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ABSTRACT
While Common Vulnerabilities and Exposures (CVE) have become
a de facto standard for publishing advisories on vulnerabilities, the
state of current CVE databases is lackluster. Yet, CVE advisories are
insufficient to bridge the gap with the vulnerability artifacts in the
impacted program. Therefore, the community is lacking a public
real-world vulnerabilities dataset providing such association.

In this paper, we present a method restoring this missing link
by analyzing the vulnerabilities from the Android Open Source
Project (AOSP), an aggregate of more than 1,800 projects. It is the
perfect target for building a representative dataset of vulnerabil-
ities, as it covers the full spectrum that may be encountered in
a modern system where a variety of low-level and higher-level
components interact. More specifically, our main contribution is
a dataset of more than 1,900 vulnerabilities, associating generic
metadata (e.g. vulnerability type, impact level) with their respective
patches at the commit granularity (e.g. fix commit-id, affected files,
source code language).

Finally, we also augment this dataset by providing precompiled
binaries for a subset of the vulnerabilities. These binaries open
various data usage, both for binary only analysis and at the interface
between source and binary. In addition of providing a common
baseline benchmark, our dataset release supports the community
for data-driven software security research.

CCS CONCEPTS
• Security and privacy → Software security engineering; Vul-
nerability management .

KEYWORDS
security vulnerabilities; dataset; vulnerability research; patch de-
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1 INTRODUCTION
TheCVE standard is used to publish vulnerability advisories through
a common and universal mechanism. CVE databases [12, 23] present
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an overview of all the vulnerabilities in any system. To encompass
such variety, they offer a set of features (CVE-ID, Common Vul-
nerability Scoring System (CVSS), description) and a method to
describe impacted systems with Common Platform Enumeration
(CPE) but no standardized way to report the corresponding fix.
Data-driven vulnerability research relies on the availability of such
information [8]. We aim to fill this gap by bringing together the
vulnerabilities and their fixes in a unique dataset.

Android – one of the most deployed operating system in the
world –makes it the perfect target to create such a dataset. It runs on
heterogenous devices like smartphones, car ECUs, smart devices or
household appliances. Although some parts of the operating system
are proprietary and closed, most of the system is open sourced
through the AOSP1. It is an aggregate of more than 1800 projects
ranging from widely known projects tospecific developments for
a particular device. The projects cover the full spectrum of the
functionalities that may be encountered in a modern system where
a variety of components interact together (system tools, media
framework, drivers and more).

Android is subject to security issues, andGoogle publishesmonthly
security bulletins listing CVE fixed in the last update. While the
bulletins primarily target end users, they are also an information
goldmine from a security perspective. Each bulletin contains a list
of fixes affecting the operating system coming from three sources,
AOSP, the Linux kernel and system-on-chip manufacturers. For
every vulnerability entry, the CVE-ID, type, severity and the im-
pacted AOSP versions are also listed. More importantly, it provides
a direct link to the fixing commits for AOSP’s projects.

We leveraged this data to create the most exhaustive dataset of
real-world vulnerabilities targeting a system as a whole. Previous
datasets contain either synthetic code [7], hand-crafted vulnerabil-
ities [9], or unrelated vulnerabilities in various software [16, 19].
Our dataset, with a commit-level precision, includes vulnerabilities
targeting different languages (C, C++, Java). It brings coherence
between vulnerabilities by aggregating those of a whole system.

We pushed our dataset a step further by providing pre-compiled
binaries in both vulnerable and fixed state for a subset of these
vulnerabilities (≈ 600 vulnerabilities). This enables binary-based
Source Code Analysis Tools (SAST), Dynamic Application Security
Testing Tools (DAST) or CVE checkers to assess their capabilities
at binary level.

Overall, our main contributions are:

1https://android.googlesource.com/
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• Adataset of more than 1,900 real-world vulnerabilities (based
on CVEs) providing for each of them valuable metadata:
– the vulnerability type (remote code execution, elevation

of privilege);
– the impacted programming language;
– the patched and vulnerable versions at the exact commit-

level.
• We augment this dataset by pre-compiling a subset of those

vulnerabilities (600) to offer compiled binaries for multiple
architectures (ARM, x86, X86_64, ARM64).

• We make our data publicly available to the community to
enable other researchers to test their research on broader
data.

2 RELATEDWORK
Previous vulnerability-related test suites and datasets have already
been introduced in the literature. This section discuss previous
datasets, their limitations and how our dataset addresses them.

The National Institute of Standards and Technology (NIST) Soft-
ware Assurance Metrics And Tool Evaluation (SAMATE) project is
dedicated to improve software assurance. The Juliet Test Suite [6, 7]
is a collection of 64,000 synthetic test cases for the C/C++ language,
testing 118 different Common Weakness Enumerations (CWEs).
As part of standards, this test suite is extensively used by security
vendors but suffers from its synthetic nature as generated programs
are small and relatively simple.

In the Lava [10] test suite, tailored for testing fuzzers, bugs
are injected in different execution pathes of binaries utilities from
coreutils. Lava only injects out-of-bounds memory accesses, not
reflecting the complexity of real-world software bugs. The Cyber
Grand Challenge (CGC) [9] sample set provides more bugs types,
but the sample programs are relatively small and too simple to
efficiently cover the wide range of existing binaries.

Instead of considering synthetic test-suites, the National Vul-
nerability Database (NVD) lists security issues affecting real-world
software. Akram and Ping [3] presented a dataset of vulnerable
functions and files gathered using NVD links to fix commits. Be-
sides being discontinued, their dataset only lists vulnerable files
and functions. This makes it hard to recover the context around
those modifications and the fixed version is unavailable.

Li et al. [19, 20] created their dataset using vulnerabilities from
some open-source projects. They used heuristics to detect the fix
commit for a vulnerability.Thus, this information is computedwhile
our dataset obtains it from its source, making it more reliable.

Vulnerable clone detection tools such as VFDETECT [22], VC-
CFinder [25] or ReDeBug [16] also use a vulnerability dataset. Their
dataset only contains some vulnerabilities for their tests and is
unpublished, preventing its reusability.

Nappa et al. [24] studied the impact of shared code on vulnera-
bility patching, but as they relied on CPE information, they were
unable to be more precise than a version granularity.

Finally, other approaches use information from publicly disclosed
vulnerabilities like the CVE benchmark from the Open Security Soft-
ware Foundation [4], the work from Ponta et al. [26] or CVEFixes [5].
All these works are complementary with ours. For example, the
CVE-benchmark targets vulnerabilities languages unsupported by

Table 1: Components Example from Bulletins

Type Categories example

General Framework, Media Framework, System, …
SoC Qualcomm Model, MediaTek Kernel, …
Linux Kernel ALSA, Kernel USB, …

Table 2: August 2021 Bulletin Extract

CVE References Type Severity
Updated
AOSP
Version

CVE-2021-0640 A-123455677 EoP High 9, 10, 11
CVE-2021-0645 A-123455677 EoP High 11
CVE-2021-0646 A-123455677 EoP High 8.1, 9, 10, 11

our dataset (JavaScript/TypeScript), and only 3% of vulnerabilities
found in CVEFixes are overlaping with our dataset.

3 ANDROID CVE DATA AGGREGATION
3.1 Bulletin Format
Since 2015, Google publishes monthly security bulletins [14] for
Android. A bulletin is usually divided into two Security Patch Levels
(SPLs), themselves divided into categories to facilitate the under-
standing of the bulletin: examples of categories are listed in Table 1.
Finally, each category contains the list of vulnerabilities, with their
CVE identifier, and the fixing AOSP updates. Additional informa-
tion (i.e. affected versions, vulnerability severity) are also present.
Table 2 shows an extract of the August 2021 bulletin.

Vulnerabilities listed in the bulletins are coming from various
sources: AOSP itself, the Linux kernel, which is embedded inside
AOSP, and system on chip manufacturers. For vulnerabilities affect-
ing AOSP components, the bulletin contains a direct link to the fix
commit. Publishing bulletins is not a Google specificity and other
manufacturers like Samsung or Qualcomm also do it.

3.2 Architecture

GitHub 
Repository

Roy

Periodic
updater

Android Security
Bulletins

Android Source Code

CVE Databases

Users

Figure 1: Roy’s Architecture

We crawl Android Security Bulletins using a homemade tool
named Roy. Its workflow is depicted in Figure 1. Roy starts by look-
ing at the new bulletins since its last run. It is an iterative process
and we never attempt to parse again previously analyzed bulletins.
For each bulletin, Roy recovers the list of new vulnerabilities. When
a link towards the fix commit exists, Roy also parses the changes
provided by the commit (e.g. commit message, changed files…).
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Figure 2: AOSP Builder

While thourough, Android Security Bulletins are not complete
and additional information is available from other sources. We
query CVE-Search [12], an open access CVE database, to augment
the data for each CVE.

3.3 Pitfalls
Crawling bulletins and web interfaces is challenging since they are
not designed for automated consumption.The main difficulty lies in
the ever-changing bulletin format. This requires an almost monthly
maintenance effort to be able to parse the latest data. However,
since we store data on our side, we do not need to keep a parser
for every bulletin, just the last ones.

Furthermore, data presented in bulletins are unstable and fields
are subject to change, usually restricting the information avail-
able. For instance, bulletins after June 2017 remove the discovered
date field. To keep this information, we query it from another
source such as CVE-Search.

4 AUTOMATED AOSP BUILDING
4.1 Motivation
Vulnerabilities affect both open-source and closed-source projects
where only binaries are available. To develop and test binary binary-
level SAST, DAST or CVE-checkers, having a dataset also contain-
ing binararies could prove itself useful.

AOSP is also a perfect target to provide pre-compiled binaries
for the vulnerabilities: it is both open-source and presents a docu-
mented build system, while having commit-precise data.

4.2 Architecture
We developed an automated AOSP builder. It compiles the binaries
at the commits just before and just after the vulnerability fix. Having
binaries differing by a single commit, the one responsible for the
fix, allows to pinpoint the changes induced by the fix at the binary
level. The builder is depicted in Figure 2. As input, it uses a fixing
commit id from Roy, builds the project with the fixing commit and
without it. Finally, we only keep the binaries that differ between
the two builds.

4.3 Building AOSP at a Specific Commit
Building AOSP at a specific commit is challenging for the follow-
ing reasons. First, building projects in the past is difficult, as we
have to reconstruct the whole chain of dependencies needed by the
project (compiler version, libraries used…) at that time. AOSP self-
containment, for both its toolchain and all its projects dependencies,
makes the environment setup less difficult. However, finding pre-
cisely each dependencies version remains challenging. A second

problem arises from either bogus commits preventing compilation
of the project or fixes applied to former development branches.
In this case, we cannot obtain binaries differing by precisely one
commit and we use a different strategy (see Section 4.5). Finally,
AOSP is a huge project of more than 80 GiB of source files. Building
a single version of AOSP generates another 80 GiB of binary files
in approximately 3 hours on a 56-core machines.

Our process to build vulnerabilities starts by looking at the lat-
est branch including the fixing commit and setting up all AOSP’s
projects to be at this version. This allows us to have a building en-
vironment working for AOSP in a whole and all the dependencies
of the project. Then, we use two strategies to maximize the number
of successful builds described in Section 4.5.

4.4 Build Diffing
A project may have multiple output targets, and AOSP’s projects
depend on numerous projects themselves. Thus, building a sin-
gle project may produce several binaries in the output directory.
However, we are only interested in targets changed between the
vulnerable and the fixed version. Since compilation is resource in-
tensive, build systems implement an optimization, compiling for a
target only if one of its build-dependencies has changed since the
last run. We leverage this property for our build diffing system.

4.5 Vulnerability Building Strategies
We use two strategies to build the binaries of a project in both the
vulnerable and fixed versions.

The first one is to checkout the project at a vulnerable commit,
e.g. a parent of the fix commit, build the project, then checkout to
the fix commit itself and rebuild the project. This is the preferred
strategy as it is the most precise. However, it is unsuited if the
compilation of the project in its vulnerable state fails.

The second strategy tries the opposite approach. It builds the
project at the version state (one from Android) then reverts the
fixing commit on the project before compiling again in a vulnerable
state. If reverting the commit succeeded, this strategy works well.

4.6 Dataset Artifacts
For each vulnerability, we consider the build process to be complete
if it produces the relevant binaries in both forms (fixed and vulner-
able) for each of the four architectures (x86, x86_64, arm, arm64).
We also keep the binaries with debug symbols (i.e. unstripped) if
they are available.

Finally, we use heuristics relying on ctags universal [2] to
guess the names of every function affected by a patch. These heuris-
tics are unreliable for edge cases. Because parsing source code
is done without running the preprocessor, functions affected by
changes in macro are undetected. More importantly, compiler opti-
mizations (e.g. function inlining, tail-call) may change the function
layout and merge affected functions inside others.

Figure 3 presents an extract of the artifact for a precompiled
vulnerability. We prefix every file by its SHA256 hash to prevent
name collisions.



CVE-2017-0738 
(1d919d737)

X86 X86_64Arm ARM64

FixVuln FixVuln FixVuln FixVuln

6e6d6c2[...]_libbundlewrapper.so

ae4c026[...]_libbundlewrapper.so
 

7e8e7da[...]_libbundlewrapper.so

fd9556f0[...]_libbundlewrapper.so
 

functions.json

Figure 3: Extract of Artifacts for CVE-2017-0738

5 DATASET OVERVIEW
5.1 Commit-level Dataset

CVE 
3684
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source 
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Figure 4: Dataset Vulnerabilities Repartition
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Our dataset contains 3,684 CVEs detailed in Figure 4. The closed
source vulnerabilities affect Qualcomm, NVIDIA or Google com-
ponents. We retrieved the fix commit id for 1,275 open source
vulnerabilities (64%). We support gitiles [15], the platform used by
Google for the versionning of AOSP, while other platforms such as
GitHub, kernel.org or CodeAurora would need additional engineer-
ing effort. 35% of the vulnerabilities present in our dataset have a
CVSS score of at least 9.0. Their CVSS score cumulative distribution
is plotted on Figure 5.

For vulnerabilities with a fix-commit id, 70% of them affect a
C-code source and 27% target Java code. The remaining 39 are fixes
impacting other types of files (e.g. XML).
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Figure 6: CVE Evolution Over Time

Figure 6 shows the CVE distribution over the years. We consid-
ered bulletins from August 2015 to September 2021, but we used
only the CVE identifiers and not the bulletin dates nor the report
dates. Some earlier CVEs may thus have been taken into account be-
cause they were fixed in subsequent patches. The number of reports
decreases for closed source projects after 2017-2018, explaining the
drop on the graph.
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Figure 7: Fixing Commits Per Vulnerability

Most vulnerabilities are fixed by a single commit, as illustrated by
Figure 7. This is the case for 84% of the dataset. A vulnerability may
also be fixed by numerous commits. CVE-2015-3873 [1] affecting
libstagefright in Android reports 20 fixing commits.

5.2 Precompiled Dataset
Among the 895 vulnerabilities targeting C/C++ code, we managed
to propose precompiled binaries for 612 (68%) of them.

Based on file extensions, our dataset contains shared libraries
(35%), object files (37%) and executables (13%). The exact repartition
is depicted in Figure 8. The largest file is libv8 (1.6 GiB), the static
library of v8, a JavaScript engine. Several metrics are also listed in
Table 3.

Table 3: Binaries Sizes in Dataset

Category Mean Median Standard dev.

Unstripped 12.3 MiB 2.7 MiB 40.2 MiB
Stripped 17.7 MiB 623.8 KiB 128.2 MiB
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Figure 8: Binary Filetypes

Table 4 lists the top 10 most common files found in the dataset.
Theymostly represent complex part of the operating system (e.g. wire-
less communications, media management) particularly targeted by
attackers. For instance, the most common file is libbluetooth.so,
found 953 times.

Table 4: Most Common Binaries

Name Count

libbluetooth.so 953
bluetooth.default.so 748
libnfc-nci.so 650
libstagefright.so 421
net_test_btif 417
net_test_stack 299
hevcdec 268
libaudioflinger.so 242
libbinder.so 234
libmedia.so 229

Figure 9 lists the time delta between the vulnerability publishing
date and the fixing commit. Notably, only 24 vulnerabilities were
fixed after the creation of the CVE entry, while 122 were fixed more
than 6 months before the publication. The average vulnerability is
fixed 86 days before its CVE entry.

6 DISTRIBUTION
Our dataset is publicly available on GitHub2. To ease data manip-
ulation, we provide helper functions to interact with the dataset.
Moreover, the precompiled dataset is also available online (117 GiB)
and links are listed on the GitHub repository.

7 DISCUSSION
7.1 Applications
We provide this dataset to support data driven software security
research. Examples listed below for each direction refer to existing
research in the field. Nonetheless, we believe our dataset could
enhance their works by having more data to test or reason about,
while reducing friction as it is already compiled.
2https://github.com/quarkslab/aosp_dataset
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Figure 9: Delta Between the Fixing Commit and the Publica-
tion Date

Patch Characterization. Our extensive same system vulnerability
set enables researchers to extract data aiming at characterizing
what a patch is at both the source and binary level [13, 18]. Our
data can help draw an identity card of a security patch or bootstrap
on patches detection.

Silent Fix Detection. A silent fix is a commit fixing a security hole
without publicity (e.g. a CVE entry, a changelog mention) [27, 32].
Silent patches create security risks for projects downstream as they
are not aware of the importance of the new version. Being able
to detect silent fixes could help maintainers to keep projects up
to date, and reduce the risks for end users. Our dataset enables to
train solutions both using the commit message (e.g. for Natural
Language Processing algorithms) or analyzing the commits impact
on the code.

Cross-architecture Binary Diffing/Matching. Our dataset provides
the same binary for multiple architecture enabling further research
on cross-architecture binary matching [28, 30], where an applica-
tion maps two code snippets from different architectures together
if they have the same semantics.

Moreover, some binaries in our dataset are present multiple
times for different versions. They are interesting examples for cross-
architecture binary diffing [11, 21], where the objective is to find a
mapping between functions in the first binary to the second one.

Patch Detection. Our dataset makes a perfect base to test tools
aiming at solving the patch presence problem [17, 29, 31]. By isolating
the difference between the vulnerable and fixed version of the same
binary, it enables the creation of signatures to detect if a target
binary is patched.

7.2 Limitations
Android CVE Data Aggregation. An inherent limitation is the

need for open source projects to retrieve the commit-id. Although
open-source is prevalent in Android, many low-level components
remain closed source. Our approach depends on the availability of
security bulletins published by Google and their commitment in
providing such information.

DataQuality. Our work implies that the commit referenced as
a vulnerability fixing commit is complete, i.e. completely fixes the

https://github.com/quarkslab/aosp_dataset


vulnerability, and minimal, i.e. it does not fix any other problem
nor add functionalities. Detecting if both assertions hold is out of
scope for this paper and thus left unexplored.

Automated Compilation. Our automated compilation suffers from
various problems and managed to compile only 612 vulnerabilities.
Most issues stem from the synchronization problem between a
project and its dependencies. However, each Android build has a
manifest file listing the exact commit of each project during the
compilation. Leveraging this information could help to solve the
synchronization issues.

8 CONCLUSION
This paper shows how to build a dataset of real world representa-
tive vulnerabilities based on CVE identifiers leveraging Android
Security Bulletins. This dataset is beneficial to the community by
providing a common baseline vulnerability benchmark for further
academic research and more robust vulnerability analysis or detec-
tion algorithms. We will continue collecting new data to keep our
dataset synced with latest bulletins and CVEs.

The dataset is also augmented with more than 600 vulnerabili-
ties precompiled for four architectures, enabling research on both
source code, binary data or the interface between the two.

Our dataset is flexible so we can correlate it with other informa-
tion sources or, at the opposite, tailor it for specific usages. Testing
a SAST/DAST tool, a fuzzer, a sanitizer on a bug class (e.g. heap
corruptions…), or conducting studies on vulnerability root causes
or automatic repair are all possible usages of our dataset.
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