
HAL Id: hal-03478020
https://hal.science/hal-03478020

Submitted on 13 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PYHIPOP-Hierarchical Partial-Order Planner
Charles Lesire, Alexandre Albore

To cite this version:
Charles Lesire, Alexandre Albore. PYHIPOP-Hierarchical Partial-Order Planner. Workshop on the
International Planning Competition, Aug 2021, Guangzhou, China. �hal-03478020�

https://hal.science/hal-03478020
https://hal.archives-ouvertes.fr


PYHIPOP– Hierarchical Partial-Order Planner

Charles Lesire1 and Alexandre Albore2

ONERA/DTIS, University of Toulouse

2 av. Edouard Belin, 31055, Toulouse, France
1charles.lesire@onera.fr

2alexandre.albore@onera.fr

Introduction

PYHIPOP is a hierarchical partial-order planner, aimed at
solving Hierarchical Task Network (HTN) planning prob-
lems. The current planner version is a re-coding of a ver-
sion originally developed by Patrick Bechon (Bechon et
al. 2014). In Bechon’s original work, HIPOP solved HTN
problems with Task Insertion (TI-HTN), meaning that in-
serting new tasks in addition to the pure HTN decomposi-
tion was allowed during the search. Bechon proposed some
heuristics for solving such problems using a hybrid algo-
rithm: a POP (Partial Order Planning) algorithm with hier-
archical task decomposition. HIPOP has also been extended
to manage plan repair (Bechon et al. 2015), and multi-robot
mission planning repair with communications losses (Be-
chon, Lesire, and Barbier 2020).

PYHIPOP differs from the original HIPOP in:

• PYHIPOP is coded in pure Python3; this choice has been
made to ease the integration with other tools for plan re-
pair or interactive planning;

• PYHIPOP currently manages HTN problems only – no
Task Insertion is allowed;

• PYHIPOP’s preprocessing and grounding steps have been
improved to use recent works from the state of the art;

• PYHIPOP’s heuristics have been adapted, as its original
heuristics worked well for TI-HTN, but not so well for
pure HTN problems.

Implementation details

In the HTN paradigm, plans are not considered as totally
ordered sequences of actions. When searching in the plan
space, plans are rather a partially ordered sequence of ac-
tions, that the planner orders so to generate a solution plan.

HTN planning relies on the concept of task decomposi-
tion (Erol, Hendler, and Nau 1994). While the goal in clas-
sical (STRIPS-style/non-hierarchical) planning is to find an
action sequence that drives the domain from an initial state
to a goal final state, the goal in hierarchical planning is to
find a refinement of an initial partial plan into a plan that
contains no abstract tasks, nor flaws.

The Hybrid Planning domains D considered here, consist
of a set of fluents, a finite set of abstract and primitive tasks,

and a set of methods M that describe the different ways an
abstract task can be decomposed. The goal is either a subset
g of the fluents of D, or a goal task top to decompose.

A partial plan Π is a tasks tree with its root in top. Partial
plans may contain primitive and abstract tasks.

Given the constraints of D, a natural ordering can be de-
termined between tasks, such that for two instances u ≺ v, u
is first task that supports the fluent f , while v is the task that
needs f as a precondition. This defines a causal link (u, f, v)
between the two tasks.

In a partial order plan, we consider three kinds of flaws.
Namely, open links, where no causal link guarantees the pre-
condition of a task in the plan; threats, when a task could
delete a fluent in a causal link while the link is still active;
abstract tasks, when a non-primitive task is present. We will
see that managing the flaws, and selecting the ones to be
refined, is central for the planning algorithm performance.

Preprocessing and grounding

During the preprocessing phase, we ground all the opera-
tors, and we smartly prune the set of grounded operators,
and compute some information useful during the search.

The proprocessing steps are the following:

• as often done in classical planning, we compute all the
possible literals of the problem, by grounding the predi-
cates on the objects, and we determine which literals can-
not be modified by any operator (the rigid literals);

• all operators (actions, tasks, methods) are then grounded;
we remove the groundings that are impossible due to
known rigid literals (including equality tests), similarly
to Behnke et al. (2020);

• we compute the hadd heuristics for literals and actions,
based on the algorithm proposed by Vidal (2011);

• we compute the Task Decomposition Graph (TDG)
(Bercher et al. 2017), and from it we prune ac-
tions/methods whose preconditions are not reachable ac-
cording to the hadd relaxation, methods and tasks whose
subtasks and methods have been respectively removed;

• based on the TDG, we compute: 1) the minimal cost when
decomposing a task hTDGc

, as proposed in (Bercher et
al. 2017); 2) the maximal hadd cost in a decomposition,

The 10th International Planning Competition – Planner and Domains Abstracts

13



noted hmax

add
; 3) an optimistic task effect, consisting in the

union of all effects of the actions in any possible task
decomposition; this optimistic effect is inspired from an-
gelic HTN planning (Marthi, Russell, and Wolfe 2008).

Search algorithm

The search of a solution plan is performed in the plan space.
Any valid instance of the methods and tasks – meaning that
they respect the ordering constraints of the problem – is a
solution plan for a problemD: all preconditions will be sup-
ported by a causal link that is not threatened, and all abstract
tasks will be decomposed into primitive tasks. We designed
a domain-independent search strategy, where a search node
is given by a partial plan and an ordered set of its associated
flaws (open links, threats, abstract flaws). The main search
loop is described in Alg. 1.

Algorithm 1: Solve algorithm

1 OPEN ←− {top};
2 while OPEN not empty do
3 n←− OPEN.pop();
4 if n.flaws 6= ∅ then
5 return n.plan; // solution found

6 f ←− n.flaws.pop();
7 for r ∈ resolvers(f, n.plan) do
8 OPEN ←− r;

9 return Failure;

The search makes use of an Open list (a heuristically or-
dered queue representing the fringe of the search) and a
closed list (not reported in Alg. 1) to detect and prune al-
ready visited nodes. In line 1, the Open list is populated with
the initial node, including the initial partial plan and a single
abstract flaw, represented by the abstract task top. In line 3,
the most promising search node n is popped from the Open
list, initially populated with the initial node top. Lines 4–
5 check and return a solution. In line 6 we select the most
promising flaw f of the current node. Lines 7–8 generate re-
solvers for f and insert the newly generated nodes r, with the
partial plans and their respective flaws, in the Open list. The
resolvers are the list of plans that solve the flaw f . An open
link is solved by finding the causal links that add a needed
precondition. A threat to an open link is solved by moving
the execution of the threatening action before or after the
open link. An abstract task is solved by refining it, instan-
tiating methods or primitive tasks. During the computation
of the resolvers, we look one step ahead, and verify if their
flaws can be solved. When generating a resolver r, we check
that: (1) threats can be solved (i.e., a threatening action has
no ordering constraint stuck to it during the causal link), (2)
open links may have a support, either from an action in the
plan, or using the optimistic task effects computed during
the grounding. If one of these condition is not fulfilled, r is
discarded.

Heuristics

To perform a search in the space of plans, we use different
heuristic functions to drive the search.

In the first place, a partial plan selection heuristic is used:
in Alg. 1 at line 3. We order the nodes in the Open list
following hadd: we sum the hadd values of the literals in
open links, and the hmax

add
of abstract flaw tasks, and use

hTDGc
to estimate the cumulative costs of the primitive ac-

tions in the plan. Secondly, a flaw selection heuristic is used
at line 6. Flaws are ordered following their kind. We first
solve threats, then open links, and eventually expand ab-
stract flaws, as originally proposed by Bechon et al. (2014).
Several heuristics are available to sort open links, based on
the current plan partial-order, or on hadd. The competing
implementation uses earliest: the open link from the action
coming earlier in the plan are resolved first. Abstract flaws
are also sorted using earliest: the tasks coming earlier in the
plan are decomposed first.

Empirical evaluation

PYHIPOP participated to the 2020 IPC for Hierarchical
Planning (Behnke, Höller, and Bercher 2020), in the Par-
tial Order track, and the Total Order track. Here, a domain
is partially ordered when the subtasks in all methods and in
the initial task network may have any order (in opposition
to the total-order, where the declared ordering arranges the
tasks in a sequence). The evaluation was performed on a sin-
gle CPU core, with 8 GB memory limit, and a cut-off time
of T = 30mn.

For the competition, the planners were evaluated follow-
ing a flexible metric, which evaluates better a planner when
it finds any solution to a problem faster. The score of a plan-
ner on a solved task is 1 if the task was solved within 1 sec-
ond and 0 if the task was not solved within the cut-off limits.
If the task was solved in t seconds, with 1 ≤ t ≤ T , then
its score is min(1, 1 − log(t)/log(T )). The IPC score of a
planner is the sum of its scores for all tasks.

At the Partial Order track, three planners participated:
SIADEX (de la Asunción et al. 2005) ended at the first place,
PYHIPOP at the second place, and PDDL4J-PO (Pellier and
Fiorino 2020). The latter was disqualified because it returned
an invalid plan in more than one domain. It is the Partial Or-
der track results that we’re going to comment below.

The IPC score represents quite well both the coverage and
the solving time (Table 1). For instance, in Satellite domain,
SIADEX with a score of 1.0 finds a solution for all the in-
stances (25 out of 25) within 1s, while PYHIPOP solves
less instances (9/25) and scores 0.21. On Woodworking, PY-
HIPOP solves three instances more (6/30) than SIADEX
(3/30), but employs more time, which is reflected in the
slight score difference 0.05 versus 0.03.

The number of solved instances per planner is detailed
in Table 2. During the IPC, all experiments were executed
10 times with a different seed, we consider here the maxi-
mum number of solved instances for each domain in all the
seeds. PYHIPOP performs relatively well in Satellite, UM-
Translog, and Woodworking domains. On the other hand,
the planner terminates the search without a plan in Monroe-

The 10th International Planning Competition – Planner and Domains Abstracts

14



Domain # inst. PYHIPOP SIADEX

Monroe Full. Obs. 25 0.00 0.24

Monroe Part. Obs. 25 0.00 0.05

PCP 17 0.00 0.00

Rover 20 0.05 0.70

Satellite 25 0.21 1.00

Transport 40 0.05 0.03

UM-Translog 22 0.79 1.00

Woodworking 30 0.13 0.10

total 204 1.24 3.12

Table 1: IPC scores for PYHIPOP and SIADEX. # inst. in-
dicates the total number of instances per domain.

Domain # inst. PYHIPOP SIADEX

Monroe Full. Obs. 25 0 10

Monroe Part. Obs. 25 0 2

PCP 17 0 0

Rover 20 2 14

Satellite 25 9 25

Transport 40 4 1

UM-Translog 22 21 22

Woodworking 30 6 3

total 204 42 77

Table 2: Coverage for PYHIPOP and SIADEX. # inst. is the
total number of instances per domain.

Fully-Observable, Monroe-Partially-Observable, and PCP.
It solves few instances of Rover and Transport, while it
times-out in the rest of them.

Comparing the winner and the runner-up planners perfor-
mances is not an easy task, as the coverage differs greatly.
In general, the average time for synthesising a solution plan
is lower than 1s for both planners. In the case of PYHIPOP,
then, the total time is split in parsing, grounding, and search
time. For solved instances of Satellite, search time repre-
sents almost 100% of the total time: for 2obs-2sat-2mod
search is ∼ 100s, while grounding is ∼ 1s, but for other
problems, the preprocessing and grounding can represent the
whole time, mainly because of the creation of the TDG, e.g.
in UM-Translog 19-A-TankerTraincarHub, search is ∼ 0.8s
while the grounding takes ∼ 52.6s. The bad performance of
PYHIPOP in this first grounding step is one of the reason
that a lot of instances could not be solved: PYHIPOP timed
out event before the end of the grounding. While the com-
puted TDG contains useful information for the search, the
computation of the TDG itself is greedy: a complete TDG
is first build, then the several prunings are applied one af-
ter the other. Instead, we should prune the TDG on-the-fly

while building it, improving the performance of the ground-
ing step.

The second reason why PYHIPOP performs not so well
on some instances is that the heuristics used in the com-
petition are mainly based on hadd. On the domains where
hadd is not well informed (when the hierarchy is a lot more
constraining than the establishment of causal links), then
the substask decomposition in PYHIPOP can be inefficient,
stuck in a search plateau where the open list contains a lot
of plans with very close heuristics values.

Conclusion and future work

The PYHIPOP implementation, starting from the results
by Bechon et al. (2014), extended the original POP algo-
rithm with an improved preprocessing phase, and adapting
the heuristic search for the HTN paradigm.

Future work is aimed at improving the search algorithm,
developing different heuristics to be used in a multi-queues
best-first-search setting, combining different aspects of the
heuristic evaluation of the problem, without aggregating
them into a single function. We hope that this will produce
a more efficient and flexible planner, fitting complex multi-
robot mission planning tasks.

Also, we will rewrite the grounding step in order to build
and prune the TDG on-the-fly, making PYHIPOP able to
tackle more complex instances.

In fact, PYHIPOP is thought to be applied to hierarchi-
cal robotic tasks. There, a future implementation including
planning repair will solve issues with communication losses
between robots, or sensor/actuator failures requiring mission
on-the-fly modifications. In order to address these missions,
we will re-introduce in PYHIPOP the management of du-
rative actions and time constraints, as originally addressed
in (Bechon, Lesire, and Barbier 2020).

References

Bechon, P.; Barbier, M.; Infantes, G.; Lesire, C.; and Vidal,
V. 2014. HiPOP: Hierarchical Partial-Order Planning. In
Starting AI Researchers Symp. (STAIRS).

Bechon, P.; Barbier, M.; Lesire, C.; Infantes, G.; and Vidal,
V. 2015. Using hybrid planning for plan reparation. In
European Conf. on Mobile Robots (ECMR).

Bechon, P.; Lesire, C.; and Barbier, M. 2020. Hybrid
planning and distributed iterative repair for multi-robot mis-
sions with communication losses. Autonomous Robots 44(3-
4):505–531.

Behnke, G.; Höller, D.; Schmid, A.; Bercher, P.; and Biundo,
S. 2020. On succinct groundings of HTN planning prob-
lems. In AAAI, volume 34, 9775–9784.

Behnke, G.; Höller, D.; and Bercher, P. 2020. IPC for
hierarchical planning. http://gki.informatik.uni-freiburg.de/
competition, accessed 2021-01-26.

Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017.
An admissible HTN planning heuristic. In IJCAI.

de la Asunción, M.; Castillo, L.; Fdez-Olivares, J.; Garcı́a-
Pérez, Ó.; González, A.; and Palao, F. 2005. Siadex: An

The 10th International Planning Competition – Planner and Domains Abstracts

15



interactive knowledge-based planner for decision support in
forest fire fighting. Ai Communications 18(4):257–268.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. In AAAI, vol. 94, 1123–1128.

Marthi, B.; Russell, S.; and Wolfe, J. 2008. Angelic Hierar-
chical Planning: Optimal and Online Algorithms. In ICAPS.

Pellier, D., and Fiorino, H. 2020. Totally and Partially
Ordered Hierarchical Planners in PDDL4J library. arXiv
preprint arXiv:2011.13297.

Vidal, V. 2011. YAHSP2: Keep It Simple, Stupid. In Int.
Planning Competition.

The 10th International Planning Competition – Planner and Domains Abstracts

16


