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We introduce the concept of multi-task learning to weakly-supervised lesion segmentation, one of the most critical and challenging tasks in medical imaging. Due to the lesions' heterogeneous nature, it is difficult for machine learning models to capture the corresponding variability. We propose to jointly train a lesion segmentation model and a lesion classifier in a multi-task learning fashion, where the supervision of the latter is obtained by clustering the RECIST measurements of the lesions. We evaluate our approach specifically on liver lesion segmentation and more generally on lesion segmentation in computed tomography (CT), as well as segmentation of skin lesions from dermatoscopic images. We show that the proposed joint training improves the quality of the lesion segmentation by 4% percent according to the Dice coefficient and 6% according to averaged Hausdorff distance (AVD), while reducing the training time required by up to 75%.

Introduction

Assessing lesion and tumor growth is a central problem in medical imaging for oncology, required for assessing cancer burden and aiding radiologists in accurately labeling important findings. To analyze lesions, radiologists typically manually annotate computed tomography (CT) scans containing lesions with response evaluation criteria in solid tumors (RECIST) measurements, consisting of the major and minor axes of the best-fit ellipse that coarsely describes the lesion segmentation mask [START_REF] Eisenhauer | New response evaluation criteria in solid tumours: revised recist guideline (version 1.1)[END_REF]. This process, however, does not provide accurate pixel-level segmentation that would be used to monitor lesion shape, and may prove crucial to identifying any abnormalities.

In this work, we propose a new automatic method for predicting lesion segmentations that leverages existing RECIST annotations [START_REF] Yan | Deeplesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning[END_REF] as training data in a weaklysupervised learning setting. In particular, we show that jointly segmenting and classifying lesions according to their shapes in a multi-task learning fashion achieves better segmentation accuracy than learning a segmentation network alone. This insight is motivated by the successful application of multi-task learning in other domains and problems [START_REF] Zhang | A survey on multi-task learning[END_REF][START_REF] Standley | Which tasks should be learned together in multi-task learning?[END_REF], and the idea that clustering provides a strong supervision signal for training computational models [START_REF] Caron | Deep clustering for unsupervised learning of visual features[END_REF]. Unlike other recent weakly supervised lesion segmentation methods (Agarwal et al., 2020a,b), we do not use co-segmentation, and instead allow the model to learn appropriate lesion similarities via clustering, thereby improving segmentation quality and reducing training time. We generate class labels by clustering lesions using their RECIST measurements and learn a model to simultaneously classify and segment input CT slices with lesions. We compare our approach to the state-of-the art medical imaging weakly supervised baseline (Agarwal et al., 2020a) on CT and skin lesion segmentation and show that our method generates more accurate segmentations while requires significantly less training time.

Our contributions can be summarized as follows. We propose a new joint classification and localization scheme for training weakly-supervised lesion segmentation models. We demonstrate how to modify existing segmentation architectures to incorporate this new algorithm. We conduct a systematic analysis of the utility of the proposed new methodology and show that it quantitatively and qualitatively outperforms prior baselines in this domain.

Related Work

Manually producing dense pixel-wise segmentations for medical images is a time-consuming task that requires domain expertise. Hence, large-scale datasets required for training automatic segmentation models are not available for many medical imaging tasks [START_REF] Guo | A review of semantic segmentation using deep neural networks[END_REF][START_REF] Tajbakhsh | Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation[END_REF]. On the other hand, weakly-supervised methods allow for the use of class labels [START_REF] Hu | Weakly supervised deep learning for covid-19 infection detection and classification from ct images[END_REF] or coarse segmentation masks (Agarwal et al., 2020a;[START_REF] Xie | A mutual bootstrapping model for automated skin lesion segmentation and classification[END_REF]. In particular, response evaluation criteria in solid tumors (RECIST) annotations [START_REF] Eisenhauer | New response evaluation criteria in solid tumours: revised recist guideline (version 1.1)[END_REF] can be used in lieu of pixel-wise segmentation for training automatic segmentation models. RECIST measurements are often stored in hospital picture archiving and communication systems (PACS) and are annotated manually by radiologists during screening procedures [START_REF] Cai | Accurate weaklysupervised deep lesion segmentation using large-scale clinical annotations: Slice-propagated 3d mask generation from 2d recist[END_REF]. Annotations in the form of clicks [START_REF] Holger R Roth | Going to extremes: Weakly supervised medical image segmentation[END_REF] or bounding boxes [START_REF] Rajchl | Deepcut: Object segmentation from bounding box annotations using convolutional neural networks[END_REF] are also popular. Finally, weakly-supervised learning is often combined with interactive techniques to speed up image annotation during organ screening [START_REF] Holger R Roth | Going to extremes: Weakly supervised medical image segmentation[END_REF].

Machine learning models trained on a single task can ignore useful domain information that is contained in the training signals of other related, but different tasks, which hinders their generalization ability and performance. Multi-task learning (MTL) is an approach to alleviate this limitation [START_REF] Caruana | Multitask Learning[END_REF]. MTL jointly trains multiple relevant tasks, usually with a shared presentation, to simultaneously improve their performance. Recently, MTL has been proven effective in multiple machine learning applications: Natural language processing [START_REF] Liu | Multi-task deep neural networks for natural language understanding[END_REF], speech recognition [START_REF] Deng | New types of deep neural network learning for speech recognition and related applications: an overview[END_REF], stock prediction [START_REF] Zhou | Stock index prediction with multi-task learning and word polarity over time[END_REF], computer vision (Zhou et al., 2020) and medical image analysis [START_REF] Le | Multitask classification and segmentation for cancer diagnosis in mammography[END_REF]. In particular, MTL can be used to improve the performance of a single task by jointly training it with other weaker tasks whose training supervision can be obtained from the supervision of the main task [START_REF] Girshick | Fast r-cnn[END_REF][START_REF] Lee | Multi-task self-supervised object detection via recycling of bounding box annotations[END_REF] this particular branch of MTL. In medical imaging, MTL has also been employed for lesion segmentation [START_REF] Yang | A novel multi-task deep learning model for skin lesion segmentation and classification[END_REF] or analyzing COVID-19 CT images [START_REF] Amyar | Multi-task deep learning based ct imaging analysis for covid-19 pneumonia: Classification and segmentation[END_REF] but these work require exact class labels for all training images and dense segmentations for at least a part of them. On the other hand, our work use only coarse segmentation supervision (RECIST measurements), and extracts class labels in an unsupervised manner.

Multi-task Learning Approach for Weakly-Supervised Segmentation

We now describe our multi-task model for weakly supervised lesion segmentation. An overview of our proposed method can be seen in Figure 1. Weakly-Supervised Lesion Segmentation using RECIST. Let R = ({I i , r i }|i = {1, 2, . . . , N }) be the set of images I i and their corresponding RECIST measures r i with r i = (x i , y i , w i , h i , a i ), where (x i , y i ) are the coordinates of the center, w i and h i are the width and height, and a i is the rotation angle of the RECIST ellipse1 . We train a model, denoted by a function f , such that for a given image I i ∈ R H×W ×C (H, W and C are the image's height, width and number of channels respectively), f (I i ) is the lesion segmentation map of I i , i.e., f (I i ) ∈ {0, 1} H×W where f (I i )[p, q] = 1 if pixel (p, q) is contained in the lesion. The model consists of an encoder E which produces an embedded representation of the input, and a decoder D which transforms the embedded representation into a binary map, i.e., f (I i ) = D(E(I i )). In the presence of a ground-truth segmentation map s gt i , f is trained to minimize L seg (f (I i ), s gt i ), the difference between the decoder's output and s gt i . Since ground-truth segmentation maps are not available in our setting, we instead generate pseudo-ground truth segmentation maps s i from RECIST measures and minimize L seg (f (I i ), s i ), the difference between the decoder's output and s i . We define L seg to be the binary cross entropy (BCE) loss:

L seg (f (I i ), s i ) = - 1 HW p,q s i [p, q] log f (I i )[p, q] + (1 -s i [p, q]) log(1 -f (I i )[p, q]) (1) 
where s i [p, q] and f (I i ) [p, q] are respectively the values of s i and f (I i ) at pixel (p, q). Intuitively, by projecting the input image into a small embedding space with the encoder E, we force the model to learn only relevant features that are useful in reconstructing the pseudoground truth segmentation map s i . The information learned in the embedded representation is therefore critical for the model performance. We propose to regularize this representation by training a lesion classification model simultaneously with the segmentation loss. Lesion Classification. Given the class c I i ∈ {1, ..., K} of image I i , we train a classifier g on the encoder's output with the cross-entropy loss:

L cls (g Ii , c Ii ) = -log exp(g Ii [c Ii ]) j exp(g Ii [j]) , (2) 
where g

I i = g(E(I i ))
is the output of the classifier g on image I i , and

g I i [k]
is the value of g I i at index k. In our context, c I i is generated from the RECIST measure as follows.

The set of segmentation examples S = {s 1 , s 2 , . . . , s t } is partitioned into K ≤ |S| sets Q = {q 1 , q 2 , . . . , q K } (i.e., K clusters) via the K-means algorithm (MacQueen et al., 1967). Subsequently, for every example I i , where i = 1, 2, . . . N , we use the index c I i of its assigned cluster as the label for classification loss.

Multi-task Learning. We train our model in a multi-task learning fashion to minimize the joint loss:

L(I i , r i ) = α seg L seg (f (I i ), s i ) + α cls L cls (g Ii , c i ), (3) 
where α seg and α cls are the segmentation and the classification loss weights, respectively. Since the segmentation and classification modules share the same encoder, useful information retained by the lesion classifier is transferred to the segmentation head for better performance. We now turn to experimental validation of the proposed learning framework.

Datasets, Metrics and Implementation Details

Computed Tomography (CT) Images. For evaluation on CT, we consider two publicly available datasets. The first dataset is the DeepLesion dataset [START_REF] Yan | Deeplesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning[END_REF] which consists of 32,735 computed tomography (CT) images with lung nodules, liver tumors, enlarged lymph nodes and other internal organ abnormalities from an anonymized set of 4,400 unique patients. Each lesion image is annotated with long and short diameter RECIST measurements. Since ground-truth pixel-level segmentations for this dataset are not available, we rely on approximate GrabCut-based segmentations as ground truth. We use the official data split for this dataset. The second dataset is LiTS [START_REF] Bilic | The liver tumor segmentation benchmark[END_REF] which consists of CT images containing liver tumors from the Liver Tumor Segmentation Benchmark. This dataset has manually annotated dense segmentation masks for tumors in each CT slice but RECIST measure is not available. We therefore fit ellipses to these masks to obtain RECIST parameters. We use 11,522 images (48 volumes) for training, 3310 images (44 volumes) for validation and 1630 images (20 volumes) for testing. Dermatoscopic Images. We evaluate the generalization of our method on dermatoscopic images of skin lesions. While RECIST is more commonly used for CT datasets, we use skin lesion as an additional test case due to the wider availability of publicly accessible data-sets and dense segmentation. We consider the HAM10K dataset [START_REF] Tschandl | The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[END_REF], which consists of 10,015 dermatoscopic images and pixel-level segmentation masks of common pigmented skin lesions, such as carcinomas, keratoses and melanomas. Lesions in this dataset often have blurry boundaries and represent a challenging test case for our method. We split the dataset into 70%/20%/10% for training, validation, and testing subsets, respectively. Evaluation Metrics. We use several standard image processing and medical imaging evaluation metrics to evaluate segmentation performance: Intersection over union (IoU), Dice coefficient, volumetric similarity and averaged Hausdorff distance. We also evaluate whether the segmentation faithfully captures the shape of the lesion with the center error and the perimeter error. The center error measures the Euclidean distance between the predicted and ground truth segmentation center. The perimeter error is the difference in length between the perimeter of the ground-truth segmentation and the model output. We define all metrics in the appendix. In particular, IoU, Dice, and VS measure volumetric simiarity, while AVD, center error and perimeter error evaluate the surface similarity.

Model Architecture and Training Details. We use the DeepLabV3+ model [START_REF] Chen | Encoder-decoder with atrous separable convolution for semantic image segmentation[END_REF] with a ResNet101 [START_REF] He | Deep residual learning for image recognition[END_REF] backbone as our encoder-decoder architecture, to which we refer as A1. This architecture relies on atrous spatial pyramid pooling (ASPP) to encode context at multiple scales and a decoder that refines segmentation boundaries. In the decoder part, the encoder features are first bilinearly upsampled by 4 and then concatenated with the corresponding low-level features after applying the 1x1 convolution.

After the concatenation, two 3x3 convolutions with 256 filters are used to refine the features followed by another simple bilinear up-sampling by the factor of 4. This architecture has been widely popular for semantic segmentation in both non-medical [START_REF] Lateef | Survey on semantic segmentation using deep learning techniques[END_REF] and medical [START_REF] Brian M Anderson | Automated contouring of contrast and noncontrast computed tomography liver images with fully convolutional networks[END_REF][START_REF] Khan | Evaluation of deep neural networks for semantic segmentation of prostate in t2w mri[END_REF] imaging semantic segmentation tasks. We further modify this architecture to add a classification head with K class outputs at the bottleneck layer to test the effect of added class labels, to which we refer as A1+L. Code for our experiments is made publicly available2 . Similar to prior work (Agarwal et al., 2020a,b), we focus on the segmentation problem only, and assume that the lesion location has already been given by RECIST measurements. Our input data therefore consists of patches around each lesion. In DeepLesion, we use the center of the provided bounding box and crop a square patch of side length 120 pixels. For LiTS, we estimate the bounding box with paddings of 20 pixels. The HAM10K dataset is already provided in a patch form and required no pre-processing. To compare with prior results, we evaluate the co-segmentation method of Agarwal et al. (2020a), to which we refer as ACoseg. We implement this approach using the same encoder and decoder as A1, but add two branches and co-attention in order to perform co-segmentation. Please see Agarwal et al. (2020a) for more details. We train both models for 50 epochs with early stopping by segmentation loss on the validation set. We use Adam optimizer with learning rate 0.001 and batch size 10 for A1 and A1+L and learning rate 10 -5 with batch size 8 for ACoseg. We use α seg = 50 and α cls = 1.0 in all of the multi-task experiments. Finally, we perform an ablation study (see Figure 2) on the number of clusters, and chose K opt = 190 for NIH DeepLesion, K opt = 45 for HAM10K, and K opt = 40 for LiTS. We report additional ablation studies and a comparison to UNet [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] in supplementary material. 

Experimental Results

We now quantitatively and qualitatively evaluate our multi-task learning scheme for weakly supervised lesion segmentation. Visualization of Lesion Clusters. We visualize the groups of lesions obtained by Kmeans clustering on each dataset in Figure 3. While there exists significant variation of lesion attributes such as size, shape and intensity within all datasets, the clustering procedure groups lesions into classes of similar size, position, and relative rotation. Cluster assignment is therefore a reasonable supervision for lesion classification. Quantitative Segmentation Performance. We investigate the effectiveness of our joint classification and segmentation training for lesion segmentation in Table 1. The classifica-tion+segmentation multi-task training A1+L outperforms the single-task training A1 on all datasets and according to all metrics. In particular, the Dice coefficient is improved by about 1 -3% compared to the non-classification baseline A1 on all datasets, and by 1 -4% compared to the co-segmentation ACoseg baseline on the CT datasets. The proposed method also significantly improves the surface and center-based metrics: Our method generates 2% -6% better segmentations with respect to AVD, improves the center estimation by up to 3%, and perimeter estimation by up to 15%. On HAM10K and LiTS, ACoseg slightly outperforms or matches our A1+L model according to AVD. However, we observe that it exhibits more segmentation artifacts: In some cases, it cannot generate a mask and outputs a zero prediction. For evaluation purposes, in cases where a zero mask is predicted, the worst value of the same metric among other test cases is used. It is also noteworthy that ACoseg performs better than A1, validating the conclusion in (Agarwal et al., 2020b). Sample qualitative results of this experiment are reported in Figure 4. Training Time. Adding label classification using our proposed multi-task learning setup offers not only quantitative segmentation improvement, but also a significant savings in training time. 

Conclusion

We have shown that generating labels from existing weak supervision and jointly train to segment and cluster lesions in a multi-task learning fashion allows more accurate segmentations of computed tomography (CT) and dermatoscopic imaging data while significantly reducing training time. Our approach is of course only one of many potential ways to incorporate unsupervised learning into segmentation problems in medical imaging tasks. As unsupervised and weakly-supervised learning is only starting to become more widely used in medical imaging, there are a number of future directions this approach could be extended.

In particular, it would be useful to understand the performance of the proposed methodology on other types of medical images, such as chest radiographs (CXR), magnetic resonance imaging (MRI) and others. Also, it would be important to investigate how other types of data typically present in radiology reports can be used for a stronger supervision signal. We hope that our exploration into weakly-supervised MTL learning for lesion segmentation will encourage more research applications in this domain. 

Comparison with Fully Supervised Methods

Next, we compare how results of the weakly-supervised methods compare with results of their fully-supervised counterparts. In Table 6, we compare models trained with ellipsebased (weak) segmentation, GrabCut (weak) supervision and dense, pixel-wise full segmentation supervision. For NIH DeepLesion [START_REF] Yan | Deeplesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning[END_REF] dataset, we use GrabCut-based segmentation as ground truth since human-annotated dense segmentation is not publicly available. While fully-supervised models achieve more accurate (according to Dice) segmentation, weak supervision reduces performance by about 3%, demonstrating the utility of such methods on lesion segmentation tasks. On LiTS, the ellipse based MTL segmentation method slightly outperforms the fully-supervised segmentation baseline. This is likely due to the fact that the ellipse prior helps regularize the model and prevent it from generating incorrectly-shaped outliers. 

Effect of a Different Backbone

In Table 7 we compare the segmentation quality when using the DeepLabV3+ [START_REF] Chen | Encoder-decoder with atrous separable convolution for semantic image segmentation[END_REF] and the U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] backbone networks. We find that DeepLabV3+ architecture slightly outperforms U-Net.

Figure 1 :

 1 Figure 1: Overview of the proposed joint classification localization network. We first extract class labels by clustering the lesion RECIST shapes into K classes (shown with K = 4). We then train a joint segmentation and classification model using the extracted labels.

Figure 2 :

 2 Figure 2: An illustration of the segmentation quality (Dice coefficient) as a function of the number of lesion clusters (K) for the DeepLesion (left), LiTS (middle) and HAM10K (right) datasets.

Figure 3 :

 3 Figure 3: Visualization of lesion groups obtained by clustering ellipse measurements. In a dataset, each row corresponds to a cluster. Clustering groups similar examples within each of the considered CT (DeepLesion, LiTS) and dermatoscopic (HAM10K) datasets.

Figure 4 :

 4 Figure 4: Visualization of the effect of clustering (denotes "+L") on segmentation prediction across datasets. For DeepLesion dataset, we use GrabCut to obtain segmentations because the ground truth is not available.
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Table 1 :

 1 Evaluation of the effect of multi-task learning on segmentation quality using A1 and ACoseg architectures. Best result is shown in bold. For IoU, Dice, and VS metrics, higher number is better. For Center Error, Perimeter Error, and AVD, lower number is better.

	Dataset	Model	IoU	Dice	VS	Center Error	Perimeter Error	AVD
	NIH DeepLesion	A1 ACoseg A1+L	63.02±1.47 62.75±0.42 (-0.43%) 65.53±0.71 (+3.98%) 77.43±0.57 (+2.75%) 83.31±0.70 (+3.30%) 3.09±0.02 (-3.13%) 7.79±0.38 (-15.42%) 75.36±1.25 80.65±1.60 3.19±0.06 9.21±0.64 74.38±0.77 (-1.30%) 80.58±0.49 (-0.09%) 5.56±1.19 (+74.29%) 8.43±0.3 (-8.47%)	7.37±0.24 11.84±2.24 (+60.65%) 6.92±0.19 (-6.11%)
		A1	71.44±0.68	82.68±0.51	89.07±0.64	2.00±0.03	9.58±0.24	9.25±0.17
	LiTS	ACoseg	71.86±0.34 (+0.59%)	82.92±0.26 (+0.29%)	88.81±0.22 (-0.29%)	1.90±0.06 (-5.00%)	8.99±0.16 (-6.16%)	8.90 ± 0.07 (-3.78%)
		A1+L	72.76±0.14 (+1.85%) 83.62±0.09 (+1.14%) 89.94±0.16 (+0.98%)	1.96±0.09 (-2.00%)	8.27±0.05 (-13.67%)	9.05±0.20 (-2.16%)
		A1	82.65±0.12	90.01±0.09	91.84±0.03	2.57±0.09	9.20±0.26	10.23±0.17
	HAM10K	ACoseg	83.19±0.86 (+0.65%)	90.42±0.51 (+0.46%)	92.10±0.77 (+0.28%)	2.42±0.03 (-5.84%)	9.77±0.59 (+6.20%)	9.61±0.31 (-6.06%)
		A1+L	83.51±0.26 (+1.04%) 90.54±0.22 (+0.59%) 92.82±0.34 (+1.07%)	2.52±0.09 (-1.95%)	8.87±0.4 (-3.59%)	9.73±0.14 (-4.89%)

  Table2shows the GPU time required to train the proposed model A1+L and the ACoseg baseline on each dataset. A1+L saves 69%-75% of training time (29.2 hours less on DeepLesion) compared to ACoseg, while achieving substantially better quantitative performance (see Table1). The improvement can be seen in both smaller (LiTS, HAM10K) and larger (NIH DeepLesion) datasets. Note that the cluster classification head contains very few parameters compared to the backbone, and therefore the A1 and A1+L models require approximately the same amount of training time.

	Dataset	ACoseg	A1+L
	NIH DeepLesion	41.5	12.3 (-70%)
	LiTS	16.6	4.2 (-75%)
	HAM10K	12.5	3.9 (-69%)

Table 2 :

 2 Training time (GPU hours) until convergence of different models on the three datasets.

Table 4 :

 4 Evaluation of segmentation quality in the LiTS[START_REF] Bilic | The liver tumor segmentation benchmark[END_REF] dataset using different input segmentation.

	Method	IoU	Dice	Center Error Circumf. Error
	A1 on GrabCut	70.86 82.14	2.18	9.22
	A1+L on GrabCut	72.41 83.30	2.18	8.56
	A1 on Ellipse	70.89 82.27	2.00	9.64
	A1+L on Ellipse	72.84 83.69	1.97	8.21
	Method	IoU	Dice	Center Error Circumf. Error
	A1 on GrabCut	83.30 90.39	2.73	8.79
	A1+L on GrabCut	83.63 90.56	2.64	8.69
	A1 on Ellipse	82.52 89.92	2.63	8.86
	A1+L on Ellipse	83.87 90.85	2.50	9.38

Table 5 :

 5 Evaluation of segmentation quality in the HAM10K[START_REF] Tschandl | The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[END_REF] dataset using different input segmentation.

Table 6 :

 6 Evaluation of the effect of supervision type on segmentation quality. Results are reported according to the Dice metric. *-For DeepLesion we use GrabCut-based segmentation as ground truth as human-annotated dense segmentation is not publicly available.

	Dataset	Model GrabCut Ellipse Fully-Supervised
	NIH DeepLesion	80.52 *	78.18	80.52 *
	LiTS	83.30	83.62	82.87
	HAM10K	90.56	90.85	93.53

Typically, RECIST is encoded via user clicks R = (x11, y11, x12, y12, x21, y21, x22, y22) where (xj, yj) denote the endpoints of the ellipse axis. To better capture characteristic features, we fit an ellipse to these measurements and use the transformed parameterization.

Link to code repository: https://github.com/esizikova/weaklesionmtl
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Appendix

In this section, we report additional results and ablation studies using the studied models.

Metric Definition

Let A t be the pixels in the ground truth segmentation area, and A p is be the pixels in the predicted segmentation area. Then the IoU metric is defined by: M iou (A p , A t ) = |A t ∩ A p |/|A t ∪A p |. The Dice coefficient is defined as: M dice (A p , A t ) = 2×|A t ∩A p |/(|A t |+|A p |). Following Agarwal et al. (2020a), we measure averaged Hausdorff distance (AVD) and volumetric similarity (VS) (please see [START_REF] Aziz | Metrics for evaluating 3d medical image segmentation: analysis, selection, and tool[END_REF] for details). AVD is defined by:

The volumetric similarity is defined as:

, where F N , F P , T P are the false negative, false positive, and true positive cardinalities, respectively. The center error is defined as E ctr = (x t -x p ) 2 + (y t -y p ) 2 where (x t , y t ) are coordinates of the ground truth segmentation center and (x p , y p ) are coordinates of the predicted segmentation center (we calculate the leftmost, rightmost, top and bottom segmentation points and use them to calculate the center). The perimeter error is the difference in length between the perimeter of the groundtruth segmentation and the model output, mathematically defined as E ptr = |P t -P p | where P t is the length (number of pixels) of the outermost edge of the ground truth segmentation, and P p is the length of the predicted segmentation.

Effect of Supervision Type

In Tables 3,4, and 5, we report ablation studies comparing the effect of adding classification to the network when using ellipse (RECIST) and GrabCut supervision on all of the considered datasets. It can be seen that adding labels helps improve results according to IoU, Dice and Center Error with all supervisions. On NIH DeepLesion [START_REF] Yan | Deeplesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning[END_REF], GrabCutbased method A1+L generates the best results according to IoU an Dice, but ellipse-based method A1+L generates a slightly more accurate lesion center. On LiTS [START_REF] Bilic | The liver tumor segmentation benchmark[END_REF], the ellipse-based method A1+L significantly outperforms GrabCut, due to the difficulty of generating GrabCut for the lesions found in this dataset that have a dark background. On HAM10K [START_REF] Tschandl | The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[END_REF] 

Hyperparameter Selection and Classification Performance

In Figure 5, we perform an ablation study of the segmentation loss weight α seg using Dice performance on the HAM10K dataset [START_REF] Tschandl | The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[END_REF]. We find that the performance gradually increases up to α seg = 50, after which it drops slightly. For low values of α seg , the classification loss likely significantly outweighs the segmentation loss, and performance drops. With α seg = 50, optimal performance is achieved. With larger values, the segmentation loss outweighs classification, and no longer helps performance. In Table 8, we additionally report the train and test classification a of the A1+L model across all datasets. [START_REF] Tschandl | The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[END_REF] 

Additional Qualitative Results

In Figure 6, we report additional qualitative segmentation results. Our method appears to generate more accurate lesion boundaries with respect to the ground truth, as compared to both A1 and ACoseg baselines, introducing less border artifacts across all three considered datasets.