
HAL Id: hal-03478791
https://hal.science/hal-03478791v1

Submitted on 14 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FEMS – A Mechanics-oriented Finite Element Modeling
Software

Modesar Shakoor

To cite this version:
Modesar Shakoor. FEMS – A Mechanics-oriented Finite Element Modeling Software. Computer
Physics Communications, 2021, 260, pp.107729. �10.1016/j.cpc.2020.107729�. �hal-03478791�

https://hal.science/hal-03478791v1
https://hal.archives-ouvertes.fr

FEMS – A Mechanics-oriented Finite Element Modeling Software

Modesar Shakoor∗

IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Materials and
Processes, F-59000 Lille, France

December 14, 2021

Abstract

This paper is a presentation of a Finite Element Modeling Software named FEMS that integrates
mesh generation and adaption features in order to alleviate significantly the difficulty of designing a Finite
Element (FE) mesh for a particular problem. FEMS is targeted at engineers and scientists addressing
localization problems in mechanics, although it should be suited to many other applications.
FEMS is particularly relevant for problems with internal interfaces, both in solid and fluid mechanics,
as it has both explicit and implicit interface representation. The former can be generated from signed
distance functions using body-fitted meshing capabilities implemented in FEMS, while the latter relies
on the level-set method. The choice between the one or the other can be made by the user depending
on the severity of deformations in the neighborhood of an interface.
During the simulation, FEMS adapts the FE mesh automatically to achieve the best accuracy for a
prescribed number of nodes. This is possible for both linear and quadratic interpolation. Additionally,
in an updated Lagrangian setting, FEMS triggers mesh adaption automatically to avoid element flipping
during node motion.
The capabilities of FEMS are demonstrated in this paper for fluid and solid mechanics problems featuring
turbulence, multiphase flow, large deformations and plasticity. This wide range of problems that can be
handled by FEMS should prove its great interest for the computational mechanics commmunity.

Keywords: finite elements, computational mechanics, mesh adaption, level-sets

1 Introduction

The Finite Element (FE) method is a numerical method that has been developed since the middle of the
20th century to address civil and mechanical engineering problems under the assumptions of continuum
mechanics. Prolific scientific research has demonstrated that this method will play a key role in addressing
current and future challenges in computational mechanics:

• A wide range of mechanisms have been modeled using the FE method (e.g., laminar and turbulent flow
[1], small and large deformation of structures [2, 3], multiphase flow with surface tension [4], nonlinear
material behavior [5], fracture [6, 3]).

• The FE method can be used to model advanced materials of increasing complexity, with material
laws that can even be computed on-the-fly using computational homogenization thanks to promising
developments such as the FE2 approach [5].

• With a proper mesh generation tool, it can be used to model domains with very complex geometry
and morphology, even in the presence of internal interfaces [7].

∗Corresponding author

1

• It can be applied at the macroscale as well as at the microscale or at any scale where continuum
mechanics assumptions apply. Internal interfaces may be explicitly represented using a body-fitted FE
mesh or implicitly represented using for instance Level-Set (LS) functions [6, 3].

• It is compatible with parallel computing on shared- and distributed-memory architectures, as well as
on Graphical Processing Units (GPUs) [8]. As the number of cores in supercomputers keeps increasing,
this is of major importance for a numerical method.

Although the FE method is quite simple to implement, the design of an FE code is often elaborated care-
fully so that the code can be modified and improved by mechanical engineers that do not necessarily have
a scientific computing background. For instance, most commercial FE codes allow the user to add material
laws quite easily through so-called user material subroutines without requiring a thorough understanding of
the underlying FE code.

In this paper, a Finite Element Modeling Software named FEMS (pronounced fems, as a single word) that
has been designed with a similar ambition in mind is presented. This ambition is to alleviate significantly
the difficulty of designing an FE mesh for a particular problem, which is often the most time consuming part
of an FE analysis [9]. FEMS is targeted at engineers and scientists addressing localization problems (e.g.,
turbulence and boundary layers in fluid dynamics, shear bands and fracture in solid mechanics).
The technology used to alleviate the mesh design difficulty is adaptive mesh generation and adaption. The
method implemented in FEMS is described in Sec. 2, while details on the software itself are given in Sec. 3.
Illustrative examples are assessed in Sec. 4.

2 Method

In computational mechanics, numerical methods are required to provide a discretization of the geometry
of the domain, which may include internal interfaces, and a discretization of various mechanical variables
including displacements, velocities, stresses, and pressures. Additionally, equations featuring these variables
and their partial derivatives must be solved.

2.1 Geometry approximation

For a domain Ω ⊂ Rd, d = 1, 2, or 3 being the space dimension, the discretization in the FE method as
considered in this paper consists in an FE mesh, which is a set of line segments in 1D, triangles or quad-
rangles in 2D, and tetrahedra or hexahedra in 3D. These different elements carry a number of nodes, which
at least include their vertices. Nodes may also be placed at the middles of an element’s edges (P2 and Q2
interpolation), or even inside it (higher-order interpolation).
In the following, the set of all nodes of a given FE mesh is denoted N . A unique global number n ∈ N
identifies each node, while the coordinates of this node are given by An ∈ Ω. The set of all elements is
denoted T , and an element K is defined by its nodes set N (K). A local number nK ∈ N (K) identifies
each of an element’s nodes. The connectivity operator ΠK is defined to associate each local identifier to a
global one, for instance n = ΠK(nK) is the global identifier of the node with local identifier nK in element K.

In a body-fitted FE mesh, the geometry’s boundary as well as all internal interfaces are explicitly repre-
sented by the faces of some elements. Note that the word faces herein means vertices in 1D, edges in 2D,
and actual faces in 3D. For some large deformation problems in mechanics, the deformation is computed
in different steps, nodes coordinates (An)n∈N being updated at each step t → t + ∆t so that to follow the
mechanical deformation of the geometry, namely

∀n ∈ N ,An(t+ ∆t) = An(t) + ∆un(t), (1)

with ∆un the incremental displacement vector at node n. This so-called updated Lagrangian setting, or in
short Lagrangian mesh, is difficult to implement when deformations become too large and too complex as is

2

often the case in fluid mechanics.
An Eulerian mesh is usually preferred in fluid mechanics, which means that nodes coordinates remain
constant throughout the simulation. If there are internal interfaces, they must be represented and convected
by other means to follow the deformation of the geometry. This can be achieved by the LS method [10],
where any internal interface is implicitly represented by the zero iso-level of a so-called LS function, which
is a signed distance function. For instance, if at an instant t the domain Ω(t) is split into two parts Ω1(t)
and Ω2(t) separated by an interface Γ1,2(t), LS function φ is defined by

φ(x, t) =

 +dist(x,Γ1,2(t)), x ∈ Ω1(t),
−dist(x,Γ1,2(t)), x ∈ Ω2(t),
0, x ∈ Γ1,2(t),

(2)

and is advected at each step by solving the advection equation

∂φ

∂t
+ v.∇φ = 0, (3)

with v the velocity vector field. This equation must be coupled to an LS reinitialization method in order to
ensure that φ remains as close as possible to a signed distance function as per Eq. (2). This is achieved in
FEMS using geometric reinitialization. Examples of explicit and implicit interface representations are shown
in Fig. 1.

(a) (b)

Figure 1: Comparison of the same geometry with internal interfaces: (a) explicitly represented in a body-
fitted FE mesh, (b) implicitly represented as the zero iso-level (in red) of an LS function.

2.2 FE solvers

The discretization of known and unknown variables is defined by their values at nodes of the FE mesh. A
partial differential equation can be solved through numerical integration of its weak form and the solution of
the resulting linear or nonlinear algebraic problem. The reader is referred to FE textbooks for more details
on the FE method, its implementation, and its applications [11, 12, 13].
For instance, solid mechanics problems solved in Subsec. 4.3 using a Lagrangian mesh involve the incremen-
tal displacement vector field ∆u, and also the pressure field p in the incompressible case. Fluid mechanics
problems solved in Subsec. 4.2 using an Eulerian mesh involve the velocity vector field v, the pressure field

3

p, and also an LS function φ for two-phase flow cases.

FEMS integrates FE solvers for diffusion, reaction, convection equations and any combinations of those,
as well as solvers for the Stokes equations, the Navier-Stokes equations for Newtonian incompressible flow,
and static balance equations for linear elasticity, von Mises elasto-plasticity, and hyperelasticity. Those
solvers are fully compatible with P1, P2 and higher-order elements, as well as Q1 elements (i.e., quadrangles
in 2D and hexahedra in 3D).
Time discretization in FEMS is always operated with the backward Euler method, which does not have a
clear meaning for coupled problems and this is hence clarified in the sequel. Linear algebra solvers used to
solve the associated linear problems are presented in Par. 3.2.2.

2.2.1 Incompressibility

A difficulty arises in both computational solid and fluid mechanics due to incompressibility. It is dealt with
using a mixed formulation where instead of solving only for displacements (solids) or velocities (fluids), a
coupled displacement-pressure or velocity-pressure problem has to be solved.
Mixed formulations are well-known to require stable discretization pairs in order to avoid pressure locking
[14]. FEMS has implementations of the Taylor-Hood P2/P1 pair and the P1+/P1 MINI element for small
strain and finite strain solid mechanics problems with incompressible materials. The Taylor-Hood P2/P1
pair is also implemented for Navier-Stokes equations. For the latter, equal-order P1/P1 or P2/P2 pairs may
be used in conjunction with Residual-Based Variational MultiScale (RBVMS) stabilization, which embeds
stabilization for the incompressibility constraint.
All these mixed formulations are solved as coupled problems where the two variables are solved simultane-
ously. Except for the MINI element and the RBVMS stabilization, these mixed formulations lead to a saddle
point problem which is solved using suitable preconditioning (e.g., Schur complement).

2.2.2 Convection

Convection terms such as v.∇φ in Eq. (3) are known to lead to instabilities if they are implemented with a
standard FE approach. Both Stream Upwind Petrov Galerkin [15] (SUPG) and RBVMS [16] stabilization
is implemented in FEMS. SUPG stabilization terms are explicit in time, while RBVMS stabilization terms
are always implicit in time.
This is also true for the Navier-Stokes equations, which are solved using a Newton-Raphson scheme to deal
with the nonlinearity of the v.∇v term and of the implicit RBVMS stabilization terms, if those are enabled.
For multiphase flow problems with surface tension, Eq. (3) is coupled to multiphase Navier-Stokes equations
with a surface tension term. This coupled problem is solved with a fully implicit backward Euler scheme
with RBVMS stabilization [17, 4].

As can be seen in this subsection, standard FEs are not enough to deal with computational mechanics
problems. As a mechanics-oriented FE code, FEMS integrates advanced FE formulations for incompressible
materials or flows and convection-dominated problems. This is necessary for instance to address elasto-plastic
material behavior and turbulent flows. Mesh adaption is particularly relevant for such problems.

2.3 Mesh adaption

For each of the problems discussed in Subsec. 2.2, a sensor variable s can be defined as the vector of all
relevant unknowns. For instance, for solid mechanics s = ∆u and for incompressible flows s = v.

For a given FE approximation sh on a current mesh, two alternative objectives can be addressed using
unstructured mesh adaption. The current mesh can be modified to obtain a mesh either satisfying a pre-
scribed approximation error tolerance with a complexity as low as possible, or reducing the approximation
error as much as possible for a prescribed complexity. Here the complexity is considered directly proportional

4

to the numbers of nodes and elements in the FE mesh.
Modifications may include removing, adding and moving nodes, as well as removing and adding elements.
The criteria for determining which modifications to perform on the current mesh are defined through error
estimators and then metric tensor fields, while the modifications are operated through a remeshing algorithm.
Modifications are not easy to implement for all element types, and mesh adaption is thus restricted in this
paper to simplexes i.e., linear triangles in two dimensions (2D) and linear tetrahedra in three dimensions
(3D).

2.3.1 Error estimators and metric tensor fields

Mesh adaption is a multi-objective optimization process targeting element qualities and edge lengths. In
isotropic mesh adaption, a scalar mesh size field has to be defined on the FE mesh to determine the length
prescribed locally for each edge. An optimal simplex has a volume as large as possible with the lengths of
its edges as close as possible to this local mesh size. This contradiction between the two objectives requires
to define a compromise. This will be addressed by the remeshing algorithm in the sequel.
For anisotropic mesh adaption, a metric tensor field M has to be defined on the FE mesh. This second
order tensor defines locally d orthogonal directions and d independent scalar metrics in these directions [18].
The optimization remains identical to that of isotropic mesh adaption, but this distortion of the Euclidean
metric is embedded in the definitions of element volume ∀K ∈ T ,

|K|M =

∫
K

√
det (M(x))dx, (4)

and edge length ∀mK , nK ∈ N (K),mK 6= nK ,m = ΠK(mK), n = ΠK(nK),

||AmAn||M =

∫
AmAn

√
M(x). (Am −An) . (Am −An)dx. (5)

As can be seen in Eqs. (4) and (5), a valid metric tensor M(x),x ∈ Ω is a symmetric positive definite
matrix. It can hence be expressed in diagonal form, for instance for d = 3 as

M(x) = R(x)

1

h2
1(x)

0 0

0
1

h2
2(x)

0

0 0
1

h2
3(x)

R(x)T (6)

where each column i = 1 . . . d of matrix R(x) is a direction vector along which mesh size h2
i (x) is prescribed.

As shown in Fig. 2, the metric tensor gives direct control over element shape. Various error estimators to
construct metric tensor fields are implemented in FEMS. Two of them, that are illustrated in Sec. 4, are
presented in the sequel.

First, metric-driven mesh adaption can be used to naturally adapt the mesh to a geometry and obtain
meshes refined close to internal interfaces, and in particular in regions with large maximum principal cur-
vature. This is relevant for an internal interface Γ1,2 defined through an LS function φ as per Eq. (2), as
can be done in FEMS for simple geometric entities and even geometries segmented from 2D pictures and 3D
tomography images. The sensor variable can then be defined as s = φ.
Although anisotropic curvature-based mesh adaption could be implemented quite easily in FEMS based on
the literature [19, 20], an isotropic criterion [21] is preferred as this adaption process may be used as a first
step for mesh generation as done in Subsec. 2.4. Matrix R(x),x ∈ Ω is thus the identity matrix, while

∀i = 1 . . . d, hi(x) = max
(
hmin,min

(
hmax, h̃(x)

))
, (7)

h̃(x) =
hc

λs(x)
+

(
hmax −

hc
λs(x)

)
min

(
|s(x)|
hmax

, 1

)
, (8)

5

h1

h2=h1

h1

h2=2h1

Figure 2: Influence of the metric field on the final shape of a triangle with the isotropic case on the left,
and the anisotropic case on the right, assuming the first direction vector is vertical and the second one is
horizontal.

where λs(x) is the maximum eigenvalue of the Hessian matrix ∇∇s(x) of s = φ at point x. As the eigenval-
ues of this Hessian matrix include the principal curvatures of Γ1,2, it can be seen that at the interface, where
φ(x) ≈ 0, mesh size is prescribed to be inversely proportional to the curvature, hc being a control parameter.
It is hence prescribed to be very small for singularities of the interface (λs(x)→∞), and very large for flat
regions of the interface (λs(x)→ 0). At a distance larger than hmax from Γ1,2, mesh size is prescribed to be
equal to hmax, with a linear transition from φ(x) ≈ 0 to φ(x) ≈ hmax. Overall, the prescribed mesh size is
bounded between parameters hmin and hmax.
Note that the metric tensor field is to be defined at mesh nodes in order to be interpolated at quadrature
points to evaluate Eqs. (4) and (5). In Eq. (7), sensor variable s can be replaced by its approximation sh = φh
which is defined at mesh nodes, but not λs, which depends on the second derivatives of s. The latter are not
available at mesh nodes for Lagrange FEs, and are recovered in FEMS using an operation called Superconver-
gent Patch Recovery (SPR). SPR consists in recovering a higher-order and higher-regularity approximation
of s around each mesh node [22]. In order to recover a regular Hessian matrix, this approximation is ele-
vated to the third order in FEMS, as suggested in the literature [23]. This recovered approximation is fitted
in a least-squares sense to the values of s at neighboring mesh nodes, this neighborhood being called the patch.

Second, for adaption to a sensor variable that may evolve to a very heterogeneous field during the
simulation, it is preferable to use the complexity as control parameter. Indeed, this would prevent the
computational cost from blowing up during the simulation, for instance due to complex topological events
or very localized phenomena. The goal is hence to estimate the approximation error on s, and prescribe a
metric tensor field to distribute this error uniformly on the domain, for a given complexity. The simulation
is expected to capture only a certain level of detail that can be afforded with this prescribed complexity.
The continuous mesh framework for metric-driven mesh adaption can be used to achieve this goal for simplex-
type Lagrange FEs of any order [24, 25, 26, 4]. The definition of the metric tensor field is done in two steps. A
geometric averaging operation is first used to define a single directional error tensor field Q for all components
of s. For linear (P1) FEs, this operation is defined ∀x ∈ Ω as

Q(x) =

exp

 1

dim (s)

dim (s)∑
i=1

log
(

(∇∇si(x))
− 1

2

)−2

. (9)

Details on this geometric averaging operation can be found in the literature [18, 27]. The extension of this
operation for quadratic (P2) Lagrange FEs is given by [4]

Q(x) =

exp

 1

dim (s)d

dim (s)∑
i=1

d∑
j=1

log

((
∇∇ ∂si

∂xj
(x)

)− 1
2

)−2

. (10)

6

This first step includes a post-processing operation to control the element stretching and mesh size variations
that will be induced by the error tensor field Q. This is done by computing the median eigenvalue Qmed of Q
over the whole mesh, and then bounding all its eigenvalues so that none of them are higher than Qmedhmax,
or lower than Qmed/hmax

, where hmax is the prescribed ratio.
The second step is to convert Q into a metric tensor field M minimizing the total error while uniformly
distributing local errors and controlling the complexity. The solution of this constrained minimization
problem can be expressed as [24, 25, 26]

M(x) = N
2
d
c

(∫
Ω

(det(Q(x))
k+1

2(k+1)+d dx

)− 2
d

(det(Q(x)))
− 1

2(k+1)+d Q(x), (11)

where Nc is the prescribed number of P1 nodes (in the P2 case, this excludes nodes at edges middles), and
k is the order of the FE method (1 for P1, and 2 for P2).
Note again that Eq. (9) requires to recover the second derivatives of s in the P1 case, and Eq. (10) in the
P2 case its third derivatives. The SPR operation can be used in both cases [28, 4].

2.3.2 Remeshing algorithm

Once the metric tensor field M is defined and computed at mesh nodes using any of the error estimators
implemented in FEMS, mesh modifications can be operated to satisfy the mesh size and orientations pre-
scribed by this field. As mentioned previously, this requires to define a compromise between maximizing
elements volumes as per Eq. (4) and bringing edge lengths as close as possible to 1 as per Eq. (5). Two
strategies are available in FEMS to combine these objective.

In the first strategy [29], the edge length criterion is first applied by looping over all edges, splitting

those that have a length larger than
√

2, and collapsing those that have a length smaller than
√

2
−1

. This
is done using a Delaunay kernel to ensure the FE mesh remains valid. Second, an element quality criterion
is applied by looping over all elements and performing local mesh modifications such as edge flips and node
re-positioning when they improve element quality. The latter is defined as

QM(K) = αd
hM(K)

|K|M
, (12)

hM(K) =

 ∑
mK ,nK∈N (K),mK<nK

||AΠK(mK)AΠK(nK)||2M

d

, (13)

where αd is a normalization factor so that QM(K) = 1 for a regular simplex. Element quality QM(K) must
be minimized with this definition. Both edge sizing and element improving steps are performed again and
again until no mesh improvement can be found by the algorithm.

In the second strategy [30, 31], a single element quality measure combining both the element quality
criterion and the edge length one is defined for each element as

QM(K) = min

(
d!√
d+ 1

2
d
2
|K|M
hM(K)

, hM(K),
1

hM(K)

)
, (14)

hM(K) =

 2

d(d+ 1)

∑
mK ,nK∈N (K),mK<nK

||AΠK(mK)AΠK(nK)||2M

 d
2

, (15)

so that QM(K) = 0 for a degenerated simplex, and 1 for a regular simplex. Element quality QM(K) must
be maximized with this definition. This single element quality criterion is applied by looping over patches
of elements neighboring all nodes and edges of the mesh, and applying local mesh modifications such as

7

edge flips, node re-positioning, node removal, and node addition when they improve element quality. This
is performed again and again until no mesh improvement can be found by the algorithm. Examples of mesh
modifications are shown in Fig. 3.

(a) (b) (c)

Figure 3: Example of mesh modifications in 2D: (a) initial patch of elements, (b) node re-positioning, (c)
edge flip.

Due to their very general nature, the mesh modification operations used by both algorithms result in
an unstructured simplex mesh, even if the initial mesh is structured. Additionally, both algorithms are
restricted to linear simplex meshes both in 2D and 3D, and are fully compatible with either isotropic or
anisotropic metric tensor fields.
Once the mesh adaption algorithm terminates, mechanical variables including the sensor variable must be
transferred from the old mesh to the new (adapted) mesh. First, a space partitioning technique is used to
locate efficiently the element of the old mesh containing each node of the new mesh. Variables values are
then computed at each node of the new mesh using FE interpolation from the containing element of the old
mesh.
For P2 FE meshes, since mesh adaption algorithms are restricted to linear simplexes, nodes at edge middles
must be removed and then added back after the mesh has been optimized. This preserves the advantage of
P2 FE interpolation during variables transfer from old to new mesh, both being P2 FE meshes, but forbids
the use of isoparametric elements which could be interesting for body-fitted meshing of curved interfaces.
For variables defined at quadrature points, the space partitioning technique locates the element of the old
mesh containing each quadrature point of the new mesh. Variables values are then directly copied from the
closest quadrature point within that element of the old mesh to the quadrature point of the new mesh with
no interpolation or smoothing.

As a conclusion, it can be seen that mesh adaption is not an easy task as it requires different mathematical
theories to be understood and implemented. An error estimator is necessary to define a local mesh size
criterion at each point of the domain, which in the case of FEMS can be an anisotropic metric tensor field.
Then, this metric tensor field is used as input to a remeshing algorithm that will operate local modifications
on the topology of the mesh and the position of its nodes to optimize a metric-based quality criterion.
Finally, a variables transfer algorithm is necessary to transfer any variable defined on the old mesh to the
new (adapted) mesh.
An interesting feature in FEMS is that the sensor variable can be defined as an LS function in order to
adapt the mesh to an implicitly represented geometry. This representation can also automatically be made
explicit, as presented in the sequel.

8

2.4 Mesh generation from signed distance functions

The idea of generating body-fitted FE meshes for geometries implicitly represented through signed distance
functions (LS functions) has been proposed by various authors [32, 28]. This is relevant for simple geo-
metric entities such as circles, cylinders, ellipsoids, planes, squares and combinations (unions, intersections,
complements) of those for which Eq. (2) can be analytically computed. This is even more relevant for
geometries segmented from 2D or 3D images which may be acquired using optical or electronic microscopy,
or tomography [33, 34].
Following Ref. [34], the methodology implemented in FEMS requires an LS function as input. It may be
defined analytically, for instance from a sphere’s center coordinates and radius, or voxel-wise on a back-
ground image. Note that an LS function can be computed directly on a segmented 2D or 3D image in
linear complexity with respect to the number of voxels [35], while such performance cannot be achieved on
unstructured simplex meshes [36, 37, 33].
This input LS function is used as sensor variable for mesh adaption using the isotropic curvature-based
metric tensor field defined in Eqs. (6) and (7). Depending on the initial mesh, which may be any mesh of
the domain independently of the LS function, this mesh adaption process will generally have to be done in
several iterations. Indeed, the LS function and hence the error estimator may not be well represented on
the initial mesh, and the adaption process will improve this discretization up to convergence (usually in 5-7
iterations [34]).
At convergence, if the simulation requires a body-fitted FE mesh, a discretization of the LS function’s zero
iso-level can be reconstructed as a surface mesh using either a triangle and tetrahedron marching strategy
[32] or a purely topological internal fitting strategy [28]. The former browses each triangle or tetrahedron
of the mesh and splits it depending on how it is intersected with the zero iso-level. The latter browses each
edge of the mesh and splits it if it has LS function values of opposing signs at its ends by inserting a new
node at its intersection with the zero iso-level. Both strategies have a linear complexity with respect to the
number of nodes, but the latter is simpler to implement as it only computes intersections at edges.
Once a body-fitted FE mesh has been constructed, the LS function is no longer required, except for a last
mesh adaption step. Indeed, mesh quality as defined in Eqs. (14) or (12) is likely to be deteriorated during
the reconstruction of the zero iso-level’s discretization. It must be restored using mesh adaption again, which
must rely on a remeshing algorithm preserving the body-fitted mesh at internal interfaces, which is the case
for both algorithms presented in Par. 2.3.2 (see Refs. [32, 31]).

Using the methods presented in this section, any geometry with internal interfaces can be represented
using LS functions. Through those LS functions, body-fitted FE meshes can be automatically generated for
some interfaces that may be modeled using a Lagrangian mesh. For remaining interfaces, the LS method
and an Eulerian mesh can be used. The flexibility of FEMS enables to combine both approaches and solve
complex mechanics problems using advanced FE formulations such as mixed formulations or the RBVMS
formulation.

3 Software description

FEMS integrates unique features compared to existing open source adaptive FE codes. This is explained
in the sequel, as well as the parallel implementation of FE solvers and the technologies used for inputs and
outputs.
FEMS is mostly implemented in C, as defined by the 1999 ISO C standard [38]. Some C++, as defined by
the 2011 ISO C++ standard [39], is used for code blocks that interact with C++ libraries. Some remeshing
and mesh adaption operations are also implemented in C++.
Apart from those exceptions, object-oriented C++ programming has been voluntarily avoided in FEMS
as it has a well-known computational overhead due to encapsulation and repetitive creation/destruction of
objects. This is compensated in C++ through templates and other techniques optimizing the code during
its compilation.

9

As a consequence, writing a good scientific computing code in C++ requires a high level of expertise in
scientific computing, which is generally not the case of people working in the field of computational mechanics.
The latter often have some scientific computing notions and a high level of expertise in some area of mechanics
(e.g., metallurgy, turbulence, ductile fracture). This has led developers of the FreeFem solver [40] and the
FEnICS computing platform [41] to hide the underlying C++ implementations from their users by creating
simplified abstract languages.
In order to open all the FEMS code to computational mechanics researchers, C++ has hence be avoided as
much as possible. Only a fundamental knowledge of C is required to understand the FEMS code and extend
it with new functionalities.

3.1 Mesh adaption

Among mesh adaption libraries, the libMesh library [42] relies on element sub-division, which consists in lo-
cally sub-dividing some elements (triangles, quadrangles, tetrahedra, hexahedra, etc.) of an initially uniform
mesh to refine the mesh in some regions of the simulation domain depending on some error measure. The
library embeds an FE solver and error estimators to compute FE solutions and define this error measure.
Note that element sub-division cannot be used to stretch and orient elements, for instance in boundary
layers.
The MAdLib library [43] relies on unstructured mesh adaption restricted to tetrahedra. It can handle large
deformations with internal interfaces thanks to a mesh motion algorithm that automatically triggers mesh
adaption while moving FE nodes to follow a given mechanical displacement in order to avoid element flipping.
This library is used by FEnICS [41], which embeds an FE solver and an error estimator to drive the mesh
adaption process [2]. Although MAdLib can perform anisotropic mesh adaption, there is no error estimator
to do so in FEnICS.
The Mmg platform [29, 32] is another solution for unstructured mesh adaption restricted to simplexes. This
platform implemented in C also includes a mesh motion algorithm and is used by FreeFem [40] which embeds
an anisotropic error estimator so that elements may be refined in some regions and also oriented to capture
all features of the FE solution.
The first remeshing algorithm described in Par. 2.3.2 is provided by the Mmg platform. The latter also
integrates the triangle and tetrahedron marching method described in Subsec. 2.4 in order to both adapt
and generate a body-fitted FE mesh for a geometry with internal boundaries, which has to be defined only
through LS functions and can hence be imported from pictures or tomography scans.
The second remeshing algorithm described in Par. 2.3.2 and the purely topological mesh generation strategy
described in Subsec. 2.4 are implemented as an independent C++ module within FEMS.
These different remeshing algorithms are integrated in FEMS in order to not be restricted by the limitations
of the Mmg platform. In particular, there is ongoing research work on a GPU-accelerated remeshing algo-
rithm, and on mesh generation strategies that are compatible with more than one LS function.

FEMS can be seen as a state-of-the-art FE code embedding remeshing and mesh generation algorithms
in a global solution. LS functions definitions, error estimators and metric tensor fields required by those
algorithms are all implemented in FEMS for P1 and P2 interpolation. As described in Par. 2.3.2, FEMS
integrates a wrapper function enabling unstructured mesh adaption for P2 interpolation, whose improved
convergence rates and conservation properties can hence be accessed.
FEMS is flexible enough to combine an adaptive Eulerian method for some regions of the domain which
may undergo large distortions and complex topological changes during the simulation with an adaptive La-
grangian method for remaining regions which may not undergo such drastic deformations.
To the extent of the author’s knowledge, there is no open source code that integrates all these functional-
ities. There is ongoing work to improve FEMS with parallel implementations of the remeshing algorithm.
Nevertheless, FEMS already relies on shared-memory parallelism for most computationally expensive tasks.

10

3.2 Parallel computing

The goal of keeping things simple prevented the use of distributed-memory parallelism, which, like C++,
requires a high level of expertise in scientific computing. Indeed, new functionalities implemented in a
distributed-memory parallel code must also be parallel, or at least implement some communications. This
is hidden from the user using abstraction in most distributed-memory FE codes [44, 40, 41].
Shared-memory parallelism has been used in FEMS to avoid this complexity. It is implemented using
OpenMP directives [45]. The main advantage is that a new functionality can be implemented with no paral-
lelism and still be fully compatible with the rest of the code. In most cases, the new code can be optimized
using simple parallel computing directives that can be added later once the sequential code has been tested
and validated.
The drawback is that FEMS can only run on a single node and will hence be more efficient on high perfor-
mance computing facilities with a high number of CPU cores and RAM space per computing node. FEMS
also performs well on workstations and laptops, for which distributed-memory parallelism is not necessary.
Additionally, some critical operations are GPU-accelerated.

3.2.1 Inherently parallel unitary and patch operations

In parallel computing, operations may be difficult to implement depending on what information is required
as input and computed at output. In an FE code, information means variables of any dimensions which can
be global scalars, vectors or tensors, and can also be scalar, vector or tensor fields stored entity-wise. An
entity can be a node, an element, an element’s quadrature point, a face or a face’s quadrature point.
There are obvious associations, called adjacencies in FEMS, between these entities. An element has faces,
nodes and quadrature points. A face has nodes and quadrature points. Additionally, an internal face appears
twice in the FE mesh data structure, the two instances having two different orientations and being defined
as adjacent to each other. All adjacencies go both ways, meaning for instance that as an element has nodes,
a node is adjacent to all elements it belongs to. An entity is also always at least adjacent to itself.
These adjacencies are relevant for core FE operations such as quadrature, which requires interpolating a FE
field from an element’s nodes to its quadrature points. Quadrature plays a key role in the FE assembly and
solution of partial differential equations [22, 11, 12].

A unitary operation in FEMS is an operation where all input and output variables have the same type,
and which can be conducted at an entity indifferently to its type and independently from inputs and outputs
at other entities. For instance, the operation in Eq. (1) is a node-wise addition of two variables defined at
nodes. The addition on a given node does not depend on values from other nodes. This is also true for
the metric computation operations in Eqs. (7), (9) and (10), but not for the operation in Eq. (11), which
includes an integral over the whole simulation domain.
A unitary operation is called in FEMS through a function pointer and variables defined on the same mesh
and for the same entity type. A parallel loop with an OpenMP directive will call the given function at each
entity with all input and output variables as parameters. The user can thus easily implement new unitary
operations and have them executed in parallel with no need to write OpenMP directives.

A patch operation in FEMS is an operation where all output variables have the same master entity type.
Entity type node’s master entity type is node, element’s and element quadrature point’s is element, face’s
and face quadrature point’s is face. Input variables for a patch operation can be global variables or fields
associated to any entity type.
A patch operation is called in FEMS through a function pointer and variables. Input variables can be of
any type, and may even be defined on different FE meshes. However, the number of master entities for
these meshes must be equal. This is true also for output variables, which must additionally have the same
master type. A parallel loop with an OpenMP directive will call the given function at each master entity
with all input and output variables as parameters, as well as the FE mesh data structure. The user can thus
easily implement new patch operations and have them executed in parallel with no need to write OpenMP

11

directives.
As opposed to unitary operations, the user can program code inside a patch operation which accesses infor-
mation from other entities to that for which the output is being computed. For instance, the patch operation
for quadrature interpolates a node-wise field of any dimension to all quadrature points inside an element
(here element is the master entity type). Among other things, this requires access to information on the FE,
its nodes and basis functions.

This distinction between unitary and patch operations is inspired from distributed-memory FE codes
[44], where the difficulty resides in hiding communications between processes from the user implementing
the patch operation. These unitary and patch operations are very relevant for computational mechanics
researchers, who may implement material laws, modify FE solvers by adding new terms, and implement all
sorts of local entity-wise operations with no need to think about parallelism.
Note that the fact that an operation is easy to implement as a unitary or patch operation does not necessarily
mean that it should. For instance, the node-wise summation in Eq. (1) has a too low computational cost in
terms of floating point operations. It would probably be more time consuming to create and manage threads
to do it in parallel instead of just implementing it in sequential.

3.2.2 Other operations

Some operations cannot be implemented efficiently as unitary or patch operations. Those are systematically
implemented in sequential in FEMS, unless their computational cost is not negligible.

The node-wise metric tensor field M defined in Eq. (11) depends on a node-wise input tensor field Q
and an integral over the whole simulation domain. The input tensor field can be computed in parallel using
a unitary operation as per Eqs. (9) or (10), while the integral can be computed using a quadrature and
integration patch operation and then sequential summation.

Geometry reinitialization of LS functions requires to reconstruct a surface mesh of the interface repre-
sented by the zero iso-level of the FE mesh. Then, each node of the FE mesh must be projected to the
closest face of this surface mesh. This brute-force search of quadratic computational complexity can be done
efficiently using a space partitioning technique [37], which is the same as that used to transfer FE variables
after mesh adaption.
The space partitioning technique implemented in FEMS relies on a tree data structure that is optimized for
finding the closest entity to a point, as well as the entity containing a point. Tree construction is implemented
in sequential, but searches are done in a parallel loop using an OpenMP directive.
Alternatively, the brute-force search approach can be run on the GPU using an implementation in NVIDIA’s
CUDA programming language, which may be faster than the CPU version using space partitioning [4]. This
is due to the fact that GPUs give access to a very large number of cores on a single node, as compared to
CPUs.
CUDA code is integrated into FEMS thanks to the CMake tools suite, which enables users who do not have
access to GPUs, or may not have a CUDA installation, to still compile and run FEMS on CPUs.

CMake is also used to flexibly manage the different third-party libraries that FEMS can be coupled to.
These include the general purpose library GLib that is used for its data structures, and a quite significant
number of scientific computing libraries. Entity-wise linear algebra operations such as matrix inversion or
diagonalization are performed using either Netlib’s CBLAS and LAPACKE, or Eigen3. Entity-wise nonlin-
ear systems such as those arising during numerical integration of nonlinear material laws are solved using
GSL [46].
Additionally, the solution of partial differential equations with the FE method leads to large sparse nonlinear
and/or linear systems. Nonlinear systems are solved within FEMS using a Newton-Raphson procedure, while
linear systems may be solved using a FEMS implementation of the generalized minimal residual method, or
third-party linear algebra libraries.

12

FEMS already has wrappers for sequential linear algebra libraries PETSc [47] and UMFPACK [48]. Shared-
memory parallelism is accessible using Lis [49] or SuperLU [50]. GPU-accelerated solvers are also accessible
using either AmgX [51], PARALUTION or ViennaCL [52]. Thanks to CMake, FEMS can still be compiled
and used even if none of these third-party libraries can be found.

With CMake as well as simple C programming with OpenMP directives, it is possible for the user to
change inputs and setup new problems to be solved with an adaptive FE method quite easily. However, it
is still relevant to have the possibility to change some inputs without having to modify and recompile the
code.

3.3 Inputs and outputs

All FEMS functionalities are used in C test files which are validated using the CTest tool of the CMake
suite. A FEMS test always takes at least an FE mesh as input, for which the MSH format is used. Files with
this format can be created with the Gmsh meshing software [7]. These meshes do not necessarily have to be
body-fitted if there are internal interfaces, as this can be done within FEMS using the procedure explained
in Subsec. 2.4.
The path to the mesh file must be indicated in an Extensible Markup Language (XML) input file which also
contains all input parameters for a simulation. The format for XML input files is specified in the FEMS
XML Schema Definition (XSD). The FEMS package includes C test files for CTest as well as XML input
files for these tests that satisfy the FEMS XSD.
New input parameters can easily be added in the C code and then to the FEMS XSD. XML input files are
systematically validated against the FEMS XSD and loaded using the libxml2 library. It is hence possible
for a developer to add new functionalities to FEMS and have users that have no programming experience to
run simulations with varying geometrical, physical and numerical inputs.

The XML input file must also specify what inputs are desired and in which format. The only output
format implemented in the current FEMS version is the VTU format, which is the unstructured grid VTK
format that can be read using the ParaView visualization software [53]. The choice of FE variables to be
written in the output VTU file depends on the problem being solved and is directly defined in the C test files.

As a summary, FEMS is accessible to different categories of users and developers.
The most popular use of FEMS is simply that of a student, engineer or researcher who wishes to run existing
FEMS binaries with different geometrical, physical or numerical parameters. This includes usage of FEMS
to generate body-fitted FE meshes with the method presented in Subsec. 2.4. This is possible simply by
modifying XML input files.
The second and more technical use of FEMS is that of a user and developer who wishes to add new function-
alities and test them with varying parameters. This requires C programming of unitary or patch operations
to access parallel computing capabilities with no difficulty, or standard sequential C programming. Addi-
tionally, new parameters must be added to the FEMS XSD.
Finally, the third and last category of users will be experts in scientific computing who wish to add new
functionalities that have a significant computational cost and cannot be implemented efficiently in parallel
using the unitary/patch operations paradigm. Those functionalities will require some advanced OpenMP
design and might also be GPU-accelerated using CUDA programming.

4 Results

The powerful capabilities of FEMS’s isotropic and anisotropic unstructured mesh adaption are demonstrated
in this section for various problems of computational mechanics. Input files for all simulation results shown
in this section are provided in the examples directory of the FEMS package. Unless otherwise mentioned,
initial meshes are structured FE meshes of the unit 1 × 1 mm2 square (2D) or the 1 × 1 × 0.1 mm3 box

13

(3D), and internal interfaces are introduced using LS functions. Those initial structured meshes are modified
automatically before and/or during the simulation.
All simulations were run on a workstation with a 28-core Intel Xeon W-2175 2.50GHz CPU and a 1024-
core NVIDIA Quadro P2000 GPU. Unless otherwise mentioned, sparse linear problems resulting from FE
discretizations are solved using the direct solver UMFPACK, which operates an LU decomposition, and
local entity-wise algebra operations are done using Netlib’s CBLAS/LAPACKE. For nonlinear problems, the
tolerance for the residual of nonlinear solves using the Newton-Raphson scheme is always 10−6.

4.1 Mesh generation from signed distance functions

This first set of simulations aims at showing the capabilities of the FEMS regarding the generation of
body-fitted FE meshes for geometries with internal interfaces initially represented through LS functions, as
presented in Subsec. 2.4. The geometry for these simulations is based on the 2D FEMS image shown in Fig.
4(a). The LS function to the surface of the letters is computed using the Fiji software [54] and is shown in
Fig. 4(b,c).
As described in Subsec. 4.1, the metric tensor field used for mesh generation is that of Eqs. (6) and (7), with
three metric parameters hc, hmin and hmax to prescribe. In the sequel, body-fitted FE meshes are generated
both in 2D and 3D by projecting the image-based LS function shown in Fig. 4(b,c) to the initial FE mesh
of the 2D or 3D domain. Parameters hmin and hmax are set respectively to 4 µm and 32 µm both in 2D and
3D, while control parameter hc is varied in order to show its influence.
The remeshing algorithm of the first strategy described in Par. 2.3.2 is used for these mesh generation
simulations. To generate the body-fitted FE mesh, the strategy based on triangle and tetrahedron marching
[32] is used.

4.1.1 2D

As described in Subsec. 4.1, the image-based LS function shown in Fig. 4(b,c) is first interpolated to a
structured FE mesh of the domain. The result is shown in Fig. 5(a,b). Once the LS function is available at
nodes of this FE mesh, the metric tensor field can be computed and mesh adaption can be performed. The
result is shown in Fig. 5(c,d) for hc = 0.128.
The LS function is then re-interpolated as it should be better captured and represented using the new
adapted mesh, and the metric tensor is re-computed in order to re-adapt the mesh. The result after 8 cycles
is shown in Fig. 6(a,b). These figures show how the mesh is automatically refined in regions with large local
maximum principal curvature, which are mainly the regions of sharp angles in the letters.
Finally, this adapted mesh is modified through triangle marching and re-adapted in order to produce the
mesh shown in Fig. 6(c,d). This final body-fitted mesh accurately captures all features of the geometry,
especially the M letter which has three regions with very sharp angles.

The accuracy is obviously guided by the choice of parameters hmin and hmax, which determine bounds
on the prescribed mesh size. However, metric parameter hc has a major influence on how the local maximum
principal curvature influences mesh size. This is shown in Fig. 7(a,b) where hc = 0.256 has been used, and
Fig. 7(c,d) where hc = 0.512 has been used.
On the one hand, if hc is too large, the local principal curvatures do not have any influence and a uniform
mesh size of hmax is prescribed everywhere. On the other hand, if hc is too low, hmin is prescribed everywhere.
It is thus necessary to choose an intermediary value so that fine features with large local maximum principal
curvature are well described but a coarser mesh size is prescribed in regions with low local maximum principal
curvature.

4.1.2 3D

The initial structured FE mesh has 21× 21× 3 nodes, and is then adapted iteratively until the body-fitted
FE mesh is generated, as done in the 2D case.

14

(a)

(b)

(c)

Figure 4: FEMS image used for mesh generation simulations: (a) image of 1999×679 pixels, (b) LS function
computed on the image with signed distances in pixels, (c) zoom on the LS function.

15

(a)

(b)

(c)

(d)

Figure 5: First steps of 2D mesh generation for the FEMS image using hc = 0.128: (a,b) interpolation
of the LS function from the image to the structured mesh, (c,d) mesh adapted once using the isotropic
curvature-based metric tensor field.

16

(a)

(b)

(c)

(d)

Figure 6: Last steps of 2D mesh generation for the FEMS image using hc = 0.128: (a,b) mesh adapted 8
times using the isotropic curvature-based metric tensor field, (c,d) mesh after internal fitting and body-fitted
mesh adaption.

17

(a)

(b)

(c)

(d)

Figure 7: Final 2D meshes for the FEMS image using: (a,b) hc = 0.256, (c,d) hc = 0.512.

18

Resulting meshes are shown in Fig. 8 using different values of control parameter hc. Clearly, this parameter
has no effect away from the letters, where the mesh size is set to hmax. Close to the letters, of which only
the external surface is shown in the figure, the mesh is refined with lower hc, as was observed in the 2D case.
To inspect more closely whether fine features are well represented, a zoomed view is shown in Fig. 9. With
hc = 0.512, some corners of the E letter are lost. These might not be relevant for linear mechanics, for
instance to estimate linear elastic properties. However, for other applications such as fatigue life prediction,
stress concentration is very important and thus hc should be chosen carefully.
For these 3D simulations, mesh generation entails a significant computation time and thus has been mea-
sured. The initial structured FE mesh has about 5,000 elements. The mesh with hc = 0.512, which has
about 240,000 elements, is generated in about 100 s. The mesh with hc = 0.128 has about 690,000 elements
and is generated in about 500 s. This computation time is spent on mesh modification operations, all other
operations having a negligible cost (LS function interpolation, metric computation). This justifies ongoing
research work on parallel remeshing strategies.

As a conclusion, both in 2D and 3D, internal interfaces can be introduced in an FE mesh in FEMS using
an LS function. The body-fitted FE mesh that is produced by FEMS can be controlled in terms of accuracy
and how well fine and sharp features are captured. This control is achieved through the metric parameters,
and especially the control parameter hc, for which the value must be chosen carefully.

4.2 Localization and interface tracking problems in fluid mechanics

This second set of simulations shows the capabilities of FEMS for computational fluid dynamics. Simulations
are conducted in the transient regime and the mesh is adapted several times during simulations to track and
capture new flow features that appear and evolve.

4.2.1 Transient incompressible flow

This first problem is that of the well-known lid-driven cavity in 2D [1], which requires the solution of Navier-
Stokes equations for Newtonian incompressible flow. This solution is performed using an Eulerian mesh and
the mixed formulation with the Taylor-Hood P2/P1 pair and SUPG stabilization presented in Subsec. 2.2.
The fluid mass density is fixed to 1 g mm3, gravity is neglected and the fluid dynamic viscosity is fixed to
0.2 kPa ms so that the Reynolds number is equal to 5, 000. Boundary conditions are given in Fig. 10.
The time step for this transient simulation is 1 ms, and the simulation is stopped when, over a time increment,
the relative change in L2(Ω) norm of the velocity field is below 10−6. The whole FE mesh is automatically
adapted at the beginning of a time increment when the quality of at least one element as defined by Eq.
(14) is found to be below 1/3. The metric tensor field is that of Eqs. (10) and (11), with s = v and two
metric parameters hmax and Nc to prescribe. The remeshing algorithm is that of the first strategy described
in Par. 2.3.2.
Note that as a result of this scheme there is no significant change of the solution in the last time increments.
Consequently, the metric tensor field does not vary significantly either, and no mesh adaption is triggered in
those increments. Convergence is thus achieved both regarding the solution and the mesh.

Two potential uses of unstructured anisotropic mesh adaption are investigated. The first one consists
in trying to obtain a more accurate solution with a similar number of degrees of freedom. The second one
consists in trying to obtain a higher convergence rate when increasing the number of degrees of freedom, as
compared to uniform mesh refinement.
Velocity fields using a fixed complexity are shown in Figs. 13(a,b) and 14(a,b) and compared with a reference
result computed using a uniform grid mesh of 601× 601 in Ref. [55]. Obviously, local mesh refinement is of
great interest for this case and it can clearly be seen when comparing the curves for hmax = 1 and hmax = 4.
A higher ratio of element size and stretching is also interesting, especially in regions where the flow is nearly
unidirectional, as shown in Fig. 11. Elements get progressively stretched along the horizontal direction at
the top of the cavity with increasing hmax. Refined but isotropic elements are automatically placed in the

19

(a) (b)

(c)

Figure 8: Inside view of final 3D meshes for the FEMS image using: (a) hc = 0.128, (b) hc = 0.256, (c)
hc = 0.512.

20

(a) (b)

(c)

Figure 9: Inside zoomed view of final 3D meshes for the FEMS image using: (a) hc = 0.128, (b) hc = 0.256,
(c) hc = 0.512.

21

1

1

vx=vy=0

vx=1,vy=0

v
x
=

v
y
=

0

v
x
=

v
y
=

0

Figure 10: Boundary conditions for the 2D lid-driven cavity problem. Lengths are in millimeters and
velocities in millimeters per millisecond.

two upper corners where the velocity field is singular. Because P2 interpolation is used for the velocity,
excessive mesh refinement is not needed in the lower corners of the cavity in order to capture the secondary
vortexes.
Velocity fields using uniform isotropic mesh refinement with hmax = 1 are shown in Figs. 13(c,d) and 14(c,d)
and can be compared with results using local anisotropic mesh refinement with hmax = 1000 shown in Figs.
13(e,f) and 14(e,f). Asymptotic convergence does not seem to be reached using uniform isotropic mesh re-
finement for vy in Fig. 14(d), while it seems clearly obtained for both components of the velocity field using
local anisotropic mesh refinement. As shown in Fig. 12, this is due to the improvement of the discretization
in the upper corners of the cavity using local anisotropic mesh refinement, while edge length in some regions
like the center of the cavity remains constant.

Computation times vary mainly depending on the number of degrees of freedom and the number of time
increments needed to reach convergence. Additionally, there is an approximation error on the complexity
constraint in Eq. (11), which means the final number of P1 nodes generally does not match exactly Nc. This
error on the complexity constraint is known to be more significant with higher anisotropy but to decrease
with mesh refinement [25].
Computation times are given in Tab. 1. For mesh adaption, they include metric computation, mesh modi-
fication operations and variables transfer.

Nc hmax # P1 nodes # Time increments # Mesh adaption Mesh adaption Solution
512 1 663 799 1 8 s 244 s
512 4 668 681 2 8 s 172 s
512 16 817 651 11 11 s 179 s
512 1000 928 658 13 11 s 194 s

1024 1 1275 710 2 13 s 334 s
2048 1 2438 697 2 25 s 743 s
1024 1000 1573 664 19 20 s 353 s
2048 1000 2788 678 36 51 s 775 s

Table 1: Final number of P1 nodes, total number of time increments, total number of mesh adaptions, total
mesh adaption time and total Navier-Stokes equations FE solution time for lid-driven simulations.

22

(a) (b)

(c) (d)

Figure 11: Final adapted meshes for the lid-driven cavity computed using Nc = 512 and: (a) hmax = 1, (b)
hmax = 4, (c) hmax = 16, (d) hmax = 1000.

23

(a) (b)

(c) (d)

Figure 12: Final adapted meshes for the lid-driven cavity computed using: (a) Nc = 1024 and hmax = 1, (b)
Nc = 2048 and hmax = 1, (c) Nc = 1024 and hmax = 1000, (d) Nc = 2048 and hmax = 1000.

24

(a) (b)

(c) (d)

(e) (f)

Figure 13: Final velocity component vx along a vertical line passing through the geometric center of the
lid-driven cavity computed using: (a,b) Nc = 512 and different values of hmax, (c,d) hmax = 1 and different
values of Nc, (e,f) hmax = 1000 and different values of Nc. Reference results are from Ref. [55].

25

(a) (b)

(c) (d)

(e) (f)

Figure 14: Final velocity component vy along a horizontal line passing through the geometric center of the
lid-driven cavity computed using: (a,b) Nc = 512 and different values of hmax, (c,d) hmax = 1 and different
values of Nc, (e,f) hmax = 1000 and different values of Nc. Reference results are from Ref. [55].

26

There is clearly an increase of the error between the prescribed and the obtained number of P1 nodes
with higher anisotropy. This error is reduced when increasing Nc, as it is of 81% using Nc = 512, 54% using
Nc = 1024, and 36% using Nc = 2048.
The total computation time spent on mesh adaption varies mainly due to the variation of the number of P1
nodes and the fact that there are more mesh adaptions for some simulations. Clearly from Tab. 1, more
mesh adaptions are needed to converge when using local anisotropic mesh refinement. This clearly leads to
a computation time overhead when using anisotropic elements. For instance for Nc = 2048 it is doubled.
However, the ratio between the computation time spent on mesh adaption and that spent on FE solution
of Navier-Stokes equations is below 7%. The computational overhead of mesh adaption and in particular
anisotropic mesh adaption is hence clearly affordable given the gain in accuracy that it provides.

4.2.2 Transient incompressible two-phase flow with surface tension and obstacles

The numerical framework for modeling two-phase flow problems with surface tension using FEMS has al-
ready been presented in a previous work [4]. To go beyond the latter, a 2D problem with a third phase is
addressed in the following. A circular droplet is initially placed in the higher half of the domain. This liquid
is of mass density 1 kg mm3 and dynamic viscosity 10 MPa ms. The surface tension coefficient is 1.96 g ms−2.
Rigid solid obstacles composed of the FEMS letters as shown in Fig. 16(a) are placed in the lower part of
the domain. The rest of the domain is occupied by a gas of mass density 1 g mm3 and dynamic viscosity
0.1 MPa ms.
No-slip boundary conditions are applied at all domain boundaries, including that of the solid phase. Due to
gravity, which is equal to 0.98 mm ms−2, the liquid is expected to fall and flow along the solid, while the gas
is expected to elevate, unless it is trapped due to the solid phase.

As described in Subsec. 2.2, the Navier-Stokes equations for Newtonian incompressible two-phase flow
with the surface tension term are solved using a P2/P2/P2 RBVMS formulation where the velocity v, the
pressure p and the liquid phase LS function φ are fully coupled. The transition of fluid properties between
liquid and gas is smoothed over a thickness ε = 8 µm using the regularized Heaviside function Hε defined by

Hε(φ) =

1, φ > ε,
1

2

(
1 +

φ

ε
+

1

π
sin

(
πφ

ε

))
, |φ| ≤ ε

0, φ < −ε.

(16)

The time step for this transient simulation is initially 0.1 ms but it is automatically decreased when the
Newton-Raphson solution of the RBVMS formulation fails to converge. GPU-accelerated LS reinitialization
is performed at the beginning of each time increment to maintain the distance property of the LS function.

The remeshing algorithm of the second strategy described in Par. 2.3.2 is used to perform different kinds
of mesh adaption in this multiphase flow simulation.
There is a first pre-processing step in order to generate a body-fitted FE mesh of the obstacles as done in
Subsec. 4.1. Parameters hmin and hmax are set respectively to 8 µm and 32 µm, while control parameter hc
is set to 0.128. The number of mesh adaption cycles is 8. The mesh generation strategy based on purely
topological internal fitting is used [28]. The generated mesh is shown in Fig. 16(b). The triangles within
the obstacles are then fixed and cannot change in later remeshing operations.
Then, in a second pre-processing step, the mesh is adapted in order to be locally refined close to the liquid
interface. This is done using the metric tensor field of Eqs. (10) and (11), with s = Hε(φ

0), where φ0 is the
discrete LS function at the start of the simulation. Anisotropy control parameter hmax is set to 1000, and
the complexity Nc is set to 4096. Similarly to the first pre-processing step, multiple mesh adaption cycles,
here 5, are needed. The resulting mesh is shown in Fig. 16(c). A close-up in 16(d) shows how the mesh is
body-fitted for solid obstacles but not for the liquid phase.
The metric tensor field of Eqs. (10) and (11) is used during the simulation without changing the parameters.

27

However, the sensor variable is modified to s = (Hε(φ
n), Hε(2φ

n− φn−1)), where φn is the discrete LS func-
tion at the start of a time increment (before Newton-Raphson solution), and 2φn−φn−1 is an extrapolation
of φn+1. The whole FE mesh is automatically adapted at the beginning of a time increment when the quality
of at least one element as defined by Eq. (14) is found to be below 1/3.

The simulation reaches the final time T = 10 ms in 750 time increments, among which 454 included mesh
adaption due to the quality drop criterion. The liquid interface as well as adapted FE meshes are shown
in Fig. 15 at different time increments. The droplet enters in contact with the obstacles in the center in
Fig. 15(a). It then spreads widely due to inertia in Fig. 15(b), and starts pouring down until the final state
shown in Fig. 15(c).
Because the solid obstacles are explicitly meshed and are not modified during the simulation, there is ex-
act conservation of the solid volume. This is interesting compared to methods where solid obstacles are
represented implicitly [20]. An interesting error measure is gas volume, which should not change due to
incompressibility and boundary conditions. The relative error on gas volume can be computed using

Vgas(t) =

∫
Ω

Hε(−φ(x, t))dx,

Error(Vgas) =

√√√√∫ T0 (Vgas(t)− Vgas(0))2dt∫ T
0

(Vgas(0))2dt
.

An error of 2.23% is obtained, which clearly shows the relevance of anisotropic mesh adaption using a P2
interpolation for the LS function. This was already evidenced in a previous work [4], and is here confirmed
for a problem with obstacles.
The close-up in Fig. 15(d) must be compared with that in Fig. 16(d). The challenge is that liquid volume
does not change, but there is much more liquid interface to cover with a fixed complexity. This is achieved
automatically by stretching the elements, as can be seen in Fig. 16(d).

Overall computation time is nearly 7 h, with 81% of that time spent on Newton-Raphson solution, and
14% on mesh adaption. The latter is more significant compared to the lid-driven cavity simulation. Every
time the interface moves, the mesh must be adapted in order to keep fine elements in the region where fluid
properties transition, which is also the region where the surface tension term is active. Thus, there are more
mesh adaptions and the associated computation time increases. Future work on parallel computing applied
to mesh adaption should be very relevant in that regard.
Looking at the very small size of the elements in the direction orthogonal to the interface in Fig. 16(d), it is
easy to imagine the huge number of elements that would be necessary to get the same accuracy with a fixed
mesh. Indeed, the mesh would then have to be refined in every part of the domain reached by the liquid
phase. The 14% of computation time spent on mesh adaption can hence be considered as quite affordable.

4.3 Large deformation and localization problems in solid mechanics

This third and last set of simulations addresses computational solid mechanics and in particular loading
conditions leading to large and/or localized strains. Although static conditions are assumed, the load is
applied progressively and the Lagrangian mesh is automatically adapted several times during the simulations
in order to maintain element quality and avoid element flipping.
A load increment consists in solving balance equations in order to obtain the incremental displacement vector
field ∆u, the Cauchy stress tensor field σ and state variables q for that increment. Then, ∆u is used to
update mesh nodes coordinates, as per Eq. (1) which is standard for an updated Lagrangian formulation.
The use of Eq. (1) might generate elements of negative volume, which cannot be accepted neither by the FE
method nor the remeshing algorithms available in FEMS. Thus, if such elements are generated, the mesh
motion algorithm rolls back and tries an update with 0.5∆u instead of the full displacement increment. If
this fails again, 0.25∆u is used, etc. Once an acceptable displacement increment is found, mesh adaption is

28

1

1

vx=vy=0

vx=vy=0

v
x
=

v
y
=

0

v
x
=

v
y
=

0

Fluid 2

(gas)Fluid 1

(liquid)

g

R=0.2

(a)

(b)

(c) (d)

Figure 15: (a) Boundary conditions for the two-phase flow problem with obstacles. Lengths are in millimeters
and velocities in millimeters per millisecond. (b) Generated body-fitted FE mesh of the obstacles. (c)
Adapted FE mesh combining body-fitted meshing of obstacles and local anisotropic mesh adaption to the
liquid phase LS function. (d) Zoom on the adapted mesh.

29

(a) (b)

(c) (d)

Figure 16: Results of the two-phase flow simulation with obstacles at: (a) t = 0.5 ms, (b) t = 1 ms, (c) 10 ms.
(d) Zoom on the adapted mesh at t = 10 ms.

30

triggered to improve element quality, and an attempt is made to apply the remaining displacement increment
(0.5∆u, 0.75∆u or more depending on the current state). This mesh motion algorithm was used in Ref. [31]
and systematically succeeds in applying the full displacement increment without any element flipping. After
mesh motion, mesh adaption can be triggered if element quality decreased significantly, then the solution is
output on the deformed mesh and the simulation continues with the next load increment.
For all solid mechanics simulations, the domain is the 3D box decomposed as a heterogeneous material with
a matrix and two reinforcements as shown in Fig. 17(a). A body-fitted FE mesh is generated using the
remeshing and mesh generation algorithms of the first strategy in 8 mesh adaption cycles with parameters
hmin and hmax set respectively to 16 µm and 64 µm, and control parameter hc set to 0.256. This initial mesh
is shown in Fig. 17(b) and loaded horizontally as shown in Fig. 17(a), with an applied displacement U that
is defined in the sequel.
The remeshing algorithm of the first strategy is also used during the simulations. It is coupled to the metric
tensor field of Eqs. (9) and (11), with s = ∆u. Anisotropy control parameter is set to 10 as excessively
stretched elements are not well-suited to a Lagrangian mesh, and the complexity Nc is varied using values
512, 1024 and 2048. Because this metric tensor field is not identical to the one used when generating the
initial mesh, mesh adaption is always triggered at the end of the first load increment. It is then triggered
again when there is element flipping during mesh motion and when after mesh motion the quality of at least
one element has dropped more than twice since the last time the mesh was adapted. Simulation results for
different material behaviors are presented in the sequel.

1

1

Δuy=0

Δ
u

x
=

Δ
u

y
=

0

Δ
u

x
=

U
,Δ

u
y
=

0

Reinforcements

Matrix

R=0.1

R=0.1

(a)

(b)

Figure 17: (a) Boundary conditions for solid mechanics problems. Lengths are in millimeters and the
thickness in the third direction (not shown in this figure) is 0.1 mm. (b) Initial body-fitted FE mesh of the
heterogeneous material for all solid mechanics simulations.

4.3.1 Hyperelasticity

As a first test, material behavior in both the matrix and the reinforcements is defined as hyperelastic, with
a Saint Venant-Kirchhoff model, which means that the Cauchy stress tensor σ at any point is given by the
relations

σ =
1

J
FSFT , J = det(F),

31

S = 2µelE + λeltr(E)I2,E =
1

2
(C− I2),C = FTF,

where F = F(∆u) is the deformation gradient tensor, C the right Cauchy-Green deformation tensor, E
the Green-Lagrange strain tensor, S the second Piola-Kirchhoff stress tensor and I2 the identity tensor.
Lamé parameters µel and λel depend on the Young’s modulus, which is set to 200 MPa for the matrix and
400 MPa for the reinforcements, and the Poisson’s coefficient which is set to 0.3 for the matrix and 0.2 for
the reinforcements.
The finite strain updated Lagrangian weak form is discretized using standard P1 FEs and a Newton-Raphson
algorithm as the relation between the Cauchy stress tensor and the displacement increment is nonlinear (see
e.g., the finite strain chapter in Ref. [12]). The sparse linear problem at each Newton-Raphson increment
is solved using the GMRES linear solver with ILUT preconditioning of Lis [49]. The loading consists in 25
increments with U set to 0.04 mm, and then 25 increments with U set to -0.04 mm.

(a) (b)

Figure 18: Results of the solid mechanics simulation with hyperelastic material behavior and Nc = 2048
after: (a) 25 load increments, (b) 50 load increments.

Results are shown in Fig. 18. Even though Nc is varied with values 512, 1024 and 2048, mesh adaption
is always triggered twice in the three simulations: the first time at the end of the 1st load increment, and the
second time around the 23rd load increment. The mesh motion algorithm always succeeds in applying the
displacement increment in a single trial in all these simulations. Indeed, except from the regions close to the
reinforcements, the purely elastic strain field is not significantly localized. Therefore, the large deformations
are diffused and shared by all elements. The only reason mesh adaption is triggered twice is the excessive
stretching which leads to a deteriorated element quality.
Mesh adaption results to some diffusion of the strain energy, which has the consequence that the final result
in Fig. 18(b) is not identical to the 3D box shown in Fig. 17(b). If strain energy conservation is of interest,
the user might choose to avoid mesh adaption as much as possible in these simulations. FEMS would still
be of interest for such computational approach as it could be used to prepare the initial mesh.

4.3.2 Elasto-plasticity

In this second application, material behavior in the reinforcements is linear elastic but the matrix is defined
as elasto-plastic with a von Mises yield criterion and linear isotropic hardening. The Cauchy stress tensor

32

σ at any point of the reinforcements is given by Hooke’s law for isotropic linear elasticity with a Young’s
modulus of 400 MPa and a Poisson’s coefficient of 0.2. In the matrix, the following nonlinear equations must
be solved at each integration point:

σ = σdev − pI2, p = −1

3
tr(σ),

σ̇dev = 2µel
(
ε̇el − 1

3
tr(ε̇el)I2

)
,− 1

χel
ṗ− tr(ε̇el) = 0, ε̇el = ε̇− ε̇pl, tr(ε̇pl) = 0,

f =

√
3

2
σdev : σdev, εpl =

∫ t

0

ε̇
pl

(τ)dτ, ε̇
pl

=

√
2

3
ε̇pl : ε̇pl, σ = 500 + 1000εpl,∣∣∣∣∣∣

ε̇
pl

= 0, ε̇pl = 0, f < σ,

ε̇pl =
3

2
ε̇
pl σdev

f
, ε̇
pl
> 0, f = σ.

These equations involve the deviatoric part σdev of the Cauchy stress tensor and the hydrostatic pressure p.
There is an additive decomposition of the strain rate tensor ε̇ into an elastic part ε̇el and a plastic part ε̇pl,
the plastic part being incompressible. The equivalent stress f is defined using the von Mises yield criterion,
and the yield stress σ using a linear isotropic hardening law which is a function of the only state variable,
namely the equivalent plastic strain εpl.
The last system of equations defines the conditions for plastic flow. This system is solved using a standard
predictor-corrector scheme with return mapping [3, 28], where the only unknown is the equivalent plastic

strain rate ε̇
pl

. A Young’s modulus of 200 MPa and a Poisson’s coefficient of 0.3 are defined for the matrix
in order to compute the Lamé parameter µel and the bulk modulus χel.
The small strain updated Lagrangian weak form is discretized using a P1+/P1 MINI element to deal with the
incompressibility of plastic strains. This weak form is solved using a Newton-Raphson algorithm in addition
to the local Newton-Raphson procedure that has already been mentioned for the return mapping at each
integration point. The loading consists in 25 increments with U set to 0.04 mm.

The result for the simulation with the finest mesh is shown in Fig. 19. For these simulations with
localized plastic strains, there is one mesh adaption for the simulation with Nc = 512, two adaptions for
Nc = 1024, and three adaptions for Nc = 2048. Although none of them has been triggered by the mesh
motion procedure, element flipping is very likely in these simulations and maintaining a good element quality
is very important. In addition, it is clear in Fig. 19 that the mesh has been automatically refined in the
region with large plastic strain.

Finally, for all solid mechanics simulations, the computation time spent solving balance equations is
always around 20 times the time spent on mesh adaption. Given that some of these simulations, especially
those with plasticity, could not be conducted without mesh adaption, it is relevant to apply FEMS to solid
mechanics as well as fluid mechanics.

5 Conclusions and perspectives

A state-of-the-art Finite Element Modeling Software (FEMS) has been presented in this paper. FEMS
is targeted at engineers and scientists addressing localization problems. Those include a wide range of
computational fluid dynamics problems involving turbulence and boundary layers, or multiphase flows, but
also computational solid mechanics problems such as plastic localization bands. Examples of such problems
are addressed in this paper to show the capabilities of FEMS.
A transient incompressible flow problem with a high Reynolds number has been solved using the higher-
order mesh adaption capabilities of FEMS. A mesh composed of triangles has been automatically adapted

33

Figure 19: Results of the solid mechanics simulation with elasto-plastic material behavior for the matrix,
linear elastic behavior for the reinforcements, and Nc = 2048 after 25 load increments.

34

to the features of the solution, with triangles refined, stretched and oriented according to the fluid velocity
field. Control parameters allowing to keep a fixed number of nodes during the simulation and to fix element
stretching have been varied, showing that anisotropic mesh adaption provides a gain in accuracy with no
significant computation time overhead.
Simulations in a heterogeneous domain have also been solved using FEMS. Two different modeling approaches
have been proposed: the one relying on a body-fitted FE mesh with explicit meshing of internal interfaces,
and the other relying on the Level-Set (LS) method to represent interfaces implicitly in the FE mesh. The
first approach has been demonstrated to be robust for solid mechanics problems in an updated Lagrangian
setting as FEMS can adapt the mesh automatically during the simulation to avoid element flipping. The
second approach has been shown to be efficient for multiphase flow problems. For the latter, FEMS’ higher-
order interpolation of the LS function improves further the accuracy of the solution.
In addition, body-fitted FE meshes can be generated within FEMS, simply from signed distance functions.
Those can be easily computed for most geometrical entities, and even from gray scale two-dimensional and
three-dimensional images. This feature has been demonstrated in the paper with varying control parameters
allowing to automatically vary the mesh size depending on the local maximum principal curvature of internal
interfaces.
All in all, FEMS proves to be a powerful tool for modeling nonlinear phenomena in computational mechanics,
and give access to cutting-edge adaptive finite elements for the first time in an open source software.

References

[1] R. Codina, “Stabilized finite element approximation of transient incompressible flows using orthogonal
subscales,” Computer Methods in Applied Mechanics and Engineering, vol. 191, pp. 4295–4321, aug
2002.

[2] G. Compère, J.-F. Remacle, J. Jansson, and J. Hoffman, “A mesh adaptation framework for dealing
with large deforming meshes,” International Journal for Numerical Methods in Engineering, vol. 82,
pp. 843–867, 2010.

[3] E. Roux, M. Shakoor, M. Bernacki, and P.-O. Bouchard, “A new finite element approach for modelling
ductile damage void nucleation and growth—analysis of loading path effect on damage mechanisms,”
Modelling and Simulation in Materials Science and Engineering, vol. 22, p. 075001, oct 2014.

[4] M. Shakoor and C. H. Park, “A higher-order finite element method with unstructured anisotropic mesh
adaption for two phase flows with surface tension,” Computer Methods in Applied Mechanics and
Engineering, vol. (Submitted), 2019.

[5] F. Feyel, “Multiscale FE2 elastoviscoplastic analysis of composite structures,” Computational Materials
Science, vol. 16, pp. 344–354, dec 1999.

[6] N. Sukumar, D. Chopp, N. Moës, and T. Belytschko, “Modeling holes and inclusions by level sets in the
extended finite-element method,” Computer Methods in Applied Mechanics and Engineering, vol. 190,
pp. 6183–6200, sep 2001.

[7] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-D finite element mesh generator with built-in pre- and post-
processing facilities,” International Journal for Numerical Methods in Engineering, vol. 79, pp. 1309–
1331, sep 2009.

[8] C. Cecka, A. J. Lew, and E. Darve, “Assembly of finite element methods on graphics processors,”
International Journal for Numerical Methods in Engineering, vol. 85, pp. 640–669, feb 2011.

[9] T. Hughes, J. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact
geometry and mesh refinement,” Computer Methods in Applied Mechanics and Engineering, vol. 194,
pp. 4135–4195, oct 2005.

35

[10] S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: Algorithms based on
Hamilton-Jacobi formulations,” Journal of Computational Physics, vol. 79, pp. 12–49, nov 1988.

[11] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, vol. 159 of Applied Mathematical
Sciences. Springer New York, 2004.

[12] A. Fortin and A. Garon, “Les éléments finis : de la théorie à la pratique,” 2011.

[13] O. Zienkiewicz, R. Taylor, and J. Zhu, The Finite Element Method: Its Basis and Fundamentals. Else-
vier, 2013.

[14] D. Boffi, F. Brezzi, L. F. Demkowicz, R. G. Durán, R. S. Falk, and M. Fortin,
Mixed Finite Elements, Compatibility Conditions, and Applications, vol. 1939 of Lecture Notes in
Mathematics. Berlin, Heidelberg: Springer, 2008.

[15] A. N. Brooks and T. J. Hughes, “Streamline upwind/Petrov-Galerkin formulations for convection
dominated flows with particular emphasis on the incompressible Navier-Stokes equations,” Computer
Methods in Applied Mechanics and Engineering, vol. 32, pp. 199–259, sep 1982.

[16] Y. Bazilevs, V. Calo, J. Cottrell, T. Hughes, A. Reali, and G. Scovazzi, “Variational multiscale residual-
based turbulence modeling for large eddy simulation of incompressible flows,” Computer Methods in
Applied Mechanics and Engineering, vol. 197, pp. 173–201, dec 2007.

[17] J. Yan, S. Lin, Y. Bazilevs, and G. Wagner, “Isogeometric analysis of multi-phase flows with surface
tension and with application to dynamics of rising bubbles,” Computers & Fluids, vol. 179, pp. 777–789,
jan 2019.

[18] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, “Log-Euclidean metrics for fast and simple calculus
on diffusion tensors,” Magnetic Resonance in Medicine, vol. 56, pp. 411–421, aug 2006.

[19] R. Abgrall, H. Beaugendre, and C. Dobrzynski, “An immersed boundary method using unstruc-
tured anisotropic mesh adaptation combined with level-sets and penalization techniques,” Journal of
Computational Physics, vol. 257, pp. 83–101, jan 2014.

[20] D.-L. Quan, T. Toulorge, E. Marchandise, J.-F. Remacle, and G. Bricteux, “Anisotropic mesh adapta-
tion with optimal convergence for finite elements using embedded geometries,” Computer Methods in
Applied Mechanics and Engineering, vol. 268, pp. 65–81, jan 2014.

[21] M. Shakoor, M. Bernacki, and P.-O. Bouchard, “Ductile fracture of a metal matrix composite studied
using 3D numerical modeling of void nucleation and coalescence,” Engineering Fracture Mechanics,
vol. 189, pp. 110–132, feb 2018.

[22] O. C. Zienkiewicz and J. Z. Zhu, “A simple error estimator and adaptive procedure for practical en-
gineerng analysis,” International Journal for Numerical Methods in Engineering, vol. 24, pp. 337–357,
feb 1987.

[23] Z. Zhang and A. Naga, “A New Finite Element Gradient Recovery Method: Superconvergence Prop-
erty,” SIAM Journal on Scientific Computing, vol. 26, pp. 1192–1213, jan 2005.

[24] A. Loseille and F. Alauzet, “Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation
Error,” SIAM J. Numer. Anal., vol. 49, no. 1, pp. 38–60, 2011.

[25] A. Loseille and F. Alauzet, “Continuous Mesh Framework Part II: Validations and Applications,” SIAM
Journal on Numerical Analysis, vol. 49, pp. 61–86, jan 2011.

[26] O. Coulaud and A. Loseille, “Very High Order Anisotropic Metric-Based Mesh Adaptation in 3D,”
Procedia Engineering, vol. 163, pp. 353–365, 2016.

36

[27] P. Laug and H. Borouchaki, “Construction d’un champ continu de métriques,” Comptes Rendus
Mathematique, vol. 351, pp. 639–644, aug 2013.

[28] M. Shakoor, M. Bernacki, and P.-O. Bouchard, “A new body-fitted immersed volume method for the
modeling of ductile fracture at the microscale: Analysis of void clusters and stress state effects on
coalescence,” Engineering Fracture Mechanics, vol. 147, pp. 398–417, oct 2015.

[29] C. Dobrzynski and P. Frey, “Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations,” in
Proceedings of the 17th International Meshing Roundtable (R. V. Garimella, ed.), pp. 177–194, Berlin,
Heidelberg: Springer, 2008.

[30] C. Gruau and T. Coupez, “3D tetrahedral, unstructured and anisotropic mesh generation with adapta-
tion to natural and multidomain metric,” Computer Methods in Applied Mechanics and Engineering,
vol. 194, pp. 4951–4976, nov 2005.

[31] M. Shakoor, P.-O. Bouchard, and M. Bernacki, “An adaptive level-set method with enhanced volume
conservation for simulations in multiphase domains,” International Journal for Numerical Methods in
Engineering, vol. 109, pp. 555–576, jan 2017.

[32] C. Dapogny, C. Dobrzynski, and P. Frey, “Three-dimensional adaptive domain remeshing, implicit
domain meshing, and applications to free and moving boundary problems,” Journal of Computational
Physics, vol. 262, pp. 358–378, apr 2014.

[33] J. X. Zhao, T. Coupez, E. Decencière, D. Jeulin, D. Cárdenas-Peña, and L. Silva, “Direct multiphase
mesh generation from 3D images using anisotropic mesh adaptation and a redistancing equation,”
Computer Methods in Applied Mechanics and Engineering, vol. 309, pp. 288–306, 2016.

[34] M. Shakoor, A. Buljac, J. Neggers, F. Hild, T. F. Morgeneyer, L. Helfen, M. Bernacki, and P.-O.
Bouchard, “On the choice of boundary conditions for micromechanical simulations based on 3D imag-
ing,” International Journal of Solids and Structures, vol. 112, pp. 83–96, may 2017.

[35] C. Maurer, Rensheng Qi, and V. Raghavan, “A linear time algorithm for computing exact Euclidean
distance transforms of binary images in arbitrary dimensions,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 25, pp. 265–270, feb 2003.

[36] J. A. Sethian and A. Vladimirsky, “Fast methods for the Eikonal and related Hamilton- Jacobi equations
on unstructured meshes.,” Proceedings of the National Academy of Sciences of the United States of
America, vol. 97, pp. 5699–703, may 2000.

[37] M. Shakoor, B. Scholtes, P.-O. Bouchard, and M. Bernacki, “An efficient and parallel level set reinitial-
ization method – Application to micromechanics and microstructural evolutions,” Applied Mathematical
Modelling, vol. 39, pp. 7291–7302, dec 2015.

[38] “ISO/IEC 9899:1999,” tech. rep., International Organization for Standardization, 1999.

[39] “ISO/IEC 14882:2011,” tech. rep., International Organization for Standardization, 2011.

[40] F. Hecht, “New development in freefem++,” Journal of Numerical Mathematics, vol. 20, no. 3-4,
pp. 251–265, 2012.

[41] M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E.
Rognes, and G. N. Wells, “The fenics project version 1.5,” Archive of Numerical Software, vol. 3, no. 100,
2015.

[42] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, “libMesh : a C++ library for paral-
lel adaptive mesh refinement/coarsening simulations,” Engineering with Computers, vol. 22, no. 3-4,
pp. 237–254, 2006.

37

[43] G. Compère, E. Marchandise, and J.-F. Remacle, “Transient adaptivity applied to two-phase incom-
pressible flows,” Journal of Computational Physics, vol. 227, pp. 1923–1942, jan 2008.

[44] H. Digonnet, L. Silva, and T. Coupez, “Cimlib: A Fully Parallel Application For Numerical Simulations
Based On Components Assembly,” in AIP Conference Proceedings, vol. 908, pp. 269–274, AIP, 2007.

[45] “OpenMP Application Program Interface Version 4.5,” tech. rep., OpenMP Architecture Review Board,
2015.

[46] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, and F. Rossi,
GNU Scientific Library Reference Manual - Third Edition. Network Theory Ltd., 2009.

[47] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout,
W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang,
and H. Zhang, “{PETS}c {W}eb page,” 2016.

[48] T. A. Davis, “Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method,” ACM
Transactions on Mathematical Software, vol. 30, pp. 196–199, jun 2004.

[49] A. Nishida, “Experience in Developing an Open Source Scalable Software Infrastructure in Japan,”
in Computational Science and Its Applications – ICCSA 2010 (D. Taniar, O. Gervasi, B. Murgante,
E. Pardede, and B. Apduhan, eds.), vol. 6017 of Lecture Notes in Computer Science, pp. 448–462,
Berlin, Heidelberg: Springer, 2010.

[50] J. W. Demmel, J. R. Gilbert, and X. S. Li, “An asynchronous parallel supernodal algorithm for sparse
gaussian elimination,” SIAM J. Matrix Analysis and Applications, vol. 20, no. 4, pp. 915–952, 1999.

[51] M. Naumov, M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton, S. Layton, N. Markovskiy,
I. Reguly, N. Sakharnykh, V. Sellappan, and R. Strzodka, “AmgX: A Library for GPU Accelerated
Algebraic Multigrid and Preconditioned Iterative Methods,” SIAM Journal on Scientific Computing,
vol. 37, pp. S602–S626, jan 2015.

[52] K. Rupp, P. Tillet, F. Rudolf, J. Weinbub, A. Morhammer, T. Grasser, A. Jüngel, and S. Selber-
herr, “ViennaCL—Linear Algebra Library for Multi- and Many-Core Architectures,” SIAM Journal on
Scientific Computing, vol. 38, pp. S412–S439, jan 2016.

[53] U. Ayachit, The ParaView Guide: A Parallel Visualization Application. Kitware, 2015.

[54] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden,
S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and
A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Methods, vol. 9,
pp. 676–682, jun 2012.

[55] E. Erturk, T. C. Corke, and C. Gökçöl, “Numerical solutions of 2-D steady incompressible driven
cavity flow at high Reynolds numbers,” International Journal for Numerical Methods in Fluids, vol. 48,
pp. 747–774, jul 2005.

38

