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The trend in human-controlled robotic systems is to move away from the current many-to-one paradigm, where multiple operators are forced to control a single system to a oneto-many mode of operation in which a single operator can control a large number of autonomous vehicles. For this transition to be successful, it is essential that we clearly understand how humans should interact with a large number of robots, this is precisely the problem of a growing field of research called Human-Swarm Interaction (HSI). In this article, the training of a recurrent neural network (LSTM) is proposed to model the behavior of the human operator in the task of rendezvous performed by swarms, in order to develop an assisted teleoperation system. The system is tested in the presence of humans and in the presence of faults in the communications.

INTRODUCTION

The current trend in multi-agent systems is to develop distributed algorithms, in other words, rely only on local interaction to achieve the global behavior desired to the team. There has been notable recent research activity attempting to accomplish unmanned vehicles (UV) operations that try to invert the current many-to-one ratio of operators to vehicles.

One of the main facilitators in these systems is the increasing autonomy in the UV's themselves. This factor and the shift in operator responsibility necessarily result in new design challenges. The design of the underlying architecture across UV's and between the human is critical to determine the functions that will be performed by computers and humans, respectively [START_REF] Cummings | Task versus vehicle-based control paradigms in multiple unmanned vehicle supervision by a single operator[END_REF].

In cases where more precise control over the operation of a swarm is required, or when a desired emerging behavior cannot be generated autonomously and without significant human influence, inputs can be provided by a human operator. These ongoing contributions will have a persistent influence on the selected leaders and indirectly on the swarm, and such situations require significantly more training and attention from the operator. In its basic form, persistent influence is similar to teleoperation, This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior -Brasil (CAPES) -Finance Code 001.

with the main difference that the influence of the leader's movement on the swarm must be taken into account.

Swarm robotics was initially studied in the subject of biological swarms found in nature. Despite the fact most robot swarms are still confined to laboratory settings and simulations, since then has gained recognition for their potential to be useful in a wide range of applications including reconnaissance, environmental monitoring, tracking, exploration, search and pursuit-evasion, infrastructure support, protection, and even space exploration [START_REF] Kolling | Human interaction with robot swarms: A survey[END_REF].

Currently, there is no general method or validated scheme for scalable, flexible and adaptable human control of swarms [START_REF] Wang | Cooperative control of robotic swarm based on selforganized method and human swarm interaction[END_REF]. Part of the difficulty with human-swarm interaction (HSI) comes from the fact that individual robots are usually not addressable, and the behaviors of global targets cannot be specified directly. Therefore, an operator must indirectly influence interactions between robots, in a way that moves the entire swarm along a trajectory to the intended objective. So these complex systems challenge designers to consider what factors influence the human operator, the swarm, and the interactions that occur between these agents to obtain high efficiency, productivity, and safety. Human factors principles can offer discernment into design considerations that can be implemented for human-swarm systems. Recognizing how these factors affect the perception, processing, and projection of actions during tasks is crucial.

The general objective of this article is to propose a teleoperation assistance system to aid the human operator in the teleoperation task of a human-swarm system, in order to maximize its performance and potentially increase or decrease human factors, such as situational awareness and workload respectively, that can interfere with mission performance. The results are obtained from simulations of swarm teleoperation of differential drive robots (Pioneer-3AT) in the Gazebo simulator, with the Robot Operating System (ROS) framework and the performance is measured objectively through control inputs and task metrics.

Hence, in this study is proposed a novel assistive teleoperation system in a human-swarm interaction system, performing the rendezvous task, through a LSTM network.

The rest of the paper is organized as follows. Section (2) presents the theoretical basis for consensus on the rendezvous problem with teleoperation. Section (3) features the proposed architecture to deal with the rendezvous problem with a teleoperated agent. Finally, section (4) presents two illustrative scenarios, with and without obstacles and human beings in the environment, followed by the computational experiments obtained from simulations. At last, in section (5) the conclusions of the assisted teleoperation with the proposed architecture.

PROBLEM STATEMENT

Consider a swarm teleoperation system with one teleoperated robot and n -1 autonomous robots. An operator has to meet the group of robots at a common location through mutual adaptation by the human operator and the robots, in other words, the robots infer the goal point based in the communication with adjacent agents and the human operator infer the goal point based on the agents displayed in the operator interface. Then, the responsability of the operator is to preserve the connectivity of the swarm guarateeing the accomplishment of the rendezvous task.

Rendezvous

Aggregation is one of the simplest and easiest to recognize behaviors, it is a process often found in natural swarms systems and has often been adapted to artificial swarms. A similar problem in the control theory has been studied as the rendezvous problem [START_REF] Cortés | Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions[END_REF]. The basic purpose of both problems is to move the entire swarm to a common location.

When several agents agree on the value of a variable of interest, they are said to have reached consensus. Information consensus ensures that agents who share information in a network topology have a consistent view of the information critical to the coordination task. To achieve consensus, there must be a variable of shared interest, called the state of information, as well as appropriate algorithms to negotiate and reach a consensus on the value of this variable, called consensus algorithms.

Suppose there are n vehicles on the team. The team's communication topology can be represented by the directed graph D = (V, E), where V = {1, . . . , n} is the set of nodes and E ⊆ V × V is the set of edges. The most common discrete time consensus algorithm is given by:

x i [k + 1] = x i [k] - n j=1 a ij [k](x i [k] -x j [k]), i = 1, . . . , n(1)
where x i [k] ∈ R m is the information status of the ith vehicle, with m the number of states of information, and a ij [k] is the entry {i, j} of the adjacency matrix A(D) ∈ R n×n associated with the directed graph D at time k. Defining a ij [k] = 0 indicates the fact that vehicle i cannot receive information from vehicle j at time k. A consequence of the equation ( 1) is that the information state x i [k] of the vehicle i is directed to the information states of its neighbors.

The topology for this scenario is considered dynamic and for the consensus to occur, the graph must have an extension tree or, in a more restricted way, the graph has to be connected. In other words, for the consensus to happen, it is enough that the Laplacian corresponding to the graph under analysis has a simple zero eigenvalue and the other eigenvalues are positive. Thus the consensus is dependent of the A(D) matrix and each individual kinematic control is capable of reaching the sampling points. Furthermore, it is clear that even in basic problems, when treated in unstructured and dynamic environments, it is not a trivial task to design a system of autonomous agents that guarantee the maintenance of connectivity during the entire mission. In addition, there are the challenges imposed by the communication structure such as bandwidth, range limit, among other factors.

One method for dealing with the complexity of controlling a swarm is to allow an operator to select and control an agent or subset of the swarm, thereby reducing the number of robots that must be considered simultaneously. Individuals or groups of robots selected by an operator are often called as leaders, as they are expected to influence and lead the remaining swarm.

Swarm Teleoperation

In the swarm teleoperation, the operator directly controls a single swarm agent, or a minor subset, and that influence propagates to the remain of the swarm depending on the control laws the swarm members apply.

The use of leaders with attractive virtual forces and predators with repulsive forces to steer a swarm throughout a simulated environment is investigated to a great extent by [START_REF] Goodrich | Toward human interaction with bio-inspired robot teams[END_REF] with the conclusion that leaderbased control was more practicable for human operators. Moreover, [START_REF] Walker | Human control of leader-based swarms[END_REF] concluded that, in the consensus conditions, the swarms were both more compact and had a more denser and connected sensing graph, which is specially beneficial for small unmanned ground vehicles at slower speeds, that are more common when working in tight spaces, as exploring urban and indoor environments.

So, in teleoperation systems, a human operator must successfully perform a desired task in a remote environment. The illustration of the teleoperation of a HSI system is shown in Figure 1.

The teleoperation architecture is proposed for a single human user to control an arbitrarily large swarm of unmanned ground vehicles through a cluttered environment with a standard gamepad. The user controls the whole swarm through the influence of a leader robot, while local interactions are responsible for the control and collision avoidance that are taken care autonomously by each robot.

By allowing the robots to autonomously avoid collisions, the human user can focus on the overall maneuver of the swarm, instead of taking care of each one of the agents in the environment. This algorithm complement the robot swarm control and this plan of action, based on the global and local path planning algorithms available in the ROS platform, which is integrated with the consensus algorithm (1) and the proposed assistive teleoperation system.

PROPOSED ARCHITECTURE FOR THE ASSISTIVE TELEOPERATION SYSTEM

It is proposed an architecture to assist human operators to teleoperate a swarm control mission, so it is collected data to train and test the model presented and to implement in the simulation environment.

Architecture Proposed

The proposed model is based on the hypothesis that the operator uses visual information to identify the future location, as well as the position, speed and direction of the agents in the system in relation to the teleoperated agent, in order to remedy possible practical difficulties such as packet loss, communication delays, loss of connections and other unforeseeable factors, that prevent the convergence to a consensus value in an adequate way in unstructured and dynamic environments.

The illustration of the proposed architecture of the HSI system is shown in Figure 2. The operator will be responsible for teleoperating a control leader through speed commands so that he has a persistent and continuous influence on the other agents of the swarm, that is, the control action on the control leader will propagate through the adjacent agents for the entire swarm according to algorithm (1). On the other hand, all agents play the role of information leaders, returning information to the operator, through communication, for the composition of the Teleoperation Support System (TSS).

The logic behind this approach was first to build a model based on data from the HSI system, which can be relevant to both control theory and the science of human behavior.

From a more practical point of view, it was also a way of guiding design choices based on specific assumptions about the nature of perceptual and motor systems.

Comprehensive simulator experiments are carried out, using the identification and the proposed architecture to better understand the human operation strategy and to be able to capture various characteristics and states of the operator.

In the Figure 3a and 3b, it is shown an arrow that represents the recomendation of action (direction, magnitude and orientation), at a given time of the assistive teleoperation system developed through a recurrent neural network (RNN), in which the brown turtles represent the autonomous agents and the white turtle represents the teleoperated agent and the respective radius to define the end of the task. One of the main problems for the design of advanced assistance systems is to predict operator behavior. An interdisciplinary approach is used, which consists of the design of HSI systems based on a Long Short-Term Memory (LSTM) model that implicitly represents the human perceptual, motor and cognitive processes involved in the task. This model and its application focus specifically on teleoperation and the rendezvous problem, although the same approach can be adapted for other types of dynamic human-swarm interaction.

Architecture Implementation

In this work, ROS was chosen as the framework for simulating the HSI system, as it has become the "de facto" robotic standard in academic research and is widely adopted worldwide. Gazebo was chosen as a 3D simulation environment for its native support in this framework and Tensorflow as a library for implementing the RNN.

The operating system used was Linux Ubuntu 18.04 LTS and the integration middleware was ROS Melodic distribution. The hardware used for simulation has an Intel Core i7-7700HQ processor, 8 Gb of RAM and graphics card NVidia GeForce GTX 1050.

COMPUTATION EXPERIMENTS

The effectiveness of deep neural networks in the modeling of dynamical systems with complex behavior is demonstrated by [START_REF] Ogunmolu | Nonlinear systems identification using deep dynamic neural networks[END_REF]. The vanishing/exploding gradient problem becomes particularly important when there are long-term dependencies and LSTMs are the most successful attempt to solve this problem in RNNs [START_REF] Greff | Lstm: A search space odyssey[END_REF]. Several alternatives of the LSTM architecture for recurrent neural networks have been proposed since its inception by [START_REF] Hochreiter | Long shortterm memory[END_REF] and it has become state-of-the-art models for a variety of machine learning problems.

Hence, the LSTM architecture is chosen to model the human operator response. In the next subsections it is shown how the LSTM was trained and the simulation scenarios proposed.

Recurrent Neural Network Training

Preliminarily, the system considered is an HSI system with 10 robots, in which one of the agents is a teleoperated robot. The fact that there is a leader in the system causes the consensus variable to converge to the leader value, since this is a source in the graph and its value is not changed explicitly by information from neighbors, only implicitly due to the operator's reaction to the behavior of other agents.

Obtaining data for training the Long Short-Term Memory (LSTM) network was carried out by selecting six volunteers, who underwent pre-operation training to become familiar with the human-swarm interface. The instructions that were sent to the volunteer operators are that they should perform the task of rendezvous ensuring that all agents meet each other in a common point. And the task would be considered accomplished as soon as all agents were within a certain radius of the teleoperated agent.

Thus, each volunteer generated data from five successful attempts, which is understood to fulfill the task of rendezvous with all agents on the line or within the region of interest, without collisions and within a period of time. Thus, all successful attempts generated data that were used for training and validating the neural network.

In total there were thirty simulations, twenty-five for training, of which thirty percent were separated for validation (a total of 772 data) and the other seventy percent were used for training (a total of 1542 data). The remaining five simulations were used to test and evaluate the performance of the network.

The generated data correspond to position on the x axis, position on the y axis and θ orientation of all ten robots that make up the system. These factors represent the input vector of the LSTM. And the output vector is represented by the control inputs, that is, linear velocity and angular velocity imposed by the operator on the teleoperated agent through an input device (gamepad).

Tests were carried out with six RNN configurations to adjust the hyperparameters and fifty training epochs for each of the configurations to adjust the weights. Altogether, the number of cells in each layer varied between 8, 16 and 32 and each of these configurations were repeated with the regularization technique of dropout [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF], with a value of 0.2 to avoid overfitting.

Once the trained LSTM was obtained, a teleoperation assistant was developed, represented by an arrow in the user interface that seeks to assist the operator in the teleoperation task. The Figure 4 shows the interface with the integrated support and its evolution over time. The proposed scenarios to simulation are:

I. The rendezvous at an obstacle free environment for the consensus with a dynamic topology dependent of the distance of the agents and their respective neighbors and with 20% packet losses; II. The same scenario is presented, but this time with obstacles in the environment.

Scenario I

The first scenario is an empty environment, free of obstacles , that can be seen in the Figure 5 of the Gazebo simulator interface with the multi-robot system. Fig. 5. Simulator interface with 10 differential mobile robots (Pioneer-3AT).

In the Figure ( 6) there are nine autonomous agents running the consensus algorithm and one teleoperated agent running the TSS. As can be seen in the graph, all agents go to the rendezvous point at approximately (3, 10) in the (x, y) plane. The Table (1) has the data obtained for twenty five successful simulations, in other words, twenty-five experiments, in which, the operators were capable to accomplish the rendezvous task without collisions with all robots inside the desired area around the teleoperated agent.

In the first three columns it is presented the data for the case without the TSS proposed, each column represent the time to accomplish the task, the L 1 -norm for the linear velocity and angular velocity, respectively. And in the final three columns it is shown the data for the case with the TSS proposed. The gray cells represent the case with worse performance when compared with the same test between each case.

Table 1. Comparison between the system with pure teleoperation and assisted teleoperation. Legend: Shadowed cell is the case with worse performance when compared between system with and without the teleoperation support system.

The normalized mean value of each metric analyzed is presented in the bar graph (7) for a better data visualization of Table (1).

As can be seen in Figure ( 7) the TSS has better performance in the time to accomplish the task and the L 1norm for the linear velocity, however the TSS has worse performance for the L 1 -norm of the angular velocity. 

Scenario II

The next scenario is similar to the one presented previously, but this time the environment has obstacles and human beings that are spread on it. In the Figure ( 9) there are nine autonomous agents running the consensus algorithm and one teleoperated agent running the TSS. As can be seen in the graph, all agents go to the rendezvous point at approximately (10, -5) in the (x, y) plane.

In the Figure 8, once again, it is shown the Gazebo simulator interface. However, this time, additionally to the multi-robot system, there are obstacles and human beings on the scene. The autonomous agents have an obstacle avoidance algorithm implemented through the global path planner A * and the local path planner Trajectory Rollout, available at the ROS framework, so the robots are capable to reach the consensus point without colliding in obstacles, human beings or other agents. In this scenario it is more challenging to maintain the connectivity and guarantee the convergence for a common place of all the agents, but as shown in Figure ( 9) the human operator was capable to accomplish the mission with the TSS.

It is important to note however that the Human-Aware navigation problem is not considered here, in other words, the study of the way a robot should navigate in the presence of people considering aspects like human comfort, respecting social rules and mimicking low-level human behaviour, were not concerns in the scenarios presented.

As before, it was obtained data for twenty five successful simulations, in which, the operators were capable to accomplish the rendezvous task without collisions, with all robots inside the desired area around the teleoperated agent. So, again the normalized mean value of each metric is presented, as in the previous scenario, in the bar graph (10). For the second scenario again, as can be seen in Figure ( 10), the time to accomplish the task and the L 1 -norm for the linear velocity have better performance with TSS than without it. However the TSS has worse performance for the L 1 -norm of the angular velocity.

So, for both the first and the second scenario, the humanswarm interaction system proposed with nine autonomous robots and one teleoperated agent with a teleoperation suport system, developed with a LSTM recurrent neural network, was capable to fullfill the needs to accomplish the rendezvous task and improve the performance metrics, even in the presence of obstacles, packet and connectivity loss.

Therefore, this article seeks to investigate the applicability of the methods proposed here for predicting the behavior of human operators in hybrid human-swarm systems aiming to assist the operators in a teleoperated task.

CONCLUSION

The purpose of this effort was to evaluate the impact of the TSS architecture as compared with pure teleoperation of a HSI system, in terms of mission performance. Its hypothesized that given the same tasks across the two different approaches, those operators with the TSS would have a better performance since this would provide suggestions for future actions that can improve overall system performance, considering that offering state information and action developmental feedback can ehance teamwork efficiency and reliability.

While, the TSS clearly increased the performance of the HSI system, this study does not suggest this should be the only architecture. Indeed, it is likely that for operational systems, some hybrid mix would be needed, with other approaches such as: switching between algorithms that implement desired swarm behaviors; changing parameters of a swarm control algorithm; indirect control of the swarm via environmental influences, in which the degree of autonomy in the system would drive the balance.

Future work aims at studying the impact of the teleoperation suport system at human factors such as workload, situational awareness, cognitive complexity among others. As well to consider other basic swarm tasks like formation control. Other problems include considering the evolution of the swams in the presence of social models of pedestrians as discussed.

Fig. 1 .

 1 Fig. 1. Swarm teleoperation illustration.

Fig. 2 .

 2 Fig. 2. Simulation architecture proposed (Adapted from Hatanaka et al. (2017)).

Fig. 3 .

 3 Fig. 3. Assistive Teleoperation System represented by an arrow for the operator.

Fig. 4 .

 4 Fig. 4. The evolution in time of the HSI system interface with TSS.

Fig. 6 .

 6 Fig. 6. Simulation of consensus with a teleoperated agent (Robot10) and nine autonomous agents (Robot[1-9]). video link: http://bit.ly/2U5nVQw.
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