
HAL Id: hal-03478052
https://hal.science/hal-03478052

Preprint submitted on 13 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On sequentiality and well-bracketing in the π-calculus
(Long Version)

Daniel Hirschkoff, Enguerrand Prebet, Davide Sangiorgi

To cite this version:
Daniel Hirschkoff, Enguerrand Prebet, Davide Sangiorgi. On sequentiality and well-bracketing in the
π-calculus (Long Version). 2021. �hal-03478052�

https://hal.science/hal-03478052
https://hal.archives-ouvertes.fr

On sequentiality and well-bracketing in the π-calculus (Long Version)

Daniel Hirschkoff
ENS de Lyon

Enguerrand Prebet
ENS de Lyon

Davide Sangiorgi
Università di Bologna and INRIA

Abstract—The π-calculus is used as a model for programming
languages. Its contexts exhibit arbitrary concurrency, making
them very discriminating. This may prevent validating desir-
able behavioural equivalences in cases when more disciplined
contexts are expected.

In this paper we focus on two such common disciplines:
sequentiality, meaning that at any time there is a single thread
of computation, and well-bracketing, meaning that calls to
external services obey a stack-like discipline. We formalise the
disciplines by means of type systems. The main focus of the
paper is on studying the consequence of the disciplines on
behavioural equivalence. We define and study labelled bisim-
ilarities for sequentiality and well-bracketing. These relations
are coarser than ordinary bisimilarity. We prove that they are
sound for the respective (contextual) barbed equivalence, and
also complete under a certain technical condition.

We show the usefulness of our techniques on a number of
examples, that have mainly to do with the representation of
functions and store.

1. Introduction

The π-calculus has been advocated as a model to give
semantics to, and reason about, various forms of program-
ming languages, including those with higher-order features.
Strengths of the π-calculus are its rich algebraic theory and
its wide spectrum of proof techniques. Concurrency is at the
heart of the π-calculus: computation is interaction between
concurrent processes. The operators of the calculus are
simple (parallelism, input, output, restriction being the main
ones) and unconstrained. This yields an amazing expressive
power — the calculus can model a variety of programming
idioms [1]. However, this also makes the contexts of the
calculus very discriminating; as a consequence, behavioural
equivalences, which are supposed to be preserved by all the
contexts of the calculus, are rather demanding relations.

Higher-level languages may be syntactically quite dif-
ferent from a language for pure concurrency such as the
π-calculus. For instance, the paradigmatic higher-order pro-
gramming language, the λ-calculus, is a pure calculus of
functions and, in both its call-by-name and call-by-value
variants, is sequential — it is even deterministic. A vari-
ety of extensions of it have been considered; examples of
additional features are references, control operators, non-
determinism, (constrained) forms of concurrency. The spe-
cific set of syntactic features chosen for the language deter-

mines the ways in which the contexts of the language may
interact with the terms. In any case, the patterns of inter-
action are usually more disciplined than those that arise in
π-calculus representations of those terms. Thus there are λ-
terms that are indistinguishable within the (pure) λ-calculus
whose π-calculus images can be separated by appropriate
π-contexts.

A well-known way of imposing a discipline to the π-
calculus is to equip it with a type system. Such systems
are intended to capture communication patterns that occur
frequently when programming in the π-calculus. A num-
ber of type systems have been considered: e.g., capability
types (formalising the intended I/O usage of names that
are exchanged among processes), linearity (formalising the
property that certain names may be used at most once),
session types (formalising the communication protocols in
the dialogues between two or more processes), and so on [2],
[3], [4], [5]. Type systems have also been designed to
capture specific properties of processes, such as termina-
tion, deadlock-freedom, lock-freedom [6], [7], [8], [9], [10].
Types impose constraints on the set of legal contexts in
which well-typed terms are supposed to be used; this can
make behavioural equivalences usefully coarser.

A further step is then to tune the proof techniques of the
π-calculus to such type systems, so to be able to actually
prove the behavioural equalities that only hold in presence of
types. Typically this is investigated in the coinductive setting
of bisimilarity, and achieved by refining and/or modifying
the standard bisimilarity clauses so to take the usage of types
into account. The resulting bisimilarity should be sound with
respect to contextually-defined forms of bisimilarity such as
barbed equivalence (or congruence); ideally, it should also
be complete.

In barbed equivalence, the bisimulation game is played
only on internal actions, and certain success signals, the
barbs, are used to monitor the computation. In the stan-
dard barbed equivalence, an arbitrary context may be
added, once (at the beginning), on top of the tested pro-
cesses. In reduction-closed barbed equivalence [11], [1],
the context may be dynamically updated, by adding fur-
ther components during the computation. Reduction-closed
barbed equivalence usually allows simpler proofs of com-
pleteness, and does not require any hypothesis of image-
finiteness on the state space of the tested processes. In
contrast, standard barbed equivalence is more robust —
reduction-closed barbed equivalence may sometimes be
over-discriminating [12].

In this paper we focus on the π-calculus representation
of sequentiality and well-bracketing. ‘Sequentiality’ intu-
itively indicates the existence of a single thread of com-
putation. ’Well-bracketing’ is a terminology borrowed from
game semantics, and used to refer to a language without
control operators, in which the call-return interaction be-
haviour between a term and its context follows a stack
discipline. Our main objectives are to define bisimilarity-
based proof techniques for type systems in the π-calculus
that formalise the sequentiality and well-bracketing notions.
We actually work with the asynchronous π-calculus, Aπ, as
this is the calculus that is usually adopted in the literature
for modelling higher-order languages.

In Aπ, sequentiality is the property that, at any time, at
most one process is active, or carries the thread; that is,
the process has the control on the computation and decides
what the next computation step can be. In other words, we
never find two sub-components of a system both of which
contain an interaction redex (a pair of an input and an output
processes at the same name).

In the (standard) encodings of the λ-calculus [13], [14],
a process is active, i.e., it carries the thread, when it contains
an unguarded output particle. Indeed, the π-calculus terms
obtained from the encodings give rise to computations in
which, syntactically, at any time there is at most one un-
guarded output particle. An input process that consumes that
output will in turn become active.

Our type system is more general, in that we allow also
input processes to carry the thread. The type system specifies
whether a name may carry the thread in output or in input;
we call these names output-controlled and input-controlled.
While the output-controlled are the most important ones
(for instance, they play a central role in the modelling of
functions), input-controlled names may be useful too, for
instance, in the representation of references or locks. A
reference ` that contains the value n is represented in Aπ by
an output particle `〈n〉; and a process accessing the reference
will do so by performing an input at `. Thus an input at `
indicates ownership of the current computation thread.

As remarked above, sequentiality implies absence of
parallel computation threads. Sequentiality however does
not exclude non-determinism. An output particle a〈b〉 that
owns the thread may have the possibility of interacting with
different input processes at a (and symmetrically for input
processes owning the thread). Indeed we also admit internal
non-determinism (i.e, processes such as τ .P+τ .Q that may
chose to reduce either to P or to Q without interactions with
the environment), both in active and in inactive processes.

The type system for well-bracketing is a refinement of
that for sequentiality, in which a stack of continuation names
keeps track of the structure of calls and returns among the
processes. These stacks are similar to those used in the
implementation of compilers for languages (or fragments
of languages) adopting well-bracketing, or used in well-
bracketed forms of game semantics.

Finding proof techniques to reason about sequentiality
and well-bracketing presents a number of caveats, that have
mainly to do with the soundness and completeness of the

resulting bisimilarity with respect to barbed equivalence.
We briefly discuss below a couple of issues concerning
completeness.

In the proof of completeness one has to show that the
contexts of the language are at least as discriminating as the
labelled bisimilarity. In standard proofs, one defines special
contexts that interact with the tested processes and, at the
same time, emit certain signals to the outside so to provide
information on the kind of interactions that have occurred
with the processes. Such behaviour of the testing contexts is
however inherently concurrent — the context has to interact
with the tested processes and, at the same time, emit signals
to the outside — and is therefore liable to break the typing
discipline for sequentiality (and hence also well-bracketing).

Further problems arise in proofs about reduction-closed
barbed equivalence. The reason why completeness proofs
for reduction-closed barbed equivalence may be simpler than
with standard barbed equivalence is that the testing context
may be incrementally adjusted, after every interaction step
with the tested processes. This however requires the exis-
tence of special components in the contexts to handle the
fresh names generated by the tested processes. Specifically,
the task of these components is to ensure that new pieces
of contexts, added later, will be able to access such fresh
names. Again, these components represent parallel threads,
and break the sequentiality and well-bracketing disciplines.
For this reason in the paper we cannot appeal to reduction-
closed forms of barbed equivalence, remaining within the
standard notions and therefore requiring an image-finiteness
condition.

In the case of well-bracketing the problems above are en-
hanced by the presence of continuation names. These names
are linear [3] (they may only be used once), input receptive
[15] (the input-end of the name should always be available),
and output-controlled. This places further constraints on the
use of such names within contexts that test the processes.

For the above reasons, the completeness proofs for se-
quentiality and well-bracketing present significant techni-
cal differences, both between them and from completeness
proofs in the literature.

In the paper we propose labelled bisimilarities that allow
us to reason about processes following the sequentiality
or well-bracketing disciplines. We prove that the bisimi-
larities are sound with respect to barbed equivalence. We
also establish completeness, on processes with only output-
controlled names. We do not know whether completeness
holds in the general case, with also input-controlled names.
We also study some refinements of the bisimilarities: one
is obtained by injecting ideas from bisimilarities for calculi
with references [16]; other refinements are forms of ‘up-to
techniques’. We illustrate applications of our techniques on
a number of examples, most of which have to do with the
representation of functions and references. Usually the ex-
amples are about equalities that only hold under the sequen-
tiality or well-bracketing disciplines; other examples show
that sequentiality and well-bracketing may make equalities
simpler to prove because there are fewer observables to take
into account.

Paper outline. We introduce some background in Sec-
tion 2. We study sequentiality in Section 3, and well-
bracketing in Section 4: in each case, we present our type
system, define an appropriate notion of bisimilarity, and
show some examples or laws that we can derive. Related
and future works are discussed in Section 5.

The results described here are presented in [17]. The
present version of the paper provides more technical defini-
tions, as well as proofs that are omitted from [17].

2. Background: the (asynchronous) π-calculus

We recall here the standard syntax of the asynchronous
π-calculus, Aπ, from [18]:

P,Q ::= a〈̃b〉
∣∣ !a(̃b).P

∣∣ P | Q ∣∣ (νa)P
∣∣ G

G,G′ ::= 0
∣∣ a(̃b).P

∣∣ τ .P
∣∣ [a = b]G

∣∣ G+G′

Names are ranged over by a, b, In prefixes a〈̃b〉 and
a(̃b).P , name a is the subject and b̃ are the objects. We
use a tilde, like in b̃, for (possibly empty) tuples of names;
similarly (νã)P stands for a sequence of restrictions. As
usual, we write a.P and a when the object of a prefix is
the empty tuple. We use

∑
i∈I Gi (resp.

∏
i∈I Pi) for Gi1 +

· · · + Gin (resp. Pi1 | . . . | Pin) where I = {i1, . . . , in}.
We write P{a/b} for the result of replacing name b with a
in P in a capture-avoiding way. Contexts, C, are processes
containing a single occurrence of a special constant, the hole
(written [·]). The static contexts, ranged over by E, have the
form νã(P | [·]). In examples, for readability we sometimes
use basic data values such as integers and booleans. The
definition of structural congruence, written ≡, and of the
strong and weak early labelled transitions, written

µ−→, =⇒,
and

µ̂
=⇒, are standard and are given in Appendix A. We note

fn(P) (resp. fn(µ)) the set of free names of P (resp. µ). We
sometimes abbreviate reductions P τ−→ P ′ as P −→ P ′.

The calculi in the paper will be typed. For simplicity
we define our type systems as refinements of the most basic
type system for π-calculus, namely Milner’s sorting [19],
in which names are partitioned into a collection of types
(or sorts), and a sorting function maps types onto types. If a
name type S is mapped onto a type T , this means that names
in S may only carry names in T . We assume that there is a
sorting system under which all processes we manipulate are
well-typed. We write ∆ ` P when process P is well-typed
under the typing ∆, and similarly for other objects, such as
contexts.

The reference behavioural equivalence for us will be the
context-closure of barbed bisimulation. We focus on barbed
equivalence (as opposed to barbed congruence) because it is
simpler (notably, we do not need to consider issues of clo-
sure of the labelled bisimulations under name substitutions).
The definition of barbed bisimulation uses the reduction
relation =⇒ along with an observation predicate ⇓a for
each name a, which detects the possibility of performing
an output to the external environment along a. Moreover,
since we work in a typed setting, such an output should

be allowed by the typing of the tested processes. Thus, we
write ∆ � P ⇓a if ∆ is a typing for P (i.e., ∆ ` P holds),
there is an output µ with subject a s.t. P

µ
=⇒ P ′, and such

a transition is observable under the typing ∆. The meaning
of ’observable under a typing’ will depend on the specific
type system adopted; in the case of the plain sorting, all
transitions are observable.

Having typed processes, in the definition of barbed
equivalence we may only test processes with contexts that
respect the typing of the processes.

Definition 1. C is a Γ/∆ context if Γ ` C holds, using the
typing for the processes plus the rule

∆ ` [·]
for the hole.

Similarly, P is a ∆-process if ∆ ` P . We assume (as
in usual Subject-Reduction properties for type systems) that
typing is invariant under reduction. This is the case for the
type systems we present in this paper.

Definition 2 (Barbed bisimulation, equivalence, and con-
gruence). Barbed ∆-bisimulation is the largest symmetric
relation

.
≈∆

on ∆-processes s.t. P
.
≈∆

Q implies:

1) whenever P −→ P ′ then there exists Q′ such that
Q =⇒ Q′ and P ′

.
≈∆

Q′;
2) for each name a, ∆ � P ⇓a iff ∆ � Q ⇓a.

Two ∆-processes P and Q are barbed equivalent at ∆,
written P '∆ Q, if for each Γ/∆ static context E it holds
that E[P]

.
≈Γ

E[Q]. Barbed congruence at ∆, ∼=∆, is
defined in the same way but employing all Γ/∆ contexts
(rather than only the static ones).

Barbed equivalence in the plain (untyped) Aπ, ', can
be proved to coincide with the ordinary labelled early asyn-
chronous bisimilarity, on image-finite processes, exploiting
the n-approximants of the labelled equivalences. We recall
that the class of image-finite processes is the largest subset
I of processes that is derivation closed and s.t. P ∈ I
implies that, for all µ, the set {P ′ | P

µ
=⇒ P ′}, quo-

tiented by alpha conversion, is finite. Similarly, we present
below the early asynchronous bisimulation, named so due
to the second clause for input transitions; we simply call it
bisimulation, and do so for the coinductive equivalences we
consider in the paper, which are all asynchronous and use
the early labelled transitions.

Definition 3 (Bisimulation). A relation R on processes is
a bisimulation if whenever P R Q and P

µ−→ P ′, then one
of these two clauses holds:

1) there is Q′ such that Q
µ̂
=⇒ Q′ and P ′ R Q′;

2) µ = a〈̃b〉 and there is Q′ such that Q | a〈̃b〉 =⇒ Q′ and
P ′ R Q′.

Moreover the converse holds too, on the transitions from Q.
Bisimilarity, ≈, is the largest bisimulation.

Theorem 4 ([18]). On image-finite processes, relations '
and ≈ coincide.

3. Sequentiality

In this section we study sequentiality. We first formalise
it by means of a type system, and then we examine its impact
on behavioural equivalence.

3.1. Type system

As mentioned in Section 1, intuitively, sequentiality en-
sures us that at any time at most one interaction can occur in
a system; i.e., there is a single computation thread. A process
that holds the thread decides what the next interaction can
be. It does so by offering a single particle (input or output)
that controls the thread. The process may offer multiple
particles, but only one of them may control the thread. The
control on the thread attached to a particle is determined by
the subject name of that particle. A given name may exercise
the control on the thread either in output or in input; in the
former case we say that the name is output-controlled, in
the latter case the name is input-controlled. For instance,
suppose that x, y, z are output-controlled and u, v are input-
controlled. Then the following process correctly manages
the thread and will indeed be typable in our type system:

P
def
= u. (x | y.x) | z. y | v

The initial particles in P are u, z, v; however only u con-
trols the thread, as z is output-controlled and v is input-
controlled. When the input at u is consumed, the new parti-
cles x, y are available, where x now controls the thread, as
both names x, y are output-controlled. An external process
that consumes the particle x will acquire the control over
the thread. For instance, a process such as Q def

= u | x.Q′

initially does not hold the thread; in the parallel composition
P | Q, after the two interactions at u and x, the control on
the thread will be acquired by Q′:

P | Q −→−→ (y.x | z. y | v) | Q′

Now Q′ will decide on the next interaction; for instance, it
may offer an output at y or z, or an input at v. It may only
offer one of these, though it may offer other particles that
do not control the thread.

Notation In the remainder, x, y, z range over output-
controlled names, u, v, w over input-controlled names; we
recall that a, b, c range over the set of all names.

The type system for sequentiality is presented in Fig-
ure 1. Judgements are of the form η `s P , for η ∈ {0, 1}.
A judgement 1 `s P indicates that P owns the thread, i.e.,
P is active, and 0 `s P otherwise, i.e., P is inactive.

We recall that we only present the additional typing
constraints given by sequentiality, assuming the existence
of a sorting under which all processes are well-typed (thus
the fully-fledged typing judgements would be the form
∆; η `s P , rather than η `s P).

Some remarks on the rules in Figure 1: a rule with a
double conclusion is an abbreviation for more rules with the

same premises but separate conclusions. The continuation of
an input always owns control on the thread; the input itself
may or may not have the control (rules I-ACT and I-INA).
A τ -prefix is neutral w.r.t. the thread. The rule for parallel
composition makes sure that the control on the thread is
granted to only one of the components; in contrast, in the
rule for sum, the control is maintained for both summands.
Operators 0 and match cannot own the thread; this makes
sure that the thread control is always exercised.

We present some behavioural properties that highlight
the meaning of sequentiality. A reduction P

τ−→ P ′ is an
interaction if it has been obtained from a communication
between an input and an output (formally, its derivation in
the LTS of Appendix A uses rule ACOMM). A pair of an
unguarded input and an unguarded output at the same name
form an interaction redex. In a sequential system, one may
not find two disjoint interaction redexes.

Proposition 5. Whenever η `s P , there exists no P1, P2, ã
such that P ≡ (νã)(P1 | P2) with P1

τ−→ P ′1 and P2
τ−→ P ′2,

and both these transitions are interactions.

An inactive process may not perform interactions.

Proposition 6. If 0 `s P , then P does not have an inter-
action redex; i.e, there is no P ′ with P

τ−→ P ′ and this
transition is an interaction.

An inactive process may however perform τ -reductions,
notably to resolve internal choices. In other words such
internal choices represent internal matters for a process,
orthogonal with respect to the overall interaction thread. The
possibility for inactive processes to accommodate internal
choices will be important in our completeness proof. How-
ever, an inactive process may only perform a finite number
of τ -reductions. A process P is divergent if it can perform
an infinite sequence of reductions, i.e., there are P1, P2, . . . ,
with P −→ P1 −→ P2 . . . Pn −→

Proposition 7. If 0 `s P then P is not divergent.

In contrast, an active process may be divergent, through
sequences of reductions containing infinitely many interac-
tions.

Sequentiality imposes constraints on the interactions that
a ‘legal’ (i.e., well-typed) context may undertake with a pro-
cess. For the definition of barbed bisimulation and equiva-
lence we must therefore define the meaning of observability.
The following definition of type-allowed transitions shows
what such ‘legal’ interactions can be.

Definition 8 (Type-allowed transitions). We write η �s

P
µ−→ P ′ if η `s P , and P

µ−→ P ′, and one of the following
clauses holds:

1) η = 0
2) µ = τ
3) η = 1 and µ = u〈ã〉 for some u, ã or µ = (νã)x〈̃b〉

for some ã, x, b̃.

Clause (1) says that all interactions between an inactive
process and the context are possible; this holds because

I-ACT
1 `s P

1 `s u(ã).P
I-INA

1 `s P

0 `s x(ã).P, !x(ã).P
O-ACT

1 `s x〈ã〉
O-INA

0 `s u〈ã〉
RES

η `s P

η `s (νa)P

NIL
0 `s 0

PAR
η1 `s P η2 `s Q

η1 + η2 `s P | Q
η1 +η2 ≤ 1 SUM

η `s G1 η `s G2

η `s G1 +G2
TAU

η `s P

η `s τ .P
MAT

0 `s G

0 `s [a = b]G

Figure 1. The typing rules for sequentiality

the context is active and may therefore decide on the next
interaction with the process. Clause (2) says that internal
reductions may always be performed. Clause (3) says that
the only visible actions observable in active processes are
those carrying the thread; this holds because the observer is
inactive, and it is therefore up to the process to decide on
the next interaction.

We now examine how typing evolves under legal actions.
We recall that x stands for an output-controlled name.

Definition 9. We write [η;P]
µ−→ [η′;P ′] when η �s P

µ−→
P ′ and:

1) if µ = x〈ã〉, then η′ = 1.
2) if µ = (νã)x〈̃b〉, then η′ = 0.
3) otherwise η′ = η.

Theorem 10 (Subject Reduction). If η `s P and [η;P]
µ−→

[η′;P ′] then η′ `s P
′.

In the third clause above, in the case of an interaction,
we necessarily have η = 1.

Weak type-allowed transition are defined as expected,
exploiting the invariance of typing under reductions: η �s

P
µ
=⇒ P ′ holds if there are P0, P1 with P =⇒ P0, η �s

P0
µ−→ P1 and P1 =⇒ P ′.

3.2. Behavioural Equivalence

3.2.1. Sequential Bisimilarity. To tune Definition 2 of
barbed bisimulation and equivalence to the setting of se-
quentiality, we have to specify the meaning of observables.
An observable η �s P ⇓a holds if there are P ′ and an output
action µ such that η �s P

µ
=⇒ P ′ and the subject of µ is

a. Following Definition 1, in barbed equivalence, the legal
contexts are the η/η′ static contexts. To remind ourselves of
the sequentiality constraint, we write barbed equivalence at η
as 'η, and sometimes call it sequential barbed equivalence
at η . Thus P 'η Q holds if η `s P,Q and E[P]

.
≈η

′

E[Q],
for any η′ and any η′/η static context E.

We are now ready to define the labelled bisimilarity to
be used on sequential processes, which is our main proof
technique for barbed equivalence. A typed process relation
is a set of triplets (η, P,Q) with η `s P,Q.

Definition 11 (Sequential Bisimulation). A typed pro-
cess relation R is a sequential bisimulation if whenever
(η, P,Q) ∈ R and [η;P]

µ−→ [η′;P ′], then one of the two
following clauses holds:

1) there is Q′ such that Q
µ̂
=⇒ Q′ and (η′, P ′, Q′) ∈ R;

2) µ = a〈̃b〉 and there is Q′ such that Q | a〈̃b〉 =⇒ Q′ with
(η′, P ′, Q′) ∈ R.

Moreover, the converse of (1) and (2) holds on the transi-
tions from Q. Processes P and Q are sequentially bisimilar
at η, written P ≈ηs Q, if (η, P,Q) ∈ R for some sequential
bisimulation R.

In clause (2), Q | a〈b〉 must be well-typed, be a an
input- or output-controlled name. Clauses (1) and (2) are the
same as for ordinary bisimilarity ≈ (Definition 3); typing
however prevents certain transitions to be considered as
challenge transitions in the bisimulation game. Thus the
resulting bisimilarity becomes coarser.

Ordinary bisimilarity, restricted to processes having the
same typing, is included in the sequential one. So it is also
a proof technique for barbed equivalence at η. Indeed, from
any bisimulation, we may construct a sequential bisimula-
tion by taking the pairs of well-typed processes in relation.

Proposition 12. For η `s P,Q, if P ≈ Q then also P ≈ηs Q.

The inclusion is strict: all the examples in Section 3.3
fail to hold for ≈.

Theorem 13 (Soundness). If P ≈ηs Q, then P 'η Q.

As usual, the proof of Theorem 13 relies on the preserva-
tion of ≈ηs under parallel composition, which requires some
care in order to enforce sequentiality. This is ensured by
typability. Theorem 13 allows us to use the labelled bisimi-
larity ≈ηs as a proof technique for typed barbed equivalence.

This proof technique is also complete, assuming only
output-controlled names (i.e., the thread may only be exer-
cised by output particles, not by the input ones), as we show
below.

3.2.2. Completeness for Output-Controlled Names. For
the proof of completeness, we introduce the notion of sin-
gular process. Intuitively, a singular process always keeps
the thread. Formally, the set of singular processes is the
largest set T of processes such that for all P ∈ T , we have
1 `s P and whenever 1 �s P

µ−→ P ′, then P ′ ∈ T .
A simple example of singular process is 01

def
= (νz)z,

which is an active process without transition. Singular pro-
cesses are simply described as the equivalence class of 01.

Lemma 14. P is singular iff P ≈1
s 01.

Because a singular process always keeps the thread, the
presence of other components is irrelevant, and cannot be
observed.

Lemma 15. For any static 1/1 context E and singular
process P , we have E[P] ≈1

s P .

For processes with only output-controlled names, we
may use a coarser equivalence to tell whether a process is
singular.

Lemma 16. If P only contains output-controlled names,
then P is singular iff P

.
≈1

01.

This result does not extend to general processes. For
instance, we have u.x

.
≈1

01 but u.x 6≈1
s 01.

We can now describe the completeness proof. While the
overall structure of the proof is standard, the technical details
are specific to sequentiality.

As usual, we rely on a stratification of bisimilarity and
approximants.

Definition 17 (Approximants of sequential bisimilarity). We
define a sequence (≈η,ns)n≥0 of typed relations:

1) P ≈η,0s Q if η `s P,Q.
2) For 1 ≤ i, relation ≈η,is is defined by: P ≈η,is Q if

whenever [η;P]
µ−→ [η′;P ′], one of these two clauses

holds:
– there is Q′ such that Q

µ̂
=⇒ Q′ and P ′ ≈η′,i−1

s Q′;
– µ = a〈b〉 and there is Q′ such that Q | a〈b〉 =⇒ Q′

and P ′ ≈η′,i−1
s Q′,

and symmetrically for the transitions of Q.
3) Then P ≈η,ωs Q if P ≈η,is Q for all i.

Notice that ≈η,0s ⊇≈η,1s ⊇ · · · ⊇≈η,ns ⊇ · · · ⊇≈η,ωs ⊇≈ηs .
On image-finite processes, sequential bisimilarity, ≈ηs ,

coincides with the intersection of its approximants.

Lemma 18. If P,Q are image-finite, P ≈η,ωs Q iff P ≈ηs Q.

The main ingredient for proving completeness is given
by the following proposition.

Proposition 19. Given n ≥ 0, suppose η `s P,Q, and
P 6≈η,ns Q. Suppose further that both P and Q only use
output-controlled names and are image-finite. Then there
exists R such that for any fresh name z, any x̃, S with x̃ ⊆
fn(P) ∪ fn(Q) ⊆ S, if we define

R̄
def
=

{
z | z.R when 0 `s P,Q
R+

∑
y∈S y(ỹ′). z when 1 `s P,Q

and E0
def
= (νx̃)([·] | R̄), we have the following:

1) either E0[P ′] 6
.
≈1

E0[Q] for all P ′ such that P =⇒ P ′

2) or E0[P] 6
.
≈1

E0[Q′] for all Q′ such that Q =⇒ Q′.

When 1 `s P,Q, we define R as a guarded process, in
order for the sum in the definition of R̄ to make sense.

The full proof is given in Appendix B. We present here
the main aspects which are specific to the case of sequential
bisimilarity.

We reason by contradiction to establish that E0[P] and
E0[Q] are not barbed bisimilar. To respect typing, the defi-
nition of E0 requires some care.

The case when η = 0 (tested processes are inactive)
is rather standard: the context E0 is of the form (νx̃)([·] |
z | z.R), for some fresh z, and some “tester process” R.
The barb at z allows us to detect when the tested process
interacts with R.

The delicate case is when η = 1 (tested processes are
active): the context must be inactive and hence cannot have
an unguarded output at z. We use in this case a 1/1 context
of the form E0

def
= (νx̃)([·] | GR + G). Process GR is the

tester process, and G is
∑

y∈S y(ỹ′). z, defined for some
fresh z and some set S containing fn(P)∪fn(Q). G satisfies
the following property: for any P0 and for any x, if 1 �s

P0 ⇓x then 1 �s P0 | G ⇓z . Thus, as soon as P0 exhibits
some barb, we have 1 �s E0[P0] ⇓z , and P0 cannot interact
with R without removing the barb at z, which allows us to
reason as in the case η = 0.

The proof schema above relies on having P0 active
and exhibiting a barb, in order to be able to detect the
interactions. This condition is not fulfilled for singular pro-
cesses, which must be handled separately. Since we restrict
to output-controlled names, we can use Lemma 16. If on the
contrary input-controlled names are allowed, P0 may fail to
exhibit any barb while not being singular, which prevents
us from using the same reasoning.

Theorem 20 (Completeness on output-controlled names).
For all image-finite processes P,Q that only use output-
controlled names, and for all η, if P 'η Q then P ≈ηs Q.

3.3. Examples

With respect to ordinary bisimilarity, in sequential bisim-
ilarity (≈ηs) fewer challenges are allowed. This may both
mean that certain processes, otherwise distinguishable, be-
come equal, and that certain equalities are simpler to prove
because the state space of the processes to be examined is
reduced. We present some equalities of the first kind (valid
for ≈ηs only). In Section 3.3.2, we also show a refinement
of ≈ηs which is useful for reasoning about references.

3.3.1. Basic examples.

Example 21. An unguarded occurrence of an input at an
input-controlled name becomes the only observation that can
be made in a process. This yields the following equalities

u.P | x.Q ≈1
s u. (P | x.Q)

u.P | v ≈1
s u. (P | v) for u 6= v

For the first equality, one shows that

{(1, u.P | x.Q, u. (P | x.Q))} ∪ I ,

where I is the (typed) identity relation, is a sequential
bisimulation. One proves the second equality similarly.

By sequentiality, it is also not possible to access parts
of processes that would require a simultaneous/parallel re-
ception. The following example illustrates this.

Example 22. Consider the process

P
def
= (νy′, z′)(!x. (z′. z | y′) | !y. z′).

The output at z becomes observable if both an input at x and
an input at y are consumed, so that the internal reduction
at z′ can take place. However the input at x acquires the
thread, preventing a further immediate input at y; similarly
for the input at y. Indeed we have P ≈0

s x.01 + y.01
def
= Q

(we recall that 01 = (νz)z). To prove the equality, we can
use {P,Q}∪ ≈1

s , which is easily proved to be a sequential
bisimulation. The derivatives of P and Q are singular (and
stable, i.e., unable to reduce further) processes; therefore
they are in ≈1

s , as discussed in Lemma 16.
Under the ordinary bisimilarity, P and Q are distin-

guished because the sequence of transitions P x−→ y−→ τ−→ z−→
cannot be matched by Q.

Example 23. This example informally discusses why se-
quentiality can help reducing the number of pairs of pro-
cesses to examine in a bisimulation proof. Suppose we wish
to prove the equality between the two processes

P1
def
= x | y.R | u.Q

P2
def
= x | u.Q | y.R

and such processes are typable under the sequentiality sys-
tem. The difference between P1 and P2 comes from a com-
mutativity of parallel composition. We may therefore use
ordinary bisimilarity, as this is a sound proof technique for
typed barbed equivalence. One may prove, more generally,
that parallel composition is commutative and derive the
equality. However suppose we wish to use the bisimula-
tion method, concretely, on P and Q. The two processes
have 3 initial transitions (with labels x, y, and u), and the
subtrees of transitions emanating from the such derivatives
have similar size. Under ordinary bisimulation, we have to
examine all the states in the 3 subtrees.

Under sequential bisimulation, however, only the input
at y is observable (it is the only one carrying the thread),
thus removing 2 of the 3 initial subtrees. Further pruning
may be possible later on, again exploiting the fact that under
sequentiality only certain transitions are observable.

3.3.2. Examples with references. We now consider a few
examples involving references. For this, we use the standard
encoding of references into Aπ, and we enhance the bisim-
ilarity for sequentiality so to take references into account.

We use n,m, . . . to range over the entities stored in ref-
erences (which can be names or values belonging to a first-
order data type like booleans and integers) and placeholders
for them. Name ` is used to represent a reference.

In Aπ, a reference ` holding a value n is represented as
an output particle `〈n〉. A process that contains a reference
` should have, at any time, exactly one unguarded output
at `, meaning that at any time the reference has a unique

value. We say that in this case ` is accessible. The read and
write operations on ` are written as follows:

re`(m).R
def
= `(m). (`〈m〉 | R)

wr`〈n〉.R
def
= `(m′). (`〈n〉 | R) for m′ /∈ fn(R)

Thus a name ` used to encode a reference is input-controlled,
as an action on a reference is represented by an input at `
— we use ` rather than u, v, . . . to stress the fact that names
used to represent references obey constraints that go beyond
input-control.

Proof techniques for the representation of references in
Aπ have been studied in [16]. Adopting them requires en-
hancing our type system with information about references,
which simply consists in declaring which names represent
references.

We give in Figure 2, the main rules for defining S `r P
where S is the set of accessible reference names in P .
The other rules are standard having no accessible references
names neither in premise nor in conclusion. In the defini-
tion of barbed equivalence, the main constraint is that the
tested context should make sure that all existing reference
names are accessible. To reason about references, several
definitions of labelled bisimilarity are presented in [16],
varying on the forms of constraints imposed on transitions.
Here we only import the simplest such constraint: it forbids
observations of input transitions P

`〈n〉−→ P ′ at a reference
name ` when ` is accessible in P (i.e., an unguarded output
at ` occurs in P). Such a constraint represents the fact that
an observer may not pretend to own a reference when the
reference is accessible in the process.

Formally, with the addition of references, judgements in
the type system become of the form S; η `s P , where S is
a finite set of reference names, meaning that η `s P holds
and that S `r P holds. The definition of type-allowed transi-
tions, S; η �s P

µ−→ P ′, is the same as before (Definition 8)
with the addition, in clause (3), of the constraint

if µ is an input `〈n〉 at a reference name ` then ` 6∈ S. (∗)

Finally the definition of sequential bisimilarity with refer-
ences at (S, η), written ≈S;η

s is the same as that of sequential
bisimilarity (Definition 11), just using S; η `s P,Q and
S; η �s P

µ−→ P ′ in place of η `s P,Q and η �s P
µ−→ P ′.

It is straightforward to extend the soundness proof for se-
quential bisimilarity w.r.t. barbed equivalence (Theorem 13)
to the case of sequential bisimilarity with references. We
refer to [16] for further details on proof techniques for
references in Aπ.

Example 24. This example shows that reading or writing
on a global reference is not subject to interferences from
the outside, as these operations require the thread:

`〈n〉 | re`(m).R ≈`;1s `〈n〉 | R{n/m}
`〈n〉 | wr`〈m〉.R ≈`;1s `〈m〉 | R

Indeed, in each law, if P (resp. Q) is the process on
the left-hand (resp. right-hand) side, then the relation

` `r `〈n〉
` `r P

∅ `r `(m).P

S, ` `r P

S `r (ν`)P

S1 `r P S2 `r Q

S1] S2 `r P | Q
S `r P

S `r (νa)P

Figure 2. Rules for references

{((`; 1), P,Q)}∪I is a sequential bisimulation, when taking
the constraint (∗) for references into account.

Example 25 (Fetch-and-add, swap). We consider fetch-and-
add and swap operations, often found in operating systems.
The first, written faa`〈n〉(m) atomically increments by n
the content of the reference `, and returns the original value
as m; the second, written sw`〈n〉(m), atomically sets the
content of ` to n and returns the original value as m:

faa`〈n〉(m).R
def
= `(m). (`〈m+ n〉 | R)

sw`〈n〉(m).R
def
= `(m). (`〈n〉 | R)

These operations may be mimicked by a combination of
read and write operations (we take m′ /∈ fn(R)):

faa2`〈n〉(m).R
def
= re`(m). wr`〈m+ n〉.R
= `(m). (`〈m〉 | `(m′). (`〈m+ n〉 | R))

sw2`〈n〉(m).R
def
= re`(m). wr`〈n〉.R
= `(m). (`〈m〉 | `(m′). (`〈n〉 | R))

For this mimicking to be correct, sequentiality is necessary.
To see this, consider the simple case when R def

= c〈m〉. In the
ordinary Aπ, processes sw`〈n〉(m).R and sw2`〈n〉(m).R
are distinguished, intuitively because the observer is capable
of counting the two inputs and the two outputs at ` in
sw2`〈n〉(m).R (against only one in sw`〈n〉(m).R) and/or
is capable of detecting the output `〈m〉 in sw2`〈n〉(m).R.

The processes are also distinguished with the proof tech-
niques for references in [16], intuitively because, after the
initial input `(m) (whereby the processes read the content of
the reference), an observer may interact with the derivative
of sw2`〈n〉(m).R and use its output `〈m〉 so to know the
value that had been read. Such an observation is not possible
with sw`〈n〉(m).R.

In contrast, the two processes are equal if we take
sequentiality into account. That is, we have:

sw`〈n〉(m).R ≈∅;1s sw2`〈n〉(m).R

This is proved by showing that the relation

∪m′{((`; 1), `〈n〉 | R{m′
/m}, `〈m′〉 | wr`〈n〉.R{m

′
/m})

∪ I ∪ {((∅; 1), sw`〈n〉(m).R, sw2`〈n〉(m).R)}
is a sequential bisimulation. The equivalence between
faa`〈n〉(m).R and faa2`〈n〉(m).R is established using a
similar relation.

Example 26 (Optimised access). Two consecutive read
and/or write operations can be transformed into an equiva-
lent single operation.

wr`〈n〉. wr`〈m〉.R ≈∅;1s wr`〈m〉.R
wr`〈n〉. re`(m).R ≈∅;1s wr`〈n〉.R{n/m}

re`(m). re`(m
′).R ≈∅;1s re`(m).R{m/m′}

For the first equality, one shows that

I ∪ {((∅; 1), wr`〈n〉. wr`〈m〉.R, wr`〈m〉.R)}
∪ {((`; 1), `〈n〉 | wr`〈m〉.R, `〈m〉 | R)}

is a sequential bisimulation. The second law is treated
similarly. In both cases, the relation exhibited is finite.

For the third equality, one defines R as

∪n
{

((`; 1), `〈n〉 | re`(m′).R{n/m}, `〈n〉 | R{n, n/m,m′})
}

Then {((∅; 1), re`(m). re`(m
′).R, re`(m).R{m/m′})}

∪ R ∪ I is a sequential bisimulation.

4. Well-bracketing

4.1. Type System

We now go beyond sequentiality, so to handle well-
bracketing. In languages without control operators, this
means that return-call interactions among terms follow a
stack-based discipline.

Intuitively, a well-bracketed system is a sequential sys-
tem offering services. When interrogated, a service, say A,
acquires the thread and is supposed to return a final result
(unless the computation diverges) thus releasing the thread.
During its computation, A may however interrogate another
service, say B, which, upon completion of its computation,
will return the result to A. In a similar manner, the service
B, during its computation, may call yet another service C,
and will wait for the return from C before resuming its
computation. B may also delegate to C the task of returning
a result to A. In any case, the ‘return’ obligation may not
be thrown away or duplicated.

The implementation of this policy requires continuation
names. For instance, when calling B, process A transmits a
fresh name, say p, that will be used by B (or other processes
delegated by B) to return the result to A. Moreover, A waits
for such a result, via an input at p. Therefore continuation
names are linear [3] — they may only be used once — and
input receptive [15] — the input-end of the name must be
made available as soon as the name is created; and they are
output-controlled: they carry the thread in output.

In short, the ‘well-bracketing’ type system defined in
this section refines the type discipline for sequentiality by
adding linear-receptive names and enforcing a stack disci-
pline on the usage of such names. Proof techniques for well-
bracketing will be studied in Section 4.4.

Thus, with well-bracketing, we have three kinds of
names: output-controlled names (ranged over by x, y, z, . . .)
and input-controlled names (ranged over by u, v, w. . .), as
in the previous section; and continuation names, ranged over

WB-OUT1
p : o `wb p〈ã〉

WB-OUT2
p : o `wb x〈ã, p〉

WB-OUT3
∅ `wb u〈ã〉

WB-INP1
p : o `wb P p 6= q

q : i, p : o `wb q(ã).P
WB-INP2

p : o `wb P

∅ `wb x(ã, p).P, !x(ã, p).P
WB-INP3

p : o `wb P

p : o `wb u(ã).P
WB-NIL

∅ `wb 0

WB-RES1
ξ, p : o, p : i, σ′ `wb P

ξ, σ′ `wb (νp)P
WB-RES2

σ `wb P

σ `wb (νp)P
p /∈ σ WB-RES3

σ `wb P

σ `wb (νa)P
WB-MAT

∅ `wb P

∅ `wb [a = b]P

WB-PAR
σ `wb P σ′ `wb Q

σ′′ `wb P | Q
σ′′ ∈ inter(σ;σ′) WB-TAU

σ `wb P

σ `wb τ .P
|σ| ≤ 1 WB-SUM

σ `wb P σ `wb Q

σ `wb P +Q
|σ| ≤ 1

Figure 3. Type system for well-bracketing

by p, q, r. . .. As before, names a, b, c. . . range over the union
of output- an input-controlled names.

Continuation names may only be sent at output-
controlled names. Indeed, any output at an output-controlled
name must carry exactly one continuation name. Without
this constraint the type system for well-bracketing would be
more complex, and it is unclear whether it would be useful
in practice.

Additionally, as a consequence of this constraint, send-
ing a continuation means transmitting the thread, so that
continuation names somehow represent the thread.

By convention, we assume that, in a tuple of names
transmitted over an output-controlled name, the last name
is a continuation name. We write ã, p for such a tuple of
names.

The type system is presented in Figure 3. Judgements
are of the form

σ `wb P

where σ is a stack, namely a sequence of input- and output-
tagged continuation names, in which the input and output
tags alternate, always terminating with an output tag unless
the sequence is empty:

σ ::= σO | σI
σO ::= p : o, σI σI ::= p : i, σO | ∅

Moreover: a name may appear at most once with a given
tag; and, if a name appears with both tags, then the input oc-
currence should immediately follow the output occurrence,
as for p in p′ : i, p : o, p : i, σ. We write p ∈ σ if name p
appears in σ, and |σ| for the length of the sequence σ.

Intuitively, a stack expresses the expected usage of the
free continuation names in a process. For instance, if

p1 : o, p2 : i, p3 : o, p3 : i, p4 : o `wb P

then p1, . . , p4 are the free continuation names in P ; among
these, p1 will be used first, in an output (p1 may be the
subject or an object of the output); then p2 will be used,
in an input interaction with the environment. P possesses
both the output and the input capability on p3, and may
use both capabilities by performing a reduction at p3; or P
may transmit the output capability and then use the input

one; the computation for P terminates with an output at p4.
This behaviour however concerns only the free continuation
names of P : at any time when an output usage is expected,
P may decide to create a new continuation name and send
it out, maintaining its input end. The Subject Reduction
Theorem 31 will formalise the behaviour concerning con-
tinuations names in stacks.

As simple examples of typing, we can derive

p : o `wb p〈a〉 and p : o `wb u(a). p〈a〉

In the latter typing, by rule WB-INP3, an input at an input-
controlled name has the thread, and does not affect the stack
because u is not a continuation name.

The same stack can be used to type a process that
invokes a service at x before sending the result at p, as
in

p : o `wb (νq)(x〈b, q〉 | q(c). p〈c〉)

where q is a fresh continuation name created when calling
x. To type the process without the restriction at q, the stack
should mention the input and output capabilities for q:

q : o, q : i, p : o `wb x〈b, q〉 | q(c). p〈c〉

For another example, the process

P0
def
= p(a). p′〈a〉 | q(b). q′〈b〉

can be typed using two stacks: we have both p : i, p′ : o, q :
i, q′ : o `wb P0 and q : i, q′ : o, p : i, p′ : o `wb P0. The
choice of the stack depends on whether the call answered
at p has been made before or after the call answered at q.

We comment on the rules of the type system. In WB-
OUT1 and WB-OUT2 the obligation in the stack is fulfilled (the
output capability on the only name in the stack is used in
WB-OUT1 and transmitted in WB-OUT2). Note, in WB-OUT2, that
an output at an output-controlled name x, as in the system
with sequentiality, passes the thread to another process (i.e.,
it is like calling a service x). As explained above, the last
name in the tuple transmitted at x is a continuation name,
and the only one being transmitted (to enforce the stack
discipline). In contrast, in WB-OUT3 an output at an input-
controlled name does not own the thread and therefore may
not carry continuation names.

In WB-INP1 the input-tagged name on top of the stack
is used. Rule WB-INP2 is the complement of WB-OUT2. In
WB-INP3, an input at an input-controlled name maintains
the thread. In all rules for input and τ prefixes, the stack
in the premise of the rules may not contain input-tagged
continuation names because their input capability must be
unguarded (as they are receptive names). The same occurs
in rule WB-SUM, following [15] where choice on inputs at
receptive names is disallowed (though the constraint could
be relaxed). Matching is allowed on plain names, but not on
continuation names; this is typical of type systems where
the input and output capabilities on names are separate [1];
moreover, no continuation name may appear in the process
underneath, to make sure that the obligations on continuation
names are not eschewed. In WB-RES1 a continuation name
is created, and then its output and input capabilities are
inserted into the stack. In the rule, ξ, σ is a decomposition
of the stack for νp P where σ is a stack beginning with
an output tag; hence ξ is either empty or it is of the form
σ′, p : i, (i.e. ξ is an initial prefix of the stack, either empty
or ending with an input tag).

Being able to insert capabilities in the middle of the
stack is useful for technical reasons. First, this guarantees
commutativity of restrictions, i.e., if (νp)(νq)P can be
typed, then so can (νq)(νp)P . Second, it makes it possible
to type processes like νq (p. q | q. p′), where the output at
q, the restricted name, must take place after the input at p.

Rule WB-RES2 is for continuation names that do not
appear in the body of the restriction (this form of rule
is common in type systems for linearity, to simplify the
assertion of Subject Reduction). In rule WB-PAR, the typing
stack is split to type the two process components P1 and
P2; splitting of the typing is usual in type systems with
linearity. Here, however, the split must respect the order of
the names. That is, the stack in the conclusion should be
an interleaving of the two stacks in the premises, as by the
following definition.

Definition 27 (Interleaving). We write σ1 ∈ inter(σ2;σ3)
if (i) σ1 is a stack, and (ii) σ1 is an interleaving of σ2 and
σ3 as by the following inductive rules:

1) ∅ ∈ inter(∅; ∅)
2) p : o, σ1 ∈ inter(σ2; p : o, σ3) if σ1 ∈ inter(σ2;σ3)
3) p : o, σ1 ∈ inter(p : o, σ2;σ3) if σ1 ∈ inter(σ2;σ3)
4) the same as (2) and (3) with p : i instead of p : o

If a name appears both in σ2 and in σ3 with the same
tag, then inter(σ2;σ3) may not contain any stack.

Being stack-ordered means that p. q | q. p cannot be
typed. Indeed, the left process would require p before q
in the stack, whereas the right process needs the opposite.

In rule RES1, having the possibility to add names in the
middle of the stack is mandatory to preserve typability after
reduction. Consider for instance:

(νq)((νp)(b〈p〉 | p. q) | q. p′) (νp)b〈p〉−−−−−→ (νq)(p. q | q. p′)
To type the derivative of the transition above, we have to
use rule RES1 with ξ = p : i and σ′ = p′ : o.

Typability in the type system of Figure 3 implies ty-
pability in the type system for sequentiality. Indeed, when

σ `wb P , if the first name in σ is output-tagged then P
is active, otherwise P is inactive. We write seq for the
function that ‘forgets’ the well-bracketing information in a
stack, therefore seq(σ) = 1 if σ = p : o, σ′, for some p and
σ′, and seq(σ) = 0 otherwise.

Proposition 28. If σ `wb P then also seq(σ) `s P .

In Definition 29, we extend type-allowed transitions to
processes with continuation names. As previously, we must
ensure that the process is typed, and that the transition is
allowed by sequentiality (clauses (1) and (2) below). Clause
(3) says that the first continuation name observed must be on
top of the stack, and that the input or output capability on a
continuation name may not be exercised by the environment
when both capabilities are owned by the process.

Definition 29. We write σ �wb P
µ−→ P ′ when

1) σ `wb P
2) seq(σ) �s P

µ−→ P ′ and
3) if p ∈ fn(µ) and p ∈ σ, then either σ = p : o, σ′ or

σ = p : i, σ′ for some σ′; moreover, if p ∈ σ′, then p
is not the subject of µ.

We exploit type-allowed transitions to define transitions
with stacks, which make explicit the evolution of the stack.

Definition 30. We note [σ;P]
µ−→ [σ′;P ′] when σ �wb P

µ−→
P ′ and

1) if µ = (ν b̃)p〈ã〉, then σ = p : o, σ′

2) if µ = p〈ã〉, then σ = p : i, σ′

3) if µ = (ν c̃, p)a〈̃b, p〉, then σ′ = p : i, σ
4) if µ = (ν c̃)a〈̃b, p〉, then σ = p : o, σ′

5) if µ = a〈̃b, p〉, then σ′ = p : o, σ
6) if µ = τ , then for σ = p : o, p : i, σ′′ and p /∈ fn(P ′),

we have σ′ = σ′′, otherwise σ′ = σ.

In cases (1), (4) (resp. (2)), we must have σ = p : o, σ′′

(resp. p : i, σ′′) by definition of type-allowed transitions. In
clauses (1) and (2), the action is an input or an output at
a continuation name that must be on top of σ, and is then
removed. In clause (3), the action extrudes a continuation
name, and then, following the stack discipline, the process
waits for an answer on that name. In clause (4), emitting
a free continuation name amounts to passing the output
capability on that name to the environment. Dually, in
clause (5), receiving a continuation name imposes to use
it in output. Finally, in clause (6), a τ transition may come
from an interaction at a continuation name, in which case
σ is modified. It can also come from an interaction at a
restricted name or from an internal choice; in such cases, σ
is unchanged.

Theorem 31 (Subject Reduction). If σ `wb P and [σ;P]
µ−→

[σ′;P ′] then σ′ `wb P
′.

If a process owns both the input and the output capability
on a continuation name p, then the environment may not use
p. Semantically, this is the same as having a restriction on
p in the process. It is therefore safe, in the definition of
barbed bisimulation and observability, to assume that all

such restrictions are syntactically present, i.e., there is a
single occurrence of any free continuation name. We call
clean such processes.

Definition 32. A stack σ is clean if no name appears in
σ both output- and input-tagged. A process P is clean if
σ `wb P for some clean σ.

On clean processes, typing is preserved by reduction.

Proposition 33. If σ `wb P for σ clean, then P −→ P ′

implies σ `wb P
′.

Defining barbed bisimulation on clean processes, we can
use the seq function above to recast observability in the
well-bracketing system from that in the sequentiality system:
thus, for σ clean, we have σ �wb P ⇓a (resp. σ �wb P ⇓p)
if seq(σ) �s P ⇓a (resp. seq(σ) �s P ⇓p).

In the definition of barbed equivalence, the contexts
testing the processes must be clean. Writing 'σ for barbed
equivalence at σ, we have P 'σ Q if σ `wb P,Q, and for
any clean σ′ and any σ′/σ static context E, it holds that
E[P]

.
≈σ

′

E[Q] (note that σ itself need not be clean).

4.2. Discreet Processes

In this section we put forward the subclass of discreet
processes, in which all continuation names that are exported
must be private, and show how to transform any process into
a discreet one. Then, on discreet processes:
(1) we express a behavioural property that formalises

the stack-like discipline on the usage of continuation
names;

(2) we develop proof techniques, in form of labelled bisim-
ilarities, to reason about the behaviour of well-typed
processes.

(Concerning (2), while the technical details are quite differ-
ent, we follow the approach of proof techniques for receptive
names in [15], where the techniques are first defined on
processes where only fresh names may be sent.)

Definition 34 (Discreet processes). A process P is discreet
if any free continuation name p ∈ fn(P) may not appear in
the object of an output, and, in any sub-process x(ã, q).Q,
the same holds for q in Q. The definition is extended to
contexts, yielding discreet contexts.

If E and P are discreet, then so is E[P]. We can
transform all well-typed processes into discreet processes
using the law in Lemma 35 below. The law transforms the
output of a global continuation name p into the output of a
local name q. In general, all outputs of continuation names
in a process P are local, as a global output corresponds to
P delegating a stack-like obligation to another process. In
other words, in general the transformation of a non-discreet
process into a discreet one will modify only a few outputs
of the initial process. The law in Lemma 35 is valid for
barbed congruence, not just barbed equivalence, and may
therefore be applied to any component of a given process.

Lemma 35. x〈ã, p〉 ∼=p:o (νq)(x〈ã, q〉 | q(̃b). p〈̃b〉).

Thus, in the light of Lemma 35, in the definition of
barbed equivalence (and congruence) it is sufficient to con-
sider discreet contexts.

A discreet process may only export private continuation
names. Dually, the process may only receive fresh contin-
uation names from a discreet context. We call discreet the
transitions that satisfy this property.

Definition 36 (Discreet transitions). A typed transition
σ �wb P

µ−→ P ′ is discreet if any continuation name in
the object of µ is not free in σ (and hence also in P).

Lemma 37. If P is discreet, and σ �wb P
µ−→ P ′ is discreet,

then P ′ is discreet. If, moreover, P is clean, then so is P ′.

4.3. The Well-bracketing property on traces

Following game semantics [20], we formalise well-
bracketing, that is, the stack-like behaviour of continuation
names for well-typed processes, using traces of actions. In
this section, all processes are discreet and clean. A trace
for such a process is obtained from a sequence of discreet
transitions emanating from the process, with the expected
freshness conditions to avoid ambiguity among names.

Definition 38 (Trace). A sequence of actions µ1, . . . , µn is a
trace for a (discreet and clean) process P0 and a stack σ0 if
there are σ1, . . . , σn, P1, . . . , Pn such that for all 0 ≤ j < n

we have [σj ;Pj]
µj+1−−−→ [σj+1;Pj+1], where the transition is

discreet, and moreover all continuation names appearing as
object in µj+1 are fresh (i.e., the names may not appear in
any µi for i ≤ j).

The notion of discreet transition already imposes that
continuation names in object position do not appear free in
the process. The final condition in Definition 38 on contin-
uation names ensures us that for actions like (νp)x〈ã, p〉,
name p is fresh, and that after an action p〈ã〉 (thus after
the only allowed interaction at p has been played), name p
cannot be reintroduced, e.g., in an action x〈ã, p〉. We simply
say that µ1, . . . , µn is a trace, or is a trace for P , when the
stack or the process are clear from the context.

Lemma 39. Suppose we have a trace µ1, . . . , µn with
(σj , Pj)0≤j≤n such that [σj ;Pj]

µj+1−−−→ [σj+1;Pj+1] for
0 ≤ j ≤ n If σ0 = σn, then there exists some ρi (resp.
ξi), such that σi = ρi, σ0 (resp. ξi, σ0) for all i.

This lemma formalise the idea that when looking at the
evolution of the stacks for a given trace, names inside a
stack may not reappear later on if they are removed. Thus,
if at some point we obtain an identical stack, then for all
the intermediate stacks, we should find the original stack as
substack.

The well-bracketing property is best described with the
notion of questions and answers.

Definition 40. For a trace µ1, . . . , µn, we set µi y µj if
i < j and:

1) either µi = (ν c̃, p)a〈̃b, p〉 and µj = p〈ã′〉,
2) or µi = a〈̃b, p〉 and µj = (ν c̃)p〈ã′〉.

Actions µi (with a continuation name in object position) are
called questions, while actions µj (with a continuation name
in subject position) are called answers.

A discreet transition is either an internal transition, or a
question, or an answer. A question mentioning a continua-
tion name p is matched by an answer at the same name p.
When questions and answers are seen as delimiters (‘[p’,‘]p’,
different for each continuation name), a well-bracketed trace
is a substring of a Dyck word. It can be expressed as follows.

Remark 41. For a discreet transition [σ;P]
µ−→ [σ′;P ′], the

value |σ′| − |σ| is 1 for a question, 0 for an internal action,
and −1 for an answer.

Lemma 42 (Uniqueness). Given a trace µ1, . . . , µn, if µi y
µj and µi′ y µj′ , then we have (i = i′ iff j = j′).

Definition 43 (Well-bracketing). A trace µ1, . . . , µn is well-
bracketed if for all i < j, if µi is a question and µj is an
answer with µi 6y µk and µk 6y µj for all i < k < j, then
µi y µj .

To prove that all traces are well-bracketed, (Proposi-
tion 45), we need the following property relating questions
and answers to stacks.

Lemma 44. Let µ1, . . . , µn be a trace, and σ0, . . . , σn be the
corresponding stacks, as in Definition 38. Suppose σ0 = σn,
and for all i, |σi| > |σ0|. Then µ1 is a question, µn is an
answer, and µ1 y µn.

Proposition 45. Any trace (as by Definition 38) is well-
bracketed.

4.4. Bisimulation and Full Abstraction

As in Section 3, a wb-typed relation on processes is a
set of triplets (σ, P,Q) with σ `wb P,Q.

Definition 46 (WB-Bisimulation). A wb-typed relation R
on discreet processes is a wb-bisimulation if whenever
(σ, P,Q) ∈ R and [σ;P]

µ−→ [σ′;P ′] is discreet, then one of
the three following clauses holds:

1) there is Q′ with Q
µ̂
=⇒ Q′ and (σ′, P ′, Q′) ∈ R

2) µ = x〈ã, p〉 and for some fresh q, there is Q′ with Q |
(νq)(x〈ã, q〉 | q(̃b). p〈̃b〉) =⇒ Q′ and (σ′, P ′, Q′) ∈ R

3) µ = u〈ã〉 and there is Q′ with Q | u〈ã〉 =⇒ Q′ and
(σ′, P ′, Q′) ∈ R,

and symmetrically for the transitions from Q.
Processes P and Q are wb-bisimilar at σ, noted P ≈σwb

Q, if (σ, P,Q) ∈ R for some wb-bisimulation R.

Compared to Definition 11, the clause for input actions
is here split into two clauses. In clause (2), we apply
Lemma 35 to obtain a discreet process.

WB-bisimulation is sound with respect to barbed equiv-
alence for all discreet processes. The main result concerns
preservation by parallel composition:

Lemma 47 (Parallel composition). If P ≈σwb Q, then for
any discreet process R and stacks σ′, σ′′ such that σ′ `wb R
and σ′′ ∈ inter(σ;σ′), we have P | R ≈σ′′

wb Q | R.

Note that even if P,R are clean, P | R needs not be so.

Theorem 48 (Soundness). ≈σwb ⊆ 'σ.

To prove soundness, we show that ≈σwb is preserved
by all discreet static contexts. By Lemma 35, we can then
replace any non-discreet context with a discreet one, without
changing its behaviour.

We further refine the coinductive technique given by
≈σwb by introducing some up-to techniques, which make it
possible to work with smaller relations. We write P −→d P

′

when the reduction is deterministic, meaning that whenever
P

µ−→ P ′′, then µ = τ and P ′ ≡ P ′′. Similarly, we write
P =⇒d P

′ if all reduction steps are deterministic. Moreover,
for a relation R, we write (σ, P,Q) ∈ =⇒dRC when there
exists a stack σ′, a σ/σ′ context E, and processes P ′, Q′
such that Q ≡ E[Q′], P =⇒d E[P ′] and (σ′, P ′, Q′) ∈ R.

Definition 49 (Up-to static contexts and up-to deterministic
reductions). A wb-typed relation R on discreet processes is
a wb-bisimulation up-to static contexts and up-to determin-
istic reductions if whenever (σ, P,Q) ∈ R, for any discreet
transition [σ;P]

µ−→ [σ′;P ′], one of the following clauses
holds:

1) there is Q′ with Q
µ̂
=⇒ Q′ and (σ′, P ′, Q′) ∈ =⇒dRC,

2) µ = x〈ã, p〉 and for some fresh q, there is Q′ with Q |
(νq)(x〈ã, q〉 | q. p) =⇒ Q′ and (σ′, P ′, Q′) ∈ =⇒dRC,

3) µ = u〈ã〉 and, there is Q′ with Q | u〈ã〉 =⇒ Q′ and
(σ′, P ′, Q′) ∈ =⇒dRC,

and symmetrically for the transitions from Q.

Remark 50. In the definition of =⇒dRC, the reduction P =⇒d

E[P ′] cannot change the typing. Thus, it cannot involve
interactions on free continuation names, as in p | p.Q −→d Q.

Lemma 51. If R is a wb-bisimulation up-to static contexts
and up-to deterministic reductions, then (σ, P,Q) ∈ R
implies P ≈σwb Q.

4.4.1. Completeness. As in Section 3, we prove complete-
ness for processes that only use output-controlled names.

Theorem 52 (Completeness). For all image-finite, discreet
and clean processes P,Q that only use output-controlled
names, and for all σ, if P 'σ Q then P ≈σwb Q.

As for Theorem 20, the crux of the proof is defining
the discriminating static contexts. The additional difficulty
is related to receptiveness of continuation names: we cannot
use z.R or GR+T , as in Section 3, when the tester process,
R or GR, contains an input at a free continuation name.

Suppose σ `wb P , for P discreet and clean. We decom-
pose σ as ξ, p1 : o, q1 : i, . . . , pn−1 : o, qn−1 : i, pn : o for
ξ = ∅ or ξ = q : i, and then define, for fresh qn and x̃i,

Ex̃i
σ

def
= (νp̃i, q̃i)([·] |

∏
i≤n

pi(ỹ).xi〈ỹ, qi〉).

We have ξ, qn : o `wb Ex̃i
σ [P]. Intuitively, Ex̃i

σ forwards
information from the pi’s (which are in σ) to the xi’s.
Accordingly, the tester process can use names in x̃i (rather
than in p̃i), and can use them in input.

Let fno(−) denote the set of free output-controlled
names. We distinguish two cases. If ξ = ∅, then P is active.
To follow the reasoning in the proof of Theorem 20, we
work with E of the form

(νx̃)(Ex̃i
σ | R+

∏
y∈S

y(ỹ′, p). z〈p〉),

for some set S ⊇ fno(P) ∪ fno(Q) ∪ x̃i and fresh z.
If ξ = q : i, then P is inactive. We reason with E of

the form (νx̃, q)(Ex̃i
σ | z〈q〉 | z(q′).R). By typing, only the

continuation name q′ received at z may appear free in R.
Such q′ will be instantiated with q and then R will use it to
test the input at q from the tested processes. (A restriction
on q is needed, as the overall process has to be clean.)

In both cases, the resulting E is a qn : o/σ static context
where qn is a fresh continuation name. More details on the
proof can be found in Appendix C.

4.4.2. An Example. We explain how the techniques we
have introduced allow us to reason about a well-known
example, the well-bracketed state change (sometimes called
‘awkward’, or ‘very awkward’, example) [21], [22], [23]. It
is usually presented in ML thus:

M1
def
= let ` = ref 0 in fun y ->

(` := 0; y() ; ` := 1; y() ; !`)

M2
def
= fun y -> (y() ; y() ; 1)

Function M2 makes two calls to an external function y
and returns 1. The other term, M1, between the two calls,
modifies a local reference `, which is then used to return
the final result. Intuitively, equivalence between the two
functions holds because: (i) the reference ` in M1 represents
a local state, not accessible from an external function; (ii)
computation respects well-bracketing (e.g., the language
does not have control operators like call/cc with which it
would be possible to reinstall the value 0 at `, and obtain 0
as final result).

Below are the translations of M1 and M2, following a
standard encoding of functions and references in Aπ, and
using the notations for references from Section 3.3.2:

[[M1]]p′
def
= (νx, `)(`〈0〉 | Q) with

Q
def
= p′〈x〉 | !x(y, p). wr`〈0〉. (νq)(y〈q〉 |

q. wr`〈1〉. (νr)(y〈r〉 | r. re`(n). p〈n〉))

[[M2]]p′
def
= (νx)(p′〈x〉 | !x(y, p). (νq)(y〈q〉 |

q. (νr)(y〈r〉 | r. p〈1〉)))

[[M1]]p′ has a unique transition, [[M1]]p′
(νx)p′〈x〉−−−−−−→ P1. Sim-

ilarly, let P2 be the unique derivative from [[M2]]p′ . The
equivalence between [[M1]]p′ and [[M2]]p′ follows immedi-
ately from P1 ≈∅wb P2. To prove the latter, we exhibit a
relation R containing the triple (∅, P1, P2) and show that
R is a wb-bisimulation up-to deterministic reductions and

static context. For an example of the importance of well-
bracketing, R contains the triple(

q2 : i, p2 : o, r1 : i, p1 : o,
(ν`)(`〈0〉 | Q | q2. wr`〈1〉. (νr2)(y〈r2〉

| r2. re`(n). p2〈n〉)) | r1. re`(n). p1〈n〉),
P2 | q2. (νr2)(y〈r2〉 | r2. p2〈1〉) | r1. p1〈1〉

)
Without the well-bracketing constraint, the first process in
the triple could perform an input at r1, an internal transition,
and finally an output p1〈0〉. The second process cannot emit
0, which would allow us to distinguish P1 and P2. With
well-bracketing, since r1 is not on top of the stack in the
triple, the initial transition on r1 is ruled out.

The details of the definition of R can be found in
Appendix D. In the same Appendix, we also discuss a
simplified example, which exposes the main difficulties. The
primary simplification consists in using linear functions, so
that the Aπ terms do not need replication and can be finite.
Some twisting in the ML terms is however necessary, as
M1 and M2 become equivalent — even dropping well-
bracketing — if they can be used at most once.

5. Related work and conclusions
Sequentiality is a form of linearity, hence the rules for

our type system has similarity with, and borrow ideas from,
type systems with linear types, in languages for concurrency
or functional languages, including types for managing locks
as in [7]. The type system in [24] ensures one that terms of
the Ambient calculus are single-threaded, a notion similar
to the sequentiality for Aπ examined in this paper. The
type system in [25] has been designed so to make the
encoding of PCF into the π-calculus fully abstract. The
system therefore goes beyond sequentiality as described in
our paper. For instance, the system presents a form of duality
on types and ensures that computations are stateless, hence
also deterministic. Indeed, the only behaviours inhabited by
the types are those in the image of the PCF terms. Types
ensure the uniqueness of the computation thread, and such
a thread is carried by outputs (the thread cannot be carried
by input processes, as in our system). The system [25] has
been further refined in [9], adding causality information and
acyclicity constraints, so to ensure strong normalisation of
well-typed processes. The issue of finding labelled bisimi-
larity characterisations of barbed equivalence or reduction-
closed barbed equivalence is extensively discussed in [1];
see also [26] for an example involving types.

Type systems for linearity and receptiveness in the π-
calculus have been introduced in [3], [27], [15]. The way
we formulate well-bracketing (Definition 43) is inspired by
‘well-bracketed strategies’ in game semantics [20], [28],
used in functional programming languages and extensions
thereof (they have in turn inspired type systems for π-
calculi with stack-like information and input/output alterna-
tion, e.g., [25], [29]). The notion of well-bracketed control
flow is studied in the field of secure compilation, for a
wider class of languages. In works like [30], [31], the
technique of fully abstract compilation guarantees control

flow correctness (and, in particular, well-bracketing) against
low-level attacks.

Several methods have been proposed to establish con-
textual equivalence of sequential programs that include
higher-order and stateful computation, including the above-
mentioned game semantics, (step-indexed Kripke) logical
relations [21], [22], dedicated forms of bisimulations de-
signed on top of an operational semantics of the lan-
guages [32], [33], [34], [35], [36]. Works like [23] or algo-
rithmic game semantics [37], aim at automatically establish-
ing contextual equivalences, by relying on model-checking
techniques.

The main goal of this paper was to tailor some of the
most prominent proof techniques in the π-calculus — those
based on labelled bisimilarity — to the sequentiality and
well-bracketing disciplines. This is instrumental to the use
of the π-calculus as a model of programming languages,
as sequentiality and well-bracketing are often found in pro-
gramming languages or subsets of them. We have shown the
usefulness of our techniques on a number of examples, that
have mainly to do with the representation of functions and
store — none of the equalities in the examples is valid in
the ordinary bisimilarity of the calculus.

In Section 3.3 we have combined our proof technique
for sequentiality with techniques concerning the represen-
tation of references in π-calculus from [16]. The resulting
technique allows us in some cases to reason about programs
with store without an explicit representation of the store (as
usually required in the techniques in the literature, recalled
above). This avoids universal quantifications on the possible
values contained in the store, thus reducing the size of the
relation to consider, sometimes making them finite. Further
possibilities of reducing the size of relations may be possible
by adapting the rich theory of the ‘up-to techniques’ for the
ordinary π-calculus to our bisimilarities, as exemplified by
the up-to technique considered in Definition 49 and applied
in Section 4.4.2.

Our treatment of sequentiality raises a few technical
questions that deserve further investigation. We would like
to see whether our proof of completeness (Theorem 20)
could be extended to handle input-controlled names. Sim-
ilarly, we do not know whether the result still holds if
internal choice is disallowed in inactive processes. The usual
encoding of an internal choice τ .P + τ .Q in terms of
parallel composition as (νc) (c | c.P | c.Q), for some fresh
c, is not applicable because the latter process is active (for
instance, the encoding is not valid within a context testing
active processes). Indeed, if the result still holds, the current
completeness proof would probably require some significant
modifications. For similar reasons, it is unclear if and how
our completeness proof could be tuned to handle reduction-
closed variants of barbed equivalence [11], [1].

In the asynchronous π-calculus considered in this pa-
per, an interaction involves only one prefixed process (the
input). Therefore, in the type systems, this process always
acquires the control on the thread after the interaction. In a
synchronous setting, in contrast, an interaction involves also
an output prefix. Hence the type systems could be richer,

specifying, for each name, where the control on the thread
goes after an interaction at that name. The representation
of references in Section 3.3, however, might have to be
revisited as it relies on the asynchronous model.

We have studied proof techniques for sequentiality and
well-bracketing in the π-calculus based on labelled bisim-
ilarities. We would like to examine also the impact of the
disciplines on algebraic theory and modal logics.

References

[1] D. Sangiorgi and D. Walker, The Pi-Calculus - a theory of mobile
processes. Cambridge University Press, 2001.

[2] B. C. Pierce and D. Sangiorgi, “Typing and subtyping for mobile
processes,” Math. Struct. Comput. Sci., vol. 6, no. 5, pp. 409–453,
1996.

[3] N. Kobayashi, B. C. Pierce, and D. N. Turner, “Linearity
and the pi-calculus,” ACM Trans. Program. Lang. Syst.,
vol. 21, no. 5, pp. 914–947, 1999. [Online]. Available:
https://doi.org/10.1145/330249.330251

[4] K. Honda, V. T. Vasconcelos, and M. Kubo, “Language primitives and
type discipline for structured communication-based programming,”
in ESOP’98, 7th European Symposium on Programming, 1998,
Proceedings, ser. Lecture Notes in Computer Science, C. Hankin,
Ed., vol. 1381. Springer, 1998, pp. 122–138. [Online]. Available:
https://doi.org/10.1007/BFb0053567

[5] D. Ancona, V. Bono, M. Bravetti, J. Campos, G. Castagna,
P. Deniélou, S. J. Gay, N. Gesbert, E. Giachino, R. Hu, E. B. Johnsen,
F. Martins, V. Mascardi, F. Montesi, R. Neykova, N. Ng, L. Padovani,
V. T. Vasconcelos, and N. Yoshida, “Behavioral types in programming
languages,” Found. Trends Program. Lang., vol. 3, no. 2-3, pp. 95–
230, 2016.

[6] N. Kobayashi, “A partially deadlock-free typed process calculus,”
ACM Trans. Program. Lang. Syst., vol. 20, no. 2, pp. 436–482,
1998. [Online]. Available: https://doi.org/10.1145/276393.278524

[7] ——, “A type system for lock-free processes,” Inf. Comput.,
vol. 177, no. 2, pp. 122–159, 2002. [Online]. Available:
https://doi.org/10.1006/inco.2002.3171

[8] Y. Deng and D. Sangiorgi, “Ensuring termination by typability,” Inf.
Comput., vol. 204, no. 7, pp. 1045–1082, 2006. [Online]. Available:
https://doi.org/10.1016/j.ic.2006.03.002

[9] N. Yoshida, M. Berger, and K. Honda, “Strong normalisation in
the pi -calculus,” Inf. Comput., vol. 191, no. 2, pp. 145–202, 2004.
[Online]. Available: https://doi.org/10.1016/j.ic.2003.08.004

[10] N. Kobayashi and D. Sangiorgi, “A hybrid type system for
lock-freedom of mobile processes,” ACM Trans. Program. Lang.
Syst., vol. 32, no. 5, pp. 16:1–16:49, 2010. [Online]. Available:
https://doi.org/10.1145/1745312.1745313

[11] K. Honda and N. Yoshida, “On reduction-based process semantics,”
TCS, vol. 152, no. 2, pp. 437–486, 1995.

[12] D. Sangiorgi and D. Walker, “Some results on barbed equivalences in
pi-calculus,” in Proc. CONCUR ’01, ser. Lecture Notes in Computer
Science, vol. 2154. Springer Verlag, 2001.

[13] R. Milner, “Functions as processes,” Math. Struct. Comput.
Sci., vol. 2, no. 2, pp. 119–141, 1992. [Online]. Available:
https://doi.org/10.1017/S0960129500001407

[14] D. Sangiorgi, “The lazy lambda calculus in a concurrency scenario,”
Inf. Comput., vol. 111, no. 1, pp. 120–153, 1994. [Online]. Available:
https://doi.org/10.1006/inco.1994.1042

[15] ——, “The name discipline of uniform receptiveness,” Theor. Com-
put. Sci., vol. 221, no. 1-2, pp. 457–493, 1999.

[16] D. Hirschkoff, E. Prebet, and D. Sangiorgi, “On the representation
of references in the pi-calculus,” in 31st International Conference
on Concurrency Theory, CONCUR 2020, ser. LIPIcs, I. Konnov
and L. Kovács, Eds., vol. 171. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020, pp. 34:1–34:20. [Online]. Available:
https://doi.org/10.4230/LIPIcs.CONCUR.2020.34

[17] ——, “On sequentiality and well-bracketing in the π-calculus,” in
Proceedings of LICS 2021, to appear. ACM, 2021.

[18] R. M. Amadio, I. Castellani, and D. Sangiorgi, “On
bisimulations for the asynchronous pi-calculus,” Theor. Comput.
Sci., vol. 195, no. 2, pp. 291–324, 1998. [Online]. Available:
https://doi.org/10.1016/S0304-3975(97)00223-5

[19] R. Milner, “The polyadic π-calculus: a tutorial,” LFCS, Tech. Rep.
ECS–LFCS–91–180, 1991, Also in Logic and Algebra of Specifi-
cation, ed. F.L. Bauer, W. Brauer and H. Schwichtenberg, Springer
Verlag, 1993.

[20] J. M. E. Hyland and C. L. Ong, “On full abstraction for PCF: i, ii,
and III,” Inf. Comput., vol. 163, no. 2, pp. 285–408, 2000. [Online].
Available: https://doi.org/10.1006/inco.2000.2917

[21] A. Ahmed, D. Dreyer, and A. Rossberg, “State-dependent represen-
tation independence,” in Proceedings of the 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
POPL 2009, Z. Shao and B. C. Pierce, Eds. ACM, 2009, pp. 340–
353. [Online]. Available: https://doi.org/10.1145/1480881.1480925

[22] D. Dreyer, G. Neis, and L. Birkedal, “The impact of higher-order
state and control effects on local relational reasoning,” J. Funct.
Program., vol. 22, no. 4-5, pp. 477–528, 2012. [Online]. Available:
https://doi.org/10.1017/S095679681200024X

[23] G. Jaber, “Syteci: automating contextual equivalence for higher-
order programs with references,” Proc. ACM Program. Lang.,
vol. 4, no. POPL, pp. 59:1–59:28, 2020. [Online]. Available:
https://doi.org/10.1145/3371127

[24] F. Levi and D. Sangiorgi, “Controlling interference in ambients,”
in POPL 2000, Proceedings of the 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2000, M. N.
Wegman and T. W. Reps, Eds. ACM, 2000, pp. 352–364. [Online].
Available: https://doi.org/10.1145/325694.325741

[25] M. Berger, K. Honda, and N. Yoshida, “Sequentiality and the
pi-calculus,” in Typed Lambda Calculi and Applications, 5th
International Conference, TLCA 2001, Proceedings, ser. Lecture
Notes in Computer Science, S. Abramsky, Ed., vol. 2044. Springer,
2001, pp. 29–45. [Online]. Available: https://doi.org/10.1007/3-540-
45413-6 7

[26] M. Hennessy and J. Rathke, “Typed behavioural equivalences for
processes in the presence of subtyping,” Math. Struct. Comput.
Sci., vol. 14, no. 5, pp. 651–684, 2004. [Online]. Available:
https://doi.org/10.1017/S0960129504004281

[27] A. Igarashi and N. Kobayashi, “Type reconstruction for linear -
calculus with I/O subtyping,” Inf. Comput., vol. 161, no. 1, pp. 1–44,
2000. [Online]. Available: https://doi.org/10.1006/inco.2000.2872

[28] J. Laird, “Full abstraction for functional languages with control,” in
Proceedings, 12th Annual IEEE Symposium on Logic in Computer
Science, 1997. IEEE Computer Society, 1997, pp. 58–67. [Online].
Available: https://doi.org/10.1109/LICS.1997.614931

[29] K. Honda, “Processes and games,” Electron. Notes Theor.
Comput. Sci., vol. 71, pp. 40–69, 2002. [Online]. Available:
https://doi.org/10.1016/S1571-0661(05)82528-9

[30] L. Skorstengaard, D. Devriese, and L. Birkedal, “Stktokens: enforcing
well-bracketed control flow and stack encapsulation using linear
capabilities,” Proc. ACM Program. Lang., vol. 3, no. POPL, pp. 19:1–
19:28, 2019. [Online]. Available: https://doi.org/10.1145/3290332

[31] M. Patrignani, D. Devriese, and F. Piessens, “On modular and fully-
abstract compilation,” in IEEE 29th Computer Security Foundations
Symposium, CSF 2016. IEEE Computer Society, 2016, pp. 17–30.
[Online]. Available: https://doi.org/10.1109/CSF.2016.9

[32] V. Koutavas and M. Wand, “Small bisimulations for reasoning
about higher-order imperative programs,” in Proceedings of
the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2006, J. G. Morrisett and S. L. P.
Jones, Eds. ACM, 2006, pp. 141–152. [Online]. Available:
https://doi.org/10.1145/1111037.1111050

[33] D. Sangiorgi, N. Kobayashi, and E. Sumii, “Environmental
bisimulations for higher-order languages,” in 22nd IEEE Symposium
on Logic in Computer Science (LICS 2007), Proceedings.
IEEE Computer Society, 2007, pp. 293–302. [Online]. Available:
https://doi.org/10.1109/LICS.2007.17

[34] V. Koutavas, P. B. Levy, and E. Sumii, “From applicative to
environmental bisimulation,” in Twenty-seventh Conference on the
Mathematical Foundations of Programming Semantics, MFPS 2011,
ser. Electronic Notes in Theoretical Computer Science, M. W.
Mislove and J. Ouaknine, Eds., vol. 276. Elsevier, 2011, pp. 215–
235. [Online]. Available: https://doi.org/10.1016/j.entcs.2011.09.023

[35] J. Madiot, D. Pous, and D. Sangiorgi, “Bisimulations up-to:
Beyond first-order transition systems,” in CONCUR 2014 -
Concurrency Theory - 25th International Conference, CONCUR
2014. Proceedings, ser. Lecture Notes in Computer Science, P. Baldan
and D. Gorla, Eds., vol. 8704. Springer, 2014, pp. 93–108. [Online].
Available: https://doi.org/10.1007/978-3-662-44584-6 8

[36] D. Biernacki, S. Lenglet, and P. Polesiuk, “A complete normal-form
bisimilarity for algebraic effects and handlers,” in 5th International
Conference on Formal Structures for Computation and Deduction,
FSCD 2020, ser. LIPIcs, Z. M. Ariola, Ed., vol. 167. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 7:1–7:22.
[Online]. Available: https://doi.org/10.4230/LIPIcs.FSCD.2020.7

[37] A. S. Murawski and N. Tzevelekos, “Algorithmic games for full
ground references,” Formal Methods Syst. Des., vol. 52, no. 3, pp.
277–314, 2018. [Online]. Available: https://doi.org/10.1007/s10703-
017-0292-9

Appendix A.
The Asynchronous π-calculus: Operational Se-
mantics

We give the definition of structural congruence in Fig-
ure 4.

P | 0 ≡ P P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R G+ 0 ≡ G

G+G′ ≡ G′ +G G+ (G′ +G′′) ≡ (G+G′) +G′′

!a(̃b).P ≡ a(̃b).P | !a(̃b).P

P | (νa)Q ≡ (νa)P | Q if a /∈ fn(P)

(νa)(νb)P ≡ (νb)(νa)P (νa)0 ≡ 0 [a = a]G ≡ G

Figure 4. Structural congruence in Aπ

The (early) Labelled Transition System for Aπ is pre-
sented in Figure 5, actions being defined by the following
grammar:

µ ::= τ
∣∣ a〈̃b〉 ∣∣ (ν c̃)a〈̃b〉

We have fn(a〈̃b〉) = {a}∪ b̃, and fn((ν c̃)a〈̃b〉) = ({a}∪
b̃) \ c̃.

AINP

a(̃b).P
a〈c̃〉−−→ P{c̃/b̃}

AOUT

a〈̃b〉 a〈̃b〉−−→ 0

AOPEN
P

(νc̃)a〈̃b〉−−−−−→ P ′

(νd)P
(νd,c̃)a〈̃b〉−−−−−−→ P ′

if d ∈ fn((ν c̃)a〈̃b〉) \ {a}

AREP
a(̃b).P

µ−→ P ′

!a(̃b).P
µ−→ P ′ | !a(̃b).P

ARES
P

µ−→ P ′

(νa)P
µ−→ (νa)P ′

if a /∈ fn(µ) ∪ bn(µ)

APAR
P

µ−→ P ′

P | Q µ−→ P ′ | Q
if bn(µ) ∩ fn(Q) = ∅ ACOMM

P
a〈̃b〉−−→ P ′ Q

(νc̃)a〈̃b〉−−−−−→ Q′

P | Q τ−→ (ν c̃)(P ′ | Q′)
if c̃ ∩ fn(P) = ∅

AMATCH
P

µ−→ P ′

[a = a]P
µ−→ P ′

ASUM
P

µ−→ P ′

P +Q
µ−→ P ′

Figure 5. Early Labelled Transition Semantics for Aπ

Appendix B.
Completeness for sequential bisimilarity

We recall Proposition 19 before giving the proof.

Proposition 19. Given n ≥ 0, suppose η `s P,Q, and
P 6≈η,ns Q. Suppose further that both P and Q only use
output-controlled names and are image-finite. Then there
exists R such that for any fresh name z, any x̃, S with x̃ ⊆
fn(P) ∪ fn(Q) ⊆ S, if we define

R̄
def
=

{
z | z.R when 0 `s P,Q
R+

∑
y∈S y(ỹ′). z when 1 `s P,Q

and E0
def
= (νx̃)([·] | R̄), we have the following:

1) either E0[P ′] 6
.
≈1

E0[Q] for all P ′ such that P =⇒ P ′

2) or E0[P] 6
.
≈1

E0[Q′] for all Q′ such that Q =⇒ Q′.

Proof. We reason by induction on n. For n = 0, there is
nothing to prove.

For n > 0, suppose that P 6≈η,ns Q.
We may therefore suppose that there exists µ such that

[η;P]
µ−→ [η′;P ′] and for all Q′ with Q

µ̂
=⇒ Q′ (or when µ =

x〈ỹ〉, all Q′ with Q | x〈ỹ〉 =⇒ Q′), we have P ′ 6≈η′,n−1
s Q′.

We note {Qi}, for i ∈ I , the set of all such Q′. This set
is finite by hypothesis. We also write S′I =

⋃
i∈I fn(Qi) ∪

fn(P ′), which is also a finite set.
We show that clause 1) holds (in the symmetrical case,

where we consider a transition from [η;Q], we establish the
second clause).

We first consider the case where P ′ is singular. The
reasoning is simpler in this case.
First case: P ′ is singular.

Since P ′ is singular, η′ = 1. For all i, as P ′ 6≈1
s Qi, we

have Qi ⇓zi for some zi. By definition, S′I contains all such
zi’s.

We consider the transition from P to P ′. By Theorem 10
(Subject Reduction), since P ′ is singular, P ′ is active, so µ
cannot be an output. Hence there are two possible cases:

• when µ = τ , we can take

R
def
= 0.

We then have to show that for any z, x̃, S,Q′ with Q =⇒
Q′, taking R̄ = 0 +

∑
y∈S y(ỹ′). z (since η = 1) and

E0 = (νx̃)([·] | R̄) , we have E0[P] 6
.
≈1

E0[Q′].
We reason by contradiction. We observe that
E0[P] −→ E0[P ′], which is singular. Thus there
exists a process T such that E0[Q′] =⇒ T and
E0[P ′]

.
≈1

T , which entails, by Lemma 16, that T
is singular.
Since E0[Q′] =⇒ T , T can be of 2 forms, up to ≡:
– E0[Qi] for some i ∈ I (with Q′ =⇒ Qi);
– (νx̃)(Q′′ | z).
Since T is singular, the second case is impossible,
because by hypothesis z /∈ x̃ so we would have T ⇓z .
For the first case, notice that fn(Qi) ⊆ fn(Q) and
fn(P ′) ⊆ fn(P). Thus, S′I ⊆ S. As Qi ⇓zi and zi ∈ S′I ;
this means that T ⇓z , which contradicts the fact that T
is singular.

• when µ = x′〈ỹ′〉, given a fresh name z′, we define

R
def
= x′〈ỹ′〉 |

∑
y∈S′

I

y(ỹ′). z′.

We then have to show that for any z, x̃, S,Q′, with
Q =⇒ Q′,

E0[P] 6
.
≈1

E0[Q′],

with E0 = (νx̃)([·] | z.R | z), since in this case η = 0
(by Theorem 10).
We reason by contradiction and note E1

def
= (νx̃)([·] |∑

y∈S′
I
y(ỹ′). z′).

We have E0[P] −→−→ E1[P ′] which is a singular pro-
cess. Thus there should exist T such that E0[Q′] =⇒ T

and E1[P ′]
.
≈1

T .
We observe that T can be of 3 forms:

– E0[Q′′] (with Q′ =⇒ Q′′)
– E1[Qi] for some i ∈ I (with Q′ | x′〈ỹ′〉 =⇒ Qi)
– (νx̃)(Q′′ | z′)
As above, T is necessarily singular, by Lemma 16. This
rules out the last case above, as in the previous case,
but also the first one as E0[Q′′] ⇓z . To see that this is
also absurd in the second case, observe that Qi ⇓zi and
zi ∈ S′I . This entails that T ⇓z′ , hence a contradiction.

Second case: P ′ is not singular. By Lemma 16, we know
that either P ′ is inactive, or P ′ ⇓z for some z. As above,
we rely on Theorem 10 to reason by cases according to the
transition from P to P ′.

We note Ri for the process that we obtain, by induction,
for each pair (P ′, Qi).

We first show that for any z̃i, x̃, S,Qi with Q
µ̂
=⇒ Qi,

taking R̄i accordingly with η′ so

R̄i
def
=

{
zi | zi.Ri when 0 `s P

′, Qi
R+

∑
y∈S y(ỹ′). zi when 1 `s P

′, Qi

and F = (νx̃)([·] |
∑

i∈I τ . R̄i), we have

F [P ′] 6
.
≈1

F [Qi] (?)

We have two cases depending on the clause of the
proposition that holds, by induction, for (P ′, Qi):

1) if clause 1) holds, then F [Qi] −→ Ei[Qi] with

Ei
def
= (νx̃)([·] | R̄i)

This means there is A′i with F [P ′] =⇒ A′i and A′i
.
≈1

Ei[Qi]. As we do not have Ei[Qi] ⇓zj for j 6= i, we
must have that
• either A′i ≡ Ei[P ′′] with P ′ =⇒ P ′′,
• or A′i ≡ (νx̃)(P ′′ | zi) for some P ′′.
However the second case is not possible as
Ei[Qi] −→6⇓zi .
Up to structural congruence, we can suppose that
in Ei[P

′′] and Ei[Qi], x̃ contains only names from
fn(P ′, Qi).
We are in a situation where we can apply the induction
hypothesis, and this is in contradiction with Ei[P ′′]

.
≈1

Ei[Qi] as P ′ =⇒ P ′′.
2) if clause 2) holds, we have similarly that F [P ′] −→

Ei[P
′]. The same reasoning, with the role of P ′ and

Qi swapped, is sufficient to conclude.

We can now prove the desired result by looking at the
possible cases for µ:
• when µ = τ and 1 `s P

′, given fresh names (zi)i∈I ,
we define

R
def
= τ .

∑
i∈I

τ . (Ri +
∑
y∈S′

I

y(ỹ′). zi),

and E0 = (νx̃)([·] | R+
∑

y∈S y(ỹ′). z).
We reason by contradiction.
We have E0[P] −→−→ F [P ′].

Thus there should exist B′ such that B =⇒ B′ and
F [P ′]

.
≈1

B′.
We have that P ′ is active and is not singular. This
entails, by Lemma 16, that P ′ ⇓z′ for some z′ ∈ S′I
(P ′ is active because 1 `s P

′).
So F [P ′] ⇓zi for all i ∈ I but not F [P ′] ⇓z . Therefore
B′ can be of 2 forms:
– E0[Qi] for some i ∈ I (with Q′ =⇒ Qi).
– F [Qi] for some i ∈ I (with Q′ =⇒ Qi).
However, as S′I ⊆ S, if E0[Qi] ⇓zi , then we must have
E0[Qi] ⇓z which rules out the first case.
Thus, F [P ′]

.
≈1

F [Qi] which is absurd by (?).
• when µ = (νỹ2)x′〈ỹ2, ỹ1〉, given fresh names
z′, z′′, (zi)i∈I , we note ỹ2 = y2

1 , . . . , y
2
n and

ỹ1 = y1
1 , . . . y

1
m. Then we set:

R
def
= x′(x̃2, x̃1).

(
z′ | G

+ [x1
1 = y1

1] . . . [x1
m = y1

m]z′. (
∑
i∈I

τ . (zi | zi.Ri))
)

G
def
=
∑
j≤n

∑
y′′∈fn(P,Q)

[x2
j = y′′]z′. z′′

and E0 = (νx̃)([·] | R+
∑

y∈S y(ỹ′). z).
Then E0[P] −→ A with

A ≡ (νx̃, x̃2)(P ′ | z′ | G+ z′. (
∑
i∈I

τ . (zi | zi.Ri)))

Thus there exists B such that E0[Q] =⇒ B and
A

.
≈1

B, We have A ⇓z′ , A ⇓zi for all i ∈ I
but not A ⇓z . Thus, B can only be of the form
(νx̃, x̃2)(Qi | G+ z′. (

∑
i∈I τ . (zi | zi.Ri))) for some

i ∈ I (meaning that Q′
µ
=⇒ Qi).

A −→ F [P ′] with F [P ′] ⇓zi for all i ∈ I but not
F [P ′] ⇓z′ So we must have that B =⇒ F [Qi′] with
Qi =⇒ Qi′ and F [P ′]

.
≈1

F [Qi′].
This is absurd by (?).

The reasoning in the remaining cases is very similar to
the proofs given above. We only sketch how the proof
can be derived.

• when µ = x′〈ỹ′〉, P is inactive, and P ′ is active. Given
fresh names (zi)i∈I , we set

R
def
= x′〈ỹ′〉 |

∑
i∈I

τ . (Ri +
∑
y∈S′

I

y(ỹ′). zi)

and we can conclude.
• when µ = τ and 0 `s P

′, given fresh names (zi)i∈I ,
we pose

R
def
=
∑
i∈I

τ . (zi | zi.Ri)

and we can conclude.

Proof of Theorem 20. We suppose P 'η Q and P,Q are
image-finite.

We reason by contradiction:
If P 6≈ηs Q, then by Lemma 18, P 6≈η,ωs Q.
Thus there exists n such that P 6≈η,ns Q.
By Proposition 19, there exists some static context E

such that E[P] 6
.
≈η E[Q].

So P 6'η Q, which is absurd.

Appendix C.
Completeness for WB-bisimulation

The proof of completeness for ≈σwb w.r.t. 'σ has the
same overall structure as the proof for sequential bisim-
ulation. Technically, however, because of the presence of
continuation names, the details are different.

The following lemma is a direct consequence of the
usage discipline of continuation names.

Lemma 53. If σ `wb P | Q then

(νp)(p〈ã〉 | p(̃b).P | Q) ≈σwb P{ã/̃b} | Q.

By soundness, this equivalence also holds for barbed
equivalence at σ.

Suppose σ `wb P . We recall the definition of Ex̃i
σ , given

in Section 4.4.1:
With σ = ξ, p1 : o, q1 : i, . . . , pn−1 : o, qn−1 : i, pn : o

and ξ = ∅ or ξ = q : i, we define, for fresh qn and x̃i,

Ex̃i
σ

def
= (νp̃i, q̃i)([·] |

∏
i≤n

pi(ỹ).xi〈ỹ, qi〉).

When [σ;P]
(νx̃)p1〈ỹ〉−−−−−−→ [σ′;P ′], then with x̃i = x1, x̃i

′

qn : o �wb E
x̃i
σ [P]

τ−→ (νq1, x̃)(Ex̃i
′

σ′ [P ′] | x1〈ỹ, q1〉)

By Lemma 53, this internal transition does not change the
behaviour of the process. Thus, in the proof of Proposi-
tion 55, we reason modulo this kind of reductions.

We can extend the definition of singular processes and
derive results similar to Lemmas 14,15,16:

Lemma 54. Consider a clean stack σ = p0 : o, q0 :
i, . . . , pn : o, and define

0σ
def
= (νx)x〈p0〉 |

∏
1≤i≤n

qi−1(ỹ). pi〈ỹ〉.

Then for any singular process P with σ `wb P , we have
P ≈σwb 0σ.

Similarly, if P does not contain any input-controlled
name, then P is singular iff P

.
≈σ 0σ.

Under the same hypotheses, this lemma implies that in
absence of input-controlled names, P is not singular iff
Ex̃i
σ [P] ⇓z for some z.

The following proposition is the counterpart, for WB-
bisimulation, of Proposition 19. It refers to the stratification
of WB-bisimulation, which is defined like the stratification
of sequential bisimulation.

Proposition 55. For all n ≥ 0, σ = ξ, σO with ξ = ∅ or
ξ = p : i, if σ `wb P,Q and P 6≈σ,nwb Q, then for any fresh

names x̃j there exists R such that for any fresh z and any
x̃, S with x̃ ⊆ fno(P,Q) and fno(P,Q)∪x̃j ⊆ S, we define:

R̄
def
=

{
z〈p〉 | z(p).R
R+

∑
y∈S y(ỹ′, q). z〈q〉

when ξ = p : i
when ξ = ∅

E0
def
=

{
(νx̃, p)(E

x̃j
σ | R̄)

(νx̃)(E
x̃j
σ | R̄)

when ξ = p : i
when ξ = ∅

and we have:
1) either E0[P ′] 6

.
≈qn:o

E[Q] for all P ′ such that P =⇒ P ′

2) or E0[P] 6
.
≈qn:o

E[Q
′] for all Q′ such that Q =⇒ Q′

The proof of this proposition is structured like the proof
of Proposition 19. We therefore do not provide all details,
but instead highlight the technical points that are specific.

Proof. We reason by induction on n. For n = 0, there is
nothing to prove.

For n > 0, suppose that P 6≈σ,ns Q. We may therefore
suppose that there exists µ such that [σ;P]

µ−→ [σ′;P ′] and
for all Q′ with Q

µ̂
=⇒ Q′ (or when µ = x〈ỹ, p〉, all Q′ with

Q | (νq)(x〈ỹ, q〉 | q(ỹ′). p〈ỹ′〉) =⇒ Q′ for any fresh q), we
have P ′ 6≈σ′,n−1

s Q′.
We note {Qi} for i ∈ I the set of all such

Q′. This set is finite by hypothesis. We also write
S′I =

⋃
i∈I fno(Qi)∪ fno(P ′)∪ x̃j , which is also a finite set.

We show that clause 1) holds. (in the symmetrical case,
where we consider a transition from [η;Q], we establish the
second clause).

We distinguish two cases, according to whether P ′ is
singular or not.
First case: P ′ is singular.

Since P ′ is singular, ξ′ = ∅. For all i, as P ′ 6≈wb σ
′Qi,

we have Ex̃j

σ′ [Qi] ⇓zi for some zi ∈ S′I .
By Theorem 31, there are three possible cases:

• when µ = τ and σ′ = σ. We set R def
= 0. We then

have to show that for any z, x̃, S,Q′ with Q =⇒ Q′,
taking R̄ = R+

∑
y∈S y(ỹ′, q). z〈q〉 (since ξ = ∅) and

E0 = (νx̃)(E
x̃j
σ | R̄) , we have E0[P] 6

.
≈qn:o

E0[Q′]
We reason by contradiction. We observe
E0[P] −→ E0[P ′] which is singular.
Thus there should exist T such that
E0[Q′] =⇒ T and E0[P ′]

.
≈qn:o

T , which entails
that T is singular.
We observe then that T can be of 3 forms:
– E0[Qi] for some i ∈ I (with Q′ =⇒ Qi)
– (νx̃, q1)(Q′′ | x1〈ỹ, q1〉 | R̄)
– (νx̃, q)(Q′′ | z〈q〉)
We have one more case than in the proof of com-
pleteness for sequential bisimilarity due to the distinc-
tion between continuation names and the other output-
controlled names.
Since T is singular, the latter two are impossible.
For the first case, we have that S′I ⊆ S and Ex̃j

σ [Qi] ⇓zi
for some zi ∈ S′I , so T ⇓z , which contradicts the fact
that T is singular.

• when µ = p〈ỹ′〉, given a fresh name z′, we define

R
def
= p〈ỹ′〉 |

∑
y∈S′

I

y(ỹ′, q). z′〈q〉

The proof is similar to the one for the complenetess for
sequential bisimilarity with as above, one more case for
T that is handle similarly.

• when µ = x′〈ỹ′, p0〉
Given fresh names z′ and x0, we define

R
def
=(νp0)(x′〈ỹ′, p0〉 | p0(ỹ′).x0〈ỹ′, q0〉)
|
∑
y∈S′

I

y(ỹ′, q). z′〈q〉

We then have to show that for any z, x̃, S,Q′ with
Q =⇒ Q′, taking R̄ = z(q0) | z〈q0〉 and E0 =

(νx̃, q0)(E
x̃j
σ | R̄), we have

E0[P] 6
.
≈qn:o

E0[Q′]

. We reason by contradiction and note E1
def
=

(νx̃)(E
x0,x̃j

σ′ |
∑

y∈S′
I
). First, we can see that

E0[Q′] ≈qn:o
s (νx̃, q0)(E

x̃j
σ [Q′] | z(q0).R′ | z〈q0〉)

where R′ is the process obtained by applying the law
of Lemma 35 to x′〈ỹ′, p0〉 in R.
We have E0[P] −→−→ E1[P ′] which is singular. Thus
there should exist T such that (νx̃, q0)(E

x̃j
σ [Q′] |

z(q0).R′ | z〈q0〉) =⇒ T and E1[P ′]
.
≈qn:o

T .
We observe that T can be of 4 forms:
– (νx̃, q0)(E

x̃j
σ [Q′′] | z(q0).R′ | z〈q0〉) (with Q′ =⇒

Q′′)
– E1[Qi] for some i ∈ I (with Q′ | (νr0)(x′〈ỹ′, r0〉 |
r0(ỹ′). p0〈ỹ′〉) =⇒ Qi)

– (νx̃, q1)(Q′′ | x1〈ỹ, q1〉)
– (νx̃, q)(Q′′ | z′〈q〉)
As above, T is necessarly singular. This immediately
rules out all but the second case. For the latter case,
E
x0,x̃j

σ′ [Qi] ⇓zi for some zi ∈ S′I , so we have that
T ⇓z′ , hence a contraction.

Second case: if P ′ is not singular. We note Ri for the
process we obtain, by induction, for each pair (P ′, Qi).

As for the proof of completeness for sequential bisimi-
larity, we show that for any z̃i, x̃, S,Qi with Q

µ̂
=⇒ Qi, we

define

R̄i
def
=

{
zi〈p〉 | zi(p).Ri
Ri +

∑
y∈S y(ỹ′, q). zi〈q〉

when ξ′ = p : i
when ξ′ = ∅

F
def
=

{
(νx̃, p)(E

x̃j
σ |

∑
i∈I τ . R̄i)

(νx̃)(E
x̃j
σ |

∑
i∈I τ . R̄i)

when ξ′ = p : i
when ξ′ = ∅

and we have
F [P ′] 6

.
≈qn:o

F [Qi] (?)

The first case is proving with the same reasoning as for
sequentiality.

For the second case, we must be more cautious because
of the presence of Ex̃j

σ which enables an additional reduc-
tion. However, this reduction does not affect the behaviour
using Lemma 53:

We have two cases depending on the clause of the
proposition that holds, by induction, for (P ′, Qi):

1) if clause 1) holds, then F [Qi] −→ Ei[Qi] with

Ei
def
= (νx̃)(Ex̃j

σ | R̄i)

This means there is A′i with F [P ′] =⇒ A′i and A′i
.
≈qn:o

Ei[Qi]. As we do not have Ei[Qi] ⇓zj for j 6= i, we
must have that
• either A′i ≡ Ei[P ′′] with P ′ =⇒ P ′′,
• A′i ≡ (νx̃, x̃′, q1)(P̃ | x1〈ỹ′, q1〉 | R̄i) with P ′ =⇒
P ′′

(νx̃′)p1〈ỹ′〉−−−−−−−→ P̃
• or A′i ≡ (νx̃, q)(P ′′ | zi〈q〉) for some P ′′.
However the last case is not possible as Ei[Qi] −→6⇓zi .
Because of Lemma 53, the second case is barbed
bisimilar to the first one.
Up to structural congruence, we can suppose that
in Ei[P

′′] and Ei[Qi], x̃ contains only names from
fn(P ′, Qi).
We are in a situation where we can apply the in-
duction hypothesis, and this is in contradiction with
Ei[P

′′]
.
≈qn:o

Ei[Qi] as P ′ =⇒ P ′′.
2) if clause 2) holds, we have similarly that F [P ′] −→

Ei[P
′]. The same reasoning, with the role of P ′ and

Qi swapped, is sufficient to conclude.

We can now examine the different possibilities for the
transition along µ.

• µ = x′〈ỹ′, p0〉, then ξ = q0 : i and σ′ = p0 : o, σ.
Given fresh names (zi)i∈I , we define

R
def
=(νp0)(x′〈ỹ′, p0〉 | p0(ỹ′).x0〈ỹ′, q0〉)
|
∑
i∈I

τ . (Ri +
∑
y∈S′

I

y(ỹ′, q). zi〈q〉)

and call R′ the process obtained by applying the law
of Lemma 35 to x0〈ỹ′, q0〉 in R. (Thus R ∼=q0:o R′)
We then have to show that for any z, x̃, S,Q′ with
Q =⇒ Q′, we have E0[P] 6

.
≈qn:o

B where

B
def
= (νx̃, q0)(Ex̃j

σ [Q′] | z(q0).R′ | z〈q0〉)

We reason by contradiction. We have E0[P] −→−→
F [P ′] with
Thus, there exists T such that B =⇒ T and
F [P ′]

.
≈qn:o

T . As P ′ is not singular,
E
x0,x̃j

σ′ [P ′] ⇓z′ for some z′ ∈ S′I , so F [P ′] ⇓zi
for all zi. This implies that T ≡ F [Qi] with
Q′ | (νr0)(x′〈ỹ′, r0〉 | r0(ỹ′). p0〈ỹ′〉) =⇒ Qi.
This is in contradiction with (?).

• µ = (νỹ2, q)x′〈ỹ′, q〉. We note ỹ2 = y2
1 , . . . , y

2
n and

ỹ′ = ỹ2, y1
1 , . . . , y

1
m. Given fresh names z′, z′′, (zi)i∈I ,

we define

R
def
= x′(x̃2, x̃1, q1). (z′〈q1〉 | R1)

R1
def
=
∑
j≤n

∑
y′′∈fno(P,Q)

[x2
j = y′′]z′(q). z′′〈q〉

+ [x1
1 = y1

1] . . . [x1
m = y1

m]z′(q).
∑
i∈I

τ . (zi〈q〉 | zi(q′).Ri)

The reasoning is similar to the proof of Proposition 19.
• µ = (νỹ2)p1〈ỹ′〉. We note ỹ2 = y2

1 , . . . , y
2
n and ỹ′ =

ỹ2, y1
1 , . . . , y

1
m. Given fresh names z′, z′′, (zi)i∈I , we

define

R
def
= x1(x̃2, x̃1, q1). (z′〈q1〉 | R1) with

R1
def
=
∑
j≤n

∑
y′′∈fno(P,Q)

[x2
j = y′′]z′(q). z′′〈q〉

+ [x1
1 = y1

1] . . . [x1
m = y1

m]z′(q).
∑
i∈I

τ . (zi〈q〉 | zi(q′).Ri)

Here we make use of Ex̃j
σ to test the output at p1 by

testing the output at x1.
We conclude as before.

• µ = τ and ξ = ∅. Given fresh names (zi)i∈I , we define
R

def
=
∑

i∈I τ . (Ri+
∑

y∈S′
I
y(ỹ′, q). zi〈q〉), and we can

conclude.
• µ = τ and ξ = p : i. Given fresh names (zi)i∈I , we

define R
def
=
∑

i∈I τ . (zi〈p〉 | zi(p).Ri), and we can
conclude.

• µ = p〈ỹ′〉. Given fresh names (zi)i∈I , we define

R
def
= p〈ỹ′〉 |

∑
i∈I

τ . (Ri +
∑
y∈S′

I

y(ỹ′, q). zi〈q〉)

and we can conclude.

Appendix D.
Examples with WB Bisimulation (Section 4.4.2)

D.1. A Simplified Example

We discuss below a simplified example, which exposes
the main difficulties that arise when studying the well-
bracketed state change example. The primary simplification
consists in using single-use functions, i.e., without replica-
tion. As a consequence, the two calls to the external function
are split into two separate functions. In ML, this corresponds
to the terms N and L below:

N
def
= let x = ref 0 in (N1, N2)

N1
def
= fun f -> x := 1; f (); !x

N2
def
= fun f -> x := 0; f (); x := 1

L
def
= (L1, L2)

L1
def
= fun f -> f (); 1

L2
def
= fun f -> f (); ()

with the constraint that each term may only be called once.
(Such a simplification would not work on the well-bracketed
state change example, as M1 and M2 become equivalent
even dropping well-bracketing if used at most once.)

Intuitively,

let (h1, h2) = N in fun f -> h2 f ; h1 f

is similar to a single use of M1, and the same for L and
M2.

The Aπ translation of the above terms is as follows:

[[N]]p0
def
= (ν`, x, y)(`〈0〉 | p0〈x, y〉 | P1 | P2)

P1
def
= x(z, p). wr`〈1〉. (νp′)(z〈?, p′〉 | p′. re`(n). p〈n〉)

P2
def
= y(z, q). wr`〈0〉. (νq′)(z〈?, q′〉 | q′. wr`〈1〉. q)

[[L]]p0
def
= (νx, y)(p0〈x, y〉 | Q1 | Q2)

Q1
def
= x(z, p). (νp′)(z〈?, p′〉 | p′. p〈1〉)

Q2
def
= y(z, q). (νq′)(z〈?, q′〉 | q′. q)

Indeed, the translation of an ML program is parametrised
upon a continuation name (here p0).

We introduce a slight abuse of notation, and write
[[N]]p0

(νx,y)p0〈x,y〉−−−−−−−−−→ [[N]], and similarly for notation [[L]].
Below we show that [[N]] and [[L]] are equivalent. First

however we note that well-bracketing is necessary for this.
Sequentiality alone is not sufficient: under the type system
for sequentiality we can observe the following trace from
[[N]]:

[[N]]
x〈?,p〉−−−−→ (νp′)z〈?,p′〉

=======⇒ y〈?,q〉−−−−→ z〈?,q′〉
====⇒ p′−→ p〈0〉

==⇒

This trace is not well-bracketed: function x is called first,
but the continuation p is returned before q. Process [[L]] may
not produce such a trace — it may only emit 1. However,
the above non-well-bracketed trace is the only trace from
[[N]] that may produce 0.

We prove [[N]] ≈∅wb [[L]] by defining a relation, and
relying on up-to techniques for WB-bisimulation.

For that, we use the abbreviations

P ′1
def
= p′. re`(n). p〈n〉, Q′1

def
= p′. p〈1〉,

P ′2
def
= q′. wr`〈1〉. q Q′2

def
= q′. q

This allows us to define the following relation, called R:

{(∅, (ν`)(`〈0〉 | P1 | P2), Q1 | Q2),
((p′ : i, p : o), (ν`)(`〈1〉 | P ′1 | P2), Q′1 | Q2),
((q′ : i, q : o), (ν`)(`〈0〉 | P1 | P ′2), Q1 | Q′2),
((q′ : i, q : o, p′ : i, p : o), (ν`)(`〈0〉 | P ′1 | P ′2), Q′1 | Q′2),
(∅, (ν`)(`〈1〉 | P2), Q2),
(∅, (ν`)(`〈1〉 | P1), Q1),
((p′ : i, p : o, q′ : i, q : o), (ν`)(`〈1〉 | P ′1 | P ′2), Q′1 | Q′2),
((p′ : i, p : o), (ν`)(`〈1〉 | P ′1), Q′1),
((q′ : i, q : o), (ν`)(`〈0〉 | P ′2), Q′2),
((q′ : i, q : o), (ν`)(`〈1〉 | P ′2), Q′2),
(∅, (ν`)`〈1〉, 0)}

R is a wb-bisimulation up-to deterministic reduction
and up-to static context. Ensuring well-bracketing restricts
transitions for the two triplets below:

((q′ : i, q : o, p′ : i, p : o), (ν`)(`〈0〉 | P ′1 | P ′2), Q′1 | Q′2)

((p′ : i, p : o, q′ : i, q : o), (ν`)(`〈1〉 | P ′1 | P ′2), Q′1 | Q′2)

Indeed, we may only test the input on q′ (resp. p′) while
both are unguarded in both cases. This is crucial for the first
triplet as allowing the input on p′ on the first process would
lead to a process (after a deterministic reduction) that can
send p0, while the second one cannot emit 0.

Without up-to techniques.
We define some additional relations, which allow us to

show the improvement brought by up-to techniques.

For this, we introduce the following notations for pro-
cesses related to P1 and Q1 respectively:

P a1
def
= wr`〈1〉.P b1 P b1

def
= (νp′)(z〈?, p′〉 | P c1)

P c1
def
= p′.P d1 P d1

def
= re`(n). p〈n〉

Qc1
def
= p′. p〈1〉 Qb1

def
= (νp′)(z〈?, p′〉 | Qc1)

and similarly for processes P2 and Q2.

We can remark that P ci is the same as P ′i introduced
above to define R.

R′ def
= {(p : o, (ν`)(`〈0〉 | P a1 | P2), Qa1 | Q2),

(p : o, (ν`)(`〈0〉 | P1 | P a2), Q1 | Qb2),

((q : o, p′ : i, p : o), (ν`)(`〈1〉 | P c1 | P a2), Qc1 | Qb2)

(p : o, (ν`)(`〈1〉 | P d1 | P2), p〈1〉 | Q2)

(q : o, (ν`)(`〈0〉 | P1 | P d2), Q1 | q)
((p : o, q′ : i, q : o), (ν`)(`〈0〉 | P a1 | P c2), Qb1 | Qc2)

((q : o, p′ : i, p : o), (ν`)(`〈0〉 | P c1 | P d2), Qc1 | q)
(q : o, (ν`)(`〈1〉 | P a2), Qb2)

(p : o, (ν`)(`〈1〉 | P a1), Qb1)

((p : o, q′ : i, q : o), (ν`)(`〈1〉 | P d1 | P c2), p〈1〉 | Qc2)

(q : o, (ν`)(`〈0〉 | P d2), q)

(q : o, (ν`)(`〈1〉 | P d2), q)

(p : o, (ν`)(`〈1〉 | P d1), p〈1〉)
}

R′′ def
= {(p : o, (ν`)(`〈1〉 | P b1 | P2), Qb1 | Q2),

(p : o, (ν`)(`〈0〉 | P1 | P b2), Q1 | Qb2),

((q : o, p′ : i, p : o), (ν`)(`〈0〉 | P c1 | P b2), Qc1 | Qb2)

(p : o, (ν`)(`〈1〉 | p〈1〉 | P2), p〈1〉 | Q2)

(q : o, (ν`)(`〈1〉 | P1 | q), Q1 | q)
((p : o, q′ : i, q : o), (ν`)(`〈1〉 | P b1 | P c2), Qb1 | Qc2)

((q : o, p′ : i, p : o), (ν`)(`〈1〉 | P c1 | q), Qc1 | q)
(q : o, (ν`)(`〈0〉 | P b2), Qb2)

(p : o, (ν`)(`〈1〉 | P b1), Qb1)

((p : o, q′ : i, q : o), (ν`)(`〈1〉 | p〈1〉 | P c2), p〈1〉 | Qc2)

(q : o, (ν`)(`〈1〉 | q), q)
(p : o, (ν`)(`〈1〉 | p〈1〉), p〈1〉)
}

We see that R, R′ and R′′ are comparable in size. We
have that:
• R]R′ is a wb-bisimulation up-to static context.
• R]R′′ is a wb-bisimulation up-to deterministic τ .
• R]R′]R′′ is a wb-bisimulation.

D.2. Well-bracketed state change

We present the proof for the example described in Sec-
tion 4.4.2.

We need to introduce some notations in order to reason
about the sub-processes which are generated by calls to the
functions in the encodings of M1 and M2.

To simplify notations, we assume that names extruded
from (νq) (resp. (νr)) are in the set

{
qi
∣∣ i ∈ I} (resp.{

rj
∣∣ j ∈ J}) for some set I (resp. J). Continuation names

received on x will be noted pi or pj depending on which
prefix they are underneath.

P 1
i = qi. (νr)(y〈r〉 | r. pi〈1〉) P 2

j = rj . pj〈1〉

Q0 = !x(y, p). wr`〈0〉. (νq)(y〈q〉 | q. wr`〈1〉. (νr)(y〈r〉 |

r. re`(n). p〈n〉))

Q1
i = qi. wr`〈1〉. (νr)(y〈r〉 | r. re`(n). pi〈n〉)

Q2
j = rj . re`(n). pj〈n〉

Given an ordered list s of the indices in I]J , we write
σ(s) for the stack defined inductively as follows:

σ(∅) = ∅ σ(i; s) = qi : i, pi : o, σ(s)

σ(j; s) = rj : i, pj : o, σ(s)

We can then define the relation:

R def
= {(∅, P,Q), (∅, P, (ν`)(`〈1〉 | Q0)),

(σ(i; s), P |
∏
i∈I

P 1
i |
∏
j∈J

P 2
j ,

(ν`)(`〈0〉 | Q0 |
∏
i∈I

Q1
i |
∏
j∈J

Q2
j)),

(σ(i; s), P |
∏
i∈I

P 1
i |
∏
j∈J

P 2
j ,

(ν`)(`〈1〉 | Q0 |
∏
i∈I

Q1
i |
∏
j∈J

Q2
j)),

(σ(j; s), P |
∏
i∈I

P 1
i |
∏
j∈J

P 2
j ,

(ν`)(`〈1〉 | Q0 |
∏
i∈I

Q1
i |
∏
j∈J

Q2
j))

}

R is a wb-bisimulation up-to deterministic τ and up-to
static context.

