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Abstract

Numerical artifacts in the form of spurious oscillations are among the critical

issues of Fast Fourier Transfer (FFT) methods for solving multiphase elastic prob-

lems such as numerical homogenization, in spite of their computational simplicity

and efficiency. In the first part of the present work, it is shown that the irregu-

lar discretization of the interface due to the use of a voxel-based discretization is

the dominant cause of oscillations. The second part of the present work focuses

on numerical artifacts reduction schemes, and in particular special treatments for

dealing with the irregular discretization of the interface such as the composite voxel

method and neighbor averaging methods. An improved composite voxel method

by using the level-set technique is proposed, which alleviates the implementation
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difficulty of the composite voxel method. This improved method is particularly rel-

evant for non-parametrized interface representations such as those obtained from

three-dimensional experimental images.

Keywords: Solids, Micromechanics, Fast Fourier Transform, Numerical artifacts,

Green operator, Composite voxel method

1 Introduction

The Finite Element Method (FEM) is the most popular method for modeling the local

mechanical behavior of composites [1]. To reproduce the smooth geometry of micro- and

mesostructure of composites, a body-fitted (conformal) mesh is often used [2, 3]. A com-

plex fibrous geometry suffers from interpenetrations of fibres/yarns volumes, which can

make building a conformal mesh impossible or lead to unacceptable quality of the mesh

[4]. Improved techniques have been proposed to generate interpenetration-free conformal

meshes for textile composites [4, 5], but they are too demanding computationally. Apart

from the conforming meshes, alternative approaches exist, such as the domain superpo-

sition or embedded element technique [6, 7, 8, 9]. In these approaches, the matrix and

yarn domains are meshed independently, and a coupling is established between them to

ensure the continuity of the displacement field.

In recent years, the pixel (2D) or voxel (3D)-based meshes are attracting more and

more attention thanks to their simplicity [10, 11, 12, 13, 14, 15]. A voxel-based mesh is

a structured mesh generated directly from digital images or from a geometrical model.

A box of voxels is created at first and then the voxels are labelled to be “matrix” or

“fibre/yarn” depending on the position of the centroid of the voxel [16]. If the resolution

of the image is too fine, such as an image output from micro-computed tomography that

can easily have over billions of voxels, the computation can be too heavy for FEM. Al-

though parallelization techniques have been proposed such as domain decomposition [17]

and multigrid methods [18], their applications are not straightforward [19]. Therefore,

there is a demand for approaches that would be easier to parallelize.
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Back in 1994, the Fast Fourier Transform (FFT) method was proposed initially by

H.Moulinec and P.Suquet [20, 21, 22], as a voxel-based methodology that does not need

stiffness matrix assembling unlike conventional FEM. In the FFT method, the local strain

tensor is calculated by a convolution product with a fourth-rank Continuous Green Oper-

ator (CGO) and a polarized term. The convolution product is transformed into a simple

tensorial product in Fourier space. The calculation of the polarized term and the CGO

multiplication are local operations that can be easily parallelized [19], which is also true

for the FFT method in general with available packages (such as FFTW). Consequently,

large-scale simulations based on full-resolution images can be performed with the FFT

method. During the last decades, FFT-based methods have been applied to investigate a

wide range of physical phenomena in heterogeneous media, such as eigenstrains/thermal

strains [23, 24], crystal plasticity [25, 26, 27, 28, 29, 30] and damage [31, 32]. A number of

physics in different types of composites have been investigated, such as the thermoelastic

properties of Alumina/Al composites [33], the Kapitza interface resistance of composite

conductors [34], the damage analysis of SiC/SiC materials [19], the nonwowens [35], the

effect of heterogeneous interphase on unidirectional fiber composites [36], the damage of

laminates [37] and the damage analysis of textile composites [38, 39].

The FFT method proposed by H.Moulinec and P.Suquet relies on a fixed-point scheme

(”basic scheme”), which consists in iteratively updating the polarized stress and re-

applying the convolution with the CGO through FFTs until convergence. There are

three main issues with this fixed-point scheme, which many researchers have attempted

to overcome in the last two decades. The first one is the lack of convergence of the fixed-

point scheme in the case of infinite mechanical contrast between phases. An accelerated

scheme was proposed in [40], with a convergence rate proportional to the square root

of the contrast between the phases. Alternatives such as the “augmented Lagrangian

scheme” [41] and the ”polarization-based scheme” [42] have also been proposed. The

second issue is that the convergence of the basic scheme is heavily sensitive to the choice

of reference material. Brisard et al. [43] and Zeman [44] simultaneously proposed the use

of conjugate gradient solvers as an alternative to the fixed-point scheme. An extension to

the non-linear case for conjugate gradient solvers has been proposed in [45]. This solution
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appears to improve both the sensitivity to the phases contrast and the choice of reference

material.

The third problem, which this paper is focused on, is the presence of spurious oscillations

due to the heterogeneity of mechanical fields. One of the possible causes first reported in

[22] is that the FFT method cannot satisfy Shannon’s theorem for heterogeneous fields,

which means that the Discrete Fourier Transform (DFT) is not equal to Fourier trans-

form in this case. The Shannon’s theorem requires that the cut-off frequency (i.e. the

frequency above which the Fourier transform of the local fields vanish) is lower than half

of the sampling frequency. However, a heterogeneous field in mechanics has no cut-off

frequency. Another possible cause which is suggested in [46] is the Gibbs phenomenon of

spectral methods. A third possible cause is proposed in [16], where the cause of oscilla-

tions that occur in voxel mesh FEM is analyzed. It is believed that these oscillations are

mainly due to the non-smooth ”zig-zag” interfaces between phases. The oscillations are

also present when superimposed/embedded meshes are used [8, 9]. Finally, the hourglass

effect, which is well known to lead to oscillations in FEM, has also been observed for the

FFT method [47].

Over a decade, many researchers have worked on overcoming these artifacts. Attenu-

ation factors with linear spline functions were proposed in [48], and low-pass filtering

applied in the solutions to dampen high-frequency terms were proposed in [49]. Another

strategy is to develop a consistent Discrete Green Operator (DGO) to correct the error

due to the discretization of the Fourier transform. Assuming the local field is periodic, a

DGO can be calculated by duplicating the local field for k times in Fourier space. If k is

high enough, the solutions of the DGO can be approximated as those of the CGO, and

refining the mesh is not required. This kind of strategy was proposed in [43, 50] where it

was integrated into a general variational framework based on the Hashin-Strikman energy

principle. Then, this strategy was applied in [46] where it was adapted to the Lippmann-

Schwinger equation. However,in [50], the computation of the DGO was judged too costly

for three-dimensional computations and a filtering approach was used instead.
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A fourth strategy is to compute the DGO based on Finite Difference (FD) discretiza-

tion. This kind of approach was first reported in [51] and followed by Dreyer [52] and

Brown [53] where a centered FD was considered. Backward and forward FD schemes

were published by Willot in [54]. Many papers were published in the last few years in

this research direction [55, 56, 57, 58, 59]. Among the different schemes, there is the DGO

calculated based on the centered FD scheme on a rotated grid, called ”rotated scheme”

[60], which is one of the most interesting schemes. This scheme was implemented in the

open-source software AMITEX-FFTP [61] developed by Lionel Gélébart et al. and it was

successfully applied in [58] for solving field dislocation mechanics problems and in [19]

for analyzing the failure of a SiC/SiC composite. Another very interesting discretiza-

tion scheme based on linear hexahedral element was proposed by Schneider et al. [62]

and adapted both to the basic scheme and conjugate gradient solvers. This scheme was

presented in two versions, one with reduced integration and one with full integration,

similarly to FEM. It was analytically demonstrated that the scheme with reduced inte-

gration is equivalent to the ”rotated scheme” proposed in [60]. These two schemes, which

were proposed in [60] and in [62], will be discussed in this paper.

As illustrated in Fig. 1, the oscillations are also present even with the rotated scheme.

They can be due to a non-smooth interface [16]. Remedies as “composite voxels” [63, 64]

or “neighbour voxels average” [65] were proposed and applied to FFT solvers.

The performance of the different algorithms is often assessed only with respect to the

macroscopic responses. When dealing with damage analysis, local response is of signif-

icant importance (interface response in particular), of which quantitative comparisons

between FFT and FEM are rarely reported. The impacts and relative effects of different

causes of oscillations are rarely discussed. There is no assessment of the efficiency of the

composite voxel and neighbour voxels average methods in dealing with these particular

issues.

Therefore, the purposes of this paper are as follows: 1) Identifying the causes of spu-

rious oscillations in FFT and evaluating their impacts; 2) Using the results of FEM as
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Figure 1: Illustration of spurious oscillations (check-board patterns) of local stress field

(σxx) present in FFT with rotated scheme proposed in [60] (left half part) and FEM (right

half part) under tension in x-direction with the contrast between the fiber and matrix

Young’s modulii set to Ef/Em = 22

the reference and comparing quantitatively the influence of different Green operators

(proposed in [21, 60, 62]) on different models and concluding on an optimal choice; 3)

Proposing an improved composite voxel method and comparing it with the neighbour

voxels average technique.

The paper is organized as follows: In Section 2, the different FFT based algorithms

used in this paper will be presented; In Section 3, the composite voxel and neighbour

voxels average methods will be discussed and an improved composite voxel method will

be proposed; In Section 4, three benchmark models will be presented and used to assess

different causes of oscillations in local responses and compare the numerical methods;

Section 5 will be the general conclusions.
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2 FFT methods for composites homogenization

In this section, a review of the FFT based numerical method proposed in [20, 21, 22] is

detailed as well as some recent improved schemes [60, 62] for reduction of the spurious

oscillations, which will be applied and discussed in the next sections.

2.1 The basic scheme of the FFT method and the Lippmann-

Schwinger equation

In this paper, the simulation domain is a periodic unit-cell V composed of different phases

that are assumed to be perfectly bonded. This unit-cell is subjected to a uniform overall

strain denoted 〈ε〉. This uniform overall strain is equivalent to the spatial average of strain

field ε(x) over the domain. Displacement, strain, and Cauchy stress fields are denoted u,

ε and σ respectively. Note that the local strain ε(x) and the displacement u(x) fields can

be split into the spatial average and a fluctuation terms, which are expressed as follows:

ε(x) = ε∗(x) + 〈ε〉 or u(x) = u∗(x) + 〈ε〉.x (1)

where ε∗(x) and u∗(x) are the local fluctuations of strain and displacement fields respec-

tively with u∗(x) being periodic. Defining the local stiffness tensor as C(x) and intro-

ducing a reference material with stiffness C0, Hooke’s law for linear elasticity is written

as:

σ(x) = C0 : ε(x) + τ(x), ∀x ∈ V (2)

where τ(x) = (C(x)− C0) : ε(x). It can be shown [20] that the equilibrium equation

div(σ(x)) = 0, ∀x ∈ V (3)

with the constitutive equation in Eq. (2) is equivalent to the periodic Lippmann-Schwinger

equation

ε(x) = −Γ0(x) ∗ τ(x) + 〈ε〉, ∀x ∈ V (4)

where ∗ denotes a convolution product and Γ0 is the fourth-order tensor field that is called

Green operator. Meanwhile, the strain ε(x) should satisfy the compatibility condition,

which is:

ε(x) =
1

2
(∇u(x) + (∇u(x))T ) (5)
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Solving Eq. (4) is not an easy task in real space because the numerical computation of

a convolution product is complicated, and furthermore, the term Γ0 is easier to calculate

Fourier space. Thus, the Eq. (4) can be easill written in Fourier space as follows:

ε̂(ξ) = −Γ̂0(ξ) : τ̂(ξ), ∀ξ 6= 0, ε̂(0) = 〈ε〉

where the convolution can be transformed into a simple double contraction (denoted as

:). Here ε̂, Γ̂0 and τ̂ are the Fourier transforms of ε, Γ0 and τ respectively. The vector of

frequency, denoted by ξ, varies in Fourier space.

Because the polarization stress term τ(x) in Eq. (2) is nonlinear, an iterative algorithm

is necessary. The principle of the algorithm is to use an iterative fixed-point scheme to

solve Eq. (2) and Eq. (3):

Initialization:

(a0) ε0(x) = 〈ε〉, ∀x ∈ V

(b0) σ0(x) = C(x) : ε0(x)

Iteration (i+ 1): εi and σi are known

(a) τ i = σi − C0 : εi(x)

(b) τ̂ i = F (τ i)

(c) ε̂i+1(ξ) = −Γ̂0(ξ) : τ̂ i(ξ), ∀ξ 6= 0, ε̂(0) = 〈ε〉

(d) εi+1 = F−1(ε̂i+1)

(e) σi+1(x) = C(x) : εi+1(x)

(f) Convergence test: (〈‖div(σi+1‖〉2)1/2
‖〈σi+1〉‖ ≤ e

(6)

Here ‖.‖ is the L2 norm. The iterative algorithm (6) will be stopped when the conver-

gence test is satisfied (e = 1× 10−12 in our calculations).
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In numerical calculation, the DFT is used. The unit cell is discretized into a regular

grid of N1 × N2 pixels in 2D cases and N1 × N2 × N3 voxels in 3D problems. For 3D

cases, the coordinates of each voxel labeled by i1, i2, and i3 are

x(i1, i2, i3) = ((i1 −
1

2
)
T1
N1

, (i2 −
1

2
)
T2
N2

, (i3 −
1

2
)
T3
N3

)

with

i1 = 1...N1, i2 = 1...N2, i3 = 1...N3

and Ti is the period of the unit cell in ith direction. The definition of the discrete

frequencies ξi depends on whether Ni is even or odd. If Ni is even, the discrete frequencies

are given by:

ξi = (−Ni

2
+ 1)

1

Ti
, (−Ni

2
+ 2)

1

Ti
, ..., − 1

Ti
, 0,

1

Ti
, ..., (

Ni

2
− 1)

1

Ti
, (
Ni

2
)

1

Ti

and if Ni is odd:

ξi = −Ni − 1

2

1

Ti
, ..., − 1

Ti
, ,

1

Ti
, ...,

Ni − 1

2

1

Ti
.

The ξ and x in Alg. (6) should be discretized as a DFT is used in practice. However, as

shown in [22, 60], when Ni is even, the Γ̂∗0(ξ) (complex conjugate of Γ̂0(ξ)) is not equal

to Γ̂0(ξ) when one of the components of ξ is equal to the highest frequency. Therefore,

the inverse of the Fourier transform of Γ̂0(ξ) : τ̂(ξ) at step (d) of Alg. (6) has a non-

zero imaginary part. To overcome this problem, Γ̂0(ξ) = (C0)
−1 may be enforced when

ξ = (Ni
2

) 1
Ti

. To avoid this, Ni can be chosen odd, as done in all our calculations.

2.2 The Green operator of Moulinec-Suquet (Γ̂M−S
0 )

Accompanied by the proposition of FFT methods, the expression of the Green operator

is also given in [21] and detailed in [22]. Following the equations (1), (2), (3) and (5),

the difficulty of finding the expression of Γ̂M−S0 (ξ) depends on the choice of reference

material. In most studies, even for anisotropic materials, an isotropic reference material

is chosen. In this case, Γ̂M−S0 (ξ) is

Γ̂M−S0,ijkl(ξ) =
(δkiξlξj + δliξkξj + δkjξlξi + δljξkξi)

4µ0‖ξ‖2
− λ0 + µ0

µ0(λ0 + 2µ0)

ξiξjξkξl
‖ξ‖4

(7)
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where µ0 and λ0 are the Lamé coefficients of the reference material. The Dirac delta

function is denoted by δ. Eq.(7) is valid only if ξ 6= 0. Otherwise,

Γ̂M−S0 (0) = 0. (8)

Because the Eqs. (3) and (5) are continuous, Eq. (7) is also continuous. In numerical

calculations, the domain is discretized by voxels, thus the DFT is applied and the local

fields u, ε and σ are always calculated at the centroid of each voxel. In the DFT, ξ is

discretized in limited series where the high frequencies are ignored. Therefore, the Green

operator of Moulinec-Suquet can also be called as “truncated Green operator”.

2.3 Willot’s rotated scheme

Inspired with the FD technique, Willot [60] modifyied the equilibrium equation and strain

compatibility in Eqs. (3) and (5) from a continuous form into discrete form. They are

given as follows:

k̂∗i (ξ)σ̂ij(ξ) = 0, ε̂ij =
1

2
[k̂i(ξ)ûj(ξ) + k̂j(ξ)ûi(ξ)] (9)

where k̂∗ and k̂ represent the discrete divergence and gradient operators. Based on the

Eq. (9), the DGO Γ̂WR
0 of Willot’s rotated scheme is

Γ̂WR
0,ijkl = {k̂i(ξ)[k̂m(ξ)C0,mjknk̂

∗
n(ξ)]−1k̂∗l (ξ)}sym

where the symbol sym indicates the minor symmetrization with respect to the index (i, j)

and (k, l). As stated previously, this definition is only valid for non-zero frequency vectors

so that Eq.(8) still applies. In Willot’s rotated scheme, the displacement field u and the

divergence of the stress field are evaluated at the corners of each voxel, while the strain

ε and the stress σ fields lie at the centers. Based on the paper [60], for 3D cases, the k̂i

of the rotated scheme (denoted k̂Ri ) are given as follows:

k̂Ri =
J

4
tan(

2πξi
2

)(1 + eJ2πξ1)(1 + eJ2πξ2)(1 + eJ2πξ3)

where the symbol J =
√
−1. With the assumption of isotropic reference material, the

full version of the Green operator of Willot’s rotated scheme Γ̂WR
0 in the 3D case can be

given as:

Γ̂WR
0,ijkl =

(λ0 + 2µ0)(rir
∗
l δjk)sym + λ0[(rir

∗
l sjk)sym −Re(rir∗j )Re(rkr∗l )]− µ0rirjr

∗
kr
∗
l

µ0[2(λ) + µ0)− λ0‖r21 + r22 + r23]‖2
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where ri = k̂i/‖k̂‖ and s is the symmetric second-order tensor:

sjk = −4Im(rkr
∗
j )Im(rkr

∗
i ), i 6= j 6= k 6= l, sjj = 4Im(rir

∗
k)

2.

Here Re(.) and Im(.) are the real part and the imaginary part of complex values respec-

tively.

2.4 Schneider’s hex scheme

The work of Willot [60] is interesting not only for the new DGO based on the rotated

scheme but also for the comparison between various finite difference schemes and how they

lead to various discrete Green operators. Based on this work, Schneider and coauthors

[62] proposed to use the finite element method instead of the finite difference method to

construct the DGO. They compared two types of finite elements, the classical trilinear

hexahedral element with full integration and the one with reduced integration.

Following the notations of [62], it is reminded that the coordinates of the integration

points for the reference fully integrated hexahedral element [0, 1]3 are

zβ = (aβ1 , aβ2 , aβ3), β ∈ {0, 1}3

with a0 =
3−
√

3

6
, a1 =

3 +
√

3

6
,

and the finite element basis functions are of the form
3∏
i=1

hαi(zi), α ∈ {0, 1}3, z ∈ [0, 1]3

with h0(a) = 1− a, h1(a) = a, a ∈ [0, 1].

Similarly to Eq.(2.3), the DGO for hexahedral elements is

Γ̂S0 = BK(BH
KM0BK)−1BH

K

where BK is the discrete symmetric gradient operator and −BH
K is the discrete divergence

operator at voxel K. Note that BH
K is the Hermitian conjugate (the transpose of the com-

plex conjugate) of BK . The operator M0 is equal to C0 when using reduced integration.

Otherwise, M0 ∈ R8×3×3×8×3×3 is defined as C0 applied independently at each integration

point

M0,αijβkl =

 C0,ijkl, α = β

0, α 6= β
, α, β ∈ {0, 1}3, i, j, k, l = 1 . . . 3.
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The formula for the discrete symmetric gradient operator BK is similar to that in Eq.(9),

but this symmetric gradient is now computed at each integration point β of each voxel K

and thus involves a gradient operator k̂K,β. There are always eight symmetric gradient

operators B̃K,β ∈ C3×3×3 to compute per voxel:

• in full integration, BK = (B̃K,β)β∈{0,1}3 ∈ C8×3×3×3 and BH
K ∈ C3×3×3×8,

• in reduced integration, BK = 1
8

∑
β∈{0,1}3 B̃K,β ∈ C3×3×3 and BH

K ∈ C3×3×3.

As a consequence, we have

B̃K,βijk =
1

2
[k̂K,βi(ξ)δjk + k̂K,βj(ξ)δik].

The discrete gradient operator k̂K,β(ξ) ∈ C3 is given by

k̂K,β,i(ξ) =
∑

α∈{0,1}3


exp

(
−2πJ

3∑
j=1

ξjαj
Nj

)
(−1)αi+1

∏
k = 1 . . . 3

k 6= i

hαk(zβk)


with satisfying Eq. (8).

To summarize, the basic scheme of the FFT method has been detailed as well as its

original Green operator proposed by Moulinec et Suquet in [20, 21, 22]. Furthermore,

two improved schemes, Willot’s rotated scheme and Schneider’s hex scheme, have been

presented. They improve the procedure of Green operator calculation to reduce the

spurious oscillations. It has been proven in [62] that the hex scheme of Schneider with

reduced integration is equivalent to the rotated scheme of Willot. It is reminded that

reduced integration is well known to produce numerical artifacts known as the hourglass

effect in FEM computations. A similar difference between reduced and full integration

when using FFT based numerical methods has been reported in [47].

3 Numerical model treatment and post-treatment

As discussed in Section 1, based on our research, the oscillations persist even though a

DGO is used, which could be due to the non-smooth interface. Therefore, in this section,
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the composite voxel method as well as our improvement and the neighbour voxels average

method are presented, which are believed to deal with this issue.

3.1 Composite voxel method

In a voxel mesh, the properties of each voxel are usually equal to the properties of the

material which is present at the center of the voxel. It is proper if the total volume of

a voxel belongs to only one material. However, in the case of voxels shared by several

phases and thus crossed by one or multiple interfaces, this kind of properties assignment

is a rough approximation and zig-zag interfaces are formed (shown in Fig. 2(a)). It is

one of the reasons that limit the application of voxel-based meshes because interfaces

are not as smooth as in a conformal mesh and are far from reality. More importantly,

the zig-zag interface is one of the important causes of oscillations that occur near the

interface. These oscillations are produced both in FFT methods and the FEM as long

as a voxel mesh is used. In consequence, the composite voxel method is introduced to

smooth the interface.

3.1.1 Conventional composite voxel method

The composite voxel approach was proposed by Kabel et al. in [63]. The properties

of voxels crossed by an interface are evaluated by a local homogenization based on the

properties of phases inside the voxel and their volume fraction (shown in Fig. 2(b)).

Denoting the outgoing normal vector of the interface between the dominant phase and

the other phases within the voxel as n, the formula for calculating the elastic tensor of

composite voxel given by Kabel et al. in [63] is

(P +K(Claminate −KId)−1)−1 = 〈(P +K(C −KId)−1)−1〉 (10)

where Claminate is the homogenized elastic tensor of a composite voxel and K > 0 is a

factor that should be chosen sufficiently large. According to [63], K should be larger than

the largest eigenvalue of the stiffness matrices C(x) for all x in V . The identity matrix

is denoted Id and P is the fourth-order tensor that depends on the normal vector n as

follows:

Pijkl =
1

2
(niδjknl + niδjlnk + njδiknl + njδilnk)− ninjnlnm. (11)
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For calculating the volume fraction of each constituent in a composite voxel, one of the

classical methods, called ”sub-voxel approximation”, is proposed in [63]. As shown in

Fig. 2(b,c), at first, the composite voxel should be divided by the number of sub-voxels

Nsub. Then the center position of each sub-voxel (xisub, y
i
sub, z

i
sub) is calculated and the

constituent (phi) at that position is chosen. Next, the properties of the chosen constituent

(Cphi) are assigned as the properties of the sub-voxel. The number of sub-voxels with

the same constituent (Nphi

sub ) divided by the total sub-voxel number inside the composite

voxel is the volume fraction of this constituent in a composite voxel (V phi

f = Nphi

sub/Nsub).

To calculate the normal vector of a composite voxel, one method proposed in [63] is

connecting the center of mass of the dominant material with the center of the composite

voxel. More precisely, assuming W to be the composite voxel and S ⊂ W to be the

dominant phase, the formula of the normal vector is given as follows:

ñ :=
1

|S|

∫
S

xdx− 1

|W |

∫
W

xdx, n =
ñ

‖ñ‖
(12)

where |w| =
∫
W
dx and |S| =

∫
S
dx. In numerical calculations, Eq. (12) can be expressed

as:

ñ :=
1

NS
sub

∑
(xSsub, y

S
sub, z

S
sub)− (x0, y0, z0)

where (x0, y0, z0) is the center of the composite voxel.

3.1.2 Improved composite voxel method

The conventional composite voxel has a big issue: a parametric representation of the

interface and its geometry should be known in advance. When extracting a model di-

rectly from an image obtained using for instance scanning electron microscopy, where

the real interfaces are not clear and only the zig-zag interfaces can be determined, the

conventional composite voxel can have problems. Besides, for some complex structures

(e.g. textile composite and short fibers composite), it is also difficult to describe the

interface mathematically. For a composite voxel containing two or more phases, an ap-

proach mainly inspired from the level-set method is proposed hereafter to calculate the

volume fraction of a phase and the normal vector in a composite voxel.
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Figure 2: Voxel mesh without (a) and with (b) composite voxels; (c) describes the calcu-

lation of the volume fraction of each constituent inside the composite voxel following the

method proposed by Kabel: a composite voxel consists of 25 sub-voxels, each assigned

to a phase based on its centroid (the real interface is shown as an orange curve and the

composites voxels are shaded in (b).) Figure (b) reprinted from [63], with permission

from Elsevier

In the conventional composite voxel method, the identification of the composite voxel

is determining whether a voxel contains more than one phase. In the proposed approach,

instead of determining the number of phases in a voxel, a composite voxel zone is created

by an artificial parameter, the composite voxel zone thickness l. All voxels with centers

inside the zone should be considered as composite voxels. Fig. 3 (red color voxels are
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phase A and blue ones are phase B) uses a simple example to describe this new approach

for two phases. The steps are as follows:

• (Fig. 3(a)) Identify the boundaries between each phase and the other phases. Para-

metric representations of phases boundaries can be used if they are available. Oth-

erwise, which is more common, the zig-zag interface identification can easily be done

with commercial software or algorithms. (Fig. 3 describe the zig-zag interface)

• (Fig. 3(b)) For each phase p (A or B in the example), calculate the minimum

distance dp from each voxel center to the phase boundary. In the signed distance

field dp, positive values are assigned inside phase p, and negative values outside.

In the example, for dA the distances of voxels of phase A are assigned as positive

values and those of phase B are negatives, while dB = −dA.

• (Fig. 3(c)) Choose a composite voxel zone thickness value l. All voxels such that

|dp| ≤ l
2

for some phase p are considered as composite voxels (marked by a cross in

the figure).

The next step is to calculate the volume fractions in the composite voxels. Instead of

cutting a composite voxel into sub-voxels, a regularized Heaviside function is applied here

to compute the volume fraction Vf,p of each phase p within a voxel:

Vf,p =


0, dp < − l

2

1
2

(
1 + 2dp

l
+

sin(
2dpπ

l
)

π

)
, |dp| ≤ l

2

1, dp >
l
2

Based on the properties of signed distance functions, the calculation of the normal vector

is given as:

ñ := ∇dP , n =
ñ

‖ñ‖
, with P = arg max

p
Vf,p (13)

In numerical calculations, the gradient in Eq. (13) is calculated by finite differences.

Finally, the homogenized properties of composite voxels are calculated using Eqs. (10)

and (11). With this optimization, a parametric representation of the interface is not

required, and there is no need for sub-voxels.
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(a) (b) (c)

Figure 3: Illustration of the improved composite voxel method: (a) Identify the interface;

(b) Calculate the minimum distance dA; (c) Choose l and determine composite voxels.

The orange lines are the zig-zag interface, the green and black point in (b) are sub-voxels

center and the yellow curves in (c) delimit the composite voxel zone

3.2 Neighbour voxels average method

Apart from the composite voxel method, which can easily be integrated within the FFT

method, a post-processing technique could also be applied for reducing the oscillations,

which is called the neighbour voxels average method. This kind of approach is proposed

in [65] in FFT solvers and is proposed in [66] to reduce the oscillations in FEM. The

oscillations in FFT and FEM can be also called the ”check-board patterns” present in

local strain and stress fields (as shown in Fig. 1). It can be noticed in simulation results

that if the value of strain or stress in a voxel is larger than the real value, the values

in the neighbouring voxels will generally be smaller. The idea is then to average these

neighbour voxels results to reduce the effect of oscillations. Based on the paper [66] this

method improves the accuracy of strain and stress fields as well as damage patterns when

applied to a voxel mesh FEM.

In this method, it is necessary to determine the size of the averaging window around

each voxel. As mentioned in [66], for different voxel mesh densities and resolutions, it

is difficult to determine a constant window size. In order to define this window size, we

first define the notion of layer. For a given voxel, layer L0 is a set containing only this
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voxel. Then, layer Li+1 is the set of voxels which are of the same phase as L0 and whose

boundaries intersect a voxel in layer Li. This intersection can be a face, an edge or even

a voxel corner. In Fig. 4(a), layer L0 which contains only the voxel where the local

averaged response is calculated is shown in orange and layer L1 in red.

The window size is defined as the layer count NL such that the neighbour voxels consid-

ered for the averaging are all voxels contained in the sets Li, i ≤ NL. For instance, in

Fig. 4(a) the window size is NL = 1, while in Fig. 4(b) it is NL = 2. A weight function

can also be introduced to reduce the influence of voxels that are inside the window but

far away from its center. In general, there are three types of weight functions (mentioned

in [66]) that can be applied: constant, linear, and exponential function. Based on the

results in [66], these three weight functions show almost no difference in terms of oscil-

lations reduction. Based on our recent work, we choose a linear weight function: the

weight for the voxel in layer L0 is one, and it decreases linearly with respect to the layer

number i down to a weight of zero for layers Li, i > NL.

(a) (b)

Figure 4: Layers used for averaging with different window sizes: (a) NL = 1 and (b)

NL = 2. The red and blue voxels represent different phases

To summarize, the composite voxel method with our improvement and the neighbour

voxels average method have been presented. Their performance in terms of oscillation

reduction will be shown and discussed in Section 4.3.
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4 Results and Discussions

As mentioned in Section 1, this paper focuses on the numerical methods which demands

that our conclusions should be as general and universal as possible. However, it is difficult

to generate a universal model for complex structures like textile composites and short

fibers composites. Therefore, in this paper, instead of creating one general model, three

simple but representative models are designed as shown in Fig. 5. Note that these are 3D

models, even though only one voxel is used in the z-direction. The fiber volume fraction

is set to V A
f = 0.6 for model A, V B

f = 0.36 for model B and V C
f = 0.55 for model C. For

all three models, the phase A (red part) is assigned as fiber and the phase B (blue part)

as matrix. Fibers are composed of E-Glass with elastic properties Ef = Eglass = 72GPa

and νf = νglass = 0.22 while the matrix is composed of Epoxy PMR-15 with properties

Em = Eepoxy = 3.75GPa and νm = νepoxy = 0.375. All these material parameters are

from paper [67].

In this section, the FFT method using the CGO of Moulinec-Suquet is denoted M-S , the

method using Willot’s DGO (equivalent to Schneider’s DGO with reduced integration)

is denoted W-S and the method using Schneider’s fully integrated DGO is denoted SF .

Furthermore, the conventional composite voxel method is denoted TCV while the pro-

posed improved composite voxel method is called OCV . The neighbour voxels average

method is represented by AVE . Regarding FEM, the voxel-based hexagonal FEM with

reduced integration is denoted as FEMR while FEMF refers to fully integrated FEM.

4.1 Mesh convergence test

First of all, a mesh convergence test is performed on these three models for both FFT and

FEM. The mesh resolution is denoted RA for model A, RB for model B and RC for model

C. It is defined here as the number of voxels used in the x and y directions. The resolutions

used for model A are RA = 5, 15, 45, 135 and 405. The same resolutions are used for model

B. The fiber volume fraction is exactly obtained for both models for all chosen resolutions.

For model C, the target fiber volume fraction V C
f = 0.55 can never be attained exactly

due to the intrinsic nature of voxel meshes, even with very fine resolutions. Therefore,
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(a) (b) (c)

Figure 5: Illustration of the three models: (a) Model A; (b) Model B and (c) Model C

for model C, the first step is to verify the fiber volume fraction convergence by varying

the mesh resolution. Then, for all models, the convergence in terms of macroscopic

properties should be verified. As mentioned in many papers, FEMR is sufficient to

predict the elastic properties, thus, it is taken as the reference in this part.

As shown in Fig. 6(a) and (b), where the mesh convergence of model A is presented,

the macroscopic properties for model A do not show any sensitivity to the model resolu-

tion. Different FFT methods as well as FEM show good consistency for all resolutions

on model A with respect to Ex and Gxy, where Ex means Young’s modulus in x-direction

and Gxy stands for shear modulus in xy plane. As shown in Fig. 6(c) and (d), macro-

scopic properties for model B are computed accurately only for RB = 135 or higher. The

convergence for Ex occurs with iteratively improving lower bounds for all methods except

for SF which gives higher bounds. For Gxy, all methods give higher bounds.

As mentioned above, because of the intrinsic characteristic of model C, the mesh con-

vergence of fiber volume fraction is first verified, as presented in Fig. 7. The mesh

convergence for fiber volume fraction begins at RC = 75 (which corresponds to the red

circle in Fig. 7). Based on this test, the resolutions chosen with respect to the tests

of elastic properties convergence are RC =75, 225, 375, which corresponds to a small,

medium, and large resolution respectively.
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(a) (b)

(c) (d)

Figure 6: The variation of elastic properties (Ex and Gxy) of different FFT algorithms

with different resolutions: (a) and (b) are for model A; (c) and (d) are for model B (It

should be remarked that in all four figures, the curves of W-S are cached under those of

FEMR)

Table 1 presents the mesh convergence of model C. The Relative Errors of Properties

(REP ) are calculated as follows

REP =
EFFT − EFEMR

EFEMR
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Figure 7: The variation of fiber volume fraction of model C with different resolution

where E represents the elastic modulus (Ex or Gxy). As shown in Table 1, the relative

errors of all FFT methods are smaller than 1% for RC ≥ 225. Therefore, for the next

sections, the chosen resolutions for model A and model B are RA/B =135, 405, while for

model C, the chosen resolutions are RC =225, 375.

4.2 Causes of oscillations

In this part, all three models are subjected to a macroscopic strain along the x- direction

(transverse direction) with a value 〈ε〉xx = 0.001 while stress-free conditions are imposed

in the other directions (〈σ〉yy = 〈σ〉zz = 〈σ〉xy = 〈σ〉xz = 〈σ〉yz = 0). These mixed-type

loading conditions are applied using the method presented in [68]. It is reminded that

periodic boundary conditions are intrinsic to FFT methods. Due to stress-free bound-

aries, Poisson’s effect is active during loading.

Based on the mesh convergence test, the resolutions chosen for model A and model

B are RA/B =135, 225, 315 and 405. The resolutions chosen for model C are RC =225,

255, 305, 345, 375 and 455. The fiber volume fractions in this part are kept to V A
f = 0.6

for model A, V B
f = 0.36 for model B and V C

f = 0.55 for model C.

In order to compare the influence of oscillations, the first step is to define the crite-
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RC = 75, V C
f = 0.5499

FEMR W-S M-S SF

Ex (MPa) 13373.63 13370.74 13304.28 13517.49

REP Reference −0.027% −0.52% 1.1%

Gxy (MPa) 2806.507 2806.144 2813.617 2827.081

REP Reference −0.013% 0.35% 0.73%

RC = 225, V C
f = 0.5501

FEMR W-S M-S SF

Ex (MPa) 13271.33 13270.66 13247.26 13318.85

REP Reference −0.051% −0.18% 0.35%

Gxy (MPa) 2792.032 2791.960 2794.563 2798.924

REP Reference −0.0026% 0.091% 0.25%

RC = 375, V C
f = 0.5497

FEMR W-S M-S SF

Ex (MPa) 13230.77 13229.38 13216.68 13258.79

REP Reference −0.011% −0.11 0.21%

Gxy (MPa) 2785.611 2785.473 2786.784 2789.513

REP Reference −0.0050% 0.042% 0.14%

Table 1: The elastic properties (Ex and Gxy (MPa)) of model C of different FFT algo-

rithms with different resolutions and their relative error compared to the FEM

rion to quantify their presence. Researchers often use the stress field to quantify the

oscillations (e.g. [46]). However, even though the fiber and the matrix present the same
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amplitude of oscillations under some conditions, the oscillations in the fiber are often

stronger than in the matrix because the fiber stiffness is normally higher than that of

the matrix. Furthermore, when comparing different algorithms, researchers often put the

color maps together and compare them visually, which is not accurate enough because

two different values can have the same color on color maps. A better choice is to draw a

section line and plot the strain curves of different methods. If there are some oscillations

present in the curve, then the curve will not be as smooth as it should.

In order to quantify this irregularity, it is proposed to investigate the function Dj which

is defined as the increment in strain values along a curve:

Dj = εj+1 − εj

where εj is the local strain at abscissa j in the curve, and εj+1 is the local strain value at

the next abscissa. These can be computed for a curve of strain values along any cross line

of the model. As proven in Appendix A, the local fields of FEMF have no oscillations

and can thus be considered as reference for the error measure:

MDj = |DFFTs/FEMR
j −DFEMF

j | (14)

where |.| means the absolute value. Considering that the voxel position takes the same

value independently of the method, if one method has fewer oscillations, its Dj value

should be closer to that of FEMF , which means that higher MDj values mean stronger

oscillations.

Figs. 8, 9 and 10 present the average of MDj over each cross section line (denoted

MD) for model A, B and C respectively, which can be used to evaluate the impact of

each cause of oscillations. In Figs. 8 and 9, the local strain component εxx is chosen

to study the oscillations while the radial strain component εrr and the tangential strain

component εθθ are chosen instead in Fig. 10.

As shown in Fig. 8, all methods show no oscillations for model A even the original M-S

algorithm, which confirms the results shown in [22]. As mentioned in the introduction,
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Figure 8: The value of MD for model A using the different methods

some researchers believe that one of the oscillations causes is the Gibbs phenomenon,

which describes the intrinsic defect of the spectral method when dealing with high con-

trast signals. This does not seem applicable to composites homogenization since there is

no Gibbs phenomenon in model A.

(a) (b)

Figure 9: The values of MD for model B along (a) the horizontal interface cross line and

(b) those of the vertical interface cross line

To better visualize the oscillations in FFT and in FEM, the local strain components

under different approaches of model B and C are plotted in Fig. B.1 of Appendix B,

where the oscillations can clearly be seen. For model B, Fig. 9(a) shows the value of
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MD along the horizontal interface cross line. Fig. 9(b) shows the MD value along the

vertical interface cross section line. It should be noted that the values are taken at the

matrix side which is more critical during loading (orange line in Fig. 9). Clearly, FFT

methods based on a DGO reduce the oscillations significantly. Algorithm SF appears

as the best choice in terms of oscillations reduction. W-S algorithm takes the second

place and the M-S method is the worst. Furthermore, it should be paid attention that

the FEMR gives very similar results to W-S while the oscillations are almost invisible

on FEMF , where a full integration method is applied. This phenomenon confirms that

the hourglass effect is also one of the causes of oscillation in FFT methods, as already

reported in [47]. This is because, like in reduced integration FEM, the strain calcu-

lated by FFT solvers is also computed at the centroid of the voxel, except for the SF

method. This also explains why the latter shows less oscillations. Fig. 9 also shows that

the oscillations are reduced when refining the mesh, as refining the mesh increases the

sampling frequency. That proves that the loss of high frequency when discretizing the

Fourier transform to a finite domain leads to oscillations, which are reduced using a DGO.

Unlike models A and B, where both FFT methods and FEM rely on voxel meshes that

are body-fitted (conformal), model C cannot rely on a mesh that is both voxel-based and

conformal. Considering that the non-smooth interface is one of the causes of oscillations,

FEMF cannot be chosen as a reference anymore. In consequence, an FEM simulation

with conformal mesh with reduced integration formulation is introduced to be used as a

reference, so that Eq. (14) becomes

MDj = |DFFTs/FEMs
j −Dconformal

j |

Due to this choice of reference result, all calculations for model C do not share the same

mesh, even for the same resolution. Therefore, a linear interpolation is applied on the

conformal mesh to get the Dj at the same abscissa as used in voxel meshes. In Fig. 10, the

MD values for model C are presented. Instead of using εxx to evaluate the oscillations,

the radial strain component εrr and the tangential strain component εθθ are chosen, and

Dj is computed along the interface arc on the matrix side. As shown in Fig. 10(a,b),

W-S and FEMR show similar behavior while SF and FEMF are also similar. It
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should be noted that the MD values shown in Fig. 10 are at least five times larger than

those shown in Fig. 9 for model B, which means that the oscillations caused by non-

smooth interfaces are much more critical than other causes such as the hourglass effect.

Nevertheless, the oscillations present in model C do not seem to decrease with increasing

resolutions (sampling frequencies). We did not investigate this further. Besides, it is not

possible to explain why there are less oscillations with M-S in that regard. This is also

left for future study.

(a)
(b)

Figure 10: The MD values for model C (a) of the interface normal strain component and

(b) of the interface tangential strain component

As a conclusion to these first tests, the non-smooth interface appears to be the most

significant cause of oscillations. Note that non-smooth interfaces are more common in

complex composite structures. The ”truncated” Green operator could take second place

due to its higher impact than the hourglass effect but its influence on oscillations can

be reduced significantly by using a DGO. The hourglass effect takes the third place and

could be overcome by using Schneider’s DGO with full integration. Finally, there is no

evidence of Gibbs phenomenon in our calculations.

27



4.3 Comparison of FFT methods

In this part, the loading conditions are the same as in Section 4.2. Owing to the precision

and reliability of FEM that have been proven over decades, FEM results with voxel

meshes are chosen as reference to assess the performance of different FFT methods with

regard to local fields. Due to our remarks on the hourglass effect, we consider FEM with

reduced integration (FEMR) and full integration (FEMF ). The chosen error measure

is the local relative absolute error:

RE =
|εFFTX − εFEMY |
|εFEMY |

where FFTX denotes a strain value obtained using an FFT solver and FEMY denotes

a strain value obtained using FEM with reduced or full integration. It should be noted

that all strain values along the interface are taken on the matrix side. As previously,

component εxx is the strain component chosen for comparison for models A and B while

the interface normal strain (εrr) and the interface tangential strain (εθθ) are chosen for

model C. We consider both the maximum of the relative absolute error on local strain

values along the interface and the relative absolute error on the maximum of all local

strain values along the interface. The latter is relevant for investigating the influence of

oscillations on damage initiation criteria.

Results for model A are not reported herein because the relative error between FFT and

FEM results, both FEMR and FEMF , are null for model A. Indeed, FFT and FEM

results are nearly identical for model A, independently of Green operators or reduced/full

integration.

Regarding model B, Fig. 11(a,b) shows the maximum error along the interface and

Fig. 11(c,d) shows the error on the maximum strain (shown in (c,d)). In order to assess

the hourglass effect, FEMR is used as reference for Fig. 11(c,d) while FEMF is used

for Fig. 11(c,d). Clearly, W-S is the most accurate when compared with FEMR

while SF is the most accurate when compared with FEMF . This confirms once

again that the type of integration has an influence even for FFT methods. This is verified

for both error measures. Fig. 12 shows the average interface relative (orange contour)
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(a) (b)

(c) (d)

Figure 11: Maximum relative absolute error along the interface for model B: (a) with

FEMR and (b) with FEMF ; Relative absolute error on the maximum strain along the

interface (c) with FEMR and (d) with FEMF

errors (a,b), the average relative errors at the fiber center (green point) (c,d) and those

of whole volume (e,f). Same as Fig. 11, the left parts of Fig. 12 are the relative errors

with FEMR and the right parts are those with FEMF . As shown in these two figures,

when compared with FEMR, W-S is always more accurate while SF is more accurate

when compared with FEMF , except for the average relative errors at the fiber center.

We noticed that the W-S method produces more oscillations at the fiber center and

in general it is comparable (or equivalent) to FEMR close to interfaces but has more

oscillations in the bulk (also shown in Appendix C), which can be neglected due to their

sufficient low values.
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The relative errors of model C compared with FEM results at different positions are pre-

sented in Appendix D. In general the conclusions are the same as for model B. SF has the

best results when compared with FEMF and it is W-S when compared with FEMR.

Furthermore, the average relative errors in the volume in Fig. 12 and Appendix D both

show that they will decrease when refining the mesh while the maximum errors and the

errors at the maximum strain (Fig. 11 and Appendix D) show the opposite behavior.

This phenomenon could be due to the increased error at singularities when refining the

mesh. Because both model B and model C have sharp corners, strain concentration ap-

pears during the loading. Note that this is a physical phenomenon for model B but it is

artificially caused by the ziz-zag interface for model C. Model C has many more sharp

corners than model B, which could explain the opposite behavior with mesh refinement

on interface average errors in model B and C.

As a conclusion of this part, the three FFT methods give nearly exact results on model

A. However, on models B and C, the SF is the most accurate when compared to the full

integration FEM method and the W-S is more accurate when compared to the reduced

integration formulation. This difference between reduced and full integration was also

observed in [47]. Considering that SF has fewer oscillations than others, in consequence,

if a simulation needs high precision where a full integration is required in FEM, the SF

should be applied when the simulation is performed using an FFT solver.

However, applying SF requires 8 times more memory than W-S and the computation

time is also much longer. In many cases, the full integration formulation is not needed

and the hourglass effect can be easily controlled by introducing ”hourglass stiffness” as

done in most FEM codes. Furthermore, the non-smooth interface has been proven to be

the most critical cause of oscillations. Thus, a reduced integration formulation could be

a better choice in many cases, where the W-S is in general more accurate than other

FFT methods. In the next part, the W-S algorithm is chosen to apply composite voxel

and neighbour voxels average methods reduce the oscillations at the interface.
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(a) (b)

(c) (d)

(e) (f)

Figure 12: The average errors for FFT results along the interface compared to: (a)

FEMR and (b) FEMF ; The average errors for FFT results at the fiber center compared

to: (c) FEMR and (d) FEMF ; The average errors of FFT results over the whole volume

compared to: (e) FEMR and (f) FEMF
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4.4 Comparison of interface smoothing techniques

As proven in the previous part, the most critical cause of oscillations is the non-smooth

interface, because not only it can lead the oscillations five times stronger than other

causes, but also it is more common in composite materials. Therefore, the DGO-based

FFT solvers are not sufficient and the composite voxel and the neighbour voxel average

methods are proposed. The composite voxel method replaces the mono-material prop-

erties of a voxel by the homogenized material properties which are based on the local

volume fractions of phases inside the voxel. The neighbour voxel average method aver-

ages the value of a voxel with neighbour voxels around it.

Regarding the composite voxel method, two alternatives are assessed in this paper: the

conventional method which is denoted as TCV and the proposed improved method

which is denoted OCV . It should be noted that this composite voxel method is not

related to the notion of inter-phase, which is not discussed or modeled herein.

For the improved method OCV , it is necessary to define the composite voxel thick-

ness zone l. To be consistent with the conventional method TCV , l should be as small

as possible. However, if l is chosen to be too small, some voxels at the interface have the

risk to be excluded from the composite voxel zone. Thus, we chose to set l as twice the

voxel size, which ensures that there is always at least one layer of composite voxel at the

interface, and at most two layers (one on the matrix side and the other on the fiber side).

As for the AVE technique, the most suitable average layer counts presented in [66]

is NL = 2, thus, NL = 1 and 2 are both studied in the following. In this part, all bound-

ary conditions are the same as in Sections 4.2 and 4.3.

Because the first layer of voxels along the interface are occupied by the composite voxels,

in the next figures (Figs. 13, 14, 15, 16 and 17), the layer of voxels out of the composite

voxels zone is chosen to compare the oscillations reduction by applying different tech-

niques. Since the composite voxels zone is very small compared to the model size, the
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layer of voxels chosen from Figs. 13 to 17 can also be considered as the interface response,

which can be denoted as interface2nd to distinguish from the real interface as shown in

Sections 4.2 and 4.3.

As shown in Fig. 13, where the interface2nd normal strain (εrr) and tangential strain (εθθ)

are drawn, the composite voxel method can reduce significantly the oscillations in the

presence of a non-smooth interface. Fig. 14 clearly shows the effect of the reduction of

oscillations based on the OCV and the TCV methods. For the TCV method, we tried

using different numbers of sub-voxels in each direction. The TCV curves shown in Fig.

14 could be obtained using at least 41 sub-voxels in each direction. We did not see any

improvement by using more sub-voxels. With our un-optimized Python implementations,

the total computation time for the TCV method using 41 sub-voxels in each direction

was of the same order as the one for the OCV method. This is interesting as OCV

reduces the oscillations more effectively than TCV for both strain components and all

resolutions, and is also more general because it can deal easily with non-parametrized

interfaces.

To compare OCV and AVE , the MD values are shown in Fig. 15(a,b). These two

graphs show that OCV reduces the oscillations more effectively than the AVE if one

layer is used but with two layers AVE becomes more effective. However, as shown in

Fig. 16, the AVE cannot treat well the abnormal phenomenon on the normal interface2nd

strain at around the 45 degree, while the OCV does not have this kind of issue. Besides,

AVE is a kind of post-treatment, where the equilibrium equation and the compatibility

condition are not verified. Maybe in some cases, a very high reduction of oscillations is

required, where a combination of these two methods could be applied. This possibility

would not be discussed in this paper. In most applications, the OCV seems to be a

more optimal choice.

To confirm the conclusions raised when comparing interface smoothing techniques for

model C, it is necessary to verify the influence of the OCV technique for the two other

models. For model A, results show that the relative errors remain equal to zero even
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(a)

(b)

Figure 13: The interface2nd normal strain (a) and tangential strain (b) with RC = 375

and using FEM conformal mesh (reference result) and W-S alone or combined with the

conventional and enhanced composite voxel methods (Remark: All the strain components

are taken on the matrix side with illustration figure shown in Fig. 10, and the figure should

be viewed in color)
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(a) (b)

Figure 14: The MD value of interface2nd normal (a) and tangential (b) strains using

W-S and different composite voxels approaches. (Remark: The figure should be viewed

in color)

(a) (b)

Figure 15: The MD values of interface2nd normal strain component (a) and of the tan-

gential strain component (c). (Remark: AVE 1L means Lmax = 1 and so on. The figure

should be viewed in color)

when applying the OCV technique except for the voxels inside the composite voxel

zone. It is not possible to report relevant error measures for this zone because the fiber

volume fraction is not the same between W-S+OCV and FEMR at the same position.

For model B, the relative errors between W-S+OCV and FEMR at interface2nd layer
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Figure 16: The interface2nd normal strain (εrr) component of different approaches of

model C with RC = 375 (Remark: AVE 1L means Lmax = 1 and so on. The figure

should be viewed in color)

are shown in Fig. 17. The errors for M-S and W-S+AVE 2L are also reported.

Clearly, AVE 2L is not relevant for these models as it increases the errors significantly.

This technique is hence only relevant for non-smooth interfaces and thus does not apply

to general situations. The OCV technique also increases a little the relative error, which

is quite normal because adding composite voxels artificially reduces the contrast between

fiber and matrix. Nevertheless, the relative error of the OCV method is much lower

than the AVE 2L method, furthermore, they are very close to the M-S scheme. As a

conclusion, the increase of the error for models A and B is acceptable for the improved

composite voxel method given its simplicity in dealing with ziz-zag interfaces.

5 Conclusion

In this paper, Fast Fourier Transform (FFT) methods for composites homogenization

have been assessed and spurious oscillations have been observed in the results they pro-

duce. The causes of these oscillations have been investigated and potential solutions to

deal with these issues have been critically compared.
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(a)
(b) (c)

Figure 17: The relative errors of W-S and different treating techniques with FEMR

along with the layer of interface2nd: a). The average relative error of the layer; b).

Maximum error on the layer; c). The errors of the maximum strain on the layer. (Remark:

The figure should be viewed in color.)

The most severe cause of oscillation in the presence of non-smooth interfaces has been

identified as the presence of the zig-zag pattern at the interface. It has been shown that

it leads to oscillations five times stronger in magnitude than other causes. The second

severe cause of oscillations has been identified as a defect in the original FFT method of

Moulinec and Suquet M-S [20, 21, 22] due to the use of a Continuous Green Operator

(CGO). A solution to deal with this defect is to use a Discrete Green Operator (DGO),

as in the W-S method proposed by Willot in [60] and in the SF method proposed by

Schneider in [62]. The third cause of oscillations is the hourglass effect. As in the reduced

integration FEM, most FFT methods, such as the original approach M-S and the DGO

approach W-S , compute the local strain and stress only at the centroid of the voxels.

This leads to oscillations under complex loading. This kind of defect can be reduced by

introducing a fully integrated formulation such as SF . Finally, the Gibbs phenomenon,

which is believed as one of the causes of oscillations, does not seem to have an impact on

oscillations based on our tests.

In terms of relative errors between FFT and FEM results, in general, SF is the most

accurate when compared to a fully integrated FEM while W-S is the most accurate

when compared to a reduced integration formulation. In both cases, M-S is the least
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accurate. In other words, both the W-S and SF methods deal well with the first cause

of oscillations and the SF additionally deals with the hourglass effect. However, SF re-

quires 8 times more computational resources both in terms of memory and computation

time than SF . Therefore, even though SF has some additional advantages in terms of

oscillations reduction, W-S seems to be the optimal choice.

The W-S approach can be combined with the composite voxel or the neighbour vox-

els average methods in order to reduce the oscillations further in the case of non-smooth

interfaces with zig-zag patterns due to the voxel-based discretization. This can be done

with the improved composite voxel method (OCV ) that is proposed in this paper. Com-

pared with the conventional composite voxel method TCV , the OCV does not require

parametric representations of interfaces and can hence be applied directly to digital im-

ages. When comparing the OCV with the neighbour voxels average method AVE , it is

observed that OCV reduces the oscillations more effectively than AVE with one layer

but less effectively than AVE with two layers. In addition, we noticed an increase of the

error when there are no zig-zag patterns for all these smoothing techniques. This increase

is more significant when using AVE with two layers compared to OCV .

As a conclusion, a combination of Willot’s rotated scheme (W-S) and our improved

composite voxel technique seems to be the optimal choice for FFT-based composites

homogenization. The damage analysis based on this method could be studied in the

future.

A Appendix A

As mentioned in Section 4.2, the output values from numerical calculation are not dif-

ferentiable. However, the finite difference could be used to calculate the smoothness of a

curve. Thus, the Finite Difference of First Order (FDFO) between two voxels are calcu-

lated to evaluate the smoothness of the method FEMF .

In general, a calculation of FDFO between two voxels means calculating the slope the
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(a) (b)

(c) (d)

Figure A.1: model B: The FDFO values of horizontal interface cross line with resolution

135 (a) and resolution 405 (b); The FDFO values of vertical interface cross line with

resolution 135 (c) and resolution 405 (d) (Remark: The figure should be viewed in color.)

segment between these two voxels. If a curve is smooth, the slope between neighbour

segments should continuously increase or decrease. If some zig-zags are formed in the

FDFO curve, the original results have oscillations. As shown in Fig. A.1, the (a) and (b)

show the FDFO value of horizontal interface cross line. In these two graphs, non zig-zag

can be seen even in views of magnification. Besides the (c) and (d) show FDFO value

of vertical interface cross line, where only two oscillations can be seen which are shown

in black circles. In general, it can be said that FEMF has almost no oscillation.
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B Appendix B

Fig. B.1 shows clearly the oscillations of the local strain components along the interface

cross section line that occur in models B and C.

(a) (b)

Figure B.1: (a) describes the εxx component of model B along the horizontal interface

cross section line with RB = 405; (b) shows the εrr component of model C along the

interface with RC = 375. (The green line in (b) is the curve of FEM with conformal

mesh)

C Appendix C

As shown in Fig. C.1 (a) and (b) in black circles, the W-S method shows much more

oscillations than others at the fiber center which needs a more advanced investigation.
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(a) (b)

Figure C.1: model B: (a) The FDFO values of center line with resolution 135 and (b)

resolution 405 (Remark: The figure should be viewed in color.)

D Appendix D

Figs. D.1 and D.2 show the relative errors of model C with different FFT algorithms

when compared with FEMR and FEMF . Because the fiber volume fraction is different

for each resolution value, instead of using graphs, all error values are reported in these

two figures.
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Figure D.1: The relative errors of FFTs with FEMs of local strain field εxx on model C

(PART 1)

Declarations

Funding

No funds, grants, or other support was received.

Conflicts of interest/Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of

this article.

42



Figure D.2: The relative errors of FFTs with FEMs of local strain field εxx on model C

(PART 2)
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