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ABSTRACT
Chemical microsegregation resulting from solidification of
metallic alloys is most often characterised by EDS or WDS
microanalysis using spot measurements located along a regular
grid. Due to experimental limitations, the wave lengths of both
dendrite arms and analysis grid are often of the same order of
magnitude. Although this fact is generally eluded, it complicates
the statistical analysis of the results, in particular when the
objective is to validate a given solidification model or to prove
the occurrence of solid state diffusion. This is first illustrated
in the present work by means of experimental analysis
performed on an Al alloy. The problem is then tackled using
2D simulations of more or less periodic solidification structures
which are sub-sampled along periodic or random point
distributions of different surface densities. Statistics tools are
used to compare the resulting chemical distributions with the
solidification model (Gulliver-Scheil model) injected in the
simulation. This allows pointing out the limitations of classical
statistical approach in that case, and finally to propose an
optimum –at least less bad- procedure to characterise
microsegregated structures.

Introduction
Chemical heterogeneities that build up during casting and
solidification of metallic alloys have been studied since long
on both experimental and theoretical points of view. As
shown in the recent work by Ganesan et al. 1 the experimental
characterization of the so-called microsegregation, i.e.
chemical heterogeneities built up at the scale of the
solidification microstructure, is still a matter of debate. These
authors presented an extensive review of the works done on
this subject. They also proposed a methodology to decrease
the intrinsic variability of the solute distribution curves
estimated from microanalyses by sorting experimental
distributions of multi-component alloys as a function of a
weighted average variability of all the elements. In some way,
this method is one step to the more elaborate method
developed by Daly and Jeulin 2 who used a geostatistical
approach to separate the physical noise from the
microstructure effect in the case of X-ray maps obtained with
a macroprobe. As a matter of fact, the statistical analysis of
the confidence that can be put on such experimental
composition distributions has been considered only by
Gungor 3 who attempted to apply classical statistics to each

composition class, and by Yang et al. 4 who discussed their
experimental results with regard to random sampling data
recorded on highly regular simulated structures.

In the present work, we first illustrate the methodology of
analysing solute distributions in the case of a multi-
component aluminium alloy obtained by EDS measurements
performed either along regular grids or by random sampling.
We then compare the results obtained to analysis of
“chemical” images simulated as described previously 5 and
propose a methodology for experimental characterization of
solute distributions. Finally, we shortly discuss the statistical
validity of such approach.

Experimental illustration
Series of EDS measurements were made on an Al-Cu-Mg-Si
alloy with a nominal composition given as 10.5 Cu, 2.2 Mg
and 2.2 Si (all in wt. %) and a microstructure illustrated with
the micrographs in Fig. 1. The microstructure shows a
dendritic array of (Al) fcc solid solution with a large amount
of second phases and eutectic areas. The mean dendrite arm
spacing (DAS) of the microstructure was evaluated at about
20 μm. Among the second phases, that are best observed in
Fig. 1-b, dark precipitates with Chinese-script like appearance
are Mg2Si, light and medium grey precipitates are two of the
Al2Cu, Al2CuMg and Al5Cu2Mg8Si6 phases as could be
expected for such an alloy composition 6. Finally, multi-phase
eutectic areas are observed.

SEM observations were performed on a LEO VP100 equipped
with a PGT system for EDS analyses. Standard conditions
are a high voltage of 15 kV with a beam current regulated at
15 nA. In all cases, counting was carried out during 100 s
and the apparent compositions were processed for standard
corrections with the IMIX software. A particular area on the
metallographic section was selected on which six series of 42
measurements were performed:

three grids of 7x6 (42) points with a spacing of 0.7xDAS,
1.0xDAS and 1.3xDAS;

three sets of 42 points located at random on the same
area than for the previous grid at 1.3xDAS.

In addition, the average “global” composition of the selected
zone was estimated by area scanning. Figure 2 presents a
SEM micrograph on which the selected area and the locations
for counting are apparent because of surface contamination.



Table 1
AVERAGE COMPOSITION (WT. %) OF THE ALLOY

MEASURED FROM EDS ANALYSIS. “GLOBAL” ANALYSIS WAS
PERFORMED BY AREA SCANNING OVER THE SELECTED

AREA AT AN ENLARGEMENT OF 200; NUMBERS BETWEEN
BRACKETS ARE THE STANDARD DEVIATIONS AS GIVEN BY

THE IMIX PROGRAM, THEY ARE VALID ALSO FOR
INDIVIDUAL MEASUREMENTS ON THE (AL) FCC MATRIX.

Al Cu Mg Si

global 86.1(0.8) 8.6(0.8) 1.8(0.2) 3.5(0.3)

0.7 DAS 91.1 4.2 2.2 2.5

1.0 DAS 86.7 8.3 2.1 2.9

1.3 DAS 83.8 11.4 1.9 2.9

random #1 89.1 7.1 1.7 2.2

random #2 84.3 10.0 2.8 2.9

random #3 87.8 8.2 1.6 2.4

Fig. 1 : Optical and QBSD micrographs of the studied alloy.

Between each measurement series, the sample surface was
cleaned by ion etching. Table 1 compares the global
composition obtained (with the related standard deviation
indicated between brackets) with the average values for each
of the six series. The random series give values that may
appear on the whole slightly less dispersed than the grid
series.

(Cu,Mg) and (Si,Mg) correlations are shown in Figs. 3-a and
3-b respectively, where all the measurements from the six
series have been reported, with solid symbols for those from
random counting and empty symbols for those from grid
analyses. In both cases, a dense cloud of points is observed
near the (Al) corner, with clear tendency of other
measurements to point to the compositions of Al2Cu and

Fig. 2 : SEM micrograph of the area selected for analyses with
dots showing the grid when the step spacing is 1.0xDAS.

Al5Cu2Mg8Si6 phases. Note however that measurements on
Mg2Si will be convoluted with data from the (Al) phase
because of the thinness of these precipitates. Enlargement of
the clouds of points at high Al content, thus related to the
(Al) phase, are shown in Figs. 3-c and 3-d. The trends of
these clouds may be explained if it is considered that Mg2Si
formed early during solidification, so that most of the
transformation related in fact to a two-phase deposit of (Al)
and Mg2Si. Thus, although the partition coefficients between
(Al) and the liquid are less than 1 for all the solutes Cu, Mg
and Si 6, the effective segregation of Mg is negative while
the one for Cu is positive, and tehre is nearly no segregation
of Si.

Analysis of the solute distributions in the (Al) phase requires
that every data not associated with this phase are first
withdrawn. From Figs. 3-c and 3-d, measurements on (Al) are
considered to correspond to values of Cu, Mg and Si
respectively lower than 0.05, 0.01 and 0.02. By sorting
successively the whole data sets according to each of these
elements, all the measurements not related to (Al) could be
eliminated. These data were finally sorted according to the
Al content. In doing so, we acknowledge the fact that sorting
with the major element (which was not always measured in
previous works with WDS) is certainly the most efficient as
the associated experimental variability is generally the lowest
in agreement with the work by Ganesan et al. 1. The
cumulative distribution of Cu in (Al) is shown in Fig. 4 with
solid symbols for data from random analyses and empty
symbols for data from grid analyses. It is seen that the
scattering of the distributions is much lower for random
analysis than for grid analysis. A similar trend has been
observed in the case of Mg and Si, though much less evident
owing to the lower segregation tendency of these elements
because of the concomitant deposition of (Al) and Mg2Si.
This result confirms that, in the case of a regular or nearly
regular structure, microanalysis is certainly more accurate
when performed with random localization of the counting
points than with a regular grid. In other words, the larger
differences observed between measurements performed on
regular grids of different step sizes are an experimental
illustration of the existence of measurement bias resulting



Fig. 3 : Correlations between solute contents: a) (Cu,Mg) and b) (Si,Mg). Graphs c and d are enlargement of the former ones. In a and
b the compositions of the main intermetallics expected for this type of alloys have been indicated. Solid symbols relate to random
analyses and empty symbols to grid analyses.

Fig. 4 : Cumulative distributions of copper in (Al) as obtained
from random analyses (solid symbols) and grid analyses
(empty symbols).

from the interference between analysis grid and solidification
structure 5.

Suggested methodology for microsegregation
analysis
The development of a methodology for microanalysis needs
comparing data sets to a known distribution. In this line, the
present work pursues a previous study 5 in which “chemical”
images were created with an image analyser (APHELION
from ADCIS, Caen, France) and then “analyzed” following
rules similar to those described in the previous section.
Typically, images 1200x1200 pixels in size with 12x12 grains
were generated with seeds implemented with some restriction
in order to have a more or less regular structure as described
in this previous work. One seed is implemented in each of the
box of size L=100 pixels. These “solid” seeds are then dilated
with a circle of increasing size and the new solid formed at
each dilation is given a grey level proportional to the solute
content as calculated with the Scheil’s model according to
which the composition of the liquid, wl, and that of the solid



which deposits, ws
, are related to the solid fraction, fs, by:

ws = k.w1 = k.w0.(1–fs)k–1 (1)

in case of single-phase precipitation, with wo the nominal
solute content of the alloy and k the solute partition
coefficient between solid and liquid (k=ws/wl), assumed to
remain constant over the whole solidification range.

Figure 5 shows an image calculated with wo=8.05 wt. % and
k=0.17. The solute content was chosen in such a way that
the eutectic fraction in the calculated images is about 20 %.
In the present case, the position of the seeds was selected
randomly in a square box with size LC centred within each
of the boxes of size L, with LC/L=0.4. To avoid edge effects,
the composition image on which are carried out the analyses
is obtained after withdrawing the outer band 100 pixels in
size of the simulation image. More details on the algorithms
used as well as on the different structures simulated can be
found in 5.

In our previous work 5 we proposed a methodology for
microsegregation analysis, which can be summarised as
follows:

- try to estimate the correlation lengths (also called ‘1-D
range’) representative of the solidification structure in
both X and Y directions of the sample holder. This
estimation can be obtained through automatic
processing of back-scattered electron images, for
instance using statistic tools such as grey level
variogram. Using the same kind of tools, a procedure to
determine the 2-D range has been detailed by
Lantuejoul 7.

- apply regular grid analysis if the X and Y step sizes can
be chosen much larger (at least two of three times) than
the estimated correlation lengths. In that case, spot
measurements can be assumed to be independent and
usual classical statistics tools can be used

- if not, i.e. correlation lengths not available or too large
with respect to the analysable surface, prefer random
sampling to avoid interference between grid and
structure. However, it is worthwhile to note that random
sampling does not ensure that the different point
measurements are not correlated.

Following the conclusion drawn from Fig. 4 and in agreement
with our previous work, only random countings were
considered to analyse the simulated structure of Fig. 5.
Figure 6 shows in dotted lines the solute distributions
obtained from five successive analyses of 20 counting points,
as compared to the actual distribution of the whole image
drawn with a solid line. As we are interested in the solute
distribution in the matrix, the scale of the y axis was limited
to 10 wt. %. It is seen that, even with random analysis, the
estimate of the true distribution may be hardly correct when
only a limited number of measurements is used. It should be
mentioned that, because of the use of a cumulative
distribution, the apparent discrepancy from one distribution
to another increases with solid fraction.

However, this does not apply to the estimate of the eutectic
fraction, which is seen to change greatly from one curve to
another. As a matter of fact, in case of independent
measurement points, the variance of the eutectic fraction
would be given as VV.(1-VV)/N, where VV is the volume
fraction of eutectic and N is the number of measurement
points 3. Taking VV=0.2 gives a variance of 0.008 for 20
measurement points. This corresponds to a standard
deviation of 9 %, which explains the change of the eutectic
fraction from one series of measurements to another.
Performing the calculation the other way, 1600 measurement
points would be needed to estimate the eutectic fraction with
a standard deviation of 1 %. In the case exemplified in this
paper, where the randomly located points are however still
correlated (i.e. the density of measurement points is larger
than the density of solidification cells), this number would
even be higher.

Fig. 5 : Example of simulated composition image.

Fig. 6 : Solute distributions obtained from series of 20 counting
points (dotted lines) as compared to the true distribution
(solid line).



This figure suggests the following procedure to optimise
random sampling:

- perform n successive random analyses with a limited
but constant number of counting points, say p, such as
those plotted in Fig. 6;

- compare the average distribution obtained after n
analyses with the average one obtained after (n-1), as
shown in Fig. 7 where it is seen that the successive
distributions presently done converge rapidly. Note
however that the rate at which this convergence
proceeds depends on the order the series are added to
the average.

- Evaluate this convergence by quantifying the difference
between distributions at steps n and (n-1). Such an
evaluation may be made by means of various functions
of the chemical distributions. An evident one is the

function ∑ −−=Σ
i

i
n

i
n ff 2

1
2 )( , where i scans the whole

set of classes for solute content, and fn and fn-1 are the
solid fraction at steps n and n-1 associated to the solute
content in class i.

In the present case, it was found, in agreement with the
analysis of Fig. 7, that 2 strongly decreases between the
first and second steps, then increases again before to tend

Fig. 7 : Average solute distributions obtained from series of
counting points (dotted lines) as compared to the true
distribution (solid line). The first series is the same than
in Fig. 6, the second is the average of the first two in
Fig. 6, and so on.

slowly to zero. This behaviour just illustrates the
unsteadiness of class distributions when estimated with a
too low number of measurements. Some other parameters not
based on differences between class numbers could likely
result in a continuous convergence. Note that two rules are
also possible for setting up the successive series of p
measurement points: either all sets of points can be located
on the same but –if possible- large surface area or each
successive set can be set up on a different region. In this
latter case, a second test has also to be performed to ensure
the stability of the mean chemical compositions, i.e. the so-
called ergodicity of the structure.

Conclusion
The present paper just stated elementary common sense
rules for efficiently collecting composition data relative to
solidification microsegregation. Then, different ways of
analysing and representing such data can be found in the
recent paper by Ganesan et al. 1. Finally, classical statistical
approaches are available in Gungor’s article 3 to estimate the
confidence interval for each class of a composition
distribution. Unfortunately, they only apply when
measurement points can be considered to be independent.
As discussed in this paper and in a previous one 5, this
situation is actually very rare in practice, leading to
confidence intervals significantly larger than those generally
assumed. As far as we know, no work can be found in the
literature where this problem would have been successfully
treated. The techniques of confidence range estimation based
on sub-samplings of experimental data are a possible track to
resolve this question. The use of simulated microsegregation
structures would probably help to test the efficiency of these
techniques - which have been developed for large data sets
- in the case of relatively few composition measurements.
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