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Abstract

Monte-Carlo simulations play a key role in the current Attitude and Orbit
Control Systems (AOCS) Verification and Validation (V&V) process, but it
is generally time-consuming and it may fail in detecting worst-case configu-
rations, especially in the presence of rare events. In such a case, µ-analysis
offers a nice alternative, although it cannot measure the probability of occur-
rence of the identified worst-cases, which can invalidate a control system on
the basis of unlikely events. Probabilistic µ-analysis was introduced in this
context 20 years ago to bridge the gap between the two techniques, but un-
til recently no practical tools were available. This paper summarizes recent
advances on this topic with a particular emphasis on practical applications
to space systems. More precisely, the proposed technique is applied to eval-
uate AOCS controllers in the context of a challenging high accuracy satellite
pointing control problem. The way the proposed tools can be integrated into
the traditional AOCS V&V process and used to tighten the V&V analysis
gap is also highlighted.
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1. Introduction

Novel lightweight materials and deployable structures allow to perform
an increasingly wide variety of on-orbit services, which results in stronger
interactions between the spacecraft flexible structures (solar arrays, robotic
arms, antennas, mirrors) and fuel sloshing in the reservoirs. Efficient AOCS
must therefore be designed to ensure a high pointing accuracy. This requires
a robust control architecture, but also adequate V&V methods to assess
the mission risk and check if performance is guaranteed regardless of the
uncertainties and external disturbances affecting the system.

Monte-Carlo simulations [1, 2] are the preferred validation means in the
space industry. They are able to quantify the probability of sufficiently fre-
quent phenomena, but they are generally time-consuming, provide only soft
bounds [3] and may fail in detecting rare but nevertheless critical events.
Less expensive deterministic and simulation-free alternatives exist and have
reached a good level of maturity, as is the case for µ-analysis [4, 5, 6].
But unlike Monte Carlo simulations, if worst-case scenarios are no longer
missed, their probability of occurrence is also not measured, which can in-
validate an AOCS on the basis of very rare and therefore extremely unlikely
events [7, 8, 9].

Research to fill the gap between these two approaches is still at a very
early stage and only few practical tools are available, although this issue was
identified 20 years ago by [10]. This is all the more surprising since the valida-
tion process currently accounts for up to 80% of the AOCS total development
time, and is becoming longer as the space missions become increasingly com-
plex. In this context, this paper builds on the work of [9, 11, 7, 12] on proba-
bilistic µ-analysis and its ambitions are twofold. First, develop new cheap and
reliable tools to improve the characterization of rare but nonetheless possible
events, so as to tighten the aforementioned V&V analysis gap. Second, apply
these tools to a challenging high accuracy satellite pointing control problem,
to show how they can be integrated into the traditional AOCS V&V cycle to
improve the current industrial standard and fasten the validation process.

The paper is organized as follows. The latest advances in probabilistic µ-
analysis are first presented in Section 2. The resulting computational tool is
then described in Section 3. It is finally applied in Section 5 to a challenging
and realistic AOCS benchmark introduced in Section 4.
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2. Latest advances in probabilistic µ

2.1. Problem statement

Let us consider a continuous-time uncertain linear time-invariant system
(usually including control laws):{

ẋ = A(δ)x+B(δ)u

y = C(δ)x+D(δ)u
(1)

where the parametric uncertainties δ = (δ1, . . . , δN) ∈ RN are independent
random variables with probability density functions f = (f1, . . . , fN). It is
assumed that A(δ), B(δ), C(δ), D(δ) are polynomial or rational functions of
the δi. As a result, system (1) can be transformed into a Linear Fractional
Representation (LFR) as in Figure 1 (right): the uncertainties are separated
from the nominal (closed-loop) system M(s) and isolated in a block-diagonal
operator ∆ = diag(δ1In1 , . . . , δNInN

), where Ini
is the ni×ni identity matrix.

Note that this paper focuses on real parametric uncertainties, but as for
classical µ-analysis, complex uncertainties and neglected dynamics can be
considered as well.

Figure 1: Standard interconnections for robust stability (left) and worst-case performance
(right) analysis

The set of matrices with the same block-diagonal structure as ∆ is de-
noted ∆. It is assumed that the uncertainties are normalized, so that the
subset B∆ of ∆ defined as B∆ = {∆ ∈ ∆ : σ(∆) < 1} = {∆ ∈ ∆ : |δi| <
1, i ∈ [1, N ]} corresponds to the set of physically meaningful uncertainties
Bδ = [−1 1]N . With these notations in mind, two main problems can be
solved using probabilistic µ-analysis:

Problem 2.1 (Probabilistic robust stability). Compute the probability
P∆,f (M(s)) that the interconnection of Figure 1 (left) is unstable when
∆ ∈ B∆.
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Problem 2.2 (Probabilistic worst-case H∞ performance). Given a
performance level γ > 0, compute the probability P

γ

∆,f (M(s)) that
‖Tu→y(s,∆)‖∞ > γ on Figure 1 (right) when ∆ ∈ B∆, where Tu→y(s,∆)
is the transfer from u to y.

Once computed, these probabilities can be confronted to a given tolerance
level ε, so as to validate or reject the considered control system, depending
on whether P∆,f (M(s)) and P

γ

∆,f (M(s)) are lower or higher than ε.

Remark 2.1. The uncertainties being bounded, their probability distribu-
tions must be supported on a bounded interval. Uniform and truncated normal
distributions are often used in practice.

2.2. Probabilistic robust stability

Classical µ-analysis [4, 5] aims at computing the robust stability margin
kr, which satisfies the following properties:

• the interconnection of Figure 1 (left) is stable for all ∆ ∈ krB∆ =
{∆ ∈∆ : |δi| < kr, i ∈ [1, N ]},

• for all k > kr, there exists at least one ∆ ∈ kB∆ such that the inter-
connection is unstable.

This defines an uncertainty box centered at 0 and of radius kr, which touches
the instability domain and where stability is guaranteed. So if kr < 1, there
are parts of the uncertainty domain Bδ that can be stable or unstable, but
for which nothing can be concluded.

Let us illustrate this with a simple example extracted from [11]. The
considered system is described by the state-space representation: ẋ =

[
0 1

−a1(δ1) −a2(δ2)

]
x+

[
0
1

]
u

y =
[
1 0

]
x

(2)

where a1(δ1), a2(δ2) are two uncertain parameters defined as:{
a1(δ1) = 1 + 2δ1

a2(δ2) = 0.8 + δ2

(3)
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and δ1, δ2 are two normalized real parametric uncertainties. In this particular
case, the stability and instability domains can be calculated analytically,
using e.g. the Routh-Hurwitz stability criterion. They are represented in
light/dark green and dark red respectively in Figure 2. The domain krBδ
where stability is guaranteed by µ-analysis is the light green box, and it is
clear that there are both stable and unstable zones outside this area, where
no information is available at this stage.
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Figure 2: Exact stability domain (light/dark green), exact instability domain (dark red),
and guaranteed stability domain obtained with µ-analysis (light green)

Remark 2.2. Computing kr is in general NP-hard, so lower and upper bounds
are computed instead. Much work has been done to reduce the gap between
these bounds, and many efficient algorithms are now available [13]. It can
thus usually be assumed that the (almost) exact value of kr can be computed
with a reasonable computational time.

A branch-and-bound (B&B) algorithm can be used to explore the whole
uncertainty domain. The idea is to partition Bδ into smaller boxes until each
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box has guaranteed stability or is sufficiently small to be neglected [14]. Tak-
ing the union of the boxes with guaranteed stability leads to an approxima-
tion Ds ⊂ Bδ of the exact stability domain. In practice, this approximation is
usually quite accurate, as can be seen in the previous example by comparing
the green areas in Figures 2 and 3.

Figure 3: Guaranteed stability domain obtained with µ-analysis and B&B (light green),
and domain of undetermined stability (blue)

This strategy can however result in a significant computational time for
large-scale problems. In particular, the boxes where the uncertain system
is unstable are never identified as such by the algorithm, since µ-analysis
requires to start with a nominally stable system. They are partitioned until
they reach a negligible size, which leads to an unnecessary generation of
boxes. This is materialized in Figure 3 by the use of the blue color to represent
these very small undetermined boxes. But this issue can be addressed easily.
µ-analysis indeed detects when the poles of the nominally stable system M(s)
reach the imaginary axis as the size of ∆ increases. The same strategy can be
applied to a nominally unstable system. Integrated into the previous B&B
scheme, this directly yields a domain Ds ⊂ Bδ of guaranteed instability.
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The domain Ds of guaranteed stability conveniently takes the form of a
finite union of disjoint boxes D

(k)
s :

Ds =
⋃
k

D(k)
s where D(k)

s = [δ
(k)
1 , δ

(k)

1 ]× · · · × [δ
(k)
N , δ

(k)

N ]

making the associated probability p(Ds) easy to compute:

p(Ds) =
∑
k

p(D(k)
s ) (4)

=
∑
k

N∏
i=1

∫ δ
(k)
i

δ
(k)
i

fi(δi)dδi (5)

The same applies to Ds, which finally leads to both lower and upper bounds
on the exact probability P∆,f (M(s)) of instability, thus solving Problem 2.1:

p(Ds) ≤ P∆,f (M(s)) ≤ 1− p(Ds) (6)

The considered control system can then be either validated if 1−p(Ds) < ε or
rejected if p(Ds) > ε, where ε is the tolerance level introduced in Section 2.1.
In practice, B&B is executed until the gap between the bounds becomes
small enough and one of the two previous conditions occurs. The uncertainty
domain is finally partitioned as follows:

Bδ = Ds ∪Ds ∪Dsu (7)

where Dsu denotes the domain of undetermined stability, with probability
p(Dsu). The B&B algorithm can indeed only approximate Ds and Ds, and
not compute them exactly. The application to the previous academic example
is shown in Figure 4, where it can be seen that very good approximations of
the exact stability and instability domains are obtained.

Remark 2.3. When applying B&B, the boxes can be divided along the di-
rection with the highest µ-sensitivity (i.e. corresponding to the uncertainty
with the greatest influence on stability, see [15]), instead of the longest edge
as usually done. This significantly reduces the number of boxes and the com-
putational time in most cases [9, 16]. This is observed here by comparing
the number of green boxes in Figures 3 and 4, obtained without and with the
µ-sensitivities respectively.
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Figure 4: Domains of guaranteed stability Ds (light green), guaranteed instability Ds

(light red) and undetermined stability Dsu (blue) obtained with µ-analysis and B&B

2.3. Probabilistic worst-case H∞ performance

As with robust stability, B&B is combined with µ-analysis to compute
domains of guaranteed performance Dγ and guaranteed non-performance Dγ,
as well as the associated probability measures p(Dγ) and p(Dγ). This leads
to bounds on the exact probability P

γ

∆,f (M(s)) of non-performance, thus
solving Problem 2.2:

p(Dγ) ≤ P
γ

∆,f (M(s)) ≤ p(Ds)− p(Dγ) (8)

Performance is guaranteed on a given box D, i.e. D ⊂ Dγ, if:

max
∆∈D
‖Tu→y(s,∆)‖∞ ≤ γ (9)

This can be reformulated as a skew µ problem using the main loop theo-
rem [17] and solved using existing µ-based tools [6]. On the other hand,
checking if non-performance is guaranteed on D, i.e. if D ⊂ Dγ, requires to
solve:

min
∆∈D
‖Tu→y(s,∆)‖∞ > γ (10)
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This is a minimax problem, which cannot be directly reformulated as a skew-
µ problem as above. To address this issue, a sufficient condition for inequal-
ity (10) to hold is introduced in [9], in the form of a skew µ calculation
involving the inverse transfer T −1

u→y(s,∆). It is very efficient from a compu-
tational point of view, but it may introduce conservatism, although this is
usually not the case in practice. The main limitation is that this condition
is restricted to a scalar performance channel, i.e. u ∈ R and y ∈ R in (1).

A B&B algorithm can then be implemented as for stability. The inves-
tigated domain is limited to the domain of guaranteed stability Ds, since
performance analysis only makes sense for stable systems. This leads to:

Ds = Dγ ∪Dγ ∪Dγu (11)

where Dγu is the domain of undetermined performance. The following par-
tition of Bδ is finally obtained by combining (7) and (11):

Bδ = Dγ ∪Dγ ∪Dγu ∪Ds ∪Dsu (12)

3. A new computational tool

All the results and algorithms presented in Section 2 have been imple-
mented in the Matlab function mupb, the main routine of the new STOWAT1

(STOchastic Worst Case Analysis Tools) package to be integrated in a
forthcoming version of the SMAC (Systems Modeling Analysis and Control)
Toolbox2. This function solves Problems 2.1 and 2.2 by computing guaranteed
lower and upper bounds on the probabilities P∆,f (M(s)) and P

γ

∆,f (M(s))
with the desired accuracy. It is fully compatible with the Generalized State-
Space (GSS) Library of the SMAC Toolbox [18], which offers a powerful and
user-friendly way to model LFR, including the ability to define probability
distributions for parametric uncertainties. This library is itself compatible
with the standard uss object of the Robust Control Toolbox, and it provides
automated tools to convert uss objects to gss objects, as well as to incorpo-
rate probability distributions initially not present in uss objects. Finally, the
function mupb is also fully interfaced with the Skew Mu Analysis Robustness
Tools (SMART) Library of the SMAC Toolbox [6], which allows the user to

1These tools were developed under ESA contract RFP/3-16071/19/NL/CRS/hh
2The SMAC toolbox is available at w3.onera.fr/smac
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benefit from a number of state-of-the-art µ-analysis based algorithms. It can
be called quite easily as follows:

[pbnds,partout]=mupb(sys,pb,partin,options);

where:

• sys is a gss or uss object describing the LFR of Figure 1,

• pb specifies whether Problem 2.1 or 2.2 is to be solved,

• partin can be used to provide an initial description of Ds, Ds, Dsu ,
Dγ, Dγ and Dγu coming from a previous call to mupb,

• options contains tuning parameters related to the stopping criterion
of the B&B algorithm, the use of µ-sensitivities and the accuracy of
the µ computation,

• pbnds gives the guaranteed bounds on P∆,f (M(s)) or P
γ

∆,f (M(s)),

• partout provides the final list of boxes which make up Ds, Ds, Dsu ,
Dγ, Dγ and Dγu (same format as partin).

4. Benchmark description

As already emphasized in the introduction, pointing performance is in-
creasingly demanding on both scientific and observation space missions of
future generations [19]. In the presence of uncertainties, performance degra-
dation remains very challenging to quantify reliably as it results from complex
interactions between external perturbations and structural flexible modes of
the spacecraft at very specific frequencies. Inspired by previous works pre-
sented in [19, 20, 21], the proposed benchmark focuses on the effects on
pointing accuracy of the micro-perturbations induced by a Solar Array Drive
Mechanism (SADM).

4.1. Model description

The system under consideration, illustrated by Figure 5, is essentially
composed of a main body, two solar arrays SA1 and SA2, an isolated payload
PL, and a wheel W whose mass and inertia are neglected here.

The single axis case is considered in this work. Let us denote
X = [θ xSA1 xSA2 xPL]′ the position vector of the plant, where θ is the
pointing error. Using the M −D −K formalism, the model is described as:[

Ẋ

Ẍ

]
=

[
0 I

−M−1K −M−1D

] [
X

Ẋ

]
+M−1Z

[
ΓB
ΓSA

]
(13)
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Figure 5: Simplified view of the nominal plant

The generalized inertia, damping and stiffness matrices are defined as:
M = diag(JB, JSA1 , JSA2 , JPL) = 102 × diag(13, 22, 22, 5)

D = S(VD)

K = S(VK)

(14)

where:

S(V ) =

[
sum(V ) −V ′
−V diag(V )

]
(15)

and: {
VD = [DSA1 DSA2 DPL]′ = 102 × [0.5 0.5 8]′

VK = [KSA1 KSA2 KPL]′ = 105 × [1 1 200]′
(16)

Finally, the input matrix:

Z =

[
1 0 0 0
0 1 1 0

]′
(17)

distributes the control torque ΓB applied to the main body and the input
perturbation torques ΓSA = ΓSA1 = ΓSA2 which, for simplicity, are assumed
to affect similarly the two solar arrays.
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Uncertainties mainly affect the first three elements of the generalized
inertia matrix as follows:

JB = (1 + 0.1 δ0)JB0

JSA1 = (1 + 0.2 δ1)JSA10

JSA2 = (1 + 0.2 δ2)JSA20

(18)

where the δi – denoting normalized real parametric uncertainties – respec-
tively introduce 10% variations on the main body and 20% on each solar
array. Resulting from these uncertainties, rather significant variations (see
Table 1) can be observed on the main flexible modes respectively located
near 6.8 rad/s and 12.5 rad/s in the nominal case. Such variations require a
robust control design, which is described below.

Element Damping Frequency (rad/s)

Mode #1 [1.6 1.8]× 10−3 [6.35 7.39]
Mode #2 [3.0 3.3]× 10−3 [11.9 13.1]
Mode #3 [4.7 4.8]× 10−3 [231 238]

Table 1: Flexible modes characteristics

The particular structure of equation (13) where the uncertainties, through
M−1, enter the model in a rational way, strongly suggests to use the LFR
framework. Either using uss or gss objects [18], a minimal LFR Fu(G(s),∆),
with ∆ = diag(δ0, δ1, δ2), is readily obtained and can be integrated in a robust
H∞ control design scheme (see Figure 6). In this scheme, A(s) = (1+0.05s)−1

denotes the actuator model, while the WX(s) are the standard input/output
weighting functions of the H∞ framework. Here, the most specific ones are
WSA(s) and WAPE(s), which shape the disturbance inputs interacting with
the flexible modes of the solar arrays and the absolute pointing error (APE)
output respectively. Based on previous work introducing relevant metrics for
pointing accuracy [22, 23, 24], it appears that the latter can be quantified
via the H∞ norm of a weighted transfer. In this application, the proposed
weighting functions, adapted from [21], are all described in Table 2. The
main functions of interest (WSA and WAPE) have been calibrated in such a
way that the pointing performance requirement is met when:

γape = ‖TwSA→zAPE
(s)‖∞ ≤ 1 (19)

Note that WSA(s) is a very selective band-pass filter designed to excite the
system around 12.45 rad/s, while WAPE(s) is a high-pass filter.
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Name Numerical expression Main characteristic

WSA WSA(s) =
(

0.01245 s
155+0.01245 s+s2

)2
selective band-pass

WAPE WAPE(s) = 2× 105 × 1+300s
1+3s

high-pass

WUI WUI(s) = 10−4 × 1
1+0.1s

low-pass

WY WY (s) = 10−7 × 1
1+2s

low-pass

WUO WUO(s) = 10× 1+0.002s
1+0.8s

low-pass

Table 2: Weighting functions

Figure 6: Weighted LFT-based closed-loop model

4.2. Controller design

Control design is performed in two steps. A preliminary PD-like first or-
der controller KPD(s) is initially designed by a modal-based approach that
robustly stabilizes the double integrator of the plant for all admissible uncer-
tainties δi. In a second step, the poor performance level of this initial con-
troller is improved by a multi-model structured H∞ design approach based
on systune and a general strategy exposed in [25]. Note however that in the
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particular case of this challenging application, the optimization problem is
not only nonsmooth but also strongly nonconvex when a low order is required.
Then, despite its high efficiency, the optimization algorithm implemented in
systune generally fails or requires a large number of random starts. This
issue is solved by providing the solver with a non-minimal third-order stabi-
lizing initial condition KINIT (s) directly derived from KPD(s) as follows:

KINIT (s) = KPD(s)×
(
s2 + 2 ξ0 ω0 s+ ω2

0

s2 + 2 ξ0 ω0 s+ ω2
0

)
︸ ︷︷ ︸

=1

= KPD(s) (20)

where ω0 = 12.5 rad/s and ξ0 = 0.001 are chosen close to the frequency and
damping parameters of the band-pass filter WSA(s). Interestingly, by this
approach, a very low (third) order controller is rapidly obtained despite the
relatively high order of the weighted design interconnection (n = 17).
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Figure 7: Controllers Bode diagrams

As is visible on the Bode plot of Figure 7, this controller exhibits poorly
damped poles and zeros near 12.5 rad/s and 13 rad/s respectively. These are
the necessary ingredients to ensure a good rejection of the input perturbations
on the solar arrays. However, with such a low-order solution, it was not
possible to ensure a priori that the performance requirement (19) is rigorously
met for all admissible uncertainties.
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4.3. Preliminary robustness analysis

A preliminary analysis is realized to evaluate the robustness of the point-
ing performance. This is first achieved by a standard evaluation of the H∞
norm of TwSA→zAPE

(s) for 2000 randomly generated configurations according
to a uniform distribution for each uncertainty δi. The results are presented in
Figure 8 which also displays a worst-case plot detected by a skew µ-analysis
approach. At this stage, the controller seems to be validated by the standard
Monte-Carlo approach since the H∞ norm never gets larger than 1, while it
is invalidated by µ-analysis.

Figure 8: Robust performance: Monte-Carlo vs skew µ-analysis

A refined but also much more time consuming3 analysis involving from
N = 5000 to 200000 samples is then performed. As can be seen in Table 3,
a minimum number of 50000 samples is required to obtain a reasonably
tight approximation P̂N(γape > 1) ≈ 10−4 of the probability of failure PF =
P(γape > 1), which as already proven by skew µ-analysis is not zero.

3All computations have been performed without parallelization on a standard laptop
equipped with a processor Intel i5-8400H, 2.50GHz with 16Gb RAM installed.
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Method # samples (N) P̂N(γape > 1) Worst case (γ̂N) CPU
MC 5000 0 0.76 20 s
MC 15000 4.9× 10−4 1.00 60 s
MC 25000 2.4× 10−4 1.34 100 s
MC 50000 1× 10−4 1.76 190 s
MC 100000 9× 10−5 1.89 410 s
MC 200000 9.5× 10−5 2.23 860 s

skew µ NA NA γ?ape = γ̂∞ = 3.08 6 s

Table 3: Refined Monte-Carlo (MC) robustness analysis

Remark 4.1. As recalled in [26], hard bounds on the probability of failure
PF cannot be obtained by this approach. However, given tolerance levels ε and
δ, the Chernoff bound enables to predict a minimum number of samples
N to ensure a certain accuracy in a probabilistic setting:

N >
1

2ε2
log

(
2

δ

)
⇒ P

(
|PF − P̂N | > ε

)
< δ (21)

But this bound is very conservative here. Assuming for example that ε =
δ = 10−4, one actually get N ≥ 5 × 108! A less conservative point of view
is proposed in [26] from which, after minor adaptations to our context, one
obtains:

N >
log δ

log(1− ε)
⇒ P (P(γape > γ̂N) > ε) < δ (22)

Let us choose N = 15000 so that γ̂N ≈ 1 (see Table 3) and set δ = ε. From
(22), it is then readily checked that ε = (1 − ε)N ⇒ ε ≈ 5 × 10−4. This can
be summarized as:

P
(
PF > 5× 10−4

)
< 5× 10−4 (23)

Interestingly this result is obtained after ”only” 15000 simulations and, as is
the case with the Chernoff bound (21), this number of required simulations is
independent of the number of uncertain parameters. Unfortunately,
equation (22) does no permit to evaluate PF independently of N which must
be fixed here such that γ̂N ≈ 1. As a result, the tolerance ε cannot be freely
defined either. However, it provides a good insight into the required number of
simulations to be performed, which is confirmed by the numerical experiments
summarized in Table 3.
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5. Application of probabilistic µ-analysis

In this example involving a limited number of uncertain parameters and
a priori a very low probability of failure of the control system, Monte-Carlo
techniques are time-consuming and certainly not the best suited. On the
other hand, µ-analysis can quickly prove non-performance but does not pro-
vide any associated risk probability. To fill this gap, the new probabilistic µ
tool presented in Section 3 is then used to address Problem 2.2 as detailed
in Section 2.3.

5.1. Initial characterization of the performance regions

Considering first uniform distributions for all parametric uncertainties
δi, the routine mupb is called on the uncertain (but robustly stable) closed-
loop LFR described in Section 4 to evaluate the performance regions Dγ,
Dγ and Dγu , from which guaranteed probability bounds are deduced. A
first analysis is performed with default settings (first row in Table 4). Next,
the algorithm is resumed with a refined stopping criterion to obtain tighter
(but still guaranteed) bounds on the probability of failure PF while keeping
a reasonable computational time (second row in Table 4). Note that in
both cases, the computed intervals confirm the previous Monte-Carlo analysis
(with 50000 samples), which is recalled on the last row of Table 4. Cross-
sectional visualizations (with δ0 = 1) of the performance regions in the plane
< δ1 × δ2 > are then presented in Figures 9 and 10 for both settings.

Method PF = P(γape > 1) CPU time
Probabilistic µ (default) [0.53 2.02]× 10−4 2 s
Probabilistic µ (refined) [0.86 1.47]× 10−4 10 s

Monte Carlo (5× 104 samples) ≈ 1× 10−4 190 s

Table 4: Guaranteed bounds on PF obtained with mupb (uniform distribution)

Figure 10 clearly shows that the undetermined region (visualized in blue)
is significantly reduced in the second case using some refined settings. How-
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Figure 9: Cross-sectional view (δ0 = 1) of the performance regions (default settings)

Figure 10: Cross-sectional view (δ0 = 1) of the performance regions (refined settings)
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ever, as is clarified next, this will not systematically have a huge impact on
the probability level to be demonstrated.

Remark 5.1. In this application involving 3 uncertain parameters, the CPU
time required by the proposed µ-based approach is very competitive when com-
pared to Monte-Carlo techniques and provides (beyond guaranteed results)
much more information. But the computational effort can significantly in-
crease with the number of uncertain parameters, although the latter is not
necessarily a good measure of the computational burden. A model with many
uncertain parameters, but only a few of which have a large influence on sta-
bility or performance, will indeed be easier to analyze than a model with
5 or 10 uncertain parameters of equivalent importance. This is where the
µ-sensitivities introduced in Remark 2.3 play a key role. That being said,
although there is no general rule as explained above, numerical difficulties
are likely to occur beyond 5 to 10 parameters. A promising approach to push
this limit is to exploit parallel computing. This is easily achieved for Monte-
Carlo techniques, and turns out to be slightly more complex (but feasible!)
for the proposed µ-based approach. The proposed algorithm involves a list
of domains, each of which can be analyzed independently of the others. We
can therefore consider the following implementation: each available CPU first
takes the domain with the highest probability from the list, then performs the
analysis, and in case (in)stability or (non-)performance cannot be guaranteed
finally divides the domain and returns the resulting subdomains to the list.
This important issue clearly deserves further investigations and will be the
subject of future works.

5.2. Probability levels cheap reassessment

Beyond the guaranteed results (through hard bounds on the probability
of failure) provided by probabilistic µ-analysis, the most interesting feature
is that the computed sets of domains (illustrated in Figures 9 and 10) can
be reused at a very low cost to evaluate new probability levels for any dis-
tribution of the uncertain parameters in their respective intervals. In this
application, this is achieved by considering truncated normal distributions
with varying standard deviations σ ∈ [0.3 , 5] for each uncertainty. The re-
sults, obtained in a few seconds without recalling the analysis routine mupb,
are presented in Figures 11 and 12, which show the evolution of the guaran-
teed upper and lower bounds on P(γape > 1) as a function of σ. As expected,
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the gap between upper and lower bounds is reduced in the refined case (Fig-
ure 12). Moreover, a convergence towards the bounds presented in Table 4
(obtained with uniform distributions and visualized by the black solid and
dashed lines) is observed when σ → ∞. Conversely, for small values of σ,
the probability levels become unsurprisingly so small that their evaluation
through Monte-Carlo strategies would require a prohibitive number of simu-
lations. In this respect, the proposed approach clearly bridges a gap between
classical methods and µ-analysis. Moreover, the obtained results permit to
establish an explicit and constructive relationship between the probability to
be demonstrated and the characteristics of the uncertainties. As an example,
if the targeted probability of failure is 10−6, then the controller is validated
as long as σ ≤ 0.44.
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Figure 11: Bounds on P(γape > 1) w.r.t standard deviation based on the initial set of
performance regions (default settings)

Finally, a comparison of the upper bounds (see Figure 13) between the
default and refined settings reveals a reasonably small gap – especially for low
σ – which might not justify the additional CPU time. The refined analysis
has essentially permitted to increase the lower bound on the probability of
failure. As a result, for the given probability level to be demonstrated the
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Figure 12: Bounds on P(γape > 1) w.r.t standard deviation based on the refined set of
performance regions (refined settings)

controller is validated by the default analysis as long as σ ≤ 0.42. The
difference between the two results based on default or refined settings is then
not really significant. Relevant conclusions can thus be obtained here at a
very low cost (a few seconds).

6. CONCLUSIONS AND PERSPECTIVES

Based on recent algorithmic advances in probabilistic µ-analysis and a
new Matlab implementation, promising performance assessment results have
been obtained on a realistic AOCS benchmark. This opens the way towards
the integration of probabilistic µ in a more efficient design-and-validation
process. A proposed integration scheme to be further evaluated through fu-
ture studies is exposed in Figure 14. As emphasized in Section 5.2, a very
interesting feature of the proposed approach is to enable very fast iterations
between the probability level and the uncertainties characterization. At a
medium cost, uncertainty resizing is also possible. Future work will be de-
voted to more advanced performance evaluation involving several criteria
simultaneously such as H∞ performance on multiple channels but also ro-
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Figure 13: Comparison of upper-bounds on P(γape > 1) w.r.t standard deviation

bust gain and phase margins. In the longer term, extensions to uncertain
time-varying parameters should finally be considered.
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