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Dormonta,c, Olivier Colliota, Ninon Burgosa, and the APPRIMAGE Study Group1

aInria, Aramis project-team, Sorbonne Université, Institut du Cerveau - Paris Brain Institute,
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ABSTRACT

Clinical data warehouses provide access to massive amounts of medical images and thus offer unprecedented
opportunities for research. However, they also pose important challenges, a major challenge being their het-
erogeneity. In particular, they contain patients with numerous different diseases. The exploration of some
neurological diseases with magnetic resonance imaging (MRI) requires injecting a gadolinium-based contrast
agent (for instance to detect tumors or other contrast-enhancing lesions) while other diseases do not require
such injection. Image harmonization is a key factor to enable unbiased differential diagnosis in such context.
Additionally, classical neuroimaging software tools that extract features used as inputs of classification algo-
rithms are typically applied only to images without gadolinium. The objective of this work is to homogenize
images from a clinical data warehouse and enable the extraction of consistent features from brain MR images,
no matter the initial presence or absence of gadolinium. We propose a deep learning approach based on a 3D
U-Net to translate contrast-enhanced into non-contrast-enhanced T1-weighted brain MRI. The approach was
trained/validated using 230 image pairs and tested on 26 image pairs of good quality and 51 image pairs of low
quality from the data warehouse of the hospitals of the Greater Paris area (Assistance Publique-Hôpitaux de
Paris [AP-HP]). We tested two different 3D U-Net architectures and we chose the one reaching the best image
similarity metrics for a further validation for a segmentation task. We tested two 3D U-Net architectures with
the addition either of residual connections or of attention mechanisms. The U-Net with attention mechanisms
reached the best image similarity metrics and was further validated on a segmentation task. We showed that
features extracted from the synthetic images (gray matter, white matter and cerebrospinal fluid volumes) were
closer to those obtained from the non-contrast-enhanced T1-weighted brain MRI (considered as reference) than
the original, contrast-enhanced, images.

1. INTRODUCTION

Clinical data warehouses, gathering hundreds of thousands of medical images from numerous hospitals, offer fan-
tastic opportunities for computer-aided diagnosis for neurological diseases but also pose considerable challenges.
One of these challenges is the heterogeneity of the images present in the data warehouse. Neurological diseases
can result in a variety of brain lesions that are each studied with specific magnetic resonance imaging (MRI)
sequences. For example, T1-weighted (T1w) brain MRI enhanced with a gadolinium-based contrast agent are
used for the study of lesions such as tumors, and T1w images without gadolinium are used for the study of neu-
rodegenerative diseases. To perform differential diagnosis using classification algorithms, homogeneous features
must be extracted from the images, no matter the disease, otherwise a link could be established between MRI
sequence and pathology, which would create bias. Software tools such as SPM,1 ANTs2 or FSL3 have been widely
used for feature extraction but they were largely validated using structural T1w MRI without gadolinium only,
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to the best of our knowledge, and their good performance on images with gadolinium is thus not guaranteed. A
solution could then be to convert contrast-enhanced T1w (T1w-ce) into non-contrast-enhanced T1w (T1w-nce)
brain MRI before using such tools.

Deep learning has been widely used in the image translation domain to enhance image quality, such as for
denoising4–7 or super-resolution,8–12 but also for image harmonization.13 Closer to our objective, 3D U-Net like
models have been developed for the synthesis of images with gadolinium from images without gadolinium.14–16

Our objective in this work is to obtain a homogeneous dataset of T1w-nce images that will be later used for the
differential diagnosis of neurological diseases in a clinical data warehouse. We propose two deep learning models,
based on a 3D U-Net like structure that demonstrated good performance on similar tasks,14–16 to translate
T1w-ce into T1w-nce images. We trained and tested our models using 307 pairs of T1w-nce and T1w-ce images.
We first assessed synthesis accuracy by comparing real and synthetic T1w-nce images using standard metrics.
We then compared the volumes of different tissues obtained by segmenting the real T1w-nce, real T1w-ce and
synthetic T1w-nce images using SPM.17

2. MATERIALS AND METHODS

2.1 Dataset description

This work relies on a large clinical dataset containing all the T1w brain MR images of adult patients scanned
in hospitals of the Greater Paris areas (Assistance Publique-Hôpitaux de Paris [AP-HP]). The data were made
available by the AP-HP data warehouse and the study was approved by the Ethical and Scientific Board of the
AP-HP. According to French regulation, consent was waived as these images were acquired as part of the routine
clinical care of the patients. Images from this clinical data warreehouse are very heterogeneous:18 they include
images of patients with a wide range of ages and diseases, acquired with different scanners from 1980 up to now.

The dataset used in this work is composed of 307 pairs of T1w-ce and T1w-nce images that were extracted
from a dataset composed of 9941 images made available by the AP-HP data warehouse. We first selected all
the images of low, medium and good quality, excluding images that were not proper T1-weighted brain MRI,18

resulting in 7397 images. This selection was based on manual quality control for 5500 images and on automatic
quality control for the remaining 4441 images.18 We then considered only patients having one T1w-ce and one
T1w-nce at the same session, with a T1w-nce image of medium or good quality. Finally, we visually checked all
the images and excluded 52 image pairs that were potential outliers because of extremely large lesions. Among
the selected images we had 256 image pairs of medium and good quality, and 51 image pairs with a T1w-ce of
low quality and a T1w-nce of good or medium quality.

2.2 Image preprocessing

All the images were organised using the Brain Imaging Data Structure (BIDS).19 We applied the following
pre-processing using the ‘t1-linear’ pipeline of Clinica,20 which is a wrapper of the ANTs software.2 Bias field
correction was applied using the N4ITK method.21 An affine registration to MNI space was performed using the
SyN algorithm.22 The registered images were further rescaled based on the min and max intensity values, and
cropped to remove background resulting in images of size 169×208×179, with 1 mm isotropic voxels.23 Finally
all the images were resampled to have a size of 128×128×128 using trilinear interpolation.

2.3 Network architecture

We implemented two 3D U-Net like models: Res-U-Net with residual connections14,24 and Att-U-Net with
attention mechanisms25 (Fig. 1). The U-Net structure allows preserving the original structure of the images
thanks to the skip connections while the residual connections and the attention gates are both useful to make
the model focus on the salient parts of the images. We used the ADAM optimizer, the L1 loss, a batch size of
2, and we trained the models for 300 epochs. We relied on Pytorch for the implementation.
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Figure 1. Architectures of the proposed 3D U-Net models. The models take as input the real T1w-nce image of size
128×128×128 and generate the synthetic T1w-nce of size 128×128×128. Res-U-Net (left): images pass through five
descending blocks, each one followed by a residual module, and then through four ascending blocks and one final layer.
Att-U-Net (right): images pass through five descending blocks and then through four ascending blocks and one final layer.
One of the input of each ascending block is the results of the attention gate composed of convolutional blocks, ReLU and
sigmoid layers. All the parameters such as kernel size, stride, padding, size of each feature map (N) are reported.

2.4 Experiments and validation of the model

The experiments relied on 307 pairs of T1w-ce and T1w-nce images. We randomly selected 10% of the 256 image
pairs of medium and good quality for testing (dataset called Testgood), the other 230 image pairs being used for
training/validation. Only images of good and medium quality were used for training/validation to ensure that
the model focuses on the differences related to the presence or absence of gadolinium, and not to other factors.
The remaining 51 image pairs with a T1w-ce of low quality and a T1w-nce of good or medium quality were used
only for testing (dataset called Testlow).

2.4.1 Synthesis accuracy

Image similarity was evaluated using the mean absolute error (MAE), peak signal-to-noise ratio (PNSR) and
structural similarity (SSIM).26 We calculated these metrics both between the real and synthetic T1w-nce images
and between the real T1w-nce and T1w-ce (as reference). These metrics were calculated within the brain region
obtained by skull-stripping the T1w-nce and T1w-ce27 and computing the union of the two resulting brain masks.

2.4.2 Segmentation fidelity

Our goal is to obtain gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) segmentations
from T1w-ce images using widely-used software tools that are consistent with segmentations obtained from
T1w-nce images. We thus assessed segmentation consistency by analyzing the tissue volumes resulting from the
segmentations, which are important features when studying atrophy in the context of neurodegenerative diseases.

We processed the images using the ‘t1-volume-tissue-segmentation‘ pipeline of Clinica.20,28 This wrapper of
the Unified Segmentation procedure implemented in SPM17 simultaneously performs tissue segmentation, bias
correction and spatial normalization. The probability maps were then binarized to derive tissue volumes. We
calculated the volume difference for each tissue between the T1w-nce and the synthetic T1w-nce or T1w-ce. We
multiplied the difference with the average total intracranial volume computed across the two test sets. To assess
whether the tissue volumes presented a statistically significant difference depending on the images they were
obtained from, we performed paired t-tests correcting for multiple comparisons using the Bonferroni method.

3. RESULTS

We report results of the proposed 3D U-Net like models trained on 230 image pairs and tested on Testgood and
Testlow obtained from a clinical multisite dataset (examples in Fig 2). We note the absence of contrast agent
in the synthetic T1w-nce, while it is clearly visible in the sagittal slice of the T1w-ce, and that the anatomical
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Figure 2. Examples of real T1w-nce, synthetic T1w-nce (obtained with the Att-U-Net model) and real T1w-ce images for
two patients (at the top from Testgood and at the bottom from Testlow) in the sagittal and axial planes.

Table 1. MAE, PSNR and SSIM obtained on the two independent test sets with various image quality. For each metric,
we report the average and standard deviation across the corresponding test set. We compute the metrics for both T1w-ce
and synthetic T1w-nce in relation to the real T1w-nce, and so within the brain region.

Test set Compared images Model MAE (%) PSNR (dB) SSIM

Testgood

T1w-nce / T1w-ce - 4.14 ± 1.59 23.03 ± 2.83 0.90 ± 0.05

T1w-nce / Synthetic T1w-nce
Att-U-Net 2.73 ± 1.69 29.07 ± 4.53 0.96 ± 0.05

Res-U-Net 3.06 ± 1.50 26.89 ± 4.30 0.95 ± 0.04

Testlow

T1w-nce / T1w-ce - 3.71 ± 1.99 24.20 ± 3.85 0.91 ± 0.06

T1w-nce / Synthetic T1w-nce
Att-U-Net 2.89 ± 1.85 27.15 ± 4.57 0.95 ± 0.05

Res-U-Net 2.93 ± 1.77 26.71 ± 4.32 0.95 ± 0.05

structures are preserved between the synthetic and real T1w-nce. We also note that for the patient from Testlow
the contrast between gray and white matter seems improved in the synthetic compared with the real T1w-ce.

3.1 Synthesis accuracy

Table 1 reports the image similarity metrics obtained for the two test sets within the brain region. We computed
these metrics to assess the similarity between real and synthetic T1w-nce images, but also between T1w-nce and
T1w-ce images to set a baseline. We observe that for both models, the similarity is higher between real and
synthetic T1w-nce images than between T1w-nce and T1w-ce images according to all three metrics on both test
sets. Att-U-Net performed slightly but systematically better than Res-U-Net and was thus kept in the following.

3.2 Segmentation fidelity

Absolute volume differences obtained between T1w-nce and T1w-ce images and between T1w-nce and synthetic
T1w-nce images are reported in Table 2. For both test sets and all tissues, the absolute volume differences are
smaller between real and synthetic T1w-nce images than between T1w-nce and T1w-ce images. The differences
between T1-nce/synthetic T1w-nce and T1w-nce/T1w-ce are statistically significant (corrected p-value <10e-3)
for GM and CSF when considering Testgood, and for all tissues when considering Testlow.

4. DISCUSSION AND CONCLUSION

The use of clinical images for the validation of computer-aided diagnosis (CAD) systems is still largely unexplored.
One of the obstacles lies in the heterogeneity of the data acquired in the context of routine clinical practice.
Homogenization of the dataset, and consequently of the features extracted from it, is an important step for the
development of reliable CAD systems in a clinical setting. To homogenize such dataset, we proposed U-Net like
structures to synthesize T1w-nce from T1w-ce images and we trained the models using images from a clinical
data warehouse. To the best of our knowledge, this is the first work to propose such approach in this context.
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Table 2. Absolute volume difference (mean ± standard deviation in cm3) between T1w-nce and T1w-ce images and between
T1w-nce and synthetic T1w-nce images (obtained with the Att-U-Net model) for GM, WM and CSF. The corresponding
corrected p-values were obtained with paired t-tests corrected for multiple comparisons using the Bonferroni correction.

Test set Compared images
Gray matter White matter CSF

Absolute difference [cm3] P-value Absolute difference [cm3] P-value Absolute difference [cm3] P-value

Testgood
T1w-nce / T1w-ce 26.68 ± 15.92

<10e-3
10.81 ± 3.71

0.12
61.62 ± 34.61

<10e-3
T1w-nce / Synthetic T1w-nce 10.36 ± 6.98 7.79 ± 5.87 13.37 ± 10.18

Testlow
T1w-nce / T1w-ce 49.63 ± 49.38

<10e-3
25.36 ± 27.73

<10e-3
69.55 ± 37.77

<10e-3
T1w-nce / Synthetic T1w-nce 19.61 ± 29.54 13.95 ± 24.74 18.27 ± 17.20

We first showed using MAE, PSNR and SSIM that the similarity between real and synthetic T1w-nce images
was higher than the similarity between real T1w-nce and T1w-ce images, no matter the U-Net model. The
synthesis accuracy was of the same order as that of recent works,14,15 but slightly better performance was
reached with the Att-U-Net model, which was thus further evaluated. In the second step of the validation,
we showed that the absolute volume differences of GM, WM and CSF were larger between real T1w-nce and
Tw-ce images than between real and synthetic T1w-nce images (statistically significant difference most of the
times). This confirms the hypothesis that gadolinium-based contrast agent may alter the contrast between the
different brain tissues, making features extracted from such images with standard segmentation tools, here SPM,1

unreliable. At the same time, we validated the suitability of the synthetic images since their segmentation was
consistent with those obtained from real T1w-nce images as the volume differences were small. Finally, our
results show that the proposed model performs well, no matter the quality of the input T1w-ce image, even
though more accurate results are reached for images of good/medium quality.

Several steps remain to be performed before using synthetic T1-nce images for the differential diagnosis of
neurological diseases. For example, the performance of CAD systems trained with a mix of real T1w-nce and
T1w-ce images should be compared with that of CAD systems trained with a mix of real and synthetic T1w-
nce images. Future work could also involve implementing and evaluating other approaches, such as generative
adversarial networks, to further improve the quality of the synthetic images, in particular their sharpness.
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C., Lassau, N., and Rohé, M.-M., “Contrast-enhanced brain MRI synthesis with deep learning: key input
modalities and asymptotic performance,” in [2021 IEEE ISBI ], (2021).

[15] Kleesiek, J., Morshuis, J. N., Isensee, F., Deike-Hofmann, K., Paech, D., Kickingereder, P., Köthe, U.,
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