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Discrete time M/M/1 -type queue with vacations and disasters is studied by a two-colors lattice paths. The blue color is used for the sample path in the vacation mode and the red color is used for the working mode. The system is analyzed by combinatorial tools: kernel method and singularity analysis. For every point of time we find the generating function of the number of customers. We also derive the generating function of a cycle and introduce the functional relationship between the two generating functions.

Introduction

The dynamics of single server queues in discrete time can be seen as a sequence of upwards and downwards jumps (see Feller [START_REF] Feller | An introduction to probability theory and its applications[END_REF], Chapter 8). Therefore, lattice paths are useful to analyze such queues. In this study we analyze M/M/1 -type queueing models with vacations and disasters in discrete time and therefore, we focus on the behaviour of lattice paths.

The model analyzed in this study is the discrete counterpart of an M/M/1type queueing system in continuous time alternating between two modes: working mode and vacation mode as studied in Kleiner et al. [START_REF] Kleiner | A decomposition property for an M X /G/1 queues with vacations[END_REF], Doshi [START_REF] Doshi | Queueing systems with vacations -a survey[END_REF], Fuhrmann and Cooper [START_REF] Fuhrmann | Stochastic decomposition in the M/G/1 queue with generalized vacations[END_REF]. A comprehensive study about vacation queueing models can be found in Tian [START_REF] Tian | Vacation queueing models theory and applications[END_REF].
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The continuous time model is described as follows. During the working period the system runs as a stable M/M/1 queue with disasters. The working period terminates whenever the number of customers drops to 0. Then, the system starts the vacation mode and it stays there until the next transition back to the working mode. During the vacation period customers arrive, but are not served (a more general model in the vacation mode is studied in Kleiner et al. [START_REF] Kleiner | A decomposition property for an M X /G/1 queues with vacations[END_REF]). Also, the vacation period is subject to disasters. When a vacation terminates there is at least one customer in the system. This means that the emptiness period is included in the vacation period. The duration of vacation is exponential.

In this work, we introduce an analysis of M/M/1 vacation systems in discrete time and use the combinatorial methodology. Specifically, we generalize the notion of Dyck path and Motzkin path to a two-colors Dyck path and a twocolors Motzkin path, respectively. The discrete time analogue of the M/M/1 queue describes the number of customers in the continuous time M/M/1 queue at points of jumps of an independent Poisson process whose rate is larger than the sum of the arrival rate, the service rate and the disaster rate.

In the discrete time model it is customary impose weights on each step instead of using probabilities. The weight of a path is obtained by the product of the weights of each step. Banderier and Wallner [START_REF] Banderier | Lattice paths with catastrophes[END_REF] studied Dyck paths with disasters (catastrophes).

In Section 2 we present the model and the notions of the two-colors Dyck path and the two-colors Motzkin path. In Section 3, we introduce the generating functions for the two-colors Dyck paths and analyze the weighted cycle and its asymptotic behaviour. In Section 4, we analyze the two-colors Dyck paths with disasters. In Section 5, we analyze the two-colors Motzkin paths.

Preliminaries

The so-called Dyck path and Motzkin path are known in the combinatorial literature; for example, see Flajolet and Sedgewick [START_REF] Flajolet | Analytic combinatorics[END_REF]. A Dyck path is a lattice path from the origin on the integer grid, where from (i, j), i ≥ 0, j > 0 the path proceeds either to (i + 1, j + 1) or to (i + 1, j -1). For j = 0 the path proceeds from (i, 0) to (i + 1, 1). A Motzkin path is a modified version of Dyck path in the sense that from (i, j) the path can proceeds to (i + 1, j + k) for k = -1, 0, 1 for j > 0. For j = 0 the path proceeds from (i, 0) to (i + 1, k) for k = 0, 1.

Banderier and Wallner [START_REF] Banderier | Lattice paths with catastrophes[END_REF] added an element of disaster (catastrophe) to Dyck path, which means that for every entry (i, j), j > 0 the path can also proceed to (i + 1, 0).

A Dyck path describes the number of customers in the M/M/1 queue at points of jump. The horizontal axis represents the time and the vertical axis represents the state, that is the number of customers. The transition from (i, j) to (i + 1, j + 1) represents an arrival and the transition from (i, j), j > 0 to (i + 1, j -1) represents a departure. A Dyck path with disasters is a modified Dyck path with the added feature of disasters. That is, there is also an transition A modified Motzkin path with disasters describes the number of customers in the M/M/1 queue with disasters at points of jumps of independent Poisson process with a larger rate than the sum of the arrival rate, service rate and disaster rate, where disasters occur according to a Poisson process. The horizontal axis is a time and the vertical axis is a number of customers. The transition from (i, j) to (i+1, j +1) represents an arrival, the transition from (i, j), j > 0 to (i + 1, j -1) represents a departure and a transition from (i, j), j > 0 to (i + 1, 0) represents a disaster. Therefore, there exist a step from (i, j) to (i + 1, j).

Motivated by the M/M/1 model with disasters and vacations we introduce the term two-colors weighted Dyck path with disasters. Such paths comprise two successive parts: the blue parts of the path describe the number of customers in the vacation mode and the red parts of the path describe the number of customers in the working mode. The path starts at the origin with the blue color. In the blue parts of the path the step from (i, j), j > 0 to (i + 1, j + 1) is of weight p b , the step from (i, 0) to (i + 1, 1) is of weight 1, the step from (i, j), j > 0 to (i + 1, 0) is of weight ξ b and the step from a blue (i, j), j > 0 to a red (i + 1, j) is of weight γ. Similar notations are use for the red parts of the path. The step from (i, j), j > 0 to (i + 1, j + 1) is of weight p r , the step from (i, j), j > 0 to (i + 1, 0) is of weight ξ r and the step from (i, j), j > 0 to (i + 1, j -1) is of weight q r . Once the red part of the path reaches level 0 a new cycle starts and the red color is changed to blue. The graph of two-colors Dyck path with disasters is depicted in Figure 1. Accordingly, the two-colors weighted Motzkin path with disasters modifies the two-colors weighted Dyck path with disasters. The added features are the steps from (i, j), j > 0 to (i + 1, j) in the red and in the blue parts, where the weights are h r and h b respectively.

For M/M/1 type models, the weights represent the transition probabilities of the corresponding embedded Markov chain at points of jump. We use general weights for combinatorial results.

The weight of any finite path starting at the origin and terminates at an arbitrary point (i, j), j ≥ 0 is defined as the product of the weights of each of the i steps. The weight of the path of from (0, 0) to (0,0) is defined as 1 .

A two-colors weighted Dyck path 3.1 Generating functions

Let b k,i , i ≥ 0 be the sum of the weights of all two-colors Dyck paths from the origin to the point (k, i) where the k th step is blue and let f b i (z) be its generating function (GF). Similarly, let r k,i , i > 0 be the sum of the weights of all two-colors Dyck paths from the origin to the point (k, i) where the k th step is red and let f r i (z) be its GF.

Lemma 1

The following set of linear equations for f b i (z), i ≥ 0 and f r i (z), i > 0 holds:

f b 0 (z) = 1 + q r zf r 1 (z), (1) 
f b 1 (z) = zf b 0 (z), (2) 
f b i (z) = p b zf b i-1 (z), i > 1, (3) 
f r 1 (z) = γzf b 1 (z) + q r zf r 2 (z), (4) 
f r i (z) = γzf b i (z) + q r zf r i+1 (z) + p r zf r i-1 (z), i > 1. (5) 
1. The first term on the RHS of equation ( 1) is z 0 , indicating the empty path.

Every path that starts at the origin and ends at (k, 0), k > 0 with blue step is composed of the path that starts at the origin and ends at (k-1,1) with red step and a transition from (k -1, 1) to (k, 0) with weight q r , see Figure 2, so that for k > 0,

b k,0 = q r r k-1,1 . (6) 
Multiplying both sides of (6) by z k and summing up we obtain

∞ k=1 z k b k,0 = q r zf r 1 (z).
2. equations ( 2) and (3) For i > 0 every path that starts at the origin and ends at (k, i), k > 0 with blue step is composed of a path that starts at the origin and ends at (k-1,i-1) with a blue step and a transition from (k -1, i -1) to (k, i) with weight p b for i > 1 and weight 1 for i = 1, see Figure 2.

Thus the following equations are obtained.

3. equations ( 4) and ( 5) are obtained by the same argument as for (1), ( 2) and (3). 

F r (z, x) = i>0 f r i (z)x i , F b (z, x) = i≥0 f b i (z)x i and F t (z, x) = F r (z, x) + F b (z, x). The coefficient of the term z j x m , m ≥ 0 in F b (z, x)
is the sum of the weights of all the paths of length j that terminates in blue state m. Similarly, the coefficient of the term z j x m , m > 0 in F r (z, x) is the sum of the weights of all the paths of length j that terminates in red state m. When the weights are probabilities the coefficients of z j x m , m > 0 in F b (z, x) or F r (z, x) are the probabilities for m customers at time j for vacation or working period, respectively.

Theorem 1 We have

F b (z, x) = f b 0 (z) + f b 0 (z)xz 1 -p b xz , (7) 
and

F r (z, x) = x γz(F b (z, x) -f b 0 (z)) -(f b 0 (z) -1) (1 -qrz x -p r xz) , (8) 
where

f b 0 (z) = 1 + x 1 γz 2 1 -x 1 (p b z + γz 2 ) , (9) 
and

x 1 = 1 --4p r q r z 2 + 1 2p r z . ( 10 
)
Proof. By multiplying ( 2) and ( 3) by z i and summing up we get

F b (z, x) = 1 + q r zf r 1 (z) + f b 0 (z)xz + p b xz(F b (z, x) -f b 0 (z)).
After simple steps of algebra we obtain

F b (z, x) = f b 0 (z)(1 + (1 -p b )xz) 1 -p b xz = f b 0 (z) + f b 0 (z)xz 1 -p b xz .
M ¸ultiplying (4) and ( 5) by z i and summing up we obtain

F r (z, x) = γz(F b (z, x) -f b 0 (z)) + q r z x (F r (z, x) -xf r 1 (z)) + p r xzF r (z, x). ( 11 
)
Multiplying both sides of ( 11) by x and rearranging the terms yields

F r (z, x)(x -q r z -p r x 2 z) = γxz(F b (z, x) -f b 0 (z)) -q r xzf r 1 (z). (12) 
Using (1) to express f r 1 (z) in term of f b 0 (z) and substituting in [START_REF] Tian | Vacation queueing models theory and applications[END_REF] we get

F r (z, x)(x -q r z -p r x 2 z) = γxz(F b (z, x) -f b 0 (z)) -x(f b 0 (z) -1). ( 13 
)
This yields [START_REF] Kleiner | Busy period for queues alternating between two modes[END_REF]. In ( 7) and ( 8) we have 3 unknowns -F r (z, x), F b (z, x), f b 0 (z). To obtain f b 0 (z) we apply the kernel method introduced in Knuth et al. [START_REF] Knuth | The art of computer programming: fundamental algorithms[END_REF]. That is, the denominator on the RHS of (8) has two roots x 1 and x 2 , such that

x 1 = 1 -1 -4p r q r z 2 2p r z , x 2 = 1 + 1 -4p r q r z 2 2p r z . ( 14 
)
The root x 2 is ruled out, since it does not yield a generating function of z, while x 1 is a GF of z. For more details see Prodinger [START_REF] Prodinger | The Kernel Method: A collection of examples[END_REF]. By the kernel method, when the denominator equals 0, the numerator of ( 8) is also equals 0. Substituting x 1 in the numerator of (8) yields

γz(F b (z, x 1 ) -f b 0 (z)) -(f b 0 (z) -1) = 0, and thus 
F b (z, x 1 ) = f b 0 (z) + f b 0 (z) -1 γz . ( 15 
)
By substituting [START_REF] Kleiner | A decomposition property for an M X /G/1 queues with vacations[END_REF] in (15)

f b 0 (z)(1 + (1 -p b )x 1 z) 1 -p b x 1 z = f b 0 (z) + f b 0 (z) -1 γz ,
and rearranging terms yields [START_REF] Knuth | The art of computer programming: fundamental algorithms[END_REF]. The root x 1 in ( 14) is the GF of a sum of the weights of the so called Dyck excursion. Formally, Definition 1 A Dyck path that starts at the origin and ends at (k, 0) is called Dyck excursion of length k.

In the lemma bellow we consider Dyck paths with weights p r and q r for the steps from (k, i), i > 0 to (k + 1, i + 1) and to (k + 1, i -1), respectively. The step from (k, 0) to (k + 1, 1) is of weight p 0 = 1.

Lemma 2 Let c k , k ≥ 0 be the sum of the weights of Dyck excursions of length k and let C(z) be its GF, then

C(z) = x 1 q r z . ( 16 
)
Proof. Let C(z) be the GF of sum of the weights of Dyck paths starting at (k, 1) and ends at (m, 1), m ≥ k that do not reach state 0 in between. Without loss of generality, we can assume that k = 0. By a renewal argument

C(z) = 1 1 -p r z C(z)q r z . ( 17 
)
Since p 0 = 1 and the excursion starts from the origin, p r in ( 17) is replaced by 1 and in the LHS C(z) is replaced by C(z), so that

C(z) = 1 1 -z C(z)q r z . ( 18 
)
By solving for C(z) in ( 17) and substituting in (18) we obtain (16).

Remark 1 Note that x 1 is the GF of the sum of the weights of the paths that start at state i and reach state i -1 at the first time in the last step. To see this multiply both sides of ( 16) by q r z. When the weights are probabilities and i = 1, x 1 is the GF of the busy period in the discrete analog of the M/M/1 queue.

By Remark 1 the solution of ( 9) is the solution of the renewal equation

f b 0 (z) = 1 + [z 2 γx 1 k≥0 (p b zx 1 ) k ]f b 0 (z).
The first term on the RHS stands for an empty path. The term γx 1 (p b x 1 ) k stands for the weight of the paths that have k + 1 consecutive blue steps and then a final transition to red state k + 1. Then x k+1 1 is the GF of the sum of the weighted paths from the red state k + 1 to state 0.

In the next two examples all the weights are equal to 1.

Example 1 In this case the coefficient of z k of f b 0 (z) is the number of twocolors Dyck excursions of length k. Here,

f b 0 (z) = 1 + x ′ 1 z 2 1 -x ′ 1 (z + z 2 )
, By substituting p r = q r = 1 in (14) we get that x 1 = x ′ 1 , where

x ′ 1 = 1 - √ 1 -4z 2 2z .
The expansion of f b 0 (z) is given by

f b 0 (z) = 1 + z 3 + 2z 5 + z 6 + 5z 7 + 4z 8 + 15z 9 + 14z 10 + 48z 11 + 49z 12 + 159z 13 + ... (19) 
Overall, there are 5 excursions of length 7 from the origin (see Figure 3). Example 2 Assume that the transition step from a blue color to a red color is of length 0 (instead of 1). That means that γz in equation ( 9) is replaced by γ.

Let f b 0 (z) be the GF of the number of two-colors Dyck excursion where all the weights are 1, then

f b 0 (z) = 1 + x ′′ 1 z 1 -2x ′′ 1 z
, By substituting p r = q r = 1 in ( 14) and replacing γz by γ we get that x 1 = x ′′ 1 , where

x ′′ 1 = 1 - √ 1 -4z 2 2z .
This yields

f b 0 (z) = 1 + z 2 + 3z 4 + 10z 6 + 35z 8 + 126z 10 + 462z 12 + 1716z 14 + .... ( 20 
)
The sequence of the coefficients of z i in (20) is a known sequence numbered A088218 at OEIS (see Mansour and Shattuck [10]).

The weighted cycle

This section is motivated by busy period analysis in an M/M/1 queue with vacation (see Kleiner et al. [START_REF] Kleiner | Busy period for queues alternating between two modes[END_REF]) Throughout, we consider the two-colors Dyck paths.

Preliminaries

Let g b k,i , i ≥ 0 be the total weight of all two-colors Dyck paths from the origin to the point (k, i), without visiting state 0 and the k th step is blue; let g b i (z) be its GF, that is g b i (z) = k>0 g b k,i z k . Similarly, let g r k,i , i > 0 be the total weight of all two-colors Dyck paths from the origin to the point (k, i), without visiting state 0 and the k th step is red; let g r i (z) be its GF, that is g r i (z) = k>0 g r k,i z k . Obviously 21) and ( 22) we get

g b 1 (z) = z. ( 21 
) Since for i > 1, g b k+1,i = p b g b k,i-1 , we have g b i (z) = p b zg b i-1 (z), i > 1. ( 22 
) Let G b (z, x) = ∞ i=1 g b i (z)x i . By (
G b (x, z) = xz 1 -p b xz . (23) 
Thus

G b (x, z) = xz + p b x 2 z 2 + p 2 b x 3 z 3 + .... (24) 
By (24), the weight (probability) of the blue path starting at the origin and ends at state i at time k without visiting state 0 is

p i-1 b . Let G r (z, x) = ∞ i=1 g r i (z)x i
. By similar arguments leading to (5) we get

g r 1 (z) = γzg b 1 (z) + q r zg r 2 (z), g r i (z) = γzg b i (z) + q r zg r i+1 (z) + p r zg r i-1 (z), i > 1, so that G r (x, z) = xz γG b (z, x) -q r g r 1 (z)) (x -q r z -p r x 2 z) . (25) 
To obtain g r 1 (z) we apply the kernel method. The denominator on the RHS of (25) has the same two roots x 1 and x 2 as given in (14). The relevant root is x 1 . By substituting x = x 1 in the numerator of (25) and equating to 0 we get:

g r 1 (z) = γx 1 z (1 -p b x 1 z)q r . (26) 
Note that when all weights are 1

g r 1 (z) = z 2 + 2z 4 + 5z 6 + 14z 8 + 42z 10 + ...,
which is the GF obtained from Catalan sequence.

To obtain [y n ]V (y) (for large n), we use the relationship between the singularities of V (y) and [y n ]V (y) as introduced in Section 4 of Sedgewick [START_REF] Flajolet | Analytic combinatorics[END_REF]. There are two singularities: (i) y 1 for which the square root (in the denominator) of ( 31) is equal to 0, y 1 = 1 4p r q r and (ii) y 2 for which the denominator of ( 31) is equal to 0,

y 2 = p b -p r p 2 b q r .
By Sedgewick [START_REF] Flajolet | Analytic combinatorics[END_REF] (Chapter 4) the relevant singularity is the one for which the absolute value is minimal. Thus there are three cases.

Case 1

|y 2 | < |y 1 |.
By transfer theorem for meromorthic GF (Sedgewick [START_REF] Flajolet | Analytic combinatorics[END_REF], Chapter 4)

[y n ]V (y) ∼ -1 g ′ (y 2 ) y - (n+1) 2 
, where

g ′ (y 2 ) = - p 2 b q r p b -2p r . Thus [y n ]V (y) ∼ p b -2p r p 2 b q r p b -p r p 2 b q r - (n+1) 
.

Hence by (30) for odd n

[z n ]B(z) ∼ - γ p b p b -2p r p 2 b q r p b -p r p 2 b q r -(n+1)/2) . ( 32 
)
The approximation is closed to the exact value as seen by the following example.

Example take n = 11, p b = 0.6, p r = 0.2, q r = 0.8, γ = 0.4. The exact value is [z 11 ]B(Z) = 0.068 and its approximated value is 0.064. For n = 31, p b = 0.6, p r = 0.2, q r = 0.8, γ = 0.4, the exact value is [z 31 ]B(Z)=0.00243 and its approximated value is 0.00241.

Case 2 |y 1 | < |y 2 |. By using Puiseux series expansion (Flajolet and Odlyzko [START_REF] Flajolet | Singularity analysis of generating functions[END_REF]) for y in the neighborhood of y 1 , we have

V (y) = c 0 -c 1 (y -y 1 ) + c 2 √ y -y 1 + O(y -y 1 ) 3/2 , ( 33 
)
the last step is blue [red]; k is the time, i is the state and n is a number of returns to state 0 until time k. Then, in a similar manner to (39) and (40) we get

F b (x, z, u) = 1 + G b (x, z) 1 -uB(z)
and

F r (x, z, u) = G r (x, z) 1 -uB(z) ,
respectively.

Two-colors Dyck paths with disasters

We consider the two-colors Dyck paths with the added features of possible transitions from state i, i > 0 to state 0 with weight ξ r [ξ b ] for red step [blue step] (see Figure 1).

Generating functions

Define F b D (z, x) [F r D (z, x)] similarly to F b (z, x) [F r (z, x)],
but with the added feature of disaster. Let

F T D (z, x) = F b D (z, x) + F r D (z, x).
Lemma 4 Let D(z) be a GF of all the weighted paths that start at the origin and are terminated by disaster. Then

D(z) = 1 1 -z(ξ b (F b (z, 1) -f b 0 (z)) + ξ r F r (z, 1)) . ( 42 
)
Proof. The renewal equation holds for D(z) is

D(z) = 1 + ξ b z(F b (z, 1) -f b 0 (z)) + ξ r zF r (z, 1) D(z). (43) 
The first term on the RHS (43) stands for the empty path. F b (z, x) -f b 0 (z) is the BGF of the weighted paths to (k, i), i > 0 (blue) without disasters and ξ b z stands for a disaster step from a blue state. ξ r zF r (z, x) is a BGF of the paths terminating with a disaster from a red state. A disaster is a regenerating point for the path. Now, (42) is the solution of the renewal equation (43).

Each path from the origin to (k, i) with disasters is composed of a path until the last disaster until time k and paths from state 0 to (k, i). Therefore, Theorem 3 The following decomposition equation holds

F T D (z, x) = D(z)F T (z, x). (44) 
From ( 41) and (44),

F T D (z, x) = D(z) 1 + G b (x, z) + G r (x, z) 1 -B(z) . ( 45 
)
Example 3 When every weight is equal to 1

D(z) = (2z 2 + z -1) √ 1 -4z 2 -2z 2 + 3z -1 (4z 2 + z -1) √ 1 -4z 2 -2z 2 + 3z -1 . (46) 
In ( 46) D(z) is a GF of the number of the two-colors Dyck paths that end with a disaster. The expansion of (46) yields D(z) = 1 + z 2 + 2z 3 + 4z 4 + 11z 5 + 23z 6 + 57z 7 + 129z 8 + 306z 9 + ... .

Example 4

When every weight is equal to 1

F D (z, 1) = 2z -1 - √ 1 -4z 2 (4z 2 + z -1)( √ 1 -4z 2 -2z 2 + 3z -1) , (47) 
When F D (z, 1) is the GF of the number of the two-colors Dyck paths with disasters. The expansion of (47) yields F D (z, 1) = 1 + z + 3z 2 + 7z 3 + 15z 4 + 37z 5 + 83z 6 + 197z 7 + 455z 8 + 1067z 9 + ... .

Remark 3

Let F b D (z, x, u) [F r D (z, x, u)] be the trivariate GF of the series (k, i, n), where the last step is blue [red]; here, k is the time, i is the state and n is the number of disasters until time k. Then

F T D (z, x, u) = F b D (z, x, u) + F r D (z, x, u)
. By a similar argument to that of Remark (2)

F T D (z, x, u) = D(z, u)F T (z, x), where D(z, u) = 1 1 -u[ξ b z(F b (z, 1) -f b (0)) + ξ r zF r (z, 1)] .

Two-colors Motzkin paths

The methodology introduced in Sections 3 and 4 for the analysis of the twocolors Dyck paths can be extended to the two-colors Motzkin paths. Recall that the Motzkin path is characterised by an additional transition from (k, i) to (k + 1, i). As a result of the strong Markov property, when the weights are probabilities, the time spent in state i is geometrically distributed. In the latter (ii) h 0 b -weight of the transition from (k, 0) to (k + 1, 0), (blue).

(iii) h b -weight of the transition from (k, i), i > 0 to (k + 1, i), (blue).

(iv) h r -weight of the transition from (k, i), i > 0 to (k + 1, i), (red).

The proofs of the next Lemma and Theorem are omitted, their are similar to the proofs of Lemma 1 and Theorem 1, respectively.

Lemma 5 f b 0 (z) = 1 + q r zf r 1 (z) + h b 0 zf b 0 (z)

f b 1 (z) = p b 0 zf b 0 (z) + h b zf b 1 (z) f b i (z) = p b zf b i-1 (z) + h b zf b i (z), i > 1
f r i (z) = γf b i (z) + q r zf r i+1 (z) + p r zf r i-1 (z) + h r zf r i (z), i > 1 f r 1 (z) = γf b i (z) + q r zf r i+1 (z) + h r zf r 1 (z)

Figure 1 :

 1 Figure 1: Example of a two-colors weighted Dyck path with disaster

Figure 2 :

 2 Figure 2: Transition diagram for two-colors Dyck path

Figure 3 :

 3 Figure 3: All 7-length two-colors Dyck excursions

Figure 4 :

 4 Figure 4: Motzkin path -transition diagram
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The busy cycle Definition 2

The weighted busy cycle is the total weight of the path starting at the origin and terminates at the first visit to state 0. Let b k be the total weight of all two-colors Dyck paths from the origin until the first visit to the origin at step k and let B(z) be its GF. Then

and by ( 26)

Finally, by substituting x 1 (given in (25)) in ( 27) we get

In case that the weights are probabilities, the b k represents the probability that busy cycle is of length k.

An approximation for b k

In this subsection we introduce an approximation for b k for k large enough. Note that b k = 0 for even values of k.

After some steps of algebra (28) can be expressed as follows

.

Let y = z 2 and define

We use the notation [z n ]B(z) for the coefficient of z n in B(z) and [y (n+1)/2 ]V (y) for the coefficient of y (n+1)/2 in V (y). Clearly, for odd n we have

where by singularity analysis method (Flajolet and Odlyzko [START_REF] Flajolet | Singularity analysis of generating functions[END_REF]) the constants c 0 and c 1 are of irrelevance for the asymptotic and

Finally, by using singularity analysis method, we get

Case 3 |y 2 | = |y 1 |. In this case, the approximation for [z n ]B(y) is a sum of two approximations from Case 1 and Case 2 given in: (32) and (35).

Combinatorial representation by a decomposition

By using (28), we introduce a simple proof for Theorem 1, which is based on a regenerative argument, as follows.

Lemma 3

The following renewal equations hold:

Proof. Recall that F b (x, z) is the BGF of the weighted paths from the origin to (k, i), k ≥ 0, i ≥ 0, where the last step is blue. The first term on the RHS of (36) stands for the empty path, G b (x, z) is the BGF of all the paths from the origin to (k, i), where the last step is blue without reaching state 0. The first visit at state 0 is a regeneration point. The last term is the BGF of the weighted paths from the origin to (k, i) where the last step is blue with a visit the state 0. Equations (37) and (38) are obtained by using a similar argument.

The proof of the next Theorem is the solution of (36)-(38).

Theorem 2

and

Remark 2 Other functions of interest are F b (x, z, u) and F r (x, z, u). The function F b (x, z, u) [F r (x, z, u)] is the trivariate GF of the series (k, i, n), where Theorem 4 We have

, where x 1 = 1 -h r z + (1 + h 2 r z 2 -2h r z -4p r q r z 2 ) 2p r z .

Remark 4 By applying the same methodology (Dyck paths with disasters as in Section 4), it is possible to analyze the two-colors Motzkin path with disasters. However, the equations become lengthy and awkward.