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Abstract
Consider a non-autonomous continuous-time linear system in which the time-

dependent matrix determining the dynamics is piecewise constant and takes finitely
many values A1, . . . ,AN . This paper studies the equality cases between the max-
imal Lyapunov exponent associated with the set of matrices {A1, . . . ,AN}, on the
one hand, and the corresponding ones for piecewise deterministic Markov processes
with modes A1, . . . ,AN , on the other hand. A fundamental step in this study consists
in establishing a result of independent interest, namely, that any sequence of Markov
processes associated with the matrices A1, . . . ,AN converges, up to extracting a sub-
sequence, to a Markov process associated with a suitable convex combination of
those matrices.

Keywords. Linear switched systems, continuous-time Markov processes, piecewise de-
terministic Markov processes, convexified Markov processes, Lyapunov exponents
2020 Mathematics Subject Classification. 60J25, 34A38, 34D08

Contents
1 Introduction 2

2 Definitions, notations, and basic facts 5
2.1 Deterministic Lyapunov exponent . . . . . . . . . . . . . . . . . . . . . 5
2.2 Continuous-time Markov processes . . . . . . . . . . . . . . . . . . . . . 6
2.3 Probabilistic Lyapunov exponent . . . . . . . . . . . . . . . . . . . . . . 7

*Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-
Yvette, France.

†Université Paris-Saclay, CNRS, CentraleSupélec, Inria, Laboratoire des signaux et systèmes, 91190,
Gif-sur-Yvette, France.

‡Sorbonne Université, CNRS, Laboratoire Jacques-Louis Lions (LJLL), Laboratoire de Chimie Théo-
rique (LCT), F-75005 Paris, France

§Sorbonne Université, Inria, CNRS, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris, France

1



3 Statements of the main results 9

4 Characterization of equality between λd(A) and λp(ν ,µ,P,A) 10

5 Compactification of the space of Markov processes 14
5.1 Convexified Markov processes as limits of Markov processes . . . . . . . 14
5.2 Convexified Markov processes compactify the space of Markov processes 17

6 On the equality between λd(A) and λ
sup
p (A) 31

A Decomposition of a Markov chain 34

B Technical results 38
B.1 Proof of Proposition 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
B.2 Proof of Lemma 6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1 Introduction
In this paper, we consider the family of non-autonomous continuous-time linear systems

ẋ(t) = Aσ(t)x(t), (1.1)

where x(·) takes values in Rd , σ(·) is piecewise constant and takes values in the finite set
of indices {1, . . . ,N}, and we set A to be the N-tuple made of d × d matrices with real
coefficients A1, . . . ,AN (also called the modes of (1.1)). Each signal σ corresponds to a
possible evolution in time of a discrete parameter affecting the dynamics. This class of
systems can be used to describe phenomena where different dynamical modes operate and
the order in which they are active is not precisely known. In the engineering literature,
such systems and their discrete-time counterparts bear the name of switched systems [20]
and they have been widely studied in the mathematical community since [8].

One of the major issues regarding these systems concerns their asymptotic stability,
uniformly with respect to the signal σ . Indeed, the fact that each individual mode is
asymptotically stable does not imply that the trajectories of the corresponding switched
system converge to 0: it is easy to find two positive times t1, t2 and two matrices A1,A2
whose eigenvalues have negative real part such that the spectral radius of eA1t1eA2t2 is
larger than 1, as illustrated, for instance, in [20]. The measure of stability of a switching
system with respect to all possible signals σ is characterized by its deterministic maximal
Lyapunov exponent λd(A), measuring the maximal asymptotic exponential rate of (1.1)
(see (2.1) below).

A difficulty in dealing with λd(A) is that the characterization of the asymptotic behav-
ior of (1.1) based on its value is in general conservative from a practical viewpoint, since
it corresponds to a maximization with respect to all possible signals. In the (few) cases
where maximizing signals (or maximizing sequences of signals) are known, they happen
to have a very specific structure, for instance switching between modes at precise times or
at a fast rate [1]. In many situations, one disposes of additional information on the signal
σ implying that such specific structures occur rarely, at least in a probabilistic sense. This
motivates addressing the measure of stability of switched systems within a probabilistic
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framework, a question which has been considered in the literature, for instance in [4] for
systems in dimension d = 2. One may naturally expect that, except for some very par-
ticular situations, such a probabilistic framework gives rise to less conservative measures
of stability of (1.1), as it is indeed observed for the two-dimensional systems considered
in [4].

An important class of switched systems with random switching is that of piecewise
deterministic Markov processes (PDMPs) introduced in [9], which provide a natural mod-
eling framework for phenomena of random switching without memory and corresponds
to considering σ as a continuous-time Markov process. In that case, the asymptotic be-
havior of (1.1) can be studied through a probabilistic Lyapunov exponent λp(ν ,µ,P,A),
which consists of the expected value with respect to σ of the asymptotic exponential
rate of (1.1), where (ν ,µ,P) are the parameters of the Markov process as described in
Section 2.3 below. Recall that, due to the classical result in [14], under generic assump-
tions on the Markov process, the asymptotic exponential rate for a given σ is equal to
λp(ν ,µ,P,A) almost surely.

In applications, the quantity λp(ν ,µ,P,A) is a suitable measure of asymptotic behavior
if the parameters (ν ,µ,P) of the Markov process are fixed. However, it is also important
to consider situations in which such parameters are not known exactly, and, for that pur-
pose, we introduce the quantity λ

sup
p (A) as the supremum of λp(ν ,µ,P,A) with respect to

all Markov processes (ν ,µ,P), which corresponds to a worst-case scenario.
Clearly, for every Markov process (ν ,µ,P) and every N-tuple of matrices A, one has

λp(ν ,µ,P,A)⩽ λd(A), and hence one also has λ
sup
p (A)⩽ λd(A). The goal of this paper is

to investigate under which conditions on A the probabilistic point of view is strictly less
restrictive than the deterministic one, i.e., to characterize in terms of A the strict inequality
(or, equivalently, the equality) between λp(ν ,µ,P,A) and λd(A) for a fixed (ν ,µ,P) and
also between λ

sup
p (A) and λd(A). Hence, this paper is the continuous-time counterpart

of [7], in which similar issues have been addressed for discrete-time systems.
Our main results in that sense, Theorems 3.1 and 3.4, show that probabilistic measures

of stability of (1.1) are indeed less restrictive than the deterministic ones, except for some
particular situations that we characterize. For instance, under additional irreducibility and
strong connectedness assumptions, Theorem 3.1 reduces to Proposition 4.1, which states
that λp(ν ,µ,P,A) is strictly smaller than λd(A) except for the particular situation in which
the matrices A1, . . . ,AN are skew-symmetric up to a common translation by a multiple of
the identity matrix and a common change of basis. Up to a technical assumption which
is always satisfied in dimension d ⩽ 3, Theorem 3.4 states that the probabilistic measure
of stability λ

sup
p (A) is strictly smaller than λd(A) except for the particular situation where

the worst possible deterministic behavior is attained by a matrix in the convex hull of
A1, . . . ,AN . In particular, these results confirm that probabilistic measures of stability are
most often less conservative than their deterministic counterparts, as previously observed
in [4] for two-dimensional systems.

The characterization of equality between λp(ν ,µ,P,A) and λd(A) follows essentially
the same lines as the corresponding problem in discrete time addressed in [7]. We first
consider the case where the N-tuple A is irreducible and the matrix P is strongly connected
(as defined in Section 2): it is shown that equality occurs if and only if the matrices
Ai−λd(A)Id are skew-symmetric (up to a common change of basis), a result that relies on
the use of an extremal norm for A (Definition 2.1) and the characterization of semigroups
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with constant spectral radius from [21]. We then treat the general case by decomposing A
into irreducible blocks and P into strongly connected blocks.

As regards the question of equality between λ
sup
p (A) and λd(A), we show that it im-

plies that λd(A) is equal to the maximum of the real part of the eigenvalues of some
matrix M belonging to the convex hull of A, and that the converse is true under a technical
assumption on A = (A1, . . . ,AN) and M, cf. Definition 6.3, which is always satisfied in
dimension d ⩽ 3. We conjecture that this technical assumption is not necessary to get
the converse implication. The difficulty in removing the technical assumption consists in
proving the convergence of the probabilistic Lyapunov exponent when the jump rate goes
to +∞.

Indeed, our analysis relies on the investigation of the behavior of maximizing se-
quences of Markov processes for λ

sup
p (A). In the discrete-time setting considered in [7],

the issue is easily handled thanks to the compactness of the space of discrete-time Markov
processes. This is not anymore the case in the continuous-time setting, where the situation
is much more delicate since switching between modes can occur arbitrarily fast. When
the transition matrix P is fixed and strongly connected and the jump rate µ goes to infinity,
it is well-known that high-frequency jumps lead to deterministic averaging [4, 5], namely
the Markov process converges to a deterministic motion ẋ = Mx, where M belongs to the
convex hull of A. More generally (if P is not fixed as µ →+∞), in case of a combination
of fast and slow jumps, one can expect the convergence towards a Markov process on
convex combinations of matrices of A.

We rigorously handle such a decomposition of Markov processes in different time-
scales by relying on results from various works by Landim and collaborators, in partic-
ular [19], although these works are primarily interested in metastability phenomena, i.e.,
Markov chains for which the different timescales are all slow, instead of fast as in our case.
As a consequence, we prove that we can extract from any sequence of Markov processes
with modes in A a subsequence that converges in law to a Markov process associated with
a suitable convex combinations of the original matrices in A. This compactification result,
Theorem 3.3, is one of our main results.

Since the convergence in law obtained in Theorem 3.3 is not uniform in time, it is not
sufficient to deduce convergence of the Lyapunov exponents of the sequence of Markov
processes to the Lyapunov exponent of the limit process. Such a convergence property is
interesting in itself and has already been addressed in particular cases, e.g. [4, Section 2.5]
(where N = d = 2 and the matrices are Hurwitz) or [5, Corollary 2.15] (where the matrix
M appearing in the limit is Metzler and strongly connected). We prove in Proposition 6.4
a result in that direction under the already mentioned additional technical assumption on
A and M. Establishing such a result unconditionally would provide a complete character-
ization of the equality between λd(A) and λ

sup
p (A).

As a conclusion, our results show that the equality between the deterministic maximal
Lyapunov exponent and the probabilistic ones (either for a fixed Markov chain or for the
worst probabilistic case) only occurs in very specific cases. This shows that, in most cases,
working within a probabilistic framework yields a less conservative estimate, closer to the
stability properties most commonly observed in practice.

The paper is organized as follows. Section 2 collects definitions, notations, and basic
facts relative to deterministic and probabilistic Lyapunov exponents as well as continuous-
time Markov processes. The statements of the main results proved in the paper are
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presented in Section 3. Section 4 addresses the characterization of equality between
λp(ν ,µ,P,A) and λd(A). We describe in Section 5 the compactification of the space
of Markov processes, which is used in Section 6 to study the case of equality between
λ

sup
p (A) and λd(A). The paper is completed by two appendices. In Appendix A, we

prove a general result of decomposition into different timescales for a sequence of Markov
chains on a finite state space, adapted from [19], which is a central tool in the proofs of
Section 5. Appendix B provides the proofs of some linear-algebraic technical results used
in Section 6.

2 Definitions, notations, and basic facts
Throughout the paper, d and N belong to N, which is used to denote the set of positive
integers. If a and b are integers, Ja,bK denotes the set of integers j such that a ⩽ j ⩽ b.
We use |·| to denote a norm in Rd and ∥·∥ to denote the corresponding induced norm on
the space Md(R) of d ×d matrices with real coefficients. The identity matrix in Md(R)
is denoted by Id. The spectral radius of a square matrix M is denoted by ρ(M), and its
spectral abscissa, defined as the maximum of the real parts of its eigenvalues, is denoted
by λ (M). An N-tuple A = (A1, . . . ,AN) ∈ Md(R)N is said to be irreducible if the only
invariant subspaces by all Ai are {0} and Rd . If A⊂Md(R), we use co(A) to denote the
convex hull of A.

Denote by Σ the set of all piecewise constant right-continuous functions defined on
[0,∞) and taking values in J1,NK. Given σ ∈ Σ, we use t 7→ Φσ (t) to denote the flow of

ẋ = Aσ(t)x

with Φσ (0) = Id. In particular,

Φσ (tn) = eAσ(tn−1)
(tn−tn−1) · · ·eAσ(0)t1,

where (ti)i∈N is an increasing sequence containing all discontinuity times of σ .

2.1 Deterministic Lyapunov exponent
Let A = (A1, . . . ,AN) ∈Md(R)N . The deterministic Lyapunov exponent λd(A) associated
with A is defined as

λd(A) = limsup
t→∞

1
t

sup
σ∈Σ

log∥Φσ (t)∥. (2.1)

Since all norms in Rd are equivalent, it immediately follows that λd(A) does not depend
on the specific choice of ∥·∥. It turns out (see, e.g., [16, Lemma 1.2]) that, since ∥·∥ is
submultiplicative on Md(R), one has

λd(A) = lim
t→∞

1
t

sup
σ∈Σ

log∥Φσ (t)∥= inf
t>0

1
t

sup
σ∈Σ

log∥Φσ (t)∥. (2.2)

Moreover, for every σ ∈ Σ and t > 0, one has

1
t

logρ(Φσ (t))⩽ λd(A). (2.3)
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Indeed, let σ̂ ∈ Σ be the t-periodic signal coinciding with σ on the interval [0, t). Then,
for every k ∈ N,

1
t

logρ(Φσ (t)) =
1
kt

logρ(Φσ̂ (kt))⩽
1
kt

log∥Φσ̂ (kt)∥

⩽
1
kt

sup
ς∈Σ

log
∥∥Φς (kt)

∥∥,
and we conclude from (2.1) by taking the limsup as k →+∞.

Definition 2.1 (Extremal norm). Let A= (A1, . . . ,AN)∈Md(R)N . A norm ∥·∥e in Md(R)
is said to be extremal for A if, for every σ ∈ Σ and t ⩾ 0, it holds ∥Φσ (t)∥e ⩽ eλd(A)t .

Remark 2.2. A necessary and sufficient condition for the existence of an extremal norm
for a given A = (A1, . . . ,AN) is the nondefectiveness of A, i.e., the existence of C > 0 such
that ∥Φσ (t)∥ ⩽ Ceλd(A)t for every t ⩾ 0 and σ ∈ Σ (see, e.g., [16, Theorem 2.2] for the
discrete-time case, which extends readily to the continuous-time setting).

Note that, since the computation of λd(A) is intractable in general (cf. [16]), nonde-
fectiveness turns out to be also difficult to check. This motivates the search for simpler
conditions implying the nondefectiveness of a family of matrices A. One such condition
is the irreducibility of A (see, e.g., [24], where it shown that irreducibility actually implies
the existence of a so-called Barabanov norm, which is an extremal norm satisfying some
additional properties).

2.2 Continuous-time Markov processes
In this paper, we consider continuous-time Markov processes in J1,NK defined by triples
(ν ,µ,P), where P = (pi j)

N
i, j=1 ∈ MN(R) is a stochastic matrix, µ > 0, and ν ∈ RN is

a probability vector, seen as a row vector, i.e., as a 1×N matrix. The Markov process
corresponding to (ν ,µ,P), denoted by σ , is the continuous-time Markov chain on J1,NK
with initial law ν , transition matrix P, and jump rate µ . Hence, if σ(t) = i ∈ J1,NK and t ′

is the next jump time, then t ′− t follows an exponential law of parameter µ and σ(t ′) =
j ∈ J1,NK with probability pi j. Note that trivial jumps (i.e., from a state to itself) are
allowed and that, for every α ∈ (0,1], both triples of parameters (ν ,µ/α, Id+α(P− Id))
and (ν ,µ,P) determine Markov processes with the same law.

When σ(·) and ν are, respectively, a Markov chain and a probability vector on J1,NK,
we occasionally denote by Pν and Eν probabilities and expectations to indicate that the
law of the initial condition σ(0) is ν . If ν = δi for some i ∈ J1,NK, we simply write Pi
and Ei.

Given A= (A1, . . . ,AN)∈Md(R)N and x0 ∈Rd , the above Markov process σ in J1,NK
induces the stochastic processes Aσ(·) in Md(R) and Φσ (·)x0 in Rd . When clear from the
context, we still identify such processes with the triple (ν ,µ,P). The matrices A1, . . . ,AN
are called the modes of the Markov process and, for distinct i, j ∈ J1,NK, λ (i, j) = µ pi j
is the jump rate from i to j. Notice that, although x(·) = Φσ (·)x0 is not a Markov process
by itself, this is the case for (x(·),σ(·)), which is a PDMP. However, with a slight abuse
of language, we will sometimes refer to x(·) as a Markov process for A.

We say that a stochastic matrix P is strongly connected if it is not similar via a per-
mutation to a nontrivial block upper triangular matrix, i.e., if its associated directed graph
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is strongly connected. (Such a matrix is usually called irreducible, but we already use
the latter term in its linear algebraic meaning.) More generally, every stochastic matrix
P ∈ MN(R) admits, up to a permutation in the set of indices J1,NK, the decomposition
into strongly connected blocks (see, e.g., [22]) given by

P =


P1 0 · · · · · · 0

0 . . . . . . ...
... . . . . . . . . . ...
0 · · · 0 PR 0
∗ · · · · · · ∗ Q

, (2.4)

where ρ(Q)< 1 and, for i∈ J1,RK, Pi ∈Mni(R) is a stochastic and strongly connected ma-
trix for some positive integers R,n1, . . . ,nR. For every i ∈ J1,RK, we define the recurrence
class I(i) for P by

I(i) = Jn1 + · · ·+ni−1 +1,n1 + · · ·+niK, (2.5)

and the set of transient states by T = Jn1 + · · ·+ nR + 1,NK (possibly empty). Given
a probability vector ν ∈ RN , a recurrence class I(i) is said to be accessible from ν if
Pν(σ(τ) ∈ I(i))> 0, where τ = inf{t ⩾ 0 | σ(t) /∈ T}.

A probability vector ν ∈ RN is said to be invariant for P if νP = ν . When P is
strongly connected, such an invariant law exists and is unique. More generally, consider-
ing a decomposition in strongly connected blocks (2.4), we let ν [i] be the unique invariant
probability vector for Pi, which is canonically extended (adding zero components) to a
vector in RN still denoted by ν [i]. Then every invariant probability vector ν ∈RN of P can
be uniquely decomposed as

ν =
R

∑
i=1

αiν
[i], (2.6)

where α1, . . . ,αR ∈ [0,1] and ∑
R
i=1 αi = 1. This means that the corresponding Markov

process σ starts in the recurrence class I(i) with probability αi, for i ∈ J1,RK, and remains
there for all positive times.

2.3 Probabilistic Lyapunov exponent
Let (ν ,µ,P) define a Markov process in Σ and A ∈Md(R)N . The probabilistic Lyapunov
exponent for (ν ,µ,P,A) is the quantity defined by

λp(ν ,µ,P,A) = limsup
t→+∞

1
t
E[log∥Φσ (t)∥], (2.7)

where E denotes the expectation with respect to σ distributed according to (ν ,µ,P). As
for λd(A), the above expression is independent on the choice of the specific induced norm
∥·∥ in Md(R).

Given A ∈ Md(R)N , we denote by λ
sup
p (A) the supremum of λp(ν ,µ,P,A) over all

parameters (ν ,µ,P). For every Markov process (ν ,µ,P), we have

λp(ν ,µ,P,A)⩽ λ
sup
p (A)⩽ λd(A), (2.8)
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since, for fixed t > 0,
E[log∥Φσ (t)∥]⩽ sup

σ ′∈Σ

log∥Φσ ′(t)∥.

Provided that ν is invariant for P, by classical subadditivity arguments on the function
t 7→ E[log∥Φσ (t)∥], one has

λp(ν ,µ,P,A) = lim
t→+∞

1
t
E[log∥Φσ (t)∥] = inf

t>0

1
t
E[log∥Φσ (t)∥]. (2.9)

In fact, the initial condition ν is not very important, due to the Markov property and the
ergodic behaviour within each recurrent class. More precisely, we can state the following.

Proposition 2.3. Consider the decomposition (2.4) and let τ = inf{t ⩾ 0 | σ(t) /∈ T} be
the first time at which σ reaches a recurrent class. Then, for each probability vector
ν ∈ RN ,

λp(ν ,µ,P,A) =
R

∑
i=1

Pν(σ(τ) ∈ I(i))λp(ν
[i],µ,P,A) .

Proof. Let K = maxi∈J1,NK ∥Ai∥. Then, for all σ ∈ Σ and all t,s ⩾ 0,

e−Kt∥Φσ (s)∥ ⩽ ∥Φσ (t + s)∥ ⩽ eKt∥Φσ (s)∥ . (2.10)

Fix a probability vector ν ∈ RN and let αi = Pν(σ(τ) ∈ I(i)) for i ∈ J1,RK and ν̃ =

∑
R
i=1 αiν

[i]. By standard arguments on Markov chains, denoting ν(t) = νetµ(P−I) the law
at time t of a chain associated with P with initial condition ν , then ν(t) converges to ν̃ as
t → +∞. For an arbitrary ε > 0, let t0 be such that the total variation norm of ν(t0)− ν̃

is less than ε . It means that there exist random variables σ0,σ
′
0 on J1,NK respectively

distributed according to ν(t0) and ν̃ such that P(σ0 ̸= σ ′
0)⩽ ε/2. Considering two chains

σ and σ ′ with respective initial conditions σ0 and σ ′
0 and such that, conditionally to

{σ0 = σ ′
0}, {σ(t) = σ ′(t) ∀t ⩾ 0}, we get that, for all t ⩾ t0,∣∣Eν(t0)(log∥Φσ (t − t0)∥) − Eν̃(log∥Φσ (t − t0)∥)

∣∣ ⩽ εK(t − t0) .

From (2.10), ∣∣log∥Φσ (t)∥− log∥Φσ(t0+·)(t − t0)∥
∣∣⩽ Kt0 .

Thus, using the Markov property, for all t ⩾ t0,∣∣Eν(log∥Φσ (t)∥) − Eν(t0)(log∥Φσ (t − t0)∥)
∣∣ ⩽ Kt0 .

Combining these two bounds, dividing by t, taking the limsup as t →+∞, and using that
ε is arbitrary, we get that

λp(ν ,µ,P,A) = λp(ν̃ ,µ,P,A) .

Besides, conditioning with respect to the recurrence class of the initial condition, we
immediately get that

Eν̃(log∥Φσ (t)∥) =
R

∑
i=1

αiEν [i](log∥Φσ (t)∥)

for all t ⩾ 0. Dividing by t and letting t →+∞ yield the conclusion.
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From Proposition 2.3, we deduce that λp(ν ,µ,P,A) ⩽ maxi∈J1,RK λp(ν
[i],µ,P,A).

When σ(0) is distributed according to ν [i] for some i ∈ J1,RK, σ stays for all times in
the class I(i), where Pi is strongly connected. Since we are interested in maximal values
of the Lyapunov exponent, we are going to use several times in what follows Proposi-
tion 2.3 to reduce to the strongly connected case.

3 Statements of the main results
Our main result concerning equality between λp(ν ,µ,P,A) and λd(A) for a given Markov
process (ν ,µ,P) and a given A ∈Md(R)N is the following.

Theorem 3.1. Let P ∈ MN(R) be a stochastic matrix, ν be a probability vector of RN ,
µ > 0, and A = (A1, . . . ,AN) ∈Md(R)N . Then the following statements are equivalent:

(a) λd(A) = λp(ν ,µ,P,A).

(b) For every recurrent class I of P which is accessible from ν , every k ∈N, i1, . . . , ik ∈ I,
and t1, . . . , tk ⩾ 0, it holds

ρ(eAik tk · · ·eAi1 t1) = eλd(A)(t1+···+tk).

The proof of Theorem 3.1 is the main goal of Section 4.
The sequel of the paper is motivated by the problem of characterizing equality between

λd(A) and λ
sup
p (A). A first step in that direction is to understand the behavior of sequences

(νn,µn,Pn)n∈N of Markov processes for a given A = (A1, . . . ,AN). For that purpose, we
introduce the following definition.

Definition 3.2. A convexified Markov process (x,σ) for A is a continuous-time Markov
process with modes B1, . . . ,Bk, where k ∈ J1,NK, B j ∈ co{Aℓ | ℓ ∈ I j} for j = 1, . . . ,k, and
I1, . . . , Ik are pairwise disjoint nonempty subsets of J1,NK.

We also define the quantity

λ
conv
p (A) = sup

(ν ,µ,P,B)
λp(ν ,µ,P,B), (3.1)

where the supremum is taken among all convexified Markov processes (ν ,µ,P,B) for A.

Note that the quantity λ conv
p (A) introduced above satisfies

λ
sup
p (A)⩽ λ

conv
p (A)⩽ λd(A), (3.2)

where the last inequality follows from the fact that, for every convexified Markov pro-
cesses (ν ,µ,P,B) for A, we have by (2.8) that λp(ν ,µ,P,B) ⩽ λd(B) and, in addi-
tion, λd(B) ⩽ λd(A), the latter inequality being a consequence of the fact that λd(Â) =
λd(co(Â)) for every Â ∈Md(R)N (see, e.g., [23]).

Our main result concerning convexified Markov processes is that they compactify the
space of Markov processes. More precisely, we prove the following theorem.
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Theorem 3.3. Consider a sequence (xn,σn) of Markov processes for A with parameters
(νn,µn,Pn)n∈N. Up to extracting a subsequence, there exists a convexified Markov process
(x,σ) for A such that, for all T,δ > 0,

P

(
sup

t∈[0,T ]
|x(t)− xn(t)|> δ

)
−→

n→+∞
0 .

The proof of Theorem 3.3 can be found in Section 5.
Thanks to the compactification result from Theorem 3.3, we are able to provide the

following result on the relations between λ
sup
p (A), λ conv

p (A), and λd(A). Recall that, given
a square matrix M, λ (M) denotes its spectral abscissa.

Theorem 3.4. Let A = (A1, . . . ,AN) ∈Md(R)N .

(a) The equality λd(A) = λ conv
p (A) holds true if and only if there exists M ∈ co(A) such

that λ (M) = λd(A).

(b) If λd(A) = λ
sup
p (A) then there exists M ∈ co(A) such that λ (M) = λd(A).

(c) Assume that there exists M ∈ co(A) such that λ (M) = λd(A) and that, for every
ε > 0, there exist Mε ∈ co(A) and a sequence (νn,µn,Pn)n∈N of Markov processes for A
such that ∥M−Mε∥< ε and

λ (Mε) = lim
n→∞

λp(νn,µn,Pn,A). (3.3)

Then λd(A) = λ
sup
p (A).

We conjecture that the converse of Theorem 3.4 (b) is true. However, we are only able
to prove it in low dimension, as stated in the following result.

Proposition 3.5. Let d ⩽ 3 and A ∈Md(R)N . Then λd(A) = λ
sup
p (A) if and only if there

exists M ∈ co(A) such that λ (M) = λd(A).

The proofs of Theorem 3.4 and Proposition 3.5 are provided in Section 6.

4 Characterization of equality between λd(A) and
λp(ν ,µ,P,A)

The goal of this section is to prove Theorem 3.1. We start with the particular situation in
which P is strongly connected and A is irreducible.

Proposition 4.1. Let P ∈MN(R) be a stochastic strongly connected matrix, ν a proba-
bility vector of RN , and µ > 0. Let A = (A1, . . . ,AN) ∈Md(R)N be irreducible and ∥·∥e
be an extremal norm for A. Then the following statements are equivalent:

(a) λd(A) = λp(ν ,µ,P,A).

(b) For every k ∈ N, i1, . . . , ik ∈ J1,NK, and t1, . . . , tk ⩾ 0, one has∥∥∥eAik tk · · ·eAi1 t1
∥∥∥

e
= eλd(A)(t1+···+tk).
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(c) For every k ∈ N, i1, . . . , ik ∈ J1,NK, and t1, . . . , tk ⩾ 0, one has

ρ(eAik tk · · ·eAi1 t1) = eλd(A)(t1+···+tk).

(d) Up to a common change of basis, the matrices Ai − λd(A)Id, i ∈ J1,NK, are skew-
symmetric.

Proof. Note that, in terms of the flow Φσ , items (b) and (c) can be equivalently stated by
saying that the quantities 1

t log∥Φσ (t)∥e and 1
t logρ(Φσ (t)), respectively, are independent

of t > 0 and σ ∈ Σ and are equal to λd(A).
We will first show that (a), (b), and (c) are equivalent. The fact that (b) implies (c)

follows from Gelfand’s formula for the spectral radius. To show that (c) implies (a), notice
that, for every induced norm ∥·∥ in Md(R), it follows from (c) that

λd(A) =
1
t

logρ(Φσ (t))⩽
1
t

log∥Φσ (t)∥

for every σ ∈ Σ and t > 0. Hence, by first taking the expectation with respect to σ and
then the limsup as t tends to infinity, we obtain that λd(A) ⩽ λp(ν ,µ,P,A), yielding (a)
thanks to (2.8).

Let us now prove that (a) implies (b). Without loss of generality, by Proposition 2.3,
we assume that ν is the unique invariant probability vector for P. By definition of extremal
norm, for every k ∈ N, i1, . . . , ik ∈ J1,NK, and t1, . . . , tk ⩾ 0, one has∥∥∥eAik tk · · ·eAi1 t1

∥∥∥
e
⩽ eλd(A)(t1+···+tk),

which can be equivalently rewritten as

1
t

log∥Φσ (t)∥e ⩽ λd(A), (4.1)

for every t > 0 and σ ∈ Σ.
Arguing by contradiction, there exist k ∈ N, i1, . . . , ik ∈ J1,NK, and t1, . . . , tk ⩾ 0 such

that ∥∥∥eAik tk · · ·eAi1 t1
∥∥∥

e
< eλd(A)(t1+···+tk). (4.2)

We claim that, with no loss of generality, pi1i2 · · · pik−1ik > 0. Indeed, if it were not the case,
then piℓiℓ+1 = 0 for some ℓ ∈ J1,k− 1K. Since P is strongly connected, there exist r ∈ N
and j1, . . . , jr ∈ J1,NK such that j1 = iℓ, jr = iℓ+1, and p j1 j2 · · · p jr−1 jr > 0. Letting s1 = tℓ,
sr = tℓ+1, and s2 = · · · = sr−1 = 0, we may then replace eAiℓ+1 tℓ+1eAiℓ tℓ by eA jr sr · · ·eA j1s1

in (4.2). Repeating the previous construction for every ℓ such that piℓiℓ+1 = 0, the claim is
proved. Note also that, by continuity, (4.2) holds for an open subset of times t1, . . . , tk in
(0,+∞)k. We have thus proved that there exists t > 0 and a set of positive probability of
signals σ ∈ Σ such that

1
t

log∥Φσ (t)∥e < λd(A).

Combining with (4.1), we deduce from (2.9) that λp(ν ,µ,P,A)< λd(A).
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To prove that (d) implies (c), notice that, if Ai −λd(A)Id is skew-symmetric for every
i ∈ J1,NK, then, for every k ∈ N, i1, . . . , ik ∈ J1,NK, and t1, . . . , tk ⩾ 0, the matrix

e(Aik−λd(A)Id)tk · · ·e(Ai1−λd(A)Id)t1 = eAik tk · · ·eAi1 t1e−λd(A)(t1+···+tk)

is the product of orthogonal matrices, hence it is itself orthogonal and its spectral radius
is equal to 1. The conclusion follows.

Finally, to prove that (c) implies (d), notice that the semigroup

{e(Aik−λd(A)Id)tk · · ·e(Ai1−λd(A)Id)t1 | k ∈ N, i1, . . . , ik ∈ J1,NK, t1, . . . , tk ⩾ 0}

is irreducible since A is irreducible. Moreover, (c) is equivalent to saying that the above
semigroup has constant spectral radius. Then, using [21, Theorem 2], we deduce that, up
to a common change of basis, e(Ai−λd(A)Id)t is orthogonal for every i ∈ J1,NK and t ⩾ 0,
yielding the conclusion.

Remark 4.2. The equivalences between (a), (b), and (c) only rely on the extremality of
the norm ∥·∥e for A, and hence hold under the weaker assumption that A is nondefective
instead of irreducible (cf. Remark 2.2). Notice also that the proof that (c) implies (a)
requires neither the irreducibility of A nor the strong connectedness of P.

In the next result, we extend Proposition 4.1 to the more general case where A is not
necessarily irreducible, but P is still assumed to be strongly connected.

Proposition 4.3. Let P ∈MN(R) be a stochastic strongly connected matrix, ν be a prob-
ability vector of RN , µ > 0, and A = (A1, . . . ,AN) ∈Md(R)N . Then the following state-
ments are equivalent:

(a) λd(A) = λp(ν ,µ,P,A).

(b) For every k ∈ N, i1, . . . , ik ∈ J1,NK, and t1, . . . , tk ⩾ 0, it holds

ρ(eAik tk · · ·eAi1 t1) = eλd(A)(t1+···+tk).

Proof. As in the proof of Proposition 4.1, thanks to Proposition 2.3, we can suppose
that ν is the unique invariant measure of P. Due to Remark 4.2, we are only left to
show that (a) implies (b). As in [7, Lemma 3.5], a key ingredient of the argument is a
simultaneous block decomposition of the matrices A1, . . . ,AN . The idea is the following:
if A1, . . . ,AN admit a common proper subspace V of dimension d′, then, up to a linear
change of coordinates corresponding to a basis of Rd consisting of a basis of V in its
first d′ elements, each matrix A j can be written as

(
B j C j
0 D j

)
for some matrices B j,C j,D j,

j ∈ J1,NK, with B j ∈Md′(R). By an immediate inductive argument, up to a linear change
of coordinates, A1, . . . ,AN can be presented in block-triangular form as

A j =



A(1)
j ∗ ∗ · · · ∗
0 A(2)

j ∗ · · · ∗

0 0 A(3)
j

. . . ∗
...

... . . . . . . ...
0 0 0 · · · A(S)

j


, j ∈ J1,NK, (4.3)
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for some appropriate integer S, with A(s) = (A(s)
1 , . . . ,A(s)

N ) irreducible for every s ∈ J1,SK.
Both deterministic and probabilistic Lyapunov exponents are obtained as maxima of the
corresponding Lyapunov exponents over the diagonal blocks (see, e.g., [6, Proposition 2]
for the deterministic case and [15] for the probabilistic one). Notice also that, for every
k ∈ N, i1, . . . , ik ∈ J1,NK, and t1, . . . , tk ⩾ 0, it holds

λd(A)⩾
logρ

(
eAik tk · · ·eAi1 t1

)
t1 + · · ·+ tk

= max
s∈J1,SK

logρ

(
eA(s)

ik
tk · · ·eA(s)

i1
t1
)

t1 + · · ·+ tk
, (4.4)

where the inequality comes from (2.3) and the equality follows from the simple fact that
the spectral radius of a block-triangular matrix is equal to the maximum of the spectral
radii over the diagonal blocks.

Let s ∈ J1,SK be the index such that λp(ν ,µ,P,A) = λp(ν ,µ,P,A(s)) and notice that,
thanks to (a) and (2.8), λd(A) = λd(A(s)). By Proposition 4.1 and (4.4), we deduce that,
for every k ∈ N, i1, . . . , ik ∈ J1,NK, and t1, . . . , tk ⩾ 0, it holds

λd(A) = λd(A(s)) =
logρ

(
eA(s)

ik
tk · · ·eA(s)

i1
t1
)

t1 + · · ·+ tk
⩽

logρ

(
eAik tk · · ·eAi1 t1

)
t1 + · · ·+ tk

⩽ λd(A),

yielding (b).

Remark 4.4. As a byproduct of the block-decomposition argument in the above proof,
we get another statement equivalent to (a) and (b): there exist a linear change of variables
and p ∈ J1,dK such that, for every i ∈ J1,NK,

Ai −λd(A)Id =

(
∗ ∗
0 Bi

)
with Bi a p× p skew-symmetric matrix.

Moreover, any of the previous statements implies that

λ (M) = λd(A), ∀M ∈ co(A).

Indeed, write M = β1A1+ · · ·+βNAN with β1, . . . ,βN ∈ [0,1] and β1+ · · ·+βN = 1. Take
k = N and i j = j and t j = tβ j for j ∈ J1,NK in (b). The conclusion follows by letting
t → 0.

Finally, we can turn to the proof of Theorem 3.1.

Proof of Theorem 3.1. According to Proposition 2.3, (a) is equivalent to the fact that for
all i ∈ J1,RK such that I(i) is accessible from ν , λd(A) = λp(ν

[i],µ,P,A). Replacing
P by Pi and A by (A j) j∈I(i), we are in a strongly connected case and Proposition 4.3
concludes.
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5 Compactification of the space of Markov processes
The aim of this section is to prove Theorem 3.3, that is, that any sequence (νn,µn,Pn)n∈N
of Markov processes for A = (A1, . . . ,AN) admits a subsequence converging in law to a
convexified Markov process for A.

Notice that an important difference from more classical averaging results (such as [4,
Section 2.5] or [5, Corollary 2.15]) is that Pn is not fixed and, in particular, the jump rates
µn(Pn)i, j may have different asymptotic behaviours as n goes to infinity depending on i, j,
which is why, when limn→∞ µn =+∞, the limit process is not necessarily a deterministic
ODE ẋ = Mx for some M ∈ co(A).

5.1 Convexified Markov processes as limits of Markov processes
First, let us show that any convexified Markov process for A can be obtained as the limit
of a sequence of Markov processes for A. For the sake of clarity, let us stress that we only
consider here the convergence of the continuous component x(·).

Proposition 5.1. Let (x,σ) be a convexified Markov process for A. Then there exists a
sequence (xn,σn)n∈N of Markov processes for A such that, for all T,δ > 0,

P

(
sup

t∈[0,T ]
|x(t)− xn(t)|> δ

)
−→

n→+∞
0 .

Proof. Denote by B1, . . . ,Bk the modes of (x,σ) with Br = ∑ j∈Ir πr( j)A j, where I1, . . . , Ik
are pairwise disjoint nonempty subsets of J1,NK and, for all r ∈ J1,kK, πr is a probability
measure on Ir. In particular, (σ(t))t⩾0 is a continuous-time Markov chain on J1,kK. De-
note by µ its jump rate, P its transition matrix, and ν its initial probability law. Let T0 = 0
and (Tm)m⩾0 be the jump times of σ , so that (Tm+1 −Tm)m∈N is an i.i.d. sequence of ran-
dom variables distributed according to the exponential law with parameter µ > 0. We will
construct for all n ∈ N a Markov chain (σn(t))t⩾0 on J1,NK such that σn(t) ∈ Iσ(t) for all
t ⩾ 0 and which is moreover re-sampled at rate n according to πσ(Tm) between consecutive
slow jump times Tm and Tm+1.

More precisely, let (Nt)t⩾0 be a standard Poisson process with intensity 1 and U =
(Up,r)p∈N,r∈J1,kK be a family of independent random variables such that, for all p ∈ N
and r ∈ J1,kK, Up,r takes values in Ir and is distributed according to πr, with moreover
(Nt)t⩾0, U, and σ independent. For all n ∈ N and t ⩾ 0, set Mn

t = Nnt +∑m∈N1t⩾Tm , so
that (Mn

t )t⩾0 is a Poisson process with intensity µ + n such that that all jumps of σ are
jumps of Mn. For all n ∈ N and t ⩾ 0, set σn(t) = UMn

t ,σ(t).
Then, for all n ∈ N, (σn(t))t⩾0 is a Markov chain on J1,NK with initial condition νn

and jump rates λn(i, j) for i, j ∈ J1,NK given as follows:

• for all i ∈ J1,NK, νn(i) = ν(r)πr(i) if i ∈ Ir with r ∈ J1,kK;

• for all r ∈ J1,kK and all i, j ∈ Ir, λn(i, j) = nπr( j);

• for all distinct r,s ∈ J1,kK and all i ∈ Ir, j ∈ Is, λn(i, j) = µπs( j)P(r,s);

• for all i /∈ I :=
⋃k

r=1 Ir and all j ∈ J1,NK, λn(i, j) = λn( j, i) = 0.
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Remark that, for all n ∈N and t ⩾ 0, σn(t) ∈ Iσ(t) (and in particular σn(t) ∈ I), so that
σ is completely determined by σn.

The proof is then similar to [5, Lemma 2.14]. From [13, Chapter 2, Theorem 1.3], it is
sufficient to prove that for all t0,T > 0,

r t0+T
t0

Aσn(s) ds converges in probability as n → ∞

towards
r t0+T

t0
Bσ(s) ds, uniformly with respect to t0. As in the proof of [5, Lemma 2.14],

it is thus sufficient to prove that, for all r ∈ J1,kK and all j ∈ Ir,
r t0+T

t0
1σn(s)= j ds converges

in probability as n → ∞ towards πr( j)
r t0+T

t0
1σ(s)=r ds, uniformly with respect to t0. By

the Markov property, for all δ > 0,

P
(∣∣∣∣w t0+T

t0

(
1σn(s)= j −πr( j)1σ(s)=r

)
ds
∣∣∣∣> δ

)
⩽ sup

i∈I
Pi

(∣∣∣∣w T

0

(
1σn(s)= j −πr( j)1σ(s)=r

)
ds
∣∣∣∣> δ

)
,

where we recall that the subscript i denotes the conditioning σn(0) = i.
Let R be a positive integer. For all b ∈ J0,R−1K and all t ⩾ bT/R, denote

σ̃
b
n (t) = UNnt−NnbT/R+Mn

bT/R,σ(bT/R).

In other words, σ̃b
n (t) is initialized at time bT/R with σ̃b

n (bT/R) = σn(bT/R) and then
is re-sampled on Iσ(bT/R) at each jump of Nnt . In particular, up to inf{Tm | m ∈ N, Tm >

bT/R}, the first slow jump time after time bT/R, we have σn = σ̃b
n . In particular, σn

and σ̃b
n coincide on the interval [bT/R,(b+1)T/R] if the latter does not contain any slow

jump time Tm. Hence, using the identity πr( j)1r′=r = πr′( j), we deduce the bound∣∣∣w T

0

(
1σn(s)= j −πr( j)1σ(s)=r

)
ds
∣∣∣

⩽
R−1

∑
b=0

∣∣∣∣w (b+1)T/R

bT/R

(
1σn(s)= j −πr( j)1σ(s)=r

)
ds
∣∣∣∣

⩽
T
R ∑

m∈N
1Tm⩽T +

R−1

∑
b=0

∣∣∣∣w (b+1)T/R

bT/R

(
1σ̃b

n (s)= j −πσ(bT/R)( j)
)

ds
∣∣∣∣.

Consider the events

Ab =

{∣∣∣∣w (b+1)T/R

bT/R

(
1σ̃b

n (s)= j −πσ(bT/R)( j)
)

ds
∣∣∣∣> δ

2R

}
for all b ∈ J0,R−1K and

AR =

{
T
R ∑

m∈N
1Tm⩽T >

δ

2

}
.

Then {∣∣∣∣w T

0

(
1σn(s)= j −πr( j)1σ(s)=r

)
ds
∣∣∣∣> δ

}
⊂

R⋃
b=0

Ab
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and thus

Pi

(∣∣∣∣w T

0

(
1σn(s)= j −πr( j)1σ(s)=r

)
ds
∣∣∣∣> δ

)
⩽

R

∑
b=0

Pi(Ab) .

Since the number of jumps occurring before time T follows a Poisson distribution with
intensity T µ ,

Pi(AR) ⩽
2TE(∑m∈N1Tm⩽T )

δR
⩽

2T 2µ

δR
.

Moreover, conditioning on the value σn(bT/R), we get that for all i ∈ I and b ∈ J0,R−1K,

Pi(Ab) ⩽ sup
u∈I

Pu

(∣∣∣∣w T/R

0

(
1σ̃0

n (s)= j −πσ(0)( j)
)

ds
∣∣∣∣> δ

2R

)
⩽

4R2

δ 2 sup
u∈I

Eu

(∣∣∣∣w T/R

0

(
1σ̃0

n (s)= j −πσ(0)( j)
)

ds
∣∣∣∣2
)
.

It only remains to prove that for all u ∈ I the expectation vanishes as n →+∞. Indeed, in
that case, we obtain that for all T,δ ,R > 0,

limsup
n→+∞

sup
i∈I

Pi

(∣∣∣∣w T

0

(
1σn(s)= j −πr( j)1σ(s)=r

)
ds
∣∣∣∣> δ

)
⩽

2T 2µ

δR
,

yielding the conclusion, since the left-hand side does not depend on R, which can thus be
taken arbitrarily large.

Let us fix r ∈ J1,kK and u ∈ Ir, and work conditionally to {σn(0) = u}. Under this
event, σ̃0

n is simply a Markov chain starting at u and re-sampled according to πr at rate
n. We are back to a problem similar to [5, Lemma 2.14], and follow the same proof. In
particular, for all j ∈ Ir,

Pu(σ̃
0
n (t) = j) = e−nt

1 j=u +(1− e−nt)πr( j) ,

and thus ∣∣∣∣Eu

(w T/R

0

(
1σ̃0

n (s)= j −πr( j)
)

ds
)∣∣∣∣ ⩽ w T/R

0
e−ns ds ⩽

1
n
.

Similarly

Eu

((w T/R

0
1σ̃0

n (s)= j ds
)2
)

=
w T/R

0

w T/R

0
Pu(σ̃

0
n (s) = j, σ̃

0
n (t) = j)dsdt

= 2
w T/R

0

w t

0
Pu(σ̃

0
n (s) = j, σ̃

0
n (t) = j)dsdt .

For all s < t,

|Pu
(
σ̃

0
n (s) = j, σ̃

0
n (t) = j

)
−πr( j)2|

=
∣∣∣(e−ns

1 j=u +(1− e−ns)πr( j)
)(

e−n(t−s)+(1− e−n(t−s))πr( j)
)
−πr( j)2

∣∣∣
⩽ e−nt

1 j=u + e−ns(1− e−n(t−s))1 j=uπr( j)+(1− e−ns)e−n(t−s)
πr( j)

+
∣∣∣(1− e−ns)(1− e−n(t−s))−1

∣∣∣πr( j)2

⩽ e−nt+2e−ns +2e−n(t−s) ,
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so that ∣∣∣∣∣Eu

((w T/R

0
1σ̃0

n (s)= j ds
)2
)
−T 2

πr( j)2/R2

∣∣∣∣∣ −→
n→+∞

0 .

This concludes since, denoting Zn =
r T/R

0 1σ̃0
n (s)= j ds, we have then obtained that

Eu

(
|Zn −T πr( j)/R|2

)
= Eu(Z2

n)−2T πr( j)Eu(Zn)/R+T 2
πr( j)2/R2

−→
n→+∞

T 2
πr( j)2/R2 −2T 2

πr( j)2/R2 +T 2
πr( j)2/R2 = 0 .

5.2 Convexified Markov processes compactify the space of Markov
processes

We now want to prove a converse of Proposition 5.1, namely that, from any sequence
(xn)n∈N of Markov processes for A, we can extract a subsequence that converges to a
convexified process, cf. Theorem 3.3 below. We start by treating separately the simple
case where the maximal jump rate µn is bounded.

Proposition 5.2. Consider a sequence of parameters (νn,µn,Pn)n∈N of Markov processes
for A. Suppose that (µn)n∈N is bounded. Then, up to extracting a subsequence, there exist
parameters (ν ,µ,P) of a Markov process for A such that the following holds: There exist
Markov processes (xn,σn)n∈N and (x,σ) associated respectively with (νn,µn,Pn)n∈N and
(ν ,µ,P) such that, for all T > 0 and δ > 0,

P

(
sup

t∈[0,T ]
|x(t)− xn(t)|> δ

)
−→

n→+∞
0 .

Proof. Up to an extraction we can suppose that νn, µn, and Pn have limits as n →+∞ (in
fact it would have been sufficient to assume that liminfn→+∞ µn < +∞), that we denote
by ν , µ , and P, respectively.

We are going to prove that for all T,ε > 0, there exists n0 ∈N such that, for all n ⩾ n0,
there exist Markov processes (xn,σn) and (x,σ) associated respectively with (νn,µn,Pn)
and (ν ,µ,P) such that

P(x(t) = xn(t), ∀t ∈ [0,T ]) ⩾ 1− ε .

Remark that, in this statement, (x,σ) may depend on n. Nevertheless, this yields the
convergence of the distribution of (xn(t))t⩾0 to the distribution of (x(t))t⩾0 on all compact
time intervals. The result then follows from Skorokhod’s representation theorem.

The proof relies on a synchronous coupling of the Markov chains, namely, for each n∈
N, we can define simultaneously two Markov processes (zn(t))t⩾0 := (xn(t),σn(t))t⩾0 and
(z(t))t⩾0 := (x(t),σ(t))t⩾0 associated respectively with (νn,µn,Pn) and (ν ,µ,P) on the
same probability space in such a way that they have the same initial value with maximal
probability (i.e., P(zn(0) ̸= z(0)) = |ν −νn|1/2) and that, as long as they stay at the same
position, they jump as much as possible at the same times and to the same locations. The
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precise construction of this coupling is given in [12, Section 6], to which we refer for
details. The Markov generator L on Rd × J1,NK associated with (z(t))t⩾0 is given by

L f (x,σ) = (Aσ x) ·∇x f (x,σ)+µ

N

∑
j=1

(P)σ , j( f (x, j)− f (x,σ)) ,

and similarly for the generator Ln of zn. Then

εn := sup
∥ f∥∞⩽1

∥L f −Ln f∥∞ ⩽ 2|µn −µ|+2µ∥Pn −P∥1 −→
n→+∞

0 .

From [12, Theorem 11],

P(∃t ∈ [0,T ], x(t) ̸= xn(t))⩽ P(zn(0) ̸= z(0))+1− e−εnT −→
n→+∞

0 .

For the rest of this section we consider a given sequence (νn,µn,Pn)n∈N of Markov
processes for A such that, for at least a pair (i, j) of distinct elements of J1,NK, the jump
rate λn(i, j) = µn(Pn)i, j is unbounded. We will repeatedly consider successive extractions
of this sequence and keep writing them (νn,µn,Pn)n∈N. First, up to extracting a subse-
quence, we suppose that λn(i, j)→+∞ for some distinct i, j.

1 2

34

√
n

n
anan√

n

n

Figure 5.1: A chain on J1,4K whose jump rates all go to +∞.

As in the proof of Proposition 5.1, we would like to separate in the chain fast tran-
sitions that happen in arbitrarily small time as n → +∞ and slow transitions. It is not
sufficient to consider the pairs (i, j) such that λn(i, j)→+∞ or such that λn(i, j) is of the
order of µn. Indeed, consider the example given in Figure 5.1, where the values over the
arrows denote the jump rates and we assume that an goes to infinity as n →+∞ with the
assumption that limn→+∞

an
n = 0. For instance, starting from the state 2, the Markov chain

will go to 1 with high probability (for large n). Then, each time it will go back to state 2,
it will have a probability an/(n+ an) to go to state 3, from which it will go very fast to
state 4 with high probability. Since the time taken by transitions from 2 to 1, of order 1/n,
is negligible with respect to the time taken by transitions from 1 to 2 which is of order
1/
√

n, and since the number of transitions from 1 to 2 before the chain reaches 3 follows
a geometric law with parameter an/(n+an), the typical time to see a transition between
1 and 4 is of order

√
n/an. If an = n1/3, for large n, it is unlikely to see such a transition

before a given time T (independent of n), so that the corresponding Markov process xn
is expected to converge to the deterministic solution of ẋ = A1x. If an = n2/3, transitions
between 1 an 4 get arbitrarily fast for large n and a fast averaging phenomenon leads to
ẋ = [(A1 +A4)/2]x (the time spent in 2 and 3 being negligible). If an =

√
n, transitions
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between 1 and 4 occur at a rate of order 1, so the limit process is ẋ = Aσ x, where σ is an
irreducible Markov chain on {1,4}.

Trying to adapt this analysis to a general chain leads to a recursive construction of
several timescales at which different transitions occur. Such a rigorous construction is
precisely the topic of the work [19] by Landim and Xu (itself based on [3] which deals
with reversible Markov chains), upon which we will rely. Nevertheless, stated as they are,
the results of [19] do not fully match our needs. For this reason, we sightly reformulate
them below.

Let us check that the assumptions of [19] are satisfied (at least up to extracting a
subsequence). The first one is that the chain is strongly connected for all n ∈N. This does
not necessarily hold in our case, but we will be able to reduce the problem to this case by
a standard argument, see the proof of Theorem 3.3. For this reason, we can suppose that
Pn is strongly connected for all n ∈ N.

Up to extracting a subsequence, we can suppose that

∀(i, j) ∈ J1,NK2 ,

{
either λn(i, j) = 0 ∀n ∈ N,
or λn(i, j)> 0 ∀n ∈ N,

(5.1)

and we denote B = {(i, j) ∈ J1,NK2 | λn(i, j) > 0 ∀n ∈ N}. Notice that, the chains being
strongly connected, necessarily B ̸= /0.

Definition 5.3. For r ⩾ 2, a family {(ai
n)n∈N}i∈J1,rK of positive sequences is said to be

ordered if arctan(ai
n/a j

n) converges as n →+∞ for all i, j ∈ J1,rK.
For a pair of ordered positive sequences we write an ≪ bn (resp., ≃,≫) if an/bn → 0

(resp., 1, +∞) as n →+∞.

Two positive sequences form an ordered pair up to extracting a subsequence, and the
same is true for a finite family of sequences. As a consequence, denoting by Am, for all
m ∈ N, the set of functions k : B → N such that ∑(i, j)∈B k(i, j) = m, we see that, up to
extracting a subsequence, by a diagonal argument,

∀m ∈ N,


(

∏
(i, j)∈B

λn(i, j)k(i, j)

)
n∈N


k∈Am

is ordered, (5.2)

which is [19, Assumption 2.6].
Let us now describe the consequences of this, established in [19]. The following result

is an adaptation from Theorems 2.1, 2.7, and 2.12 of [19]. As such an adaptation requires
the introduction of several definitions and notations, it is postponed to Appendix A.

Theorem 5.4. Consider for all n ∈ N a strongly connected Markov chain (σn(t))t⩾0
on J1,NK with jump rates (λn(i, j))i, j∈J1,NK. Under conditions (5.1) and (5.2), there
exist p ⩾ 1, a decreasing sequence n1, . . . ,np+1 in J1,NK, a family of p+ 1 partitions
{E j

1, . . . ,E
j
n j ,∆

j} of J1,NK, j ∈ J1,p+ 1K, and p positive sequences θ j = (θ
j

n )n∈N, j ∈
J1,p+1K, with the following properties:

(a) The timescales θ j are increasing with respect to j, in the sense that for all j ∈
J1,p− 1K, θ

j
n ≪ θ

j+1
n . Moreover, the fastest timescale θ 1 is obtained by taking 1/θ 1

n =

∑
N
i, j=1 λn(i, j) for all n ∈ N.

19



(b) Denote, for all i ∈ J1,NK and j ∈ J1,p+1K,

Ψ
j(i) =

n j

∑
x=1

x1i∈E j
x
,

which we call the coarse-grained variable at level j. For all j ∈ J1,pK, the transitions of
Ψ j(σn) occur at the timescale θ j, and are approximately Markovian, in the sense that
there exists a Markov chain (X j(t))t⩾0 on J1,n jK that has at least one nonzero jump rate
and such that, for all x,y ∈ J1,n jK, i ∈ E

j
x, and t > 0,

Pi
(
Ψ

j(
σn(tθ j

n )
)
= y
)

−→
n→+∞

Px
(
X j(t) = y

)
(5.3)

and, for all δ > 0,

Pi

(∣∣∣w t

0

(
1

Ψ j(σn(sθ
j

n ))=y −1X j(s)=y

)
ds
∣∣∣> δ

)
−→

n→+∞
0 . (5.4)

More generally, (5.3) and (5.4) still hold if θ
j

n is replaced by θ̃
j

n with θ̃
j

n ≃ θ
j

n .

(c) There are no transitions between two successive timescales θ j and θ j+1 or at a
larger timescale than θ p, in the sense that, for all j ∈ J1,pK, for all positive sequence
(αn)n∈N with θ

j
n ≪ αn ≪ θ

j+1
n (where, for j = p, we set θ

p+1
n = +∞ for all n ∈ N), for

all x,y ∈ J1,n j+1K, i ∈ E
j+1
x , and t > 0,

Pi
(
Ψ

j+1(σn(tαn)) = y
)

−→
n→+∞

1x=y

and for all δ > 0,

Pi

(∣∣∣w t

0
1Ψ j+1(σn(sαn))=y ds− t1x=y

∣∣∣> δ

)
−→

n→+∞
0 .

(d) The time spent in ∆ j at a scale larger than θ j−1 is negligible, in the sense that for all
j ∈ J2,pK, all positive sequence (αn)n∈N with θ

j−1
n ≪ αn and t ⩾ 0,

max
i∈J1,NK

Ei

(w t

0
1σn(sαn)∈∆ j ds

)
−→

n→+∞
0 .

(e) For j = 1, we have n1 = N, E1
i = {i} for every i ∈ J1,NK (i.e., all the points are

separated), and ∆1 = /0. Then, the partitions get coarser and are given by the recurrence
classes of the limit chains. More precisely, for all j ∈ J1,pK, the limit chain X j admits n j+1

recurrence classes C j
1, . . . ,C

j
n j+1 , and for all x ∈ J1,n j+1K, E j+1

x =
⋃

y∈C j
x
E

j
y. Similarly, the

set ∆ j is increasing, and is given by the transient points of X j. More precisely, denoting
T j the set of transient points of X j, then ∆ j+1 = ∆ j ∪

(⋃
y∈T j

E
j
y

)
. In particular, for all

j ∈ J1,p+ 1K and all x ∈ J1,n jK, E j
x ̸= /0 (while possibly ∆ j = /0). The last partition is

trivial, in the sense that np+1 = 1.
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(f) For all j ∈ J1,p+ 1K and all x ∈ J1,n jK, consider the escape time τ
j

x = inf{t > 0 |
σn(t) /∈ E

j
x ∪∆ j}. For all j ∈ J1,pK, x ∈ J1,n jK, and all initial conditions i ∈ E

j
x, τ

j
x/θ

j
n

converges in law towards an exponential distribution with some parameter r ⩾ 0 (where
r = 0 means that τ

j
x/θ

j
n →+∞ in probability). For j = p+1, for all x ∈ J1,np+1K and all

initial conditions i ∈ E
p+1
x , almost surely τ

p+1
x =+∞.

Remark 5.5. To help clarify the notations introduced in Theorem 5.4, its construction is
illustrated in Figure 5.2.

Figure 5.2 (a) illustrates the first step of the construction, representing in blue the
states of σn, i.e., the elements of J1,NK identified with E1

1, . . . ,E
1
N . We only represent the

fastest transitions of σn (black arrows), i.e., the transition whose rates are of the same
order as the total jump rate of σn, which we call 1/θ 1

n . This defines recurrence classes (in
dashed lines) and transient states. We call ∆2 the set of transient states, and E2

1,E
2
2,E

2
3,E

2
4

the recurrence classes. After rescaling the time by θ 1
n , σn converges to some Markov

chain X1 on J1,NK.
Figure 5.2 (b) represents the second step of the construction. At a timescale larger than

θ 1
n , the time spent in ∆2, the transient states of X1, is negligible and σn is averaged within

the recurrence classes, so that we can approximately consider that the “macroscopic
states” are the recurrence classes E2

1,E
2
2,E

2
3,E

2
4 (corresponding to the coarse-grained vari-

able Ψ2(σn)). We can now consider the first timescale θ 2
n at which transitions between

these macroscopic states (the black arrows in Figure 5.2 (b)) occur. Remark that, during
any such a transition, σn may have to cross ∆2. These transitions define a new Markov
chain over the macroscopic states. More precisely, after rescaling the time by θ 2

n , Ψ2(σn)
converges to some Markov chain X2 on {1,2,3,4}. In this example, the recurrence classes
of X2 are C2

1 = {1,2} and C2
2 = {4}, corresponding to the sets E3

1 = E2
1 ∪E2

2 and E3
2 = E2

4
(in dashed lines). The last macroscopic state, E2

3, is transient for X2, so ∆3 = ∆2 ∪E2
3 is

the set of states that are negligible for any timescale larger than θ 2
n .

The third step of the construction is represented in Figure 5.2 (c). At a timescale larger
than θ 2

n , the time spent in ∆3 is negligible and the chain σn is averaged within either E3
1

or E3
2. So, at this scale, there are two macroscopic states. The next timescale is given

by the transitions between them (afterwards, only one class remains and the construction
stops, in other words here p = 3). Besides, we are not interested in these transitions if
they occur at a timescale larger than O(1) since, in this case, they are not seen in the limit
convexified process.

From now on, we suppose that the sequence (νn,µn,Pn)n∈N is such that µn →+∞, that
Pn is strongly connected for all n ∈ N, and that (5.1) and (5.2) hold, so that Theorem 5.4
holds. Up to extracting a subsequence, we assume that for all j ∈ J1,pK, the sequence θ j is
monotone (and in particular admits a limit in [0,+∞]). Since we assumed that µn →+∞,
necessarily θ 1

n → 0. Let h = max{ j ∈ J1,pK | θ
j

n → 0}, so that θ h is the slowest of all the
fast scales of the chain. We now have to distinguish whether there are slow transitions
(i.e., occurring at a time of order 1 with respect to n) or not.

• Case 1. If h = p then by Theorem 5.4 (c) , for any sequence αn ≃ 1 ≫ θ
p
n , for all

t > 0, Ψh+1(σn(tαn)) converges in law to the value at time t of the constant Markov
chain on {1} (since, by Theorem 5.4(e), np+1 = 1).
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Figure 5.2: Construction of Theorem 5.4, described in Remark 5.5.

• Case 2. If h < p and θ h+1
n does not converge to +∞ as n → +∞, then it converges

to some θ∗ > 0. In particular, for all αn ≃ 1 and t > 0, Ψh+1(σn(tαn)) converges in
law towards Xh+1(t/θ∗).

• Case 3. If h < p and θ h+1
n → +∞ as n → +∞ then, as in the first case, by The-

orem 5.4 (c), for any sequence (αn)n∈N with θ h
n ≪ αn ≃ 1 ≪ θ h+1

n , for all t > 0,
Ψh+1(σn(tαn)) converges in law to the value at time t of the constant Markov chain
on J1,nh+1K.

Summarizing the above three cases, there is a Markov chain on J1,nh+1K, that we
denote (X̃h+1(t))t⩾0, such that, for all sequence αn ≃ 1, t > 0, x,y ∈ J1,nh+1K and i ∈
Eh+1

x ,
Pi

(
Ψ

h+1(σn(tαn)) = y
)

−→
n→+∞

Px

(
X̃h+1(t) = y

)
.

Reasoning similarly, we can ensure, in addition, that for all δ > 0,

Pi

(∣∣∣w t

0

(
1Ψh+1(σn(sαn))=y −1X̃h+1(s)=y

)
ds
∣∣∣> δ

)
−→

n→+∞
0 . (5.5)

Moreover, from Theorem 5.4 (d), for all sequences αn ≃ 1 and t ⩾ 0,

max
i∈J1,NK

Ei

(w t

0
1σn(sαn)∈∆h+1 ds

)
−→

n→+∞
0 . (5.6)

By analogy with the proof of Proposition 5.1, the transitions of X̃h+1 will play the
role of the slow transition (at rate µ in Proposition 5.1). It remains to identify a Markov
chain that plays the same role as σ̃b

n in the proof of Proposition 5.1, namely a Markov
chain that is equal to σn up to the first slow transition and that mixes fast within the sets
Eh+1

x , x ∈ J1,nh+1K. We could consider the trace process of σn on Eh+1
x (see Section A for

the definition), but for simplicity (in order to avoid the question of time change) we will
consider another process.
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For all z ∈ J1,nh+1K, fix some iz ∈ Eh+1
z (for instance, iz = minEh+1

z ). We denote by

σ̃ z
n the Markov chain on E

h+1
z := Eh+1

z ∪∆h+1 with jump rates λ̃n defined as follows:

• λ̃n(i, j) = λn(i, j) for all i, j ∈ E
h+1
z with j ̸= iz;

• λ̃n(i, iz) = λn(i, iz)+∑k/∈Eh+1
z

λn(i,k) for all i ∈ E
h+1
z .

In other words, starting at a point of E
h+1
z , σ̃ z

n has the same transitions as σn except that

all transitions that would leave E
h+1
z are replaced by a transition to iz. By Theorem 5.4 (f),

from an initial condition in Eh+1
z , the first transition of σn out of E

h+1
z occurs at a rate at

most of order 1 (in n as n → ∞). On the other hand, let us prove that the mixing time of σ̃ z
n

is of order θ h
n (in the sense of Equation (5.7) below). Denote by (Pn,z

t )t⩾0 the semigroup
associated with σ̃ z

n, i.e., Pn,z
t (i, j) = P(σ̃ z

n(t) = j|σ̃ z
n(0) = i) for all i, j ∈ E

h+1
z .

Proposition 5.6. There exist ρ,C > 0 such that for all z ∈ J1,nh+1K and all n ∈ N,
(Pn,z

t )t⩾0 admits a unique invariant probability measure πz
n on E

h+1
z and, for all t ⩾ 0

and all i ∈ E
h+1
z ,

|Pn,z
t (i, ·)−π

z
n| ⩽ Ce−ρt/θ h

n . (5.7)

Proof. The statement does not depend on the norm used in the left hand side of (5.7). In
the following, we consider the total variation distance |x|= ∑

N
i=1|xi|.

Since there is a finite number of values z ∈ J1,nh+1K, it is sufficient to prove the result
for each one, so let z be fixed.

Assuming that Pn,z
4θ h

n
satisfies the Doeblin condition

liminf
n→+∞

min
i∈Eh+1

z

Pn,z
4θ h

n
(i, iz) > 0 , (5.8)

we deduce the conclusion of the proposition by the following classical argument. By
(5.8), Pn,z has a unique recurrence class, since all points can go to iz, and thus a unique
invariant measure πz

n (supported by this recurrence class). Let α ∈ (0,1) be such that, for
n large enough,

min
i∈Eh+1

z

Pn,z
4θ h

n
(i, iz)⩾ α .

For the the total variation, we have (see e.g. [11, Theorem S7] with V = 1)

sup
i∈Eh+1

z

|Pn,z
t (i, ·)−π

z
n| ⩽ 2(1−α)⌊t/(4θ h

n )⌋ ⩽
2

1−α
et ln(1−α)/(4θ h

n ) ,

which concludes the proof of (5.7).
We are left to prove that (5.8) holds true and for that purpose we introduce some useful

notations. In the sequel we say that a sequence (an)n∈N is nonvanishing if liminfn→+∞ an
> 0. Let x1, . . . ,xh+1 be such that

iz ∈ E1
x1
⊂ ·· · ⊂ Eh+1

xh+1
.
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i

iz

Figure 5.3: At the timescale θ 1, the state iz, which is also E1
iz , is averaged in some recur-

rence class E2
x2

(in yellow). Then, at the slower timescale θ 2, this class is itself averaged
with other yellow classes, in a coarser E3

x3
(in green) which is itself averaged at the slower

timescale θ 3 with some other green classes to give a coarser E4
x4

(in blue). Here, h = 3,
i.e., there is no more fast averaging (there may be slow transitions at order 1 between
several blue classes, but we do not consider them here). Now, starting from some point
i (in ∆4 here), after a time θ 3, the chain σn has a positive (nonvanishing) probability to
be in one of the blue classes (and thus σ̃ z

n to be in the blue class of iz, since transitions to
other blue classes are replaced by a transition to iz; and after reaching this blue class the
transitions of σn and σ̃ z

n are similar in the timescale θ 3 since a transition to a different blue
class is unlikely). Then, starting in the blue class of iz, i.e., in some green class within
E4

x4
, the chain has a positive probability to be in E3

x3
, the green class of iz, in a time θ 3

(or equivalently θ 3 −θ 2) as this is the timescale of motion between green classes and all
green classes within a given blue class are linked at this timescale (by definition of the
blue classes as recurrence classes). Similarly, from there, the chain has a positive proba-
bility to be in E2

x2
, the yellow class of iz, in a time θ 2 (or θ 2 −θ 1). Finally, starting from

any point in E2
x2

, it has a positive probability to be at iz in a time θ 1. The arrows represent
the transitions (the timescale being represented by the thickness of the arrow). The dotted
lines are here to remind that a “macroscopic transition” happening between two classes
(or from the point i ∈ ∆4 to some point of the blue class E4

x4
) may be constituted of many

(possibly fastest) “microscopic” transitions (that may cross ∆4, which explains why σ̃ z
n is

defined on E
4
x4

and not on E4
x4

).

In other words, x1 = iz, xh+1 = z, and for all j ∈ J1,h+ 1K and n ∈ N, x j = Ψ j(iz). De-
note by (Pn

t )t⩾0 the semigroup associated with σn. Also, set θ 0
n = 0 for all n ∈ N. The

strategy of the proof of (5.8) consists in finding a path from any i ∈ E
h+1
z to iz that has a

nonvanishing probability. An informal description of such a path is given in Figure 5.3.
We decompose the argument in several steps.

Step 1. Let us prove that, from any initial condition in E
h+1
z , the probability that σ̃ z

n hits
Eh+1

z before the time θ h
n is nonvanishing. More precisely denote

τ∗ = inf{t ⩾ 0 | σn(t) /∈ ∆
h+1}= inf{t ⩾ 0 | σ̃

z
n(t) ∈ Eh+1

z } ,

where σn and σ̃ z
n are synchronously coupled (as in the proof of Proposition 5.2, see [12,

Section 6] for details) with the same initial condition. It is clear that, for all initial condi-
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tions i ∈ ∆h+1,
liminf
n→+∞

Pi(τ∗ ⩽ θ
h
n )> 0 . (5.9)

Indeed, the time spent in ∆h is negligible at the timescale θ h
n (Theorem 5.4 (d)), so the

probability for σn to leave ∆h before time θ h
n /2 goes to 1 as n → +∞. Then, starting

from a point i′ ∈ ∆h+1 \∆h (which corresponds to the transient points of Xh), we can use
Theorem 5.4 (b) to see that

Pi′
(

τ∗ ⩽ θ
h
n /2
)
⩾ Pi′

(
Ψ

h(σn(θ
h
n /2)) /∈ Th ∪{0}

)
−→

n→+∞
PΨh(i′)

(
Xh(1/2) /∈ Th

)
> 0

(where we recall that, by definition, Ψh(σ) = 0 means that σ ∈ ∆h). The strong Markov
property concludes the proof of (5.9).

Step 2. Starting from an initial condition i ∈ Eh+1
z , we consider again the synchronous

coupling of σn and σ̃ z
n. The two chains are then equal up to the first time at which σn hits

Eh+1
y for some y ̸= z. According to Theorem 5.4 (f), this occurs at a time of order at least

1. In other words, for any M > 0, the probability that this happens before time Mθ h
n goes

to 0 as n →+∞. Hence, for all M > 0,

sup
s∈[0,Mθ h

n ]

|Pn
s (i,u)−Pn,z

s (i,u)| ⩽ Pi

(
∃s ∈ [0,Mθ

h
n ], σn(s) ̸= σ̃

z
n(s)

)
−→

n→+∞
0 .

For this reason, we can focus on σn rather than σ̃ z
n.

Step 3. Let us prove that, for all j ∈ J1,hK,

liminf
n→+∞

min
i∈E j+1

x j+1

∑
u∈E j

x j

Pn
θ

j
n−θ

j−1
n

(i,u) > 0 . (5.10)

Indeed, for all s > 0, n ∈ N,

∑
u∈E j

x j

Pn
s (i,u) = Pi

(
Ψ

j(σn(s)) = x j
)
.

Since θ
j

n −θ
j−1

n ≃ θ
j

n , Theorem 5.4 (b) implies that for all y ∈ J1,n jK and i ∈ E
j
y,

∑
u∈E j

x j

Pn
θ

j
n−θ

j−1
n

(i,u) −→
n→+∞

Py
(
X j(1) = x j

)
.

Recall from Theorem 5.4 (e) that E j+1
x j+1 =

⋃
y∈C j

x j+1
E

j
y, where C

j
x j+1 is the x j+1-th recur-

rence class of the limit chain X j. In particular, x j ∈ C
j
x j+1 and, by definition of a recurrence

class, for all x,y ∈ C
j
x j+1 , Px(X j(1) = y)> 0. This concludes the proof of (5.10).

Step 4. We now deduce from (5.10) that, for all j ∈ J1,hK,

liminf
n→+∞

min
i∈E j+1

x j+1

Pn
θ

j
n
(i, iz) > 0 . (5.11)
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Indeed, reasoning by induction, the case j = 1 is just (5.10) with j = 1 since E1
x1
= {iz}

and θ 0
n = 0. Then, using the Markov property, for i ∈ E

j+1
x j+1 ,

Pn
θ

j
n
(i, iz) ⩾ ∑

u∈E j
x j

Pn
θ

j
n−θ

j−1
n

(i,u)Pn
θ

j−1
n

(u, iz) ,

and the conclusion follows from (5.10) and, by induction, (5.11) for j−1.

Step 5. Let us prove by induction on j that, for all j ∈ J1,hK,

∀M > m > 1 , liminf
n→+∞

inf
s∈[m,M]

Pn
sθ

j
n
(iz, iz) > 0 . (5.12)

For j = 1, this follows from the fact that 1/θ 1
n is of the same order as the total jump rate

µn of the chain, so that for all M > 0 there is a nonvanishing probability that no jump
occurs in [0,Mθ 1

n ], and then

inf
s∈[0,M]

Pn
sθ

j
n
(iz, iz) ⩾ Piz

(
σn(t) = iz ∀t ∈ [0,Mθ

1
n ]
)
.

Now, suppose that (5.12) is true for j−1 for some j ∈ J2,hK. Fix M > m > 1. For M′ > 0
to be chosen later on, consider the events

En =
{

σn(t) ∈ E j
x j
∪∆

j ∀t ∈ [0,Mθ
j

n ]
}
, Fn =

{
τ
′ ⩽ M′

θ
j−1},

where τ ′ = inf{t ⩾ 0 | σn(t) /∈ ∆ j}. From Theorem 5.4 (f),

ε := liminf
n→+∞

Piz(En) > 0 .

Besides, from Theorem 5.4 (b) and (e), for all i ∈ ∆ j \∆ j−1,

liminf
n→+∞

Pi
(
τ
′ ⩽ M′

θ
j−1

n
)
⩾ liminf

n→+∞
Pi
(
σn(M′

θ
j−1

n ) /∈ ∆
j)

⩾ min
y∈T j

Py
(
X j(M′) /∈ T j) −→

M′→+∞

1 ,

and from Theorem 5.4 (d), for all i ∈ ∆ j−1,

Pi
(
σn(t) ∈ ∆

j−1 ∀t ∈ [0,θ j−1
n ]

)
−→

n→+∞
0 ,

so that, combining these two facts thanks to the Markov property and denoting qn =

mini∈J1,NKPi

(
τ ′ ⩽ M′θ j−1

n

)
, we get

liminf
n→+∞

qn −→
M′→+∞

1 .

From now on, we choose M′ large enough so that qn ⩾ 1− ε/2 for all n ⩾ n0 for some
sufficiently large n0. We also suppose that n0 is large enough so that (m− 1)θ j

n − (2+
M′)θ j−1

n > 0 for all n ⩾ n0, and implicitly up to the end of Step 4 we always assume
n ⩾ n0.
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For s ∈ [m,M] and all n ⩾ n0 consider the time interval In(s) = [(s − 1)θ j
n − (2 +

M′)θ j−1
n ,(s−1)θ j

n −2θ
j−1

n ] and the event

Fn(s) = {∃u ∈ In(s) | σn(u) /∈ ∆
j} .

By the Markov property, Pi(Fn(s)) ⩾ qn for all i ∈ J1,NK and s ∈ [m,M]. Moreover, the
event Fn(s)∩En, which has a probability at least ε/3 for n large enough, implies that there
exists u ∈ In(s) such that σn(u) ∈ E

j
x j . Conditioning with respect to u and σn(u) for such

a time u, we get by the Markov property that, for all s ∈ [m,M],

Pn
sθ

j
n
(iz, iz) ⩾ Piz(Fn(s)∩En) min

i∈E j
x j

Pn
θ

j
n
(i, iz) inf

s′∈[2,2+M′]
Pn

s′θ j−1
n

(iz, iz) .

Thanks to the induction hypothesis, (5.11), and the bound on qn, we see that the three
factors of the right-hand side are bounded from below by positive quantities independent
of s ∈ [m,M], which concludes the proof of (5.12) for all j ∈ J1,hK.

Step 6. We now prove the Doeblin condition (5.8). From Step 2, (5.11) and (5.12) are still
true if Pn is replaced by Pn,z. According to Step 1, from any initial condition i ∈ J1,NK,
σ̃ z

n has a nonvanishing probability to hit Eh+1
z before time θ h

n . Using the Markov property
and (5.11) (with Pn replaced by Pn,z), conditioning with respect to this hitting time u, the
chain has a nonvanishing probability (independent of u) to be at iz at time u+θ h

n . Then,
from (5.12) (with Pn replaced by Pn,z), it has a nonvanishing probability (still independent
of u) to be at iz at time 4θ z

n, which concludes.

Before stating the main result of the section, let us prove an additional technical prop-
erty.

Proposition 5.7. For all T > 0, all z ∈ J1,nh+1K, and all j ∈ Eh+1
z ,

max
i∈J1,NK

Ei

(∣∣∣∣w T

0

(
1σn(s)= j −π

z
n( j)1

σn(s)∈Eh+1
z

)
ds
∣∣∣∣) −→

n→+∞
0 .

Proof. Fix T > 0, z ∈ J1,nh+1K, and j ∈ Eh+1
z . Let R ∈ N, and notice that∣∣∣∣w T

0

(
1σn(s)= j −π

z
n( j)1

σn(s)∈Eh+1
z

)
ds
∣∣∣∣⩽ R−1

∑
b=0

∣∣∣∣w (b+1)T/R

bT/R

(
1σn(s)= j −π

z
n( j)1

σn(s)∈Eh+1
z

)
ds
∣∣∣∣.

For all b ∈ J0,R−1K, consider the stopping time τb = inf{t ⩾ bT/R | σn(t) /∈ ∆h+1} and
Zb = Ψh+1(σn(τb)). Let τ

+
b = inf{t ⩾ τb | σn(t) ∈

⋃
y̸=Zb

Eh+1
y }. According to Theo-

rem 5.4 (f), for all b ∈ J0,R− 1K, τ
+
b − τb converges as n → +∞ towards an exponential

distribution with some finite rate (possibly 0). Thus there exist K > 0 such that

max
i∈J1,NK

Pi
(
τ
+
b − τb ⩽ T/R

)
⩽

K
R

for all n large enough and all R ∈ N.
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For each b ∈ J0,R− 1K, consider a Markov chain σ̃
Zb
n and its associated semigroup

Pn,Zb , initialized at time τb by σ̃
Zb
n (τb) = σn(τb) and such that σ̃

Zb
n (s) = σn(s) for all

s ∈ [τb,τ
+
b ). We have∣∣∣∣w (b+1)T/R

bT/R

(
1σn(s)= j −π

z
n( j)1

σn(s)∈Eh+1
z

)
ds
∣∣∣∣ ⩽ T

R
1τb⩾(b+1)T/R

+1τb<(b+1)T/R

(
τb −

bT
R

+

∣∣∣∣w (b+1)T/R

τb

(
1σn(s)= j −π

z
n( j)1

σn(s)∈Eh+1
z

)
ds
∣∣∣∣)

⩽
T
R

(
1τb⩾(b+1)T/R +1

τ
+
b −τb⩽T/R

)
+1τb<(b+1)T/R

(
τb −

bT
R

+

∣∣∣∣w (b+1)T/R

τb

(
1

σ̃
Zb
n (s)= j

−π
z
n( j)1

σ̃
Zb
n (s)∈Eh+1

z

)
ds
∣∣∣∣)

⩽
T
R

(
1τb⩾(b+1)T/R +1

τ
+
b −τb⩽T/R

)
+21τb<(b+1)T/R

(
τb −

bT
R

)
+

∣∣∣∣w τb+T/R

τb

(
1

σ̃
Zb
n (s)= j

−π
z
n( j)1

σ̃
Zb
n (s)∈Eh+1

z

)
ds
∣∣∣∣ .

We bound separately the expectations of these terms. First, for all i ∈ J1,NK,

Ei

(
1τb<(b+1)T/R

(
τb −

bT
R

))
⩽ Ei

(w (b+1)T/R

bT/R
1σn(s)∈∆h+1 ds

)
⩽ sup

u∈J1,NK
Eu

(w T/R

0
1σn(s)∈∆h+1 ds

)
,

which vanishes as n →+∞ (this is (5.6)). Similarly,

Pi(τb ⩾ (b+1)T/R) = Pi

(w (b+1)T/R

bT/R
1σn(s)∈∆h+1 ds =

T
R

)
⩽

R
T

sup
u∈J1,NK

Eu

(w T/R

0
1σn(s)∈∆h+1 ds

)
.

Also, remark that if Zb ̸= z then for all s ⩾ τb

1
σ̃

Zb
n (s)= j

= 0 = π
z
n( j)1

σ̃
Zb
n (s)∈Eh+1

z
.

Up to now we have obtained that, for all i ∈ J1,NK, for n large enough,

Ei

(∣∣∣∣w T

0

(
1σn(s)= j −π

z
n( j)1

σn(s)∈Eh+1
z

)
ds
∣∣∣∣)

⩽
KT
R

+3R sup
u∈J1,NK

Eu

(w T/R

0
1σn(s)∈∆h+1 ds

)
+ R sup

u∈Eh+1
z

Eu

(∣∣∣∣w T/R

0

(
1σ̃

z
n(s)= j −π

z
n( j)1

σ̃
z
n(s)∈Eh+1

z

)
ds
∣∣∣∣) .

Since the left-hand side does not depend on R, it only remains to prove that, for any fixed
R, the last term converges to zero as n →+∞. Using Proposition 5.6, the proof is exactly
the same as that given for Proposition 5.1.
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We are now ready to prove the main result of this section, Theorem 3.3.

Proof of Theorem 3.3. Let us first show that it is sufficient to consider the case where Pn
is strongly connected for all n ∈ N. Indeed, instead of a chain σn associated with some
(νn,µn,Pn)n∈N, we can rather consider a chain σ̃n associated with (νn,µn + e−n,(µnPn +
e−nQ)/(µn + e−n))n∈N where Q is the matrix whose coefficients are all 1/N. In other
words, σ̃n behaves like σn except that, at rate e−n, it jumps to a position distributed uni-
formly over J1,NK. In particular, as in the proof of Proposition 5.2, considering the syn-
chronous coupling of σn and σ̃n, we get that, for all T > 0,

P(σn(t) = σ̃n(t) ∀t ∈ [0,T ])⩾ e−Te−n
.

Hence, if we prove that, up to a subsequence, the Markov process associated with σ̃n
converges in the Skorokod topology to some convexified process, then the same conver-
gence holds for the Markov process associated with σn. For this reason, from now on we
suppose that Pn is strongly connected.

The case where (µn)n∈N is bounded has already been treated in Proposition 5.2, so we
suppose that λn(i, j)→+∞ for some distinct i, j ∈ J1,NK and we keep all the definitions
and notations of the rest of the section. Up to extracting a subsequence, we assume that,
for all z ∈ J1,nh+1K, πz

n converges as n → +∞ to some law πz. Let us prove that for all
T,δ > 0, z ∈ J1,nh+1K, and j ∈ Eh+1

z ,

sup
i∈J1,NK

Pi

(∣∣∣∣w T

0

(
1σn(s)= j −π

z( j)1X̃h+1(s)=z

)
ds
∣∣∣∣> δ

)
−→

n→+∞
0 , (5.13)

from which the conclusion follows exactly as in the proof of [5, Lemma 2.14] or of Propo-
sition 5.1. First, by (5.5),

sup
i∈J1,NK

Pi

(
π

z( j)
∣∣∣∣w T

0

(
1Ψh+1(σn(s))=z −1X̃h+1(s)=z

)
ds
∣∣∣∣> δ/2

)
−→

n→+∞
0 .

Second,

sup
i∈J1,NK

Ei

(
|πz( j)−π

z
n( j)|

w T

0
1Ψh+1(σn(s))=z ds

)
⩽ T |πz

n −π
z|∞ −→

n→+∞
0 .

Third, Proposition 5.7 reads

sup
i∈J1,NK

Ei

(∣∣∣∣w T

0

(
1σn(s)= j −π

z
n( j)1Ψh+1(σn(s))=z

)
ds
∣∣∣∣) −→

n→+∞
0 .

The combination of these three facts yields (5.13).

We now extend Theorem 3.3 to the case where the processes (xn,σn) are themselves
already convexified. The parameters of a convexified process are (ν ,µ,P,B) where B =
(B1, . . . ,Bk) are the modes and (ν ,µ,P) are the parameters of the Markov chain on J1,kK.

Corollary 5.8. Consider a sequence (xn,σn) of convexified Markov processes for A with
parameters (νn,µn,Pn,Bn)n∈N. Up to extracting a subsequence, there exists a convexified
Markov process (x,σ) for A such that, for all T,δ > 0,

P

(
sup

t∈[0,T ]
|x(t)− xn(t)|> δ

)
−→

n→+∞
0 .
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Proof. For each n ∈ N, the set of matrices in Bn is related to a partition of the matrices in
A, and thus, up to extracting a subsequence, we assume that this partition is the same for
all n ∈ N. In other words, Bn = (Bn,1, . . . ,Bn,N′) where N′ ∈ J1,NK is independent of n,
and for all j ∈ J1,N′K, Bn, j = ∑i∈I j πn,iAi, where the sets I1, . . . , IN′ are disjoint, nonempty,
and independent of n, and (πn,i)i∈I j is a probability vector. In particular, for all n ∈ N, νn
and Pn are respectively of dimension N′ and N′×N′. By compactness, up to extracting
a subsequence, we assume that the coefficients πn,i converge as n → ∞, in other words
Bn → B = (B1, . . . ,BN′).

For n ∈ N, let yn be the solution of ẏn(t) = Bσn(t)yn(t) for t ⩾ 0. In particular, (yn,σn)
is a Markov process for B with parameters (νn,µn,Pn,B). Applying Theorem 3.3, we
get that there exists a convexified Markov process (x,σ) for B (which is in particular a
convexified process for A) such that, for all T,δ > 0,

P

(
sup

t∈[0,T ]
|x(t)− yn(t)|> δ

)
−→

n→+∞
0 .

On the other hand, since yn and xn share the same Markov chain σn, we immediately get
that, almost surely, for all t ⩾ 0,

|xn(t)− yn(t)|⩽
w t

0

(
∥Bσn(s)∥|xn(s)− yn(s)|+∥Bn,σn(s)−Bσn(s)∥|xn(s)|

)
ds

⩽ K
w t

0
|xn(s)− yn(s)|ds+ teKt |x0| max

j∈J1,N′K
∥B j −Bn, j∥

where K = maxi∈J1,NK ∥Ai∥ and thus, almost surely,

sup
t∈[0,T ]

|xn(t)− yn(t)| −→
n→∞

0 ,

yielding the conclusion.

Up to now, in this section, the initial condition x0 ∈Rd has been fixed and is common
to all processes x and xn. Since we are interested in the study of Lyapunov exponents, it
is useful to reformulate Corollary 5.8 in terms of the flow Φσ . This is done by applying it
to the Markov process (Φσn,σn), which is a PDMP corresponding to the flow in the space
Md(R) of Φ̇σn(t) = Aσn(t)Φσn(t) with initial condition Φσn(0) = Id. As a straightforward
consequence, using the fact that the flow is bounded on compact time intervals uniformly
with respect to σ , we obtain the following.

Corollary 5.9. Let (νn,µn,Pn,Bn)n∈N be a sequence of convexified Markov processes for
A. Then there exists a convexified Markov process (ν∗,µ∗,P∗,B) for A such that, up to
extracting a subsequence, we have, for every T > 0,

E[log∥Φσn(T )∥] −→
n→+∞

E[log∥Φσ (T )∥], (5.14)

where σn and σ are obtained from the convexified Markov processes (νn,µn,Pn,Bn) and
(ν∗,µ∗,P∗,B), respectively.
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6 On the equality between λd(A) and λ
sup
p (A)

One of the difficulties in analysis of λ
sup
p (A) is that it may fail to be reached by some

λp(ν ,µ,P,A), as detailed next.

Example 6.1. Consider the case N = d = 2 with

A1 =

(
0 −1
1 −1

)
, A2 =

(
0 1
−1 −1

)
, M =

1
2

A1 +
1
2

A2 =

(
0 0
0 −1

)
.

Then the spectral abscissa of M is equal to 0. From Proposition 6.4 stated below (since it
is easy to check that M satisfies condition (C) in Definition 6.3 below), for ν = (1

2 ,
1
2) and

P =

(1
2

1
2

1
2

1
2

)
, we have limµ→+∞ λp(ν ,µ,P,A) = 0. Hence, on the one hand, λ

sup
p (A)⩾ 0.

On the other hand, it is easily seen that the standard Euclidean norm is strictly de-
creasing along both flows ẋ = Aix, i = 1,2, so that log∥Φσ (t)∥ < 0 for any piecewise
constant σ . From Proposition 2.3 and (2.9), λp(ν ,µ,P,A) < 0 for every choice of the
Markov process (ν ,µ,P).

Thus, λ
sup
p (A) is not reached.

The equality cases between λd(A) and λ
sup
p (A) will be addressed by studying the

equality cases in (3.2). A helpful property is that, contrarily to what happens for λ
sup
p (A),

the supremum in the definition of λ conv
p (A) is always reached, as shown next.

Proposition 6.2. There exists a convexified Markov process (ν ,µ,P,B) for A such that
λ conv

p (A) = λp(ν ,µ,P,B).

Proof. Let (νn,µn,Pn,Bn)n∈N be a maximizing sequence for λ conv
p (A), i.e., λp(νn,µn,Pn,

Bn)→ λ conv
p (A) as n → ∞. By Proposition 2.3, with no loss of generality, we may assume

that νn is invariant under Pn for every n ∈ N.
By Corollary 5.9, there exists a convexified Markov process (ν ,µ,P,B) for A such

that, for every T > 0, (5.14) holds. Then, using (2.7) and (2.9),

λp(ν ,µ,P,B) = limsup
t→+∞

1
t
E[log∥Φσ (t)∥] = limsup

t→+∞

lim
n→+∞

1
t
E[log∥Φσn(t)∥]

⩾ lim
n→+∞

λp(νn,µn,Pn,A) = λ
conv
p (A),

hence the conclusion.

We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. Let us prove (a). Assume first that λd(A) = λ conv
p (A) and consider

a convexified Markov process (ν ,µ,P,B) at which λ conv
p (A) is attained, whose existence

is established in Proposition 6.2. Hence

λd(B)⩽ λd(A) = λ
conv
p (A) = λp(ν ,µ,P,B)⩽ λd(B),

implying that λp(ν ,µ,P,B) = λd(B). Let i be an index belonging to a recurrent class of
P and accessible from ν . Then, by Theorem 3.1, we deduce that ρ(eBit) = eλd(B)t for
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every t ⩾ 0, which yields λ (Bi) = λd(B), and the conclusion follows since Bi ∈ co(A) and
λd(B) = λd(A).

To prove the converse implication, let M ∈ co(A) be such that λ (M) = λd(A). Then
the process ẋ = Mx is a convexified Markov process for A, with parameters (ν ,µ,P,B)
given by B = (M) and (ν ,µ,P) determining the (constant) Markov chain on a single state.
Hence

λd(A) = λ (M) = λp(ν ,µ,P,B)⩽ λ
conv
p (A)⩽ λd(A),

yielding the conclusion.
The proof of (b) follows immediately from (a) and (3.2).
To prove (c), notice that, by the continuity of the spectral abscissa function, for every

η > 0, there exists ε > 0 such that λ (Mε)> λ (M)−η = λd(A)−η . Let (νn,µn,Pn)n∈N
be a sequence of Markov processes for A such that (3.3) holds true. Then, for n large
enough

λp(νn,µn,Pn,A)> λd(A)−η .

Hence λd(A)< λ
sup
p (A)+η and, since η > 0 is arbitrary, we deduce that λd(A)⩽ λ

sup
p (A),

yielding the conclusion thanks to (2.8).

Theorem 3.4 (c) raises the question of verifying the condition stated in (3.3). If M =
Ai for some i ∈ J1,NK, (3.3) trivially holds by taking Mε = Ai and the Markov chain
constantly equal to i. Otherwise, one can expect M to be attained through arbitrarily fast
switching. This leads to the question of the convergence of the Lyapunov exponent in this
regime, which is the subject of the sequel of this section.

Let us introduce an explicit algebraic condition under which we are able to prove the
convergence of Lyapunov exponents stated in (3.3).

Definition 6.3 (Condition (C)). Let M be in Md(R) and denote by ξ1 > ξ2 > · · · > ξk
the distinct real parts of the eigenvalues of M (with k ⩽ d). For j ∈ J1,kK, denote by
E j the space spanned by the generalized eigenvectors of M corresponding to eigenvalues
with real part ξ j and by n j the dimension of E j. Let FM be the vector field on the (d−1)-
dimensional unit sphere Sd−1 obtained by projecting x 7→Mx, i.e., FM(x)=Mx−(x ·Mx)x.

Given A = (A1, . . . ,AN) ∈ Md(R)N , we say that M satisfies condition (C) for A if,
for every j ∈ J2,kK, there exists i ∈ J1,NK such that, for every θ ∈ E j ∩ Sd−1, one has
FAi(θ) ̸∈

⊕
r⩾ j Er.

Condition (C) can be used to obtain the following result on the convergence of Lya-
punov exponents.

Proposition 6.4. Let A = (A1, . . . ,AN) ∈Md(R)N , π = (π1, . . . ,πN) ∈ (0,1]N be a proba-
bility vector, and define M = ∑

N
j=1 π jA j. Let P ∈MN(R) be the matrix with all rows equal

to π and (µn)n∈N be a sequence tending to +∞. If M satisfies condition (C) for A, then
the sequence (π,µn,P)n∈N of Markov processes for A satisfies

lim
n→∞

λp(π,µn,P,A) = λ (M).

From the results in [4, Section 2.5], the probabilistic Lyapunov exponent can be
expressed in terms of the invariant measures of the Markov process (θ(t),σ(t))t⩾0 =
(x(t)/∥x(t)∥,σ(t))t⩾0 on Sd−1 × J1,NK. As a consequence, Proposition 6.4 follows from
a simple combination of the results of [4] and of the following proposition, whose proof
is given in Appendix B.
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Proposition 6.5. Let A = (A1, . . . ,AN) ∈Md(R)N , π = (π1, . . . ,πN) ∈ (0,1]N be a proba-
bility vector, and define M = ∑

N
j=1 π jA j. Let P ∈MN(R) be the matrix with all rows equal

to π , µ > 0, and consider the Markov process (θ(t),σ(t))t⩾0 on Sd−1 × J1,NK obtained
from (π,µ,P).

If M satisfies condition (C) for A, then, for every ε ∈ (0,1] and every neighborhood K
of E1 in Sd−1, there exists µ0 > 0 such that, for every µ ⩾ µ0 and every invariant measure
ρ of the process (θ(t),σ(t))t⩾0, one has ρ(K × J1,NK)⩾ 1− ε .

Notice that a similar result has recently been established in [10]. More precisely, our
result is similar in spirit to [10, Theorem 1.1] in the case where the diffusion coefficient
δ is equal to 0 and the limit cycle considered in [10] is reduced to a single point, and our
condition (C) corresponds to the second point of [10, Assumption 1.2]. The proof of [10]
is based on estimates on the exit times of the trajectory from neighborhoods of unstable
equilibria, while our argument is based on the construction of a suitable Lyapunov func-
tion (similarly to [4], where the result is established in a particular case in dimension 2).

By combining Proposition 6.4 with Theorem 3.4, one deduces the following state-
ment.

Corollary 6.6. Let A ∈Md(R)N . Assume that condition (C) holds for a dense subset of
co(A). Then λd(A) = λ

sup
p (A) if and only if there exists M ∈ co(A) such that λ (M) =

λd(A).

From what precedes one would prove a full converse of Theorem 3.4 (b) if for every
A ∈Md(R)N condition (C) held for a dense subset of co(A). Our next result, whose proof
is provided in Appendix B, states that this is the case for dimensions up to 3.

Lemma 6.7. Let d ⩽ 3 and A ∈Md(R)N be irreducible. Then condition (C) holds for a
dense subset of co(A).

Thanks to Lemma 6.7, we are now in position to prove Proposition 3.5.

Proof of Proposition 3.5. By Theorem 3.4 (b), it remains to prove that λd(A) = λ
sup
p (A)

if there exists M ∈ co(A) such that λ (M) = λd(A). Hence, we assume that such a M
exists. We next use the block decomposition of matrices of A used in the proof of
Proposition 4.3 (and, in particular, the notations of (4.3), extended to to the matrices
in co(A)) to deduce that there exists j ∈ J1,SK such that λ (M( j)) = λ (M). Note that
λd(A( j)) ⩽ λd(A) = λ (M) = λ (M( j)) ⩽ λd(A( j)), implying that all these inequalities are
in fact equalities. Thus, by applying Lemma 6.7 and Corollary 6.6 to M( j) and A( j), we
deduce that λd(A( j)) = λ

sup
p (A( j)). Hence,

λd(A) = λd(A( j)) = λ
sup
p (A( j))⩽ λ

sup
p (A)⩽ λd(A),

yielding λd(A) = λ
sup
p (A).
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A Decomposition of a Markov chain
This section is devoted to the proof of Theorem 5.4. It is based on the works of Landim
and collaborators [2, 17–19], to which we refer for more details and discussions. Even
though the contents of Theorem 5.4 are similar to those of Theorems 2.1, 2.7, and 2.12
of [19], we decided to state them in a modified way, more convenient in our context. Let
us briefly highlight the main differences and explain how they are handled in the sequel.

• In [19], the convergence after rescaling in time is given in term of the so-called
soft topology, introduced in [17], while in Theorem 5.4 (b) and (c) we state a con-
vergence for the time marginals. The way to get this time marginals convergence
instead of the soft one is established in [18, Proposition 2.1].

• The case of a timescale which is strictly between θ j and θ j+1 is not considered
in [19]. In particular, in [19, Condition H1], the total rate of the limit Markov
chain is supposed to be nonzero. Nevertheless, this assumption is not used to prove
the convergence of the rescaled chain, it is just used, after the convergence is es-
tablished, to say that the limit chain is not constant, so that in particular the next
partition will be stricly coarser than the previous one. Replacing θ j+1 by some α

with θ j ≪ α ≪ θ j+1, the conditions [19, H1–H3] are still satisfied, except that in
H1 the total rate is zero.

• The fact that (5.3) and (5.4) still hold with θ̃
j

n ≃ θ
j

n is immediately obtained from
the fact θ̃ j satisfies the same conditions [19, H1–H3] as θ j.

Throughout this section, we consider for each n ∈ N a strongly connected Markov
chain (σn(t))t⩾0 on J1,NK for some fixed N ∈ N with jump rates (λn(i, j))i, j∈J1,NK. We
suppose that the conditions (5.1) and (5.2) are fulfilled. We denote by πn the unique
invariant probability measure of σn.

For a nonempty J ⊂ J1,NK, the trace process on J associated with σn is the process
(σ J

n (t))t⩾0 obtained from σn by removing all the time spent outside of J. More precisely,
denoting

T J
n (t) =

w t

0
1σn(s)∈J ds and SJ

n(t) = sup{s ⩾ 0 | T J
n (s)⩽ t} ,

we define σ J
n (t) = σn(SJ

n(t)). Remark that, the chain being strongly connected, T J
n (t)→

+∞ almost surely as t →+∞ and SJ
n(t) is finite for all t ⩾ 0.

For J ⊂ J1,NK, denote by HJ and H+
J the hitting time of J and the time of the first

return to J, i.e.,

HJ = inf{t ⩾ 0 | σn(t) ∈ J}, H+
J = inf{t ⩾ τ1 | σn(t) ∈ J} ,

where τ1 = inf{t ⩾ 0 | σn(t) ̸= σn(0)} is the first jump time of the chain. For i, j ∈ J1,NK,
denote λn(i) = ∑k ̸=i λn(i,k) the holding rate of the chain at i, and pn(i, j) = λn(i, j)/λn(i)
the transition probabilities from i. For two disjoint subsets J1 and J2 of J1,NK, the capacity
between J1 and J2 is defined by

capn(J1,J2) = ∑
i∈J1

πn(i)λn(i)Pi

(
HJ2 < H+

J1

)
.
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Let E1, . . . ,En,∆ be a partition of J1,NK for some n⩾ 1 with Ex ̸= /0 for all x ∈ J1,nK and
let E=

⋃n
x=1Ex. It is proven in [2, Proposition 6.1] that the trace process σE

n is a Markov
chain on E with rates

Rn(i, j) = λn(i)Pi
(
H{ j} = H+

E

)
for i ̸= j. For x,y ∈ J1,nK, x ̸= y, denote by

rEn (x,y) =
1

πn(Ex)
∑

i∈Ex

πn(i) ∑
j∈Ey

Rn(i, j)

the mean (at equilibrium) rate at which the trace process jumps from Ex to Ey. Consider
the coarse-grained variable

Ψ
E(i) =

n

∑
x=1

x1i∈Ex .

Finally, let (αn)n∈N, (βn)n∈N be two positive sequences. We consider the following con-
ditions:

H1. For all x,y ∈ J1,nK with x ̸= y, there exists rE(x,y)⩾ 0 so that

βnrEn (x,y) −→
n→+∞

rE(x,y) .

H2. For all x ∈ J1,nK such that Ex is not a singleton and all i, j ∈ Ex with i ̸= j,

liminf
n→+∞

αn
cap({i},{ j})

πn(Ex)
> 0 .

Intuitively, H2 means that mixing within a class Ex occurs in a time smaller than αn, and
H1 that transitions between different classes Ex and Ey occur at a time of order at least βn.

Proposition A.1. Consider a partition E1, . . . ,En,∆ of J1,NK and two positive sequences
(αn)n∈N, (βn)n∈N such that αn ≪ βn and H1–H2 hold. Then, for x ∈ J1,nK and for
an initial condition i ∈ Ex,

(
ΨE(σE

n (tβn))
)

t⩾0 converges in law in the Skorokhod topol-
ogy toward the Markov chain (X(t))t⩾0 on J1,nK with initial condition x and jump rates(
rE(y,z)

)
y,z∈J1,nK as n →+∞.

Proof. This is [19, Proposition 6.1]. Remark that in [19] it is also assumed that the limit
chain is not constant, i.e., ∑x,y∈J1,nK rE(x,y) ̸= 0. Nevertheless this is not used in the
proof of [19, Proposition 6.1], which relies on results from [2] in which this additional
assumption is not made.

Remark that in the particular case n = 1 the result is trivial as condition H1 is empty
and ΨE(σE

n (t)) = 1 for all n ∈ N and t ⩾ 0.
Now, consider the following additional conditions on the partition E1, . . . ,En,∆ and

the timescale β :

H3. For all i ∈ J1,NK and t > 0,

Ei

(w t

0
1σn(sβn)∈∆ ds

)
−→

n→+∞
0 .
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H4. For all x ∈ J1,nK and i ∈ Ex,

lim
δ→0

limsup
n→+∞

sup
s∈[2δ ,3δ ]

Pi(σn(sβn) ∈ ∆) = 0 .

Proposition A.2. Consider a partition E1, . . . ,En,∆ of J1,NK and two positive sequences
(αn)n∈N, (βn)n∈N such that αn ≪ βn and H1–H3 hold. Fix x ∈ J1,nK and an initial
condition i ∈ Ex. Let X be as in Proposition A.1. Then

(a) For all t ⩾ 0 and y ∈ J1,nK,
w t

0
1

ΨE(σn(sβn))=y ds −→
n→+∞

w t

0
1X(s)=y ds in law.

(b) Let τn = inf{t ⩾ 0 | σn(t) /∈ Ex ∪∆}. Then τn/βn converges in law as n → +∞ to
an exponential variable with parameter rE(x) := ∑y∈J1,nK\{x} rE(x,y) (to be understood as
τn/βn →+∞ in probability in the case where rE(x) = 0).

(c) If, moreover, H4 holds, then for all t1, . . . , tk ⩾ 0,
(
ΨE(σn(t jβn))

)
j∈J1,kK converges in

law toward
(
X(t j)

)
j∈J1,kK as n →+∞.

Proof. For the first point, we know by Proposition A.1 that, for all t ⩾ 0,
r t

0 1ΨE(σE
n (sβn))=y

ds converges in law toward
r t

0 1X(s)=y ds as n →+∞. Moreover,

E
(w t

0

∣∣∣1ΨE(σn(sβn))=y −1
ΨE(σE

n (sβn))=y

∣∣∣ds
)

⩽ 2E
(w t

0
1σn(sβn)∈∆ ds

)
,

which vanishes as n →+∞ according to H3.
The proof of the second point is similar. Indeed, denoting τEn = inf{t ⩾ 0 |σE

n (t) /∈Ex},
the convergence in law of ΨE(σE

n (·βn)) toward X in the Skorokhod topology implies the
convergence in law of τEn /βn toward the first jump time of X . Moreover, necessarily,
τEn ⩽ τn (since some time is removed in the trace process), and for all M,ε > 0,

Px

(
τ
E
n /βn ⩾ M

)
⩽ Px(τn/βn ⩾ M)

⩽ Px

(
τ
E
n /βn ⩾ M− ε

)
+Px

(
sup

s∈[0,Mβn]

|s−TE
n (s)|⩾ εβn

)

⩽ Px

(
τ
E
n /βn ⩾ M− ε

)
+Px

(w Mβn

0
1σn(s)∈∆ ds ⩾ εβn

)
.

The last term vanishes as n →+∞ thanks to H3. Noticing that ε is arbitrary, we conclude
by using the convergence of τEn /βn.

Finally, the convergence of the time marginals of ΨE(σE
n (·θn)) is established in [18,

Proposition 2.1] under H3, H4, and the convergence in the Skorokhod topology for the
trace process proven in Proposition A.1.

Proof of Theorem 5.4. Let us recall the construction of [19] (with our slightly different

notations). The first timescale θ 1 is defined by θ 1
n =

(
∑

N
i, j=1 λn(i, j)

)−1
, and the first
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partition is simply E1
x = {x} for x ∈ J1,NK, hence n1 = N, and ∆1 = /0. As seen in [19,

Section 3], condition (5.2) ensures that λn(i, j)θ 1
n admits a nonnegative limit r1(i, j) for

all i, j ∈ J1,NK, with at least one pair (i, j) such that r1(i, j) ̸= 0. Notice that there is no
transition at a timescale smaller than θ 1 since, for all t ⩾ 0, the probability that there has
been a jump before time t is less than e−t/θ 1

. Let X1 be the Markov chain in J1,NK with
transition rates r1(i, j). Since the jump rates of σn(·θ 1

n ) converge toward those of X1, as
in the proof of Proposition 5.2 we can consider a synchronous coupling for which

P
(
X1(t) = σn(tθ 1

n ) ∀t ∈ [0,T ]
)
−→

n→+∞
1 (A.1)

for all T > 0. This implies the convergence in law in the Skorokhod space, hence point
(b) for j = 1.

Denote by C1
1, . . . ,C

1
n2

the recurrence classes of X1 and, for all x ∈ J1,n2K, set E2
x = C1

x .
Denote by T1 the set of transient points of X1 and set ∆2 = T1. Since X1 is not a constant
chain, necessarily n2 < n1.

Then, the timescales and the partitions are defined by induction. Suppose that θ j−1,
n j, E

j
1, . . . ,E

j
n j (with E

j
x ̸= /0 for all x ∈ J1,n jK), and ∆ j have been defined for some j ⩾ 2.

If n j = 1, we stop the construction (and set p= j−1). Otherwise, denoting E̸=x =
⋃

y̸=xEy
for x ∈ J1,n jK, we set

θ
j

n =

(
n j

∑
x=1

cap(Ex, E̸=x)

µn(Ex)

)−1

,

which is well defined since the chain is strongly connected, so that the capacities are
nonzero. By [19, Theorems 2.7 and 2.12], for all j ∈ J2,pK, the partition E

j
1, . . . ,E

j
n j ,∆

j

and the timescales αn = θ
j−1

n and βn = θ
j

n satisfy H1–H3 (with, in H1, rE(x,y) ̸= 0 for
at least one pair (x,y)) and θ j ≪ θ j+1. Let X j be the Markov chain on J1,n jK given
by Proposition A.1 for this partition and these timescales. Denote by C

j
1, . . . ,C

j
n j+1 its

recurrence classes and T j its transient points. For all x ∈ J1,n j+1K, set E j+1
x =

⋃
y∈C j

x
E

j
y

and ∆ j+1 = ∆ j ∪ (
⋃

y∈T j
E

j
y). The chain X j being nonconstant, n j+1 < n j. This shows that

this inductive definition of timescales and partitions ends in a finite number of steps.
Points (a) and (e) of Theorem 5.4 are satisfied by construction. Point (f) is a conse-

quence of Proposition A.2.
Let us prove that H4 holds for this choice of partitions and timescales. More precisely,

let us prove by induction on j ∈ J1,pK that

∀δ > 0, ∀i ∈ J1,NK, limsup
n→+∞

sup
s⩾δ

Pi
(
σn(sθ

j
n ) ∈ ∆

j)= 0 , (A.2)

which is stronger than H4. For j = 1, ∆1 = /0, so there is nothing to prove. For j = 2, let
ε > 0 and M > 0 be such that

sup
t⩾M

max
i∈J1,NK

Pi
(
X1(t) ∈ T1

)
⩽ ε.

Thanks to (A.1), we can consider n0 ∈ N such that for all n ⩾ n0

max
i∈J1,NK

Pi
(
σn(Mθ

1
n ) ∈ ∆

2) ⩽ 2ε .
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For δ > 0, for all n ⩾ n0 large enough so that δθ 2
n > Mθ 1

n , by the Markov property, for
all s ⩾ δ and i ∈ J1,NK,

Pi
(
σn(sθ

j
n ) ∈ ∆

2) =
N

∑
k=1

Pi
(
σn(sθ

j
n −Mθ

1
n ) = k

)
Pk
(
σn(Mθ

1
n ) ∈ ∆

2) ⩽ 2ε .

Hence
limsup
n→+∞

sup
s⩾δ

Pi
(
σn(sθ

2
n ) ∈ ∆

2) ⩽ 2ε

with an arbitrary ε > 0, which concludes the proof of (A.2) for j = 2.
Now, suppose by induction that (A.2) holds for all k ∈ J1, jK for some j ∈ J1,p−1K.

This implies H4 with βn = θ
j

n and the partition E
j
1, . . . ,E

j
n j ,∆

j. By Proposition A.2, we get
the convergence of the time marginals of Ψ j(σn(·θ j

n )) toward those of X j. In particular,
as in the previous case, for any ε > 0 we can choose M,n0 > 0 large enough so that for
all n ⩾ n0,

max
i∈J1,NK

Pi
(
σn(Mθ

j
n ) ∈ ∆

j+1 \∆
j) ⩽ 2ε .

Since, by induction, we also know that Pi(σn(Mθ
j

n ) ∈ ∆ j) vanishes as n → +∞, we get
that

max
i∈J1,NK

Pi
(
σn(Mθ

j
n ) ∈ ∆

j+1) ⩽ 3ε

for n large enough. The conclusion follows again from the Markov property, as in the
case j = 2.

We have thus established that H4 holds with βn = θ
j

n and the partition E
j
1, . . . ,E

j
n j for

all j ∈ J1,pK. All remaining points of Theorem 5.4 then follow from Proposition A.2
and the fact that, when applying Proposition A.2, a sequence α with θ

j−1
n ≪ αn ≪ θ

j
n ,

can replace θ j−1 in condition H2 or, alternatively, can replace θ j in the conditions H1,
H3, and H4 (in which case, in H1, the limit rates rE are all zero, so that the limit chain
is constant). Indeed, the proof that H3 holds in this case is given in [19, Lemma 7.2],
which only requires that H2 holds for θ j−1 and that α ≫ θ j−1. Similarly, our proof of
H4 is unchanged if, at some step of the inductive construction of the timescales and the
partitions, we replace θ j by some α with θ j−1 ≪ α ≪ θ j (the only difference would be
that the limit chain is constant, and thus we could not conclude that n j < n j−1 to ensure
that the construction ends in a finite number of steps).

B Technical results

B.1 Proof of Proposition 6.5
The proof of Proposition 6.5 relies on the following linear algebra result.

Lemma B.1. Let M be in Md(R) and denote by ξ1 > ξ2 > · · ·> ξk the distinct real parts
of the eigenvalues of M. For j ∈ J1,kK, denote by E j the space spanned by the generalized
eigenvectors of M corresponding to eigenvalues with real part ξ j. Then, up to a linear
change of coordinates, there exists a function h ∈C∞(Sd−1,(0,+∞)) such that

(a) ∇h(θ) = 0 for θ ∈ Sd−1 ∩ (
⋃k

i=1 Ei);
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(b) h attains its minimum at θ if and only if θ ∈ E1 ∩Sd−1 and its maximum at θ if and
only if θ ∈ Ek ∩Sd−1;

(c) ∇h(θ) ·FM(θ)< 0 for every θ ∈ Sd−1 \
⋃k

i=1 Ei, where we recall that FM(θ) = Mθ −
(θ ·Mθ)θ for θ ∈ Sd−1;

(d) v ·∇2h(θ)v ⩽ −|pri−1(v)|2 for i = 1, . . . ,k, θ ∈ Sd−1 ∩Ei, and v ∈ Tθ Sd−1, where
∇2h denotes the Hessian of h and, for i = 2, . . . ,k, pri−1 denotes the projection onto
E1 ⊕·· ·⊕Ei−1 along Ei ⊕·· ·⊕Ek and pr0 = 0.

Proof. Denote by n j the dimension of E j for j ∈ J1,kK. Let us write a vector x ∈ Rd as
x = (x1, . . . ,xk) with x j ∈ Rn j identified up to a linear system of coordinates in E j to be
fixed later.

By construction, E j = {x | xi = 0 for all i ̸= j} and

M = diag(M1, . . . ,Mk),

where each M j is a n j × n j square matrix whose eigenvalues have all real part equal to
ξ j. Notice that, up to applying a further change of coordinates in each space E j, we can
assume that MT

j +M j is arbitrarily close to the n j ×n j identity matrix multiplied by 2ξ j.
Hence, given ε > 0, for every x j ∈ Rn j we can assume that

xT
j M jx j = (ξ j + ε j,x j)|x j|2, ε j,x j ∈ (−ε,ε). (B.1)

Set φ(t) = t + t2 for t ∈ [0,1] and let

h = h1 + · · ·+hk−1

with

h j(θ) =
1
2
(|θ1|2 + · · ·+ |θ j|2 +φ(|θ j+1|2 + · · ·+ |θk|2)).

Notice that [0,1] ∋ t 7→ 1− t + φ(t) = 1+ t2 takes its minimal value at t = 0 and
its maximal value at t = 1. Hence, h j attains its minimum (respectively, maximum) at
θ ∈ Sd−1 if and only if |θ j+1| = · · · = |θk| = 0 (respectively, |θ1| = · · · = |θ j| = 0). In
particular, (a) and (b) are satisfied.

Let us now turn to the proof of (c). For θ ∈ Sd−1 and j ∈ J1,k − 1K, denote t j =
|θ j+1|2 + · · ·+ |θk|2. The derivative of h j at θ in the direction FM(θ) is equal to

∇h j(θ) · (Mθ − (θ ·Mθ)θ) =
j

∑
ℓ=1

(θ T
ℓ Mℓθℓ−|θℓ|2

k

∑
i=1

θ
T
i Miθi)

+φ
′(t j)

k

∑
ℓ= j+1

(θ T
ℓ Mℓθℓ−|θℓ|2

k

∑
i=1

θ
T
i Miθi).

For every ℓ ∈ J1,NK, let us rewrite the term θ T
ℓ Mℓθℓ− |θℓ|2 ∑

k
i=1 θ T

i Miθi using (B.1) as
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follows:

θ
T
ℓ Mℓθℓ−|θℓ|2

k

∑
i=1

θ
T
i Miθi = (ξℓ+ εℓ,θℓ)|θℓ|

2 −|θℓ|2
k

∑
i=1

(ξi + εi,θi)|θi|2

= (ξℓ+ εℓ,θℓ)|θℓ|
2 −|θℓ|2

(
ξℓ+ εℓ,θℓ

+∑
i ̸=ℓ

(ξi −ξℓ+ εi,θi − εℓ,θℓ)|θi|2
)

=−|θℓ|2 ∑
i ̸=ℓ

(ξi −ξℓ+ εi,θi − εℓ,θℓ)|θi|2,

where the middle equality uses ∑
k
i=1 |θi|2 = 1. Hence,

∇h j(θ) · (Mθ − (θ ·Mθ)θ) = −
j

∑
ℓ=1

∑
i ̸=ℓ

(ξi −ξℓ+ εi,θi − εℓ,θℓ)|θi|2|θℓ|2

−φ
′(t j)

k

∑
ℓ= j+1

∑
i̸=ℓ

(ξi −ξℓ+ εi,θi − εℓ,θℓ)|θi|2|θℓ|2

=
j

∑
ℓ=1

k

∑
i= j+1

(1−φ
′(t j))(ξℓ−ξi + εℓ,θℓ − εi,θi)|θi|2|θℓ|2.

We have 1−φ ′(t j) =−2t j ⩽ 0 for every t j ∈ [0,1] with equality holding only for t j = 0.
Moreover, ξℓ−ξi+εℓ,θℓ−εi,θi > 0 for ε small enough, since ℓ < i. Hence ∇h j(θ) ·(Mθ −
(θ ·Mθ)θ)< 0 if t j > 0 and if there exist ℓ∈ J1, jK and i ∈ J j+1,kK such that |θi||θℓ| ≠ 0,
that is, if θ ̸∈Vj ∪Wj, where

Vj = E1 ⊕·· ·⊕E j, Wj = E j+1 ⊕·· ·⊕Ek.

This proves (c), since if θ ∈ Sd−1 \
⋃k

i=1 Ei, then there exists j such that θ ̸∈Vj ∪Wj.
We are left to prove (d). If θ is in Sd−1 ∩Ei, then it is in Vj for j ⩾ i and in Wj for

j < i. The proof works by computing ∇2h j both on Sd−1∩Vj and Sd−1∩Wj for j ∈ J1,kK.
In order to compute ∇2h j, we first extend h j to a function H j : x 7→ 1

2(|x1|2 + · · ·+
|x j|2 +φ(|x j+1|2 + · · ·+ |xk|2)) on Rd . Then

∇h j(θ) = ∇H j(θ)− (θ ·∇H j(θ))θ

and

∇
2h j(θ)v = ∇

2H j(θ)v− (θ ·∇2H j(θ)v)θ − (v ·∇H j(θ))θ − (θ ·∇H j(θ))v,

for v in Tθ Sd−1, where the latter is identified with a linear subspace of Rd .
A direct computation (using that φ ′(0) = 1 and φ ′(1) = 3) shows that if θ is in Sd−1∩

Vj then ∇2h j(θ) = 0, while if θ is in Sd−1 ∩Wj then ∇2h j(θ)v = −2pr j(v). Hence, for
θ ∈ Sd−1 ∩Ei and v ∈ Tθ Sd−1,

v ·∇2h(θ)v =−2
i−1

∑
j=1

∣∣pr j(v)
∣∣2 ⩽−2

∣∣pri−1(v)
∣∣2.
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We can now proceed to the proof of Proposition 6.5.

Proof of Proposition 6.5. Fix ε,K as in the statement of the proposition and let h be given
by Lemma B.1. To simplify the notations in this proof, for i∈ J1,NK, we denote FAi simply
by Fi.

Notice that, for j ∈ J1,kK and θ ∈ Sd−1∩E j, we have ∇2h(θ)FM(θ) = 0. Indeed, if θ

is a generalized eigenvector of M in E j then FM(θ) ∈ E j and the conclusion follows from
Item (a) in Lemma B.1. As a consequence, for j ∈ J1,kK, θ ∈ Sd−1 ∩E j, and i ∈ J1,NK,

Fi(θ) ·∇((Fi −FM) ·∇h)(θ) = Fi(θ) ·∇2h(θ)Fi(θ) ,

where we again used Item (a) in Lemma B.1.
Let δ = ε mini∈J1,NK πi/8. Thanks to Lemma B.1 and Condition (C), up to multiply-

ing h by a positive constant, there exist a map s : J2,kK → J1,NK and K1, . . . ,Kk disjoint
neighborhoods in Sd−1 of, respectively, Sd−1 ∩E1, . . . ,Sd−1 ∩Ek such that K1 ⊂ K and

max
j∈J2,kK

max
θ∈K j

Fs( j)(θ) ·∇
(
(Fs( j)−FM) ·∇h

)
(θ) ⩽ −1,

max
j∈J1,kK

max
θ∈K j

max
i∈J1,NK

Fi(θ) ·∇((Fi −FM) ·∇h)(θ) ⩽ δ .

For all j ∈ J2,kK we consider ψ j ∈ C2(Sd−1) such that ψ j(θ) = 1 for all θ ∈ Sd−1∩K j
and 0 for all θ ∈ Sd−1 ∩Kℓ with ℓ ̸= j.

The generator of (θ(t),σ(t))t⩾0 being given by

Lg(θ ,σ) = Fσ (θ) ·∇θ g(θ ,σ)+µ

(
N

∑
i=1

πig(θ , i)−g(θ ,σ)

)
,

we consider the Lyapunov function

f (θ ,σ) = h(θ)+
1
µ
(Fσ (θ)−FM(θ)) ·∇h(θ)− 1

4µ2

k

∑
j=2

ψ j(θ)1s( j)(σ)

to get

L f (θ ,σ) = FM(θ) ·∇h(θ)+
1
µ

Fσ (θ) ·∇((Fσ −FM) ·∇h)(θ)

− 1
4µ2

k

∑
j=2

[
Fσ (θ) ·∇ψ j(θ)1s( j)(σ)+µψ j(θ)

(
πs( j)−1s( j)(σ)

)]
.

We distinguish four cases. First, for all θ ∈ Sd−1 \ (
⋃k

j=1 K j) and σ ∈ J1,NK, we simply
bound

L f (θ ,σ)⩽−α +C
(

1
µ
+

1
µ2

)
,

where
α =− sup

θ∈Sd−1\(
⋃k

j=1 K j)

FM(θ) ·∇h(θ)> 0
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and C > 0 is some constant independent of µ . Second, for all θ ∈ K1 and σ ∈ J1,NK,

L f (θ ,σ)⩽
1
µ

Fσ (θ) ·∇((Fσ −FM) ·∇h)(θ)⩽
δ

µ
.

Third, for all j ∈ J2,kK and θ ∈ K j,

L f (θ ,s( j))⩽
1
µ

Fs( j)(θ) ·∇
(
(Fs( j)−FM) ·∇h

)
(θ)− 1

4µ
(πi −1)⩽− 1

4µ
.

Fourth, for all j ∈ J2,kK, θ ∈ K j, and σ ̸= s( j),

L f (θ ,σ)⩽
1
µ

Fσ (θ) ·∇((Fσ −FM) ·∇h)(θ)− 1
4µ

πs( j) ⩽
4δ −πs( j)

4µ
⩽−

mini∈J1,NK πi

8µ
.

Gathering these four cases, for µ large enough we get

L f (θ ,σ)⩽
mini∈J1,NK πi

8µ

(
ε1θ∈K1 −1θ /∈K1

)
.

Any invariant measure ρ for L thus satisfies

0 = ρL f ⩽
mini∈J1,NK πi

8µ
(ερ(K1 × J1,NK)−1+ρ(K1 × J1,NK)) ,

hence ρ(K1 × J1,NK)⩾ 1/(1+ ε)⩾ 1− ε . This concludes since K1 ⊂ K.

B.2 Proof of Lemma 6.7
Assume by contradiction that there exist an open nonempty subset B of co(A) and two
positive integers j ⩽ k in {2,3} so that for every matrix M ∈ B, using the notation of
Definition 6.3, for every i ∈ J1,NK there exists θ ∈ E j ∩ Sd−1 with FAi(θ) ∈

⊕
r⩾ j Er.

Denote by nl the dimension of the generalized eigenspace El for l ∈ J1,kK. By eventually
shrinking B, the integers nl do not depend on M in B. To further simplify the discussion,
we will assume that k = d, i.e., the nl are all equal to one, since, otherwise, up to replacing
the eigenvectors by projectors on the spaces El along the direct sum of the other El′ , the
subsequent computations carry over.

Let us parameterize B by an open neighborhood S of 0 in Rm, where m denotes the
dimension of co(A). Note that one can choose the assignment s 7→ M(s) affine in s. It is
standard that the assignments given by s 7→ (λl(M(s)))1⩽l⩽d and s 7→ (vl(M(s)))1⩽l⩽d for
the spectrum of M(s) and a basis of its unit length eigenvectors define smooth functions
on S. In the sequel we simply write λl(s) and vl(s) and, to highlight the fact that the
spaces El depend on M(s), we write them as El(s). (Note that if nl > 1 for some l ⩽ k,
then the map assigning to every s ∈ S the projector on El(s) is again smooth.)

We use D(s) and V (s) to denote, respectively, the diagonal matrix made of the eigen-
values of M(s) and the matrix in Md(R) with columns vl(s) and set W (s) =

(
V (s)T)−1,

whose columns we denote by wl(s), l ∈ J1,dK. We summarize these notations with the
relations

M(s)V (s) =V (s)D(s), W T (s)V (s) = Id, for all s ∈ S. (B.2)
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Notice, moreover, that

vT
l (s)v

′
l(s) = 0, for all s ∈ S and l ∈ J1,dK, (B.3)

where by ′ we denote the differentiation with respect to s ∈ S. (One can either inter-
pret such a differentiation in tensorial sense in the computations below, or simply con-
sider a directional derivative in the space Rm along an arbitrary direction.) Note also that
MT (s)W (s) =W (s)D(s) for s ∈ S, i.e., the vectors wl(s) are eigenvectors of MT .

We only treat the case where j = 2 since the remaining case for j = k = d = 3 is even
simpler. Then one can choose θ = v2(s) in E2(s)∩Sd−1 and the above assumption on FAi

reads
FAi(v2(s)) ∈

⊕
r⩾2

Er(s), for all s ∈ S and i ∈ J1,NK.

In turn the above equation reduces to

wT
1 (s)Aiv2(s) = 0, for all s ∈ S and i ∈ J1,NK. (B.4)

In the sequel, for simplicity, we drop the variable s from the notations. Set R = V−1V ′

and note that

v′l =
d

∑
q=1

rqlvq for l ∈ J1,dK, (B.5)

where (rlq)lq = R. Differentiating the first equation in (B.2) with respect to s, replacing
V ′ by V R, left multiplying by W T , and using that W T MV = D yields

W T M′V = [R,D]+D′. (B.6)

Focusing on the coefficient (1,2) in the above equation and taking into account (B.4) and
the fact that the eigenvalues are distinct, one deduces that r12 ≡ 0.

When d = 2, using (B.3) and (B.5) for l = 2 and the above, we deduce that v2 is
a constant vector, and hence the line supported by v2 is invariant by every matrix of A,
contradicting the irreducibility assumption.

If d = 3, we further differentiate (B.6) to deduce that

[W T M′V,R] = [R′,D]+ [R,D′]+D′′,

where we have used the fact that M′′ ≡ 0 and the relation W ′ = −WRT . Plugging again
(B.6), we obtain that

[R, [D,R]] = [R′,D]+2[R,D′]+D′′.

Again, considering only the coefficient (1,2) in the above equation, we deduce that
r13r32 ≡ 0. If r13 is not identically equal to zero, then there exists an open subset of S
where r32 ≡ 0. Using (B.5) for l = 2 and the above, we deduce that v2 is a constant vec-
tor and we have a contradiction as previously. Assume now that r13 ≡ 0. Using again
that W ′ =−WRT , we have that w′

1 =−r11w1. We deduce that the line spanned by w1(0)
is invariant by the matrices AT

1 , . . . ,A
T
N , contradicting again the irreducibility of A. That

concludes the proof of the lemma. 2
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