′ id

h1(Xi1...id′−1, • ,id′+1...iD )

 ∑
∀d6=d′ kd

h2(Yk1...kd′−1, • ,kd′+1...kD )
∏
d6=d′

T
f(d)
idkd

 . (7)

The D − 1 internal sums can be seen as D − 1 tensor/matrices multiplications, each between the index d of the tensor and the
second index of the matrix T f(d). Each of these multiplications have a time complexity of O(ND+1). We provide an example
after the proof, for D = 3. If we call this new tensor H , we can reformulate the problem as,∑

∀d 6=d′ id

h1(Xi1...id′−1, • ,id′+1...iD )Hi1...id′−1, • ,id′+1...iD . (8)

This can be seen as a standard multiplication of two tensors on every dimension except on the dimension d′ for both tensors.
This is equivalent to the multiplication of two matrices of size (N,ND−1) and (ND−1, N ). The time complexity is again
O(N ×ND−1 ×N) = O(ND+1).

Finally, the entire time complexity is O(ND+1), which is better than the naive O(N2D).



Example forD = 3. We explain how to compute Equation (7) withD = 3 with aO(N3+1) time complexity. We will suppose,
without loss of generality, that d′ = 3 in this example. We are interested in the tensor H of Equation (8) or equivalently of the
inner sum of Equation (7) for all (i1, i2) ∈ J1, NK2,

N∑
k1=1

N∑
k2=1

h2(Yk1,k2, • )T
f(1)
i1,k1

T
f(2)
i2,k2

= Hi1,i2, • . (9)

We rearrange the terms to make the multiplication between a 3-order tensor and a transport plan appear,

∀(i1, i2) ∈ J1, NK2
N∑

k1=1

(
N∑

k2=1

h2(Yk1,k2, • )T
f(2)
i2,k2

)
T
f(1)
i1,k1

. (10)

For all (k1, i2) ∈ J1, NK2 we note H ′k1,i2, • =
∑N
k2=1 h2(Yk1,k2, • )T

f(2)
i2,k2

. H ′ can be computed with N2 ×N ×N operations
as a multiplication between a tensor (N,N,N, F ) and a matrix (N,N) along the second dimension on both sides. We now have
a similar formulation as in Equation (10) but with only one transport plan left,

∀(i1, i2) ∈ J1, NK2
N∑

k1=1

H ′k1,i2, • T
f(1)
i1,k1

. (11)

We apply the same process, and define for all (i1, i2) ∈ J1, NK2, Hi1,i2, • =
∑N
k1=1H

′
k1,i2, •

T
f(1)
i1,k1

. This new tensor H can be
computed with N2 ×N ×N operations. The difference is that the dimension of the sum is the first one for the tensor H ′.

We finally have to compute,
N∑
i1=1

N∑
i2=1

h1(Xi1,i2, • )Hi1,i2, • , (12)

which is equivalent to Equation (7). We can see it as a multiplication between two tensors of size (N,N,N, F ) along the first
two dimensions as well as the last dimension. Thus the time complexity is O(N ×N2 ×N), that is O(N4).

4 Theoretical results
We now prove that OTT is a distance for weighted tensors.
Theorem 1. OTT is a distance between weighted tensors represented in canonical form (X , (pa)a∈J1,AK) and (Y , (qa)a∈J1,AK)
for any affectation function f , as long as L is a proper distance.

First we properly define the canonical form of a tensor. Note that, here, we will assume that two tensors are equal if, and only
if, they are equal in canonical form. This is quite natural in an OT context where the goal is to align datasets. Nevertheless, if we
now consider that two tensors are equal if, and only if, they are equal in their original forms then OTT is only a pseudo-distance
(as is GW (Chowdhury and Mémoli 2019)) since the identity of indiscernibles would not hold anymore.
Definition 1 (Inspired by the work of Chowdhury and Mémoli (2019) ). A weighted tensor (X , (pa)a∈J1,AK) associated with an
affectation function f : J1, DK � J1, AK, is in canonical form if it respects the three following rules.
• All the weights should be strictly positive. If there is a a ∈ J1, AK and i ∈ J1, IaK such that pai = 0 this weight is deleted

along all the corresponding values in the tensor X . This is a natural reduction as if the weight is equal to 0 this is equivalent
to not having a point.

• There is no duplicated points. If two points are equal, they should be merged together. Two points (ia, i
′
a) ∈ J1, IaK2 for a

fixed a ∈ J1, AK are equal if,
∀d′ ∈ J1, dK|f(d′) = a,X • 1,..., • d′−1,ia, • d′+1,..., •D = X • 1,..., • d′−1,i

′
a, • d′+1,..., •D . (13)

Those extracted (D− 1)-order tensors define entirely each of those points. If two points are equal, then we delete one of them
and add the two probabilities paia and pai′a . Notice that we look at every dimension of the tensor associated with the weight pa

and delete simultaneously the points in every dimensions. This result is quite logical in a vector space, if two points are in the
same location, they should be merged.

• Note that, for a given dataset, one may, in each dimension a ∈ J1, AK, permute the objects without changing the nature
of the dataset. The tensor Y is a permutation of X if there exist a permutation function σa for all a ∈ J1, AK such that
Yσf(1)(i1),..,σf(D)(iD) = Xi1,..,iD . Then, assuming that we have access to a strict total order on tensors, a weighted dataset is
in canonical form if it is the smallest permutation with respect to the given order. An example of strict total order that can be
used for this purpose is the lexicographic order.

Note that, none of those three modifications of the tensor X will change the transport plan nor the OTT distance that depends
on X . It means that we never need to explicitly transform a tensor into its canonical form. Instead, it is a theoretical construction
that simplifies the proof of Theorem 1.

Proof. We will now prove that OTT is a distance.



Symmetry As L is symmetric, OTT is also symmetric.

Positiveness As L and T are always positive, OTT is always positive.

Identity of indiscernibles To prove that OTT (X,X, (pa)a∈J1,AK, (p
a)a∈J1,AK) = 0, we set every transport plan T a to the

identity matrix. As ∀x L(x, x) = 0, the entire sum is 0. But because the minimum is smaller than this particular case and also
always positive, we have the desired result OTT (X,X, (pa)a∈J1,AK, (p

a)a∈J1,AK) = 0.
We will now prove the opposite, let (X , Y ) beD-order tensors datasets of sizes (If(1)×...×If(D)×F,Kf(1)×...×Kf(D)×F )

with weights (pa ∈ ∆Ia , qa ∈ ∆Ka)a∈J1,AK in a canonical form (Definition 1). The canonical form is inspired from the proof
that GW is a distance for graphs (Chowdhury and Mémoli 2019). We suppose that OTT (X,Y ) = 0, we will show that X = Y
and for all a ∈ J1, AK, pa = qa. We will note (T a)a∈J1,AK the optimal transport plans.

We will proceed by contradiction and suppose that there exist two strictly positive values in the same row of
a transport plan, more precisely we suppose that there exist a ∈ J1, AK, i ∈ J1, IaK, (k, k′) ∈ J1,KaK2
such that T ai,k > 0 and T ai,k′ > 0. We fix d′ ∈ {d′ ∈ J1, DK|f(d′) = a} and all the indices
(k1...kd′−1, kd′+1...kD) ∈ (J1,Kf(1)K...J1,Kf(d′−1)K, J1,Kf(d′+1)K...J1,Kf(D)K). As all the marginals are strictly positive,
there exist (i1...id′−1, id′+1...iD) ∈ (J1, If(1)K...J1, If(d′−1)K, J1, If(d′+1)K...J1, If(D)K) such that T f(d)id,kd

> 0 for all d ∈ J1, DK
with d 6= d′. As the transport plans are strictly positive on those indices and T ai,k > 0 and T ai,k′ > 0, the transport plans product
is strictly positive, thus the loss should be equal to 0,

L
(
Xi1...id′−1,i,id′+1...iD , Yk1...kd′−1,k,kd′+1...kD

)
= 0, (14)

L
(
Xi1...id′−1,i,id′+1...iD , Yk1...kd′−1,k

′,kd′+1...kD

)
= 0. (15)

As the loss is a distance, we have Yk1...kd′−1,k,kd′+1...kD = Yk1...kd′−1,k
′,kd′+1...kD . This is true for all d′ ∈ {d′ ∈ J1, DK|f(d′) =

a} and all the indices (k1...kd′−1, kd′+1...kD) ∈ (J1,Kf(1)K...J1,Kf(d′−1)K, J1,Kf(d′+1)K...J1,Kf(D)K), thus those two points
should have been merged, this is in contradiction with the canonical form assumption. We can do the same for the columns of the
transport plans instead of the rows.

We know that a transport plan has only one element in each of its rows and columns, thus it is necessarily a square matrix as
all the marginals are strictly positive. Let α be the smallest strictly positive value of the transport plan (T a)a∈J1,AK. We also
define the permutation matrices P a associated to each T a by replacing each strictly positive value in T a to 1 in P a. We have
αIf(a)P a ≤ T a elements-wise, thus

0 ≤
∑
∀d id

∑
∀d kd

L(Xi1,...,iD , Yk1,...,kD )

D∏
d=1

αIf(d)P
f(d)
id,kd

(16)

≤
∑
∀d id

∑
∀d kd

L(Xi1,...,iD , Yk1,...,kD )

D∏
d=1

T
f(d)
id,kd

(17)

=0. (18)

If we note σa the permutation function associated with P a, we have,

0 =
∑
∀d id

L(Xi1,...,iD , Yσf(1)(i1),...,σf(D)(iD)). (19)

Since datasets are invariant to points permutations, if both X and Y are in canonical form, they are equal. Thus the transport
plans (T a)a∈J1,AK are diagonal matrices. Therefore, the weights pa and qa are also equal for all a ∈ J1, AK.

Thus, we have OTT (X,Y, (pa)a∈J1,AK, (q
a)a∈J1,AK) = 0 ⇐⇒ (X, (pa)a∈J1,AK) = (Y, (qa)a∈J1,AK).

Triangle inequality We now prove the triangle inequality. Let (X , Y , Z) be D-order tensors datasets of sizes (If(1) × ...×
If(D) × F,Kf(1) × ... ×Kf(D) × F, Jf(1) × ... × Jf(D) × F ) with weights (pa ∈ ∆Ia , qa ∈ ∆Ka , ra ∈ ∆Ja)a∈J1,AK. We
suppose ∀d ∈ J1, DK rf(d) > 0 as we can delete the corresponding (D − 1)-order tensor in the tensor Z if one term is 0 and
it won’t change the transport plan nor the distance. We note (T axy)a∈J1,AK the optimal transport plans between X and Y and
(T ayz)a∈J1,AK the optimal transport plans between Y and Z. Similarly to Redko et al. (2020) we will use the gluing lemma (Villani
2008) to construct a coupling between X and Z,

∀a ∈ J1, AK (T axz) = (T axy) diag
(

1

qa

)
(T ayz). (20)



Let a ∈ J1, AK, we show that (T axz) ∈ Upara :

∀j ∈ J1, JaK
Ia∑
i=1

(T axz)ij =

Ia∑
i=1

Ka∑
k=1

(T axy)ik
1

qak
(T ayz)kj (21)

=

Ka∑
k=1

(T ayz)kj (22)

= raj , (23)

∀i ∈ J1, IaK
Ja∑
j=1

(T axz)ij =

Ja∑
j=1

Ka∑
k=1

(T axy)ik
1

qak
(T ayz)kj (24)

=

Ka∑
k=1

(T axy)ik (25)

= pai . (26)
We now prove the triangle inequality:

OTT (X,Z, (pa)a∈J1,AK, (r
a)a∈J1,AK) (27)

≤
If(1),...,If(D)∑
i1,...,iD=1

Jf(1),...,Jf(D)∑
j1,...,jD=1

L(Xi1,...,iD , Zj1...,jD )

D∏
d=1

(T f(d)xz )id,jd (28)

=

If(1),...,If(D)∑
i1,...,iD=1

Jf(1),...,Jf(D)∑
j1,...,jD=1

Kf(1),...,Kf(D)∑
k1,...,kD=1

L (Xi1,...,iD , Zj1,...,jD )

D∏
d=1

(T
f(d)
xy )idkd(T

f(d)
yz )kdjd

q
f(d)
kd

(29)

≤
∑
∀d id

∑
∀d jd

∑
∀d kd

L (Xi1,...,iD , Yk1,...,kD )

D∏
d=1

(T
f(d)
xy )idkd(T

f(d)
yz )kdjd

q
f(d)
kd

+
∑
∀d id

∑
∀d jd

∑
∀d kd

L (Yk1,...,kD , Zj1,...,jD )

D∏
d=1

(T
f(d)
xy )idkd(T

f(d)
yz )kdjd

q
f(d)
kd

(30)

=
∑
∀d id

∑
∀d kd

L (Xi1,...,iD , Yk1,...,kD )

D∏
d=1

(T f(d)xy )idkd
∑
∀d jd

D∏
d=1

(T
f(d)
yz )kdjd

q
f(d)
kd

+
∑
∀d jd

∑
∀d kd

L (Yk1,...,kD , Zj1,...,jD )

D∏
d=1

(T f(d)yz )kdjd
∑
∀d id

D∏
d=1

(T
f(d)
xy )idkd

q
f(d)
kd

(31)

=
∑
∀d id

∑
∀d kd

L (Xi1,...,iD , Yk1,...,kD )
D∏
d=1

(T f(d)xy )idkd

D∏
d=1

Jf(d)∑
jd=1

(T
f(d)
yz )kdjd

q
f(d)
kd

+
∑
∀d jd

∑
∀d kd

L (Yk1,...,kD , Zj1,...,jD )

D∏
d=1

(T f(d)yz )kdjd

D∏
d=1

If(d)∑
id=1

(T
f(d)
xy )idkd

q
f(d)
kd

(32)

=
∑
∀d id

∑
∀d kd

L (Xi1,...,iD , Yk1,...,kD )

D∏
d=1

(T f(d)xy )idkd

+
∑
∀d jd

∑
∀d kd

L (Yk1,...,kD , Zj1,...,jD )

D∏
d=1

(T f(d)yz )kdjd (33)

=OTT (X,Y, (pa)a∈J1,AK, (q
a)a∈J1,AK) +OTT (Y,Z, (qa)a∈J1,AK, (r

a)a∈J1,AK). (34)

In Equation (31), the product/sum inversion is possible as no element in the product depends on (jd)d∈J1,DK. Similarly, in
Equation (32), the sum/product inversion is allowed as only one term in the product depends on the sum. In addition, each of
those sums are equal to 1 by definition of (T axy)a∈J1,AK, this leads to Equation (33).

OTT respects the triangle inequality, thus it is a distance.



We now prove Theorem 2 with a more general formulation that the one proposed in the paper. More precisely, we extend it to
the case where the loss is a function of RF � R with F not necessarily restricted to 1 as supposed in the paper to simplify the
notations. First we recall the definition of an OTT barycenter.
Definition 2. (OTT barycenter) Given B ∈ N weighted tensors of sizes ((Kb

a)a∈J1,AK)b∈J1,BK,(
Xb ∈ RK

b
f(1)...K

b
f(D)×F , (qa,b ∈ ∆Kb

a
)a∈J1,AK

)
b∈J1,BK

. Let λ ∈ ∆B be the weights quantifying the importance of

each tensor. For fixed size (Ia)a∈J1,AK and weights (pa ∈ ∆Ia)a∈J1,AK, the OTT barycenter is defined as follows:

min
X∈RIf(1)...If(D)×F

B∑
b=1

λbOTT(X,Xb, (pa)a∈J1,AK, (q
a,b)a∈J1,AK). (35)

Theorem 2. Assume that the loss L is continuous and can be written as L(x, y) = f1(x) + f2(y) − h1(x)h2(y) with four
functions (f1, f2 : RF � R) and (h1, h2 : RF � RF ) such that the function (∇h1)−1l∇f1 : RF −→ RF is invertible,
were the F × F matrix (∇h1)−1l(x) is the left inverse of the F × F matrix ∇h1(x), ∀x ∈ RF . We also suppose that,
∀r ∈ J1, F KL(x, y) −→

xr→±∞
+∞. For fixed (T a,b)a∈J1,AK, the optimal solution X∗ of Problem (8) reads,

X∗i1,...,iD =
(
(∇h1)−1l∇f1

)−1 B∑
b=1

λb

Kb
f(1),...,K

b
f(D)∑

k1,...,kD=1

h2(Xb
k1,...,kD )

D∏
d=1

T
f(d),b
idkd

p
f(d)
id

 (36)

for all (id ∈ J1, If(d)K)d∈J1,DK.
In particular, when L is the squared euclidean distance,

X∗i1,...,iD =

B∑
b=1

λb

Kb
f(1),...,K

b
f(D)∑

k1,...,kD=1

Xb
k1...kD

D∏
d=1

T
f(d),b
idkd

p
f(d)
id

. (37)

Proof. For fixed ((T a,b)a∈J1,AK)b∈J1,BK, we are looking for the derivative of Equation (35) with respect to Xi1,...,iD and we
equate it to 0 to find the optimal solution. Xi1,...,iD might be a vector if the features dimension is not reduced to 1. Each gradient
in the following equation is a vector of size F .

0 =

B∑
b=1

λb

Kb
f(1),...,K

b
f(D)∑

k1,...,kD=1

∇Xi1,...,iDL(Xi1,...,iD , X
b
k1,...,kD )

D∏
d=1

T
f(d),b
idkd

(38)

⇐⇒ 0 =

B∑
b=1

λb
∑
∀d kd

(
∇f1 (Xi1,...,iD )−∇h1(Xi1,...,iD )h2(Xb

k1,...,kD )
) D∏
d=1

T
f(d),b
idkd

(39)

⇐⇒ 0 =

B∑
b=1

λb
∑
∀d kd

(
∇f1 (Xi1,...,iD )−∇h1(Xi1,...,iD )h2(Xb

k1,...,kD )
) D∏
d=1

T
f(d),b
idkd

(40)

⇐⇒ 0 = ∇f1 (Xi1,...,iD )

B∑
b=1

λb
∑
∀d kd

D∏
d=1

T
f(d),b
idkd

(41)

−∇h1(Xi1,...,iD )

B∑
b=1

λb
∑
∀d kd

h2(Xb
k1,...,kD )

D∏
d=1

T
f(d),b
idkd

(42)

⇐⇒ ∇f1 (Xi1,...,iD )

B∑
b=1

λb

D∏
d=1

p
f(d)
id

= ∇h1(Xi1,...,iD )

B∑
b=1

λb
∑
∀d kd

h2(Xb
k1,...,kD )

D∏
d=1

T
f(d),b
idkd

(43)

⇐⇒ (∇h1)−1l(Xi1,...,iD )∇f1(Xi1,...,iD )

D∏
d=1

p
f(d)
id

=

B∑
b=1

λb
∑
∀d kd

h2(Xb
k1,...,kD )

D∏
d=1

T
f(d),b
idkd

(44)

⇐⇒ Xi1,...,iD =
(
(∇h1)−1l∇f1

)−1( B∑
b=1

λb
∑
∀d kd

h2(Xb
k1,...,kD )

D∏
d=1

T
f(d),b
idkd

p
f(d)
id

)
(45)

There is only one vector Xi1,...,iD found as (∇h1)−1l∇f1 is invertible. Thus, if we suppose that the gradient is a maximum
or an inflection point, then there is no minimum in RIf(1)×...×If(D)×F as OTT is continuous. This is in contradiction with the
hypothesis that the loss tends to +∞ when xr −→ +∞ for any r ∈ J1, F K. Thus the value obtained is a minimum.

For the squared euclidean distance, for any x, y ∈ RF , ∇h1(x) is the identity matrix, h2(y) = 2y and∇f1(x) = 2x.



5 Experiments
All the experiments were conducted on a linux internal cluster using only CPUs with 16GB of RAM. The important softwares
and versions for reproducing the experiments are:
• python version: 3.7.9
• numpy version: 1.19.1
• scipy version: 1.5.2
• sklearn version: 0.23.2
• umap version: 0.4.1

As some experiments depend on randomness, the seeds to reproduce them were fixed using the numpy.seed function. The
exact seeds that were randomly fixed are available in the provided code to reproduce the experiments.

5.1 Impact of the order of the tensors on the gradient approximation
In this section, we will analyze the impact of the order of the tensors X and Y on the gradient approximation that would lead to
a discussion on the choice of the number of samples M . Note that experiments for the choice of M were already conducted
by Kerdoncuff, Emonet, and Sebban (2021), for the Gromov Wasserstein problem. They concluded that choosing M equal to 1
was sufficient to have a good approximation of the gradient, we will see that this is no longer true for D > 2.

In these experiments, we generate a pair of graphs, a pair of 3-regular hypergraphs (Berge 1984) and a pair of 4-regular
hypergraphs. To do so, we sample 100 points in a 10 dimensional space using 3 Gaussians with random mean and variance,
this correspond to the nodes of the hypergraphs. Then the edges of the hypergraphs are created by the D-tuple formed by the
D nearest neighbors of each point and we symmetrize the hypergraphs. We give an example for D = 3 and the tensor X that
represents the hypergraph. For a point xi, we find the 3 nearest neighbors, noted (xi, xj , xl) and add a value in the tensor X at
the position (i, j, l), (i, l, j), (j, i, l), (j, l, i), (l, i, j) and (l, j, i) to ensure the symmetry of the tensor X .

The OTT algorithm, with random marginals, is computed to the iteration S. Then we look at the relative difference in Frobenius
norm between the estimated gradient ∇̂E for different values of M and the real one∇E : ‖∇E−∇̂E‖F‖∇E‖F . As most of the time the
real gradient cannot be computed in a reasonable time, we use the value found with 106 samples as a reference. Figure 2 shows
a clear correlation (with log-log axis) between the number of samples and the estimate of the gradient, with the exception of
the very noisy first points. Some points are even omitted if they correspond to a gradient of 0. The latter may happen when M
is too small and for high order tensors as the tensors X and Y become sparser. Thus, the 1 sample approximation proposed
by Kerdoncuff, Emonet, and Sebban (2021) is no longer possible for D > 2, as it often corresponds to a null gradient.

From a time complexity point of view, the main bottleneck in terms of efficiency (excluding the gradient approximation) is
the Sinkhorn algorithm with a complexity O(SN2), independent of D, where S is the number of Sinkhorn iterations which
is usually of the order of 100 or 1000. Thus, since the gradient approximation step has a complexity of O(MN2), M can be
chosen of the same order as S to avoid any increase in terms of time complexity. As shown in Figure 2, this is acceptable for
D = 3 (as in the experiments bellow) but might not be enough for D = 4. This difference between all three orders is expected as
there is a sum of 104 matrices in the gradient for D = 2, 108 for D = 3 and 1012 for D = 4. On both figures, to have the same
relative error of 0.5 on the gradient, it requires approximately 105 samples for D = 4, 5× 103 samples for D = 3 and 2× 102

for D = 2.

5.2 Domain Adaptation (DA)
Hyperparameters This section will describe the key hyperparameters used by all the methods for reproducibility purpose.
Except for the Kullback-Leibler regularization ε and class regularization η, we keep the default parameters provided with the
code of each algorithm. Note that the code is also attached to this supplementary material.

S-GWL
• Loss: squared euclidean distance
• Outer iteration: 4000

• Max iteration for the barycenter: 4

• We use the automatic update of the marginal p proposed by S-GWL. Similar results were obtained without any automatic
update of the marginal.

OTT
• Loss: squared euclidean distance
• Number of samples M : 1000

• Number of iterations S: 1000
• Number of outer iterations of OTDA (Courty et al. 2016): 10
• Number of inner iterations of OTDA (Courty et al. 2016): 200
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Figure 2: Relative error of the gradient approximation for an increasing number of samples M . The gradient was approximated
after 100 (left) and 1000 (right) iterations of the algorithm OTT. The mean and standard deviation over 10 runs are displayed.
The points corresponding to a gradient of 0 are omitted. This may happen with a small number of samples M and for high order
tensors as the tensors X and Y become sparser.

Co-OT
• Loss: squared euclidean distance
• Number of iterations S: 10
• Number of outer iterations of OTDA (Courty et al. 2016): 10
• Number of inner iterations of OTDA (Courty et al. 2016): 200

GW
• Loss: squared euclidean distance
• Number of iterations S: 1000
• Number of outer iterations of OTDA (Courty et al. 2016): 10
• Number of inner iterations of OTDA (Courty et al. 2016): 200

SVM
• Square L2 penality C: 1.0 (Any value will give the same result has there is only 1 point per class)

Figures for each parameter and datasets In this section we present the Figures evoked in Section 6.1 for each dataset instead
of the average. We also display in Figures 4 to 10 the values of the various computed distances rescaled between 0 and 1 for
every transport method to more clearly demonstrate the correlation between the distance and the target accuracy. This supports
the choice of using the distance to select the hyperparameters on this Domain Adaptation task. In addition we also plot similar
figures related to the class regularization η and quickly analyze the performance for an increasing number of samples for the
gradient estimation.

Increasing number of samples Figure 3 shows that having a higher number of samples M for the estimation of the gradient
improves the performances of OTT.

Kullback-Leibler and classes regularization We show on Figures 4 to 10 the impact of the Kullback-Leibler and classes
regularizations.

Increasing the supervision We show in Figures 11 to 17 the impact of an increase in terms of supervision with respect to the
pairwise information that the same users rated old and new movies and the number of labels available for the target.

5.3 Comparison based clustering using OTT barycenter
Theoretical link between t-STE and OTT In this section, we show that t-STE (Van Der Maaten and Weinberger 2012) is
just a OTT111 barycenter with a fixed transport plan. While in the closed form presented in Theorem 2 we minimized directly
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Figure 3: Average target accuracy and distance over all the dataset for an increasing number of samples for the estimation of the
gradient.
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Figure 4: (Top row) Average target accuracy for an increasing Kullback-Leibler and classes regularization values. (Bottom row)
Distances of the different methods for an increasing Kullback-Leibler and classes regularization values. The distances have been
re-scaled between 0 and 1.
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Figure 5: (Top row) Target accuracy for an increasing Kullback-Leibler and classes regularization values with the dataset
composed of the two classes Thriller/Crime/Drama and Fantasy/Sci-Fi. (Bottom row) Distances of the different methods for an
increasing Kullback-Leibler and classes regularization values with the dataset composed of the two classes Thriller/Crime/Drama
and Fantasy/Sci-Fi. The distances have been re-scaled between 0 and 1.
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Figure 6: (Top row) Target accuracy for an increasing Kullback-Leibler and classes regularization values with the dataset
composed of the two classes Children’s/Animation and Fantasy/Sci-Fi. (Bottom row) Distances of the different methods for an
increasing Kullback-Leibler and classes regularization values with the dataset composed of the two classes Children’s/Animation
and Fantasy/Sci-Fi. The distances have been re-scaled between 0 and 1.
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Figure 7: (Top row) Target accuracy for an increasing Kullback-Leibler and classes regularization values with the dataset
composed of the two classes Thriller/Crime/Drama and War/Western. (Bottom row) Distances of the different methods for an
increasing Kullback-Leibler and classes regularization values with the dataset composed of the two classes Thriller/Crime/Drama
and War/Western. The distances have been re-scaled between 0 and 1.
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Figure 8: (Top row) Target accuracy for an increasing Kullback-Leibler and classes regularization values with the dataset
composed of the two classes Fantasy/Sci-Fi and Children’s/Animation. (Bottom row) Distances of the different methods for an
increasing Kullback-Leibler and classes regularization values with the dataset composed of the two classes Fantasy/Sci-Fi and
Children’s/Animation. The distances have been re-scaled between 0 and 1.
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Figure 9: (Top row) Target accuracy for an increasing Kullback-Leibler and classes regularization values with the dataset
composed of the two classes Fantasy/Sci-Fi and War/Western. (Bottom row) Distances of the different methods for an increasing
Kullback-Leibler and classes regularization values with the dataset composed of the two classes Fantasy/Sci-Fi and War/Western.
The distances have been re-scaled between 0 and 1.
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Figure 10: (Top row) Target accuracy for an increasing Kullback-Leibler and classes regularization values with the dataset
composed of the two classes Children’s/Animation and War/Western. (Bottom row) Distances of the different methods for an
increasing Kullback-Leibler and classes regularization values with the dataset composed of the two classes Children’s/Animation
and War/Western. The distances have been re-scaled between 0 and 1.
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Figure 11: (Top row) Average target accuracy for an increasing number of users known and label available in the target domain.
(Bottom row) Distances of the different methods for an increasing number of users known and label available in the target
domain. The distances have been re-scaled between 0 and 1.
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Figure 12: (Top row) Target accuracy for an increasing increasing number of users known and label available in the target
domain with the dataset composed of the two classes Thriller/Crime/Drama and Fantasy/Sci-Fi. (Bottom row) Distances of the
different methods for an increasing increasing number of users known and label available in the target domain with the dataset
composed of the two classes Thriller/Crime/Drama and Fantasy/Sci-Fi. The distances have been re-scaled between 0 and 1.
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Figure 13: (Top row) Target accuracy for an increasing increasing number of users known and label available in the target
domain with the dataset composed of the two classes Children’s/Animation and Fantasy/Sci-Fi. (Bottom row) Distances of the
different methods for an increasing increasing number of users known and label available in the target domain with the dataset
composed of the two classes Children’s/Animation and Fantasy/Sci-Fi. The distances have been re-scaled between 0 and 1.
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Figure 14: (Top row) Target accuracy for an increasing increasing number of users known and label available in the target
domain with the dataset composed of the two classes Thriller/Crime/Drama and War/Western. (Bottom row) Distances of the
different methods for an increasing increasing number of users known and label available in the target domain with the dataset
composed of the two classes Thriller/Crime/Drama and War/Western. The distances have been re-scaled between 0 and 1.
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Figure 15: (Top row) Target accuracy for an increasing increasing number of users known and label available in the target
domain with the dataset composed of the two classes Fantasy/Sci-Fi and Children’s/Animation. (Bottom row) Distances of the
different methods for an increasing increasing number of users known and label available in the target domain with the dataset
composed of the two classes Fantasy/Sci-Fi and Children’s/Animation. The distances have been re-scaled between 0 and 1.
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Figure 16: (Top row) Target accuracy for an increasing increasing number of users known and label available in the target
domain with the dataset composed of the two classes Fantasy/Sci-Fi and War/Western. (Bottom row) Distances of the different
methods for an increasing increasing number of users known and label available in the target domain with the dataset composed
of the two classes Fantasy/Sci-Fi and War/Western. The distances have been re-scaled between 0 and 1.
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Figure 17: (Top row) Target accuracy for an increasing increasing number of users known and label available in the target
domain with the dataset composed of the two classes Children’s/Animation and War/Western. (Bottom row) Distances of the
different methods for an increasing increasing number of users known and label available in the target domain with the dataset
composed of the two classes Children’s/Animation and War/Western. The distances have been re-scaled between 0 and 1.

the value of the tensor X , we could also minimize another related variable, such as points in a vector space x which generate
X(x). This is the principle of many triplet embedding methods which are looking for points x in a vector space that respect as
closely as possible the triplets provided in X1. Theorem 3 shows that a widely used method for triplet embedding, t-STE (Van
Der Maaten and Weinberger 2012), is a particular case of OTT barycenter.

Theorem 3. We suppose that T is a list of triplets which can also be represented with a cubic 3-order tensor X1 of size
(I1, I1, I1) with, at the position i1, i2, i3 the number of occurrences of the triplet (i1, i2, i3) in T . Let x = (xi)i∈J1,I1K be I1
points in a vector space Rq. We can then set the tensor X to the t-STE or the STE formula as given in (Van Der Maaten and
Weinberger 2012), for STE: Xi1,i2,i3 =

exp(−‖xi1−xi2‖
2)

exp(−‖xi1−xi2‖2)+exp(−‖xi1−xi3‖2)
. If L is the cross-entropy and f is the constant

function (all the 3 transport plans are similar), then STE is a particular case of OTT with the identity matrix Id (divided by I1)
of size I1 as the transport plan,

max
x∈RI1×q

∑
(i1,i2,i3)∈T

log(Xi1i2i3(x)) = I31 min
x∈RI1×q

1∑
b=1

E
(
X(x), X1,

Id

I1

)
. (46)



Proof. We start from the STE formulation and reformulate the problem,

max
x∈RI1×q

∑
(i1,i2,i3)∈T

log(Xi1,i2,i3(x)) (47)

= max
x∈RI1×q

I1,I1,I1∑
i1,i2,i3=1

X1
i1,i2,i3 log(Xi1,i2,i3(x)) (48)

= min
x∈RI1×q

I1,I1,I1∑
i1,i2,i3=1

−X1
i1,i2,i3 log(Xi1,i2,i3(x)) (49)

= min
x∈RI1×q

I1,I1,I1∑
i1,i2,i3=1

I1,I1,I1∑
k1,k2,k3=1

−X1
i1,i2,i3 log(Xk1,k2,k3(x))Idi1,k1Idi2,k2Idi3,k3 (50)

= min
x∈RI1×q

I1,I1,I1∑
i1,i2,i3=1

I1,I1,I1∑
k1,k2,k3=1

L
(
X1
i1,i2,i3 , Xk1,k2,k3(x)

)
Idi1,k1Idi2,k2Idi3,k3 (51)

= I31 min
x∈RI1×q

I1,I1,I1∑
i1,i2,i3=1

I1,I1,I1∑
k1,k2,k3=1

L
(
X1
i1,i2,i3 , Xk1,k2,k3(x)

) Idi1,k1
I1

Idi2,k2
I1

Idi3,k3
I1

. (52)

Note that, any permutation are equivalent to the identity as xi and xj can be exchanged. In addition, the identity matrix is not
necessarily the optimal value, thus the OTT barycenter might lead to a better optimum, but loses the pairwise connection that can
be useful for interpretation.

Interestingly, this new interpretation of t-STE in the light of Theorem 3 gives a good theoretical justification of the choice of
the log function in t-STE which is nothing more than a cross entropy between 3D-tensor. One specificity of OTT barycenter,
compared to t-STE, is that the size of the barycenter X is not necessarily the size of X1. Thus, it is notably possible to use a
small size for X which will aggregate similar points from X1. This idea has been used advantageously in the experiment to
obtain a direct clustering of a triplet dataset.

Hyperparameters used In this section we details the hyperparameters used in the experiment.

OTT

• Loss type: squared euclidean distance

• Number of samples M : 100

• Number of iterations S: 500

• Kullback-Leibler regularization: 0.1

AddS3

• Number of iterations of the k-means: 300

t-STE

• Degrees of freedom in student T kernel: 0

• Number of iterations of k-means: 300

• Maximum number of iterations: 1000

• L2 regularization constant: 0

Detailed tables for the experiment We display the ARI for comparison based clustering in Table 1 which is similar to the
one provided in the paper, without averaging the different classes. This table shows a similar behaviour, OTT is very often better
than AddS3s while being comparable to t-STEs on most datasets.

Additionally, we present several experiments in the balanced case in Table 2 where the proportion of classes are similar. In
this case, OTT is slightly worse than the two other baselines while still being competitive. This is not surprising since OTT,
contrary to AddS3 and t-STE, was not specifically designed to handle triplet comparisons. Instead, it is a general purpose Optimal
Transport formulation between tensors of potentially high order that can be used to solve multiple kind of tasks.



Table 1: ARI for unbalanced comparison-based clustering tasks on MNIST dataset. Each line corresponds to the average over 10
runs.

nb. examples per class—classes AddS3 AddS3s t-STE t-STEs OTT

200,20,20—0,1,2 0.35±0.02 0.89±0.19 0.36±0.02 0.97±0.02 0.96±0.02
200,20,20—1,3,4 0.35±0.02 0.92±0.03 0.34±0.01 0.94±0.03 0.94±0.03
200,20,20—1,9,4 0.35±0.02 0.92±0.03 0.34±0.01 0.94±0.03 0.94±0.03
200,20,20—2,9,8 0.32±0.03 0.8±0.05 0.72±0.21 0.82±0.06 0.8±0.06
200,20,20—3,4,0 0.72±0.32 0.52±0.25 0.94±0.02 0.88±0.18 0.87±0.06
200,20,20—3,4,9 0.38±0.06 0.83±0.18 0.39±0.16 0.9±0.05 0.9±0.04
200,20,20—5,7,0 0.57±0.34 0.76±0.35 0.93±0.04 0.94±0.04 0.93±0.05
200,20,20—6,4,8 0.35±0.03 0.89±0.2 0.33±0.01 0.96±0.02 0.97±0.02
200,20,20—6,8,5 0.36±0.03 0.81±0.24 0.4±0.18 0.93±0.04 0.94±0.03
200,20,20—7,1,9 0.53±0.35 0.69±0.22 0.86±0.05 0.8±0.06 0.8±0.05

30,3,1—0,1,2 0.32±0.08 0.8±0.33 0.35±0.17 0.93±0.12 0.93±0.12
30,3,1—1,3,4 0.28±0.08 0.85±0.33 0.37±0.21 1.0±0.01 0.96±0.09
30,3,1—1,9,4 0.27±0.1 0.96±0.09 0.3±0.03 0.99±0.01 0.95±0.09
30,3,1—2,9,8 0.29±0.08 0.87±0.15 0.35±0.17 0.9±0.14 0.84±0.15
30,3,1—3,4,0 0.2±0.1 0.61±0.24 0.9±0.12 0.85±0.15 0.84±0.21
30,3,1—3,4,9 0.29±0.06 0.84±0.21 0.33±0.17 0.87±0.15 0.84±0.21
30,3,1—5,7,0 0.25±0.06 0.7±0.01 0.85±0.22 0.88±0.15 0.9±0.15
30,3,1—6,4,8 0.31±0.03 0.94±0.12 0.29±0.03 0.96±0.09 0.9±0.13
30,3,1—6,8,5 0.31±0.05 0.9±0.14 0.29±0.03 0.97±0.1 0.9±0.14
30,3,1—7,1,9 0.27±0.23 0.76±0.12 0.84±0.23 0.81±0.15 0.84±0.16
30,3,3—0,1,2 0.4±0.11 0.85±0.19 0.38±0.11 0.89±0.12 0.83±0.19
30,3,3—1,3,4 0.37±0.05 0.85±0.24 0.35±0.03 0.99±0.01 0.93±0.18
30,3,3—1,9,4 0.37±0.05 0.85±0.25 0.36±0.03 0.99±0.01 0.92±0.18
30,3,3—2,9,8 0.34±0.06 0.8±0.24 0.38±0.17 0.87±0.12 0.81±0.24
30,3,3—3,4,0 0.47±0.38 0.5±0.25 0.94±0.07 0.95±0.09 0.8±0.17
30,3,3—3,4,9 0.38±0.1 0.83±0.21 0.37±0.17 0.89±0.12 0.85±0.19
30,3,3—5,7,0 0.27±0.21 0.73±0.29 0.91±0.09 0.95±0.09 0.89±0.19
30,3,3—6,4,8 0.36±0.04 0.89±0.19 0.36±0.03 0.96±0.07 0.92±0.18
30,3,3—6,8,5 0.36±0.04 0.89±0.19 0.36±0.03 0.98±0.07 0.93±0.18
30,3,3—7,1,9 0.38±0.27 0.59±0.23 0.81±0.19 0.77±0.17 0.8±0.2

300,30,10—0,1,2 0.3±0.02 0.96±0.02 0.3±0.01 0.96±0.03 0.96±0.02
300,30,10—1,3,4 0.29±0.01 0.93±0.02 0.28±0.0 0.89±0.1 0.93±0.03
300,30,10—1,9,4 0.29±0.01 0.94±0.03 0.28±0.01 0.93±0.03 0.93±0.04
300,30,10—2,9,8 0.28±0.03 0.8±0.05 0.42±0.26 0.77±0.04 0.73±0.06
300,30,10—3,4,0 0.25±0.04 0.59±0.23 0.92±0.03 0.91±0.06 0.85±0.06
300,30,10—3,4,9 0.3±0.04 0.85±0.1 0.4±0.22 0.9±0.04 0.91±0.03
300,30,10—5,7,0 0.3±0.19 0.68±0.02 0.9±0.04 0.91±0.04 0.88±0.06
300,30,10—6,4,8 0.3±0.02 0.93±0.09 0.28±0.01 0.92±0.09 0.96±0.03
300,30,10—6,8,5 0.3±0.02 0.9±0.1 0.34±0.19 0.94±0.03 0.93±0.03
300,30,10—7,1,9 0.25±0.03 0.69±0.04 0.65±0.27 0.76±0.05 0.78±0.05

AVG 0.34±0.09 0.81±0.16 0.51±0.1 0.91±0.08 0.89±0.1



Table 2: ARI for balanced comparison-based clustering tasks on MNIST dataset. Each line corresponds to the average over 10
different combinations of classes, each run 10 times.

nb. examples per class AddS3 AddS3s t-STE t-STEs OTT

10,10,10 0.9±0.08 0.9±0.1 0.88±0.13 0.93±0.11 0.9±0.11
20,20,20 0.88±0.06 0.87±0.07 0.86±0.11 0.91±0.08 0.86±0.08
30,30,30 0.91±0.05 0.9±0.05 0.87±0.1 0.92±0.07 0.91±0.07
40,40,40 0.92±0.06 0.91±0.05 0.86±0.1 0.92±0.06 0.9±0.06
50,50,50 0.92±0.06 0.92±0.06 0.85±0.11 0.92±0.06 0.9±0.06
60,60,60 0.92±0.05 0.91±0.04 0.86±0.09 0.92±0.05 0.9±0.05
70,70,70 0.92±0.05 0.92±0.05 0.85±0.07 0.92±0.05 0.88±0.05
80,80,80 0.92±0.06 0.91±0.03 0.85±0.1 0.92±0.06 0.86±0.06
90,90,90 0.92±0.11 0.92±0.11 0.87±0.09 0.92±0.11 0.8±0.11

100,100,100 0.92±0.13 0.92±0.13 0.85±0.09 0.92±0.13 0.73±0.13

AVG 0.91±0.04 0.91±0.05 0.86±0.1 0.92±0.05 0.86±0.08
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