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L1−Theory for Incompressible Limit of Reaction-Diffusion
Porous Medium Flow with Linear Drift

Noureddine Igbida ∗

December 13, 2021

Abstract

Our aim is to study the limit of the solution of reaction-diffusion porous medium equation with
linear drift ∂tu−∆um+∇·(uV ) = g(t, x, u), as m→∞.We study the problem in bounded domain
Ω with Dirichlet boundary condition, compatible initial data ; i.e. |u0| ≤ 1, and an outpointing
vector field V on the boundary ∂Ω. In particular, by means of new BVloc estimates, we show uniform
L1−convergence towards the solution of reaction-diffusion Hele-Shaw flow with linear drift.

1 Introduction and main results

1.1 Introduction

Let Ω ⊂ IRN be a bounded open set with regular boundary ∂Ω =: Γ. Our aim here is to study the
limit, as m→∞, of the equation

(1.1)
∂u

∂t
−∆um +∇ · (u V ) = g(t, x, u) in Q := (0, T )× Ω,

where the expression rm points out |r|m−1r, for any r ∈ IR, 1 < m < ∞, V : Ω → IRN is a given
vector field and g : Q× IR→ IR is a Carathéodory application.

There is a huge literature on qualitative and quantitative studies of (1.1) in the case where V ≡ 0.
We refer the reader to the book [39] for a thoroughgoing survey of results as well as corresponding
literature. The case V 6= 0 arise mainly in the theory of population dynamics, where u represents
density of a population trying to exit a finite habitat Ω following the vector field V (see for instance
[34, 35, 36, 36, 38] and the refs therein). Indeed, the exponent m > 1, particularly for large m,
describes the anti-crowd leaning of the density motion. Under reasonable assumptions on g and V
(let say for instance g = g(t, x, u) Lipschitz continuous in u and V = V (x) regular enough), existence
and uniqueness of weak solution, as well as L1−comparison principal are more or less well known
by now for (1.1) subject to initial data and boundary conditions of Dirichlet or Neumann type(cf.
[15, 13, 23]). One can see also [30] for the study of (1.1) in the framework of viscosity solutions.
Asymptotic convergence to equilibrium is shown in [13] and [17] when V is the gradient of a convex
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potential. Our main focus here lies in the limit as m→∞ of weak solutions in the case where (1.1) is
subject to Dirichlet boundary condition and arbitrary compatible initial data |u0| ≤ 1, a.e. in Ω. We
give proof of the convergence process to the so called Hele-Shaw flow with linear drift in general contest
of L1−theory for nonlinear PDE (cf. [5] and [6]). This approach enables to give answers and evidence
to many questions left open in some papers dedicated to this subject. Moreover, it offers many supply
for the traitment of the challenging case of non compatible initial data ; i.e. the case where ‖u0‖ > 1.
This will be treated separately in the forthcoming work [29].

1.2 Historical notes

The study of the incompressible limit of (1.3) receives a lot of attention since its interest for the
applications and for the description of constrained nonlinear flow. The problem is well understood by
now in the case where V ≡ 0. Actually, it is well know that the solution of the problem

∂u

∂t
−∆um = g(., u) in Q := (0, T )× Ω,

converges, as m→∞, to the solution of the so called Hele-Shaw problem

(1.2)
∂u

∂t
−∆p = g(., u)

u ∈ sign(p)

}
in Q.

The convergence holds to be true in C([0, T ), L1(Ω)) in the case where |u0| ≤ 1, a.e. in Ω, otherwise
it holds in C((0, T ), L1(Ω)) and a boundary layer appears for t = 0. This boundary layer is given by
some kind of plateau-like function refereed to as ‘mesa’, and it is given by the limit, as m → ∞, of
the solution of homogeneous porous medium equation (see for instance [8, 7, 10, 11, 28, 25] and the
references therein)

(1.3)
∂u

∂t
= ∆um in Q.

The problem has been well scouted in the case of homogeneous and nonhomogeneous, Dirichlet and
Neumann boundary conditions. Yet, one needs to be careful with the special case of Neumann bound-
ary condition since, in this case the limiting problem (1.2) could be ill posed. With respect to the
assumptions on g, the limiting problem exhibits an extra phase to be mixed with the Hele-Shaw phase
(see [11] for more details). Other variations of reaction term have been proposed in recent years to-
gether with the analysis of their incompressible limit (see for instance [38, 21, 37, 31] and the references
therein). The recent work [26] treats once again a particular reaction term g = g(u), with a special
focus on the limit of the so called associated pressure p :=

m

m+ 1
um−1, furthermore the authors seem

to be altogether not aware of the general works [10, 11].

The treatment of the case where V 6≡ 0, leads to the formal reaction-diffusion dynamic of Hele-Shaw
type with a linear drift ; i.e.

(1.4)
∂u

∂t
−∆p+∇ · (u V ) = g(t, x, u)

u ∈ sign(p)

}
in (0, T )× Ω.
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The problem was studied first in [12] when g ≡ 0 and the drift term is of the type ∇ · F (u), with
F : IR → IRN a Lipschitz continuous function (this corresponds particularly to space-independent
drift). In [12], it is proven that L1(Ω)-compactness result remains to be true uniformly in t. Moreover,
the limiting problem here is simply the transport equation

(1.5) ∂tu+∇ · F (u) = 0.

The Hele-Shaw flow wear off since the nature of the transport term (incompressible) in (1.5) compel the
solution to be less than 1, and then p ≡ 0. Then, in [32] the authors studied the case of space dependent
drift and reaction terms both linear and regular in Ω = IRN . Assuming some ”strong” conditions on
V, which insure some kind of monotonicity properties, and using the notion of viscosity solutions,
they study the limit, as m → ∞, in the case where u0 is a nonnegative (compatible) initial data.
The benefit of their approach is its ability to cover accurately the free boundary view of the limiting
problem (particularly the dynamic of the so called congestion region [p > 0]), as well as the rate of
convergence. Using a weak (distributional) interpretation of the solution the same problem was studied
recently in [20] with a variant of reaction term g in Ω = IRN . Using a blend of recently developed tools
on Aronson-Bénilan regularizing effect as well as sophisticated Lp−regularity of the pressure gradient
the authors studied the incompressible limit again in the case of nonnegative compatible initial data
and regular drift (one can see also [22] for some convergence rate in a negative Sobolev norm).

Here, we study the incompressible limit of (1.3) subject to Dirichlet boundary condition and com-
patible initial data (even changing sign data). The reaction term satisfies general conditions, includ-
ing Lipschitz continuous assumptions, and the given velocity field enjoys Sobloev regularity and an
outpointing condition on the boundary that we’ll precise below. To this aim we use L1−nonlinear
semi-group theory, which consist in performing first the L1−strong compactness for the stationary
problem and work with the general theory of nonlinear semi group to pass to the limit in the evolution
problem.

At last, let us mention that for other application non-local drift could be concerned as well by the
incompressible about porous medium equation. On can see for instance [16] and the references therein
on this topic. In particular, the authors of [16] adopt techniques relying on the gradient flow structure
of the equation. Our approach here is general and may be adopted for this type of drift and more
general one even nonlinear.

1.3 Main results

We assume that Ω ⊂ IRN is a bounded open set, with regular boundary ∂Ω (say, piecewise C2).
Throughout the paper, we assume that V ∈ W 1,2(Ω), ∇ · V ∈ L∞(Ω) and satisfies the following
outward pointing condition on the boundary :

(1.1) V · ν ≥ 0 on ∂Ω,

where ν represents the outward unitary normal to the boundary ∂Ω.
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We consider the evolution problem

(1.2)



∂u

∂t
−∆um +∇ · (u V ) = f in Q := (0, T )× Ω

u = 0 on Σ := (0, T )× ∂Ω

u(0) = u0 in Ω.

We denote by H1
0 (Ω) the Sobolev space

H1
0 (Ω) =

{
u ∈ H1(Ω) : u = 0, LN−1-a.e. in ∂Ω

}
.

Definition 1.1 (Notion of solution). A function u is said to be a weak solution of (1.2) if u ∈ L2(Q),
p := um ∈ L2

(
0, T ;H1

0 (Ω)
)
and

d

dt

∫
Ω
u ξ +

∫
Ω

(∇p− u V ) · ∇ξ =

∫
Ω
f ξ, in D′(0, T ), ∀ ξ ∈ H1

0 (Ω).

We’ll say plainly that u is a solution of (1.2) if u ∈ C([0, T ), L1(Ω)), u(0) = u0 and u is a weak solution
of (1.2).

We denote by sign+ (resp. sign−) the maximal monotone graph given by

sign+(r) =


1 for r > 0
[0, 1] for r = 0
0 for r < 0.

(resp. sign−(r) = sign+(−r), for r ∈ IR).

Moreover, we denote by sign±0 the discontinuous applications defined from IR to IR by

sign+
0 (r) =

{
1 for r > 0
0 for r ≤ 0

and sign−(r) = sign+(−r), for r ∈ IR.

Theorem 1.1. If u1 and u2 are two weak solutions of (1.2) associated with f1, f2 ∈ L1(Q) respectively,
then

(1.3)
d

dt

∫
Ω

(u1 − u2)+ dx ≤
∫

Ω
(f1 − f2) sign+

0 (u1 − u2) dx, in D′(0, T ).

In particular, we have
d

dt
‖u1 − u2‖1 ≤ ‖f1 − f2‖1, in D′(0, T ),

and, if f1 ≤ f2, a.e. in Q, and u1(0) ≤ u2(0) a.e. in Ω, then

u1 ≤ u2, a.e. in Q.

Theorem 1.2. For any u0 ∈ L2(Ω) and f ∈ L2(Q), the problem (1.2) has a solution u. Moreover, u
satisfies the following :
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1. For any q ∈ [1,∞], we have

(1.4) ‖u(t)‖q ≤Mq :=


e(q−1) ‖(∇·V )−‖∞

(
‖u0‖q +

∫ T

0
‖f(t)‖q dt

)
if q <∞

e‖(∇·V )−‖∞
(
‖u0‖∞ +

∫ T

0
‖f(t)‖∞ dt

)
if q =∞

.

2. For any t ∈ [0, T ), we have

(1.5)
1

m+ 1

d

dt

∫
Ω
|u|m+1 dx+

∫
Ω
|∇p|2 dx ≤

∫
Ω
f p dx+

∫
p u (∇ · V )− dx, in D′(0, T ).

Remark 1. 1. See that V · ν may be understood in a weak sense, like∫
Ω
V · ∇ξ dx+

∫
Ω
∇ · V ξ dx ≥ 0, for any 0 ≤ ξ ∈ D(Ω).

2. For any h > 0, we denote by

(1.6) ξh(t, x) =
1

h
min

{
h, d(x, ∂Ω)

}
and νh(x) = −∇ξh, for any x ∈ Ω,

where d(., ∂Ω) names the euclidean distance-to-the-boundary function. We see that ξh ∈ H1
0 (Ω)

is a regular (as well as the boundary is) function, 0 ≤ ξh ≤ 1 and

νh(x) = −1

h
∇ d(., ∂Ω), for any x ∈ Ω \ Ωh and 0 < h ≤ h0 (small anough).

Here

Ωh =
{
x ∈ Ω : d(x, ∂Ω) > h

}
, for small h > 0.

In particular, for any x ∈ Ωh, we have hνh(x) = ν(π(x)), where π(x) design the projection of x
on the boundary ∂Ω, and ν(y) represents the outward unitary normal to the boundary ∂Ω at y.
Thanks to (1.1), we have

(1.7) lim inf
h→0

∫
Ω\Ωh

ξ V (x) · νh(x) dx ≥ 0, for any 0 ≤ ξ ∈ L∞(Ω).

3. Thanks to the local C2−boundary regularity assumption on Ω, we have

(1.8) lim inf
h→0

∫
Ω
∇w · ∇ξh dx ≥ 0, for any 0 ≤ w ∈ H1

0 (Ω).

This property is connected to smoothness of the boundary of Ω. For the case of Lipschitz boundary
domain, one needs to work with more sophisticated test functions in the spirit of ξh to fill (1.8)
like property (one can see Lemma 4.4 and Remark 6.5 of [?].
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4. Typical examples of vector fields V may be given by

V = −∇Φ and 0 ≤ Φ ∈ H1
0 (Ω) ∩W 2,2(Ω).

For the limit, as m→∞, one sees formally that the problem (1.2) converges to so called Hele-Shaw
problem

(1.9)


∂u

∂t
−∆p+∇ · (u V ) = f

u ∈ sign(p)

}
in Q

p = 0 on Σ

Existence, L1−comparison and uniqueness of weak solution for the problem (1.9), with mixed boundary
conditions, has been studied recently in [27]. Thanks to [27], we know that for any f ∈ L2(Q) and
u0 ∈ L∞(Ω), s.t. 0 ≤ u0 ≤ 1, a.e. in Ω, (1.9) has a unique weak solution (see the following Theorem
for the precise sense) satisfying u(0) = u0. To prove rigorously the convergence of um to the solution
of (1.9), we assume moreover that V satisfies the following assumption : there exists h0 > 0, such that

(1.10) V · νh ≥ 0, in Ωh, for any 0 < h < h0 ;

that is V (x) · ∇d(x, ∂Ω) ≥ 0, for any x ∈ Ω with being such that d(x, ∂Ω) < h ≤ h0.

Theorem 1.3. Under the assumptions (1.10), for each m = 1, 2, ..., let u0m ∈ L∞(Ω), fm ∈ L2(Q)
and um be the corresponding solution of (1.2). If, as m→∞,

fm → f, in L1(Q), u0m → u0, in L1(Ω),

and |u0| ≤ 1, then

um → u, in C([0, T );L1(Ω)),

umm → p, in L2([0, T );H1(Ω))-weak,

and (u, p) is the unique solution of (1.9) satisfying u(0) = u0. That is u ∈ C([0, T ), L1(Ω)), u(0) = u0

and u = sign(p), a.e. in Q, and

(1.11)
d

dt

∫
Ω
u ξ +

∫
Ω
∇p · ∇ξ dx−

∫
Ω
u V · ∇ξ dx =

∫
Ω
f ξ dx, in D′([0, T )), for any ξ ∈ H1

0 (Ω).

Remark 2. Thanks to [27], we can deduce that u, the limit of um, satisfies the following :

1. If there exists ω1,∈ W 1,1(0, T ) (resp. ω2 ∈ W 1,1(0, T )) such that u0 ≤ ω2(0) (resp. ω1(0) ≤ u0)
and, for any t ∈ (0, T ),

ω̇2(t) + ω2(t)∇ · V ≥ f(t, .) a.e. in Ω

(rep. ω̇1(t) + ω1(t)∇ · V ≤ f(t, .), a.e. in Ω), then we have

u ≤ ω2 (resp. ω1 ≤ u) a.e. in Q.
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2. If f and V satisfies

0 ≤ f(t, .) ≤ ∇ · V, a.e. in Q

then p ≡ 0, and u is the unique solution of the reaction-transport equation
∂u

∂t
+∇ · (u V ) = f(t, x)

0 ≤ u ≤ 1

}
in Q

u V · ν = 0 on ΣN

u(0) = u0 in Ω,

in the sense that u ∈ C([0, T ), L1(Ω)), 0 ≤ u ≤ 1 a.e. in Q and

d

dt

∫
Ω
u ξ −

∫
Ω
u V · ∇ξ =

∫
Ω
f ξ, in D′(0, T ), ∀ ξ ∈ H1

0 (Ω).

Remark 3. 1. The condition (1.10) is equivalent in some sense that the vector field V is outward
pointing in a neighbor of the boundary ∂Ω. In particular, this implies that for any 0 < h < h0,
there exists 0 ≤ ξh ∈ C2(Ωh) compactly supported in Ω such that ξh ≡ 1 in Ωh and∫

Ω\Ωh

ϕ V · ∇ξh dx ≤ 0, for any 0 ≤ ϕ ∈ L1(Ω).

2. One sees that the assumption (1.10) is fulfilled for instance in the following cases

(a) There exists h0 > 0 such that, for any 0 < h < h0, we have

V (x) = V (π(x)), for any x ∈ Ωh.

Indeed, since νh(x) = ν(π(x)), we have V (x) · ∇ξh(x) = V (π(x)) · ∇ξ(π(x)) which is
nonnegative by the assumption (1.1).

(b) Strictly outpointing vector field V :

V · ν > 0, on ∂Ω.

Indeed, This follows from the fact that

lim
h→0

∫
Ω\Ωh

ϕ V · νh dx =

∫
∂Ω
ϕ V · ν dx , for any 0 ≤ ϕ ∈ C(Ω).

(c) V compactly supported ; i.e. V vanishes on a neighbor of the boundary ∂Ω.

3. A typical choice for V is given by V = −∇d(., ∂Ω), the distance function up to the boundary.

4. As we will see in the proofs, it is possible to replace the assumption (1.10) by the following : there
exists h0 > 0, such that for any 0 < h < h0, there exists 0 ≤ ωh ∈ C2(Ωh) compactly supported in
Ω, such that ωh ≡ 1 in Ωh and

(1.12)
∫

Ω\Ωh

ϕ V · ∇ωh dx ≤ 0, for any 0 ≤ ϕ ∈ L1(Ω),

See that the condition (1.10) corresponds to the selection ωh = ξh.
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1.4 Plan of the paper

The next section is devoted to the proof of L1−comparison principle for weak solutions of (1.2). To this
aim, we use doubling and dedoubling variables techniques. This enables us to deduce the uniqueness
and lay out the study plan of the equation in the framework of L1−nonlinear semi-group theory. Section
3 concerns the study of existence of a solution. To set the problem in the framework of nonlinear semi
group theory, we begin with stationary problem to roll in Euler-implicit discretization and put up an
ε−approximate solution. Then, using mainly a Crandall-Ligget theorem, L2(Ω) and H1

0 (Ω) estimates
on u and um respectively, we pass to the limit as ε→ 0, to built the solution of the evolution problem
(1.2). Section 4 is devoted to the study of the limit as m → ∞. Using the outpointing vector filed
condition (1.10), we study first the limit for the stationary problem connecting it to the the Hele Shaw
flow with linear drift. To this aim, we derive BVloc new estimates on the solution. Then, using regular
perturbation results for nonlinear semi group we establish the convergence results for the evolution
problem. Section 6 is devoted to the study of the limit of the solution u and um in the of the presence
of a reaction term with linear drift. We prove the convergence of reaction diffusion problem of a Hele-
Shaw flow with linear drift At last, in Section 7 (Appendix), we provide for the unaccustomed reader
a short recap on the main tools from L1−nonlinear semi-group theory.

2 L1−comparison principle and uniqueness proofs

As usual for parabolic-hyperbolic and elliptic-hyperbolic problems, the main tool to prove the unique-
ness is doubling and de-doubling variables. To this aim, we prove first that a weak solution satisfies
the following version of entropic inequality :

We assume throughout this section that V ∈ W 1,2(Ω) , (∇ · V ) ∈ L∞(Ω) and V satisfies the
outpointing condition (1.1).

Proposition 2.1. Let u be a weak solution of (1.2). Then, for any k ∈ IR, and 0 ≤ ξ ∈ H1
0 (Ω), we

have

(2.13)

d

dt

∫
Ω

(u− k)+ξ dx+

∫
Ω

(∇(um − km)+ − (u− k)+V ) · ∇ξ dx

+

∫
Ω

(k ∇ · V − f) ξ sign+
0 (u− k) dx ≤ − lim sup

ε→0

1

ε

∫
[0≤um−km≤ε]

|∇um|2 ξ dx,

and

(2.14)

d

dt

∫
Ω

(k − u)+ξ dx+

∫
Ω
∇(km − um)+ − (k − u)+V ) · ∇ξ dx

+

∫
Ω

(f − k ∇ · V ) ξ sign+
0 (k − u) dx ≤ − lim sup

ε→0

1

ε

∫
[0≤km−um≤ε]

|∇um|2 ξ dx,

in D′(0, T ).

Proof. We extend u onto IR×Ω by 0 for any t 6∈ (0, T ). Then, for any h > 0 and nonnegative ξ ∈ H1
0 (Ω)

and ψ ∈ D(IR), we consider

Φh(t) = ξ
1

h

∫ t+h

t
H+
ε (um((s)) ψ(s) ds,
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where H+
ε is given by

H+
ε (r) = min

(
(r − km)+

ε
, 1

)
, for any r ∈ IR,

for arbitrary ε > 0. It is clear that Φh ∈W 1,2
(

0, T ;H1
0 (Ω)

)
∩L∞(Q) is an admissible test function for

the weak formulation, so that

(2.15) −
∫∫

Q
u ∂tΦ

h dtdx+

∫∫
Q

(∇um − V u) · ∇Φh dtdx =

∫∫
Q
f Φh dtdx.

See that ∫∫
Q
u ∂tΦ

h dtdx =

∫∫
Q
ψ(t)Hε(um(t))

u(t− h)− u(t))

h
ξ dtdx

≤ 1

h

∫∫
Q
ψ(t)

(∫ u(t−h)

u(t)
H+
ε (rm) dr

)
ξ dtdx

≤ 1

h

∫∫
Q

(∫ u(t)

k
H+
ε (rm)dr

)
(ψ(t+ h)− ψ(t)) dtdx.

Letting h→ 0, we have

lim sup
h→0

∫∫
Q
u ∂tΦ

h dtdx ≤
∫∫

Q

(∫ u(t)

k
H+
ε (rm)dr

)
∂tψ ξ dtdx.

So, by letting h→ 0 in (2.15), we get

(2.16)

−
∫∫

Q

{(∫ u(t)

k
H+
ε (rm)dr

)
∂tψ ξ + ψ ∇um · ∇ξHε(um)ξ −Hε(um)(u− k) V · ∇ξ

}
dtdx

≤
∫∫

Q

{
ψ (f + k ∇ · V )Hε(um)ξ + ψ ξ(u− k) V · ∇Hε(um)

}
dtdx

−1

ε

∫∫
[0≤um−km≤ε]

|∇um|2 ξ dtdx,

where we use the fact that |∇um| H′ε(um(t)) =
1

ε
|∇um|2 χ[0≤um−km≤ε] a.e. in Q. Setting

Ψε :=
1

ε

∫ min(um,km+ε)

min(um,km)
(r1/m − k) dr,

we see that
(u− k)H′ε(um − km) · ∇um = ∇Ψε.
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This implies that the last term of (2.16) satisfies∫∫
Q
ψ ξ(u− k) V · ∇Hε(um − km) =

∫∫
Q
ξ(u− k)H′ε(um − km) V · ∇um

=

∫∫
Q
ψ ξ V · ∇Ψεdx

= −
∫∫

Q
ψ ∇ · (ξ V ) Ψε dx

→ 0, as ε→ 0.

See also that, by using Lebesgue’s dominated convergence Theorem, we have

lim sup
ε→0

∫∫
Q

(∫ u(t)

k
H+
ε (rm)dr

)
∂tψ ξ =

∫∫
Q

(u(t)− k)+ ∂tψ ξ.

Then, letting ε→ 0 in (2.16) and using the fact that sign+
0 (um−km) = sign+

0 (u−k), for any k ∈ IR, we
get (2.13). As to (2.14), it follows by using the fact that −u is also a solution of (1.2) with f replaced
by −f, and applying (2.13) to −u.

Proposition 2.2 (Kato’s inequality). If u1 and u2 satisfy (2.13) and (2.14) corresponding to f1 ∈
L1(Q) and f2 ∈ L1(Q) respectively, then

(2.22) ∂t(u1 − u2)+ −∆(um1 − um2 )+ +∇ ·
(
(u1 − u2)+ V

)
≤ (f1 − f2) sign+

0 (u1 − u2) in D′(Q).

Proof. The proof of this lemma is based on doubling and de-doubling variable techniques. Let us give
here briefly the arguments. To double the variables, we use first the fact that u1 = u1(t, x) satisfies
(2.13) with k = u1(s, y), we have

d

dt

∫
(u1(t, x)− u2(s, y))+ ζ dx+

∫
(∇x(um1 (t, x)− um2 (s, y))+ − (u1(t, x)− u2(s, y))+ V (x) · ∇xζ dx

+

∫
Ω
∇x · V u2(s, y)ζsign+

0 (u1(t, x)− u2(s, y)) dx ≤
∫
f1(t, x)sign+

0 (u1(t, x)− u2(s, y)) ζ dx

− lim sup
ε→0

1

ε

∫
[0≤um1 −um2 ≤ε]

|∇xum1 (t, x)|2 ζ dx.

Integrating with respect to y, we get

d

dt

∫ ∫
(u1(t, x)− u2(s, y))+ ζ +

∫ ∫
(∇x(um1 (t, x)− um2 (s, y))+ − (u1(t, x)− u2(s, y))+ V (x) · ∇xζ

+

∫ ∫
∇x · V u2(s, y)ζsign+

0 (u1(t, x)− u2(s, y)) ≤
∫ ∫

f1(t, x)sign+
0 (u1(t, x)− u2(s, y)) ζ

− lim sup
ε→0

1

ε

∫ ∫
[0≤um1 −um2 ≤ε]

|∇xum1 (t, x)|2 ζ.
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See that∫ ∫
∇y(um1 (t, x)− um2 (s, y))+ · ∇xζ dxdy = − lim

ε→0

∫ ∫
∇yum2 (s, y) · ∇xζ Hε(u

m
1 (t, x)− um2 (s, y)) dxdy

= − lim
ε→0

1

ε

∫ ∫
[0≤um1 −um2 ≤ε]

∇xum1 (t, x) · ∇yum2 (s, y) ζ dxdy,

so that, denoting by

u(t, s, x, y) = u1(t, x)− u2(s, y), and p(t, s, x, y) = um1 (t, x)− um2 (s, y),

we obtain

(2.23)

d

dt

∫ ∫
u(t, s, x, y)+ ζ dxdy +

∫ ∫ {
(∇x +∇y)p(t, s, x, y)− u(t, s, x, y)+ V (x)

}
· ∇xζ dxdy

+

∫ ∫
∇x · V u2(s, y) ζ sign+

0 u(t, s, x, y) dxdy ≤
∫ ∫

f1(t, x)sign+
0 u(t, s, x, y) ζ dxdy

− lim
ε→0

∫ ∫
∇xum1 (t, x) · ∇yum2 (s, y) ζ H ′ε(u

m
1 (t, x)− um2 (s, y)) dxdy

− lim sup
ε→0

1

ε

∫ ∫
[0≤um1 −um2 ≤ε]

|∇xum1 (t, x)|2 ζ dxdy.

On the other hand, using the fact that u2 = u2(s, y) satisfies (2.14) with k = u1(t, x), we have

d

ds

∫
u(t, s, x, y)+ ζ dy +

∫
∇yp(t, s, x, y)− u(t, s, x, y)+ V (y) · ∇yζ

−
∫

Ω
∇y · V u1(t, x)ζsign+

0 (u(t, s, x, y)) dy ≤ −
∫
f2(s, y)sign+

0 (u(t, s, x, y)) ζ dy

− lim sup
ε→0

1

ε

∫
[0≤um1 −um2 ≤ε]

‖∇yum2 (s, y)‖2 ζ dy.

Working in the same way for (2.23), we get

d

ds

∫ ∫
u(t, s, x, y)+ ζ dxdy +

∫ ∫ {
(∇x +∇y)p(t, s, x, y)− u(t, s, x, y)+ V (y)

}
· ∇yζ dxdy

−
∫ ∫
∇y · V (y) u1(t, x) ζ sign+

0 (u(t, s, x, y)) dxdy ≤ −
∫ ∫

f2(s, y)sign+
0 (u(t, s, x, y)) ζ dxdy

− lim
ε→0

1

ε

∫ ∫
[0≤um1 −um2 ≤ε]

∇xum1 (t, x) · ∇yum2 (s, y) ζ dxdy

− lim sup
ε→0

1

ε

∫ ∫
[0≤um1 −um2 ≤ε]

|∇yum2 (s, y)|2 ζ dy dxdy.

Adding both inequalities, and using the fact that

−(‖∇xu1(t, x)‖2 + ‖∇yu2(s, y)‖2 + 2∇xu1(t, x) · ∇yu2(x, y)) χ[0≤um1 −um2 ≤ε] ≤ 0, a.e. in Q2,
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we obtain

(2.24)

(
d

dt
+

d

ds

)∫ ∫
u(t, s, x, y)+ ζ dxdy +

∫ ∫
(∇x +∇y)p(t, s, x, y) · (∇x +∇y)ζ dxdy

−
∫ ∫

u(t, s, x, y)+ (V (x) · ∇xζ + V (y) · ∇yζ) dxdy

+

∫ ∫
(∇x · V (x) u2(s, y) dxdy −∇y · V (y) u1(t, x)) ζ sign+

0 (u(t, s, x, y)) dxdy

≤
∫ ∫

(f1(t, x)− f2(s, y))sign+
0 (u(t, s, x, y)) ζ dxdy

and then,

(2.25)

(
d

dt
+

d

ds

)∫ ∫
u(t, s, x, y)+ ζ dxdy +

∫ ∫
(∇x +∇y)p(t, s, x, y) · (∇x +∇y)ζ dxdy

−
∫ ∫

u(t, s, x, y)+ V (x) · (∇xζ +∇yζ) dxdy +

∫ ∫
u(t, s, x, y)+ (V (x)− V (y) · ∇yζ dxdy

+

∫ ∫
(∇x · V (x) u2(s, y)−∇y · V (y) u1(t, x)) ζ sign+

0 (u(t, s, x, y)) dxdy

≤
∫ ∫

(f1(t, x)− f2(s, y))sign+
0 (u(t, s, x, y)) ζ dxdy.

Now, we can de-double the variables t and s, as well as x and y, by taking as usual the sequence of
test functions

ψε(t, s) = ψ

(
t+ s

2

)
ρε

(
t− s

2

)
and ζλ(x, y) = ξ

(
x+ y

2

)
δλ

(
x− y

2

)
,

for any t, s ∈ (0, T ) and x, y ∈ Ω. Here ψ ∈ D(0, T ), ξ ∈ D(Ω), ρε and δλ are sequences of usual
mollifiers in IR and IRN respectively. See that(

d

dt
+

d

ds

)
ψε(t, s) = ρε

(
t− s

2

)
ψ̇

(
t+ s

2

)
and

(∇x +∇y)ζλ(x, y) = δλ

(
x− y

2

)
∇ξ
(
x+ y

2

)
Moreover, for any h ∈ L1((0, T )2 × Ω2) and Φ ∈ L1((0, T )2 × Ω2)N , we know that

• lim
λ→0

lim
ε→0

∫ T

0

∫ T

0

∫
Ω

∫
Ω
h(t, s, x, y) ζλ(x, y) ρε(t, s) =

∫ T

0

∫
Ω
h(t, t, x, x) ξ(x) ψ(t).

• lim
λ→0

lim
ε→0

∫ T

0

∫ T

0

∫
Ω

∫
Ω
h(t, s, x, y) ζλ(x, y)

(
d

dt
+

d

ds

)
ρε(t, s) =

∫ T

0

∫
Ω
h(t, t, x, x) ξ(x) ψ̇(t).

• lim
λ→0

lim
ε→0

∫ T

0

∫
Ω

∫
Ω

Φ(t, s, x, y) · (∇x +∇y)ζλ(x, y) ρε(t, s) =

∫ T

0

∫
Ω

Φ(t, t, x, x) · ∇ξ(x) ψ(t) dtdx.
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Moreover, we also know that

lim
λ→0

∫ T

0

∫
Ω

∫
Ω
h(t, x, y) (V (x)− V (y)) · ∇yζλ(x, y) ψ(t) dtdxdy

=

∫ T

0

∫
Ω
h(x, x)∇ · V (x) ξ(x) ψ(t) dtdx.

The proof of this result is more or less well known by now (one can see for instance a detailed proof in
[27]). So replacing ζ and ψ in (2.25) by ζλ and ψε resp., and, letting ε, λ→ 0, we get∫ T

0

∫
Ω

{
− (u1 − u2)+ ξ ψ̇ +∇(p1 − p2)+ · ∇ξ ψ − (u1 − u2)+ V · ∇ξ ψ

}
dtdx

≤
∫ T

0

∫
Ω

(f1 − f2) sign+
0 (u1 − u2) ξ ψ dtdx.

Thus
d

dt

∫
(u1 − u2)+ ξ dx+

∫
∇(um1 (t, x)− um2 (t, x))+ · ∇ξ dx−

∫
(u1 − u2)+ V · ∇ξ dx

≤
∫
κ(x)(f1 − f2) ξ dx.

Thus the result of the proposition.

The aim now is to process with the sequence of test function ξh given by (1.6) in Kato’s inequality
and let h→ 0, to cover (1.3).

Proof of Theorem 1.1. Let (u1, p1) and (u2, p2) be two couples of L∞(Q)× L2
(
0, T ;H1

0 (Ω)
)
satis-

fying (2.13) and (2.14) corresponding to f1 ∈ L1(Q) and f2 ∈ L1(Q) respectively, to prove (1.3) we see
that

d

dt

∫
Ω

(u1 − u2)+ dx−
∫

(f1 − f2) sign+
0 (u1 − u2) dx

= lim
h→0

d

dt

∫
Ω

(u1 − u2)+ ξh dx−
∫

(f1 − f2) sign+
0 (u1 − u2) ξh dx =: I(h),

in the sense of distribution in [0, T ). Taking ξh as a test function in (2.22) and using (1.8), we have

I(h) ≤ −
∫ (
∇(um1 − um2 )+ − (u1 − u2)+ V

)
· ∇ξh dx

≤
∫

(u1 − u2)+ V · ∇ξh dx.

Then, using the outpointing velocity vector field assumption (1.7), we get

lim
h→0

I(h) ≤ − lim
h→0

∫
(u1 − u2)+ V · νh(x) dx

≤ 0.

Thus (1.3). The rest of the theorem is a straightforward consequence of (1.3).
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3 Main estimates and existence proofs

3.1 Stationary problem

To prove Theorem 1.2, we consider the stationary problem associated with Euler-implicit discretization
of (1.2). That is

(3.1)
{
v − λ∆vm + λ∇ · (v V ) = f in Ω
v = 0 on ∂Ω,

where f ∈ L2(Ω) and λ > 0. Following Definition 1.1, a function v ∈ L1(Ω) is said to be a weak
solution of (3.1) if vm ∈ H1

0 (Ω) and

(3.2)
∫

Ω
v ξ + λ

∫
Ω
∇vm · ∇ξ − λ

∫
Ω
v V · ∇ξ =

∫
Ω
f ξ, for all ξ ∈ H1

0 (Ω).

Theorem 3.4. Assume V ∈W 1,2(Ω) and (∇ · V )− ∈ L∞(Ω). For f ∈ L2(Ω) and λ satisfying

(3.3) 0 < λ < 1/‖(∇ · V )−‖∞,

the problem (3.2) has a solution v that we denote by vm. Moreover, for any 1 ≤ q ≤ ∞, we have

(3.4) ‖vm‖q ≤


(

1− (q − 1)λ‖(∇ · V )−‖∞
)−1
‖f‖q, if 1 ≤ q <∞

(
1− λ ‖(∇ · V )−‖∞

)−1
‖f‖∞, if q =∞

and

(3.5)
(

1− λ ‖(∇ · V )−‖∞
)∫
|vm|m+1 dx+ λ

∫
|∇vmm|2 dx ≤

∫
f vmm dx.

Moreover, thanks to Theorem 1.1, we have

Corollary 3.1. Under the assumption of Theorem 3.4, if moreover V satisfies the outpointing condition
(1.1), the problem (3.1) has a unique solution. Moreover, if v1 and v2 are two solutions associated with
f1 ∈ L1(Ω) and f2 ∈ L1(Ω) respectively, then

‖(v1 − v2)+‖1 ≤ ‖(f1 − f2)+‖1

and
‖v1 − v2‖1 ≤ ‖f1 − f2‖1.

To prove Theorem 3.4, we proceed by regularization and compactness. For each ε > 0, we consider
βε a regular Lipschitz continuous function strictly increasing satisfying βε(0) = 0 and, as ε→ 0,

βε(r)→ r1/m, for any r ∈ IR.
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One can take, for instance, βε the regularization by convolution of the application r ∈ IR → r1/m.
Then, we consider the problem

(3.6)


v − λ∆p+ λ∇ · (v V ) = f
v = βε(p)

}
in Ω

p = 0 on ∂Ω.

Lemma 3.1. For any f ∈ L2(Ω) and ε > 0, the problem (3.6) has a solution vε, in the sense that
vε ∈ L2(Ω), pε := β−1

ε (uε) ∈ H1
0 (Ω), and

(3.7)
∫
vε ξ dx+ λ

∫
∇pε · ∇ξ dx− λ

∫
vε V · ∇ξ dx =

∫
f ξ dx,

for any ξ ∈ H1
0 (Ω). Moreover, for any λ satisfying (3.3) the solution vε satisfies the estimates

(3.8) ‖vε‖q ≤


(

1− (q − 1)λ‖(∇ · V )−‖∞
)−1
‖f‖q, if 1 ≤ q <∞

(
1− λ ‖(∇ · V )−‖∞

)−1
‖f‖∞, if q =∞

and

(3.9)
(

1− λ ‖(∇ · V )−‖∞
)∫

vε pε dx+ λ

∫
|∇pε|2 dx ≤

∫
f pε dx.

Proof. We can assume without loose of generality throughout the proof that λ = 1 and remove the
script ε in the notations of (vε, pε) and βε, along the proof. We consider H−1(Ω) the usual topological
dual space of H1

0 (Ω) and 〈., .〉 the associate dual bracket. See that the operator A : H1
0 (Ω)→ H−1(Ω),

given by

〈Ap, ξ〉 =

∫
β(p) ξ dx+

∫
∇p · ∇ξ dx−

∫
β(p) V · ∇ξ dx, for any ξ, p ∈ H1

0 (Ω),

is a bounded weakly continuous operator. Moreover, A is coercive. Indeed, for any p ∈ H1
0 (Ω), we

have

〈Ap, p〉 =

∫
β(p) p dx+

∫
|∇p|2 dx−

∫
β(p) V · ∇p dx

=

∫
β(p) p dx+

∫
|∇p|2 dx−

∫
V · ∇

(∫ p

0
β(r)dr

)
dx

=

∫
β(p) p dx+

∫
|∇p|2 dx+

∫
∇ · V

(∫ p

0
β(r)dr

)
dx

≥
∫
β(p) p dx+

∫
|∇p|2 dx−

∫
(∇ · V )−

2
pβ(p) dx

≥ 1

2

∫
β(p) p dx+

∫
|∇p|2 dx− 1

2

∫
(∇ · V )−

2
dx

≥
∫
|∇p|2 dx− 1

2

∫
(∇ · V )−

2
dx,
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where we use Young inequality. So, for any f ∈ H−1(Ω) the problem Ap = f has a solution p ∈ H1
0 (Ω).

Now, for each 1 < q <∞, taking vq−1 as a test function, and using the fact that

v∇(vq−1) =
q − 1

q
∇|v|q, a.e. in Ω

and
∇p · ∇(vq−1) ≥ 0,

we get ∫
|v|q dx ≤

∫
f vq−1 dx+ λ

q − 1

q

∫
V · ∇|v|q dx

≤
∫
fvq−1 dx− λq − 1

q

∫
∇ · V |v|q dx

≤
∫
fvq−1 dx+ λ

q − 1

q

∫
(∇ · V )− |v|q dx

≤ 1

q

∫
|f |q dx+

q − 1

q

∫
|v|q dx+ λ

q − 1

q

∥∥(∇ · V )−
∥∥
∞

∫
|v|q dx,

where we use again Young inequality. This implies that(
1− λ(q − 1) ‖(∇ · V )−‖∞

) ∫
|v|q dx ≤

∫
|f |q dx.

Thus (3.4). To prove (3.5), we take p as a test function, we obtain

λ

∫
|∇p|2 dx =

∫
fp dx−

∫
vp dx+ λ

∫
β(p)V · ∇p dx

=

∫
fp dx−

∫
vp dx+ λ

∫
V · ∇

(∫ p

0
β(r)dr

)
dx

=

∫
fp dx−

∫
vp dx− λ

∫
∇ · V

(∫ p

0
β(r)dr

)
dx

≤
∫
fp dx−

∫
vp dx+ λ

∫
(∇ · V )−

∫ p

0
β(r)dr dx

≤
∫
fp dx−

∫
vp dx+ ‖(∇ · V )−‖∞

∫
up dx

where we use the fact that
∫ p

0
β(r)dr ≤ pβ(p) = vp. Thus (3.5) for 1 < q <∞. For the case q ∈ {1,∞},

we take Hε(u− k) ∈ H1
0 (Ω), for a given k ≥ 0, as a test function in (3.6), where

Hε(r) =


1 if r ≥ 1
r/ε if |r| < ε
−1 if r ≤ −1 .
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Then, letting ε→ 0 and using the fact that ∇p ·∇Hε(u−k) ≥ 0 a.e. in Ω, it is not difficult to see that∫
(v − k)+ dx ≤

∫
(f − k(1 + λ∇ · V )) sign+(v − k) + λ lim

ε→0

∫
(v − k) V · ∇Hε(v − k)

≤
∫

(f − k(1 + λ∇ · V )) sign+(v − k),

where we use the fact that lim
ε→0

∫
(v − k) V · ∇Hε(v − k) = lim

ε→0

∫
(v − k) V · ∇(u− k)Hε

′(v − k) = 0.

In particular, this implies that∫
(v − k)+ dx ≤

∫
(f − k(1 + λ∇ · V )+.

So, taking

k =
‖f‖∞

1− λ‖(∇ · V )−‖∞
,

we have (f − k(1 + λ∇ · V )+ ≤ 0, and then v ≤ k. Working in the same way with Hε(−v + k) as a
test function, we obtain

v ≥ − ‖f‖∞
1− λ‖(∇ · V )−‖∞

.

Thus the result of the lemma for q =∞. The case q = 1 follows by Corollary 3.1.

Lemma 3.2. Under the assumption of Theorem 3.4, by taking a subsequence ε → 0 if necessary, we
have

(3.25) vε → v, in L2(Ω)-weak

and

(3.26) pε → vm, in H1
0 (Ω).

Moreover, v is a weak solution of (3.1).

Proof. Using Lemma 3.1 as well as Young and Poincaré inequalities, we see that the sequences vε and
pε are bounded in L2(Ω) and H1

0 (Ω), respectively. So, there exists a subsequence that we denote again
by vε and pε such that (3.25) is fulfilled and

(3.27) pε → vm, in H1
0 (Ω)-weak.

Letting ε→ 0 in (3.7), we obtain that v is a weak solution of (3.1). Let us prove that actually (3.27)
holds to be true strongly in H1

0 (Ω). Indeed, taking pε as a test function, we have

λ

∫
|∇pε|2 dx =

∫
(f − vε) pε dx+ λ

∫
V · ∇

(∫ pε

0
βε(r)dr

)
dx

=

∫
(f − vε) pε dx− λ

∫
∇ · V

∫ pε

0
βε(r)dr dx.
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Since
∫ r

0
βε(s)ds converges to

∫ r

0
β(s)ds, for any r ∈ IR, pε → vm a.e. in Ω and

∣∣∣∣∫ pε

0
βε(s) ds

∣∣∣∣ ≤ vε pε
which is bounded in L1(Ω) by (3.9), we have∫ pε

0
βε(s) ds→

∫ p

0
s1/m ds =

m

m+ 1
|v|m+1, in L1(Ω).

So, in one hand we have

lim
ε→0

λ

∫
|∇pε|2 dx =

∫
(f − v) p dx− λ m

m+ 1

∫
∇ · V |v|m+1 dx.

On the other, since v is a weak solution of (3.1), one sees easily that

λ

∫
|∇p|2 dx =

∫
(f − v) p dx− λ m

m+ 1

∫
∇ · V |v|m+1 dx ;

which implies that lim
ε→0

∫
|∇pε|2 dx =

∫
|∇p|2 dx. Combing this with the weak convergence of ∇pε, we

deduce the strong convergence (3.26).

Remark 4. One sees in the proof that the results of Lemma 3.2 remain to be true if one replace f in
(3.6) by a sequence of fε ∈ L2(Ω) and assumes that, as ε→ 0,

fε → f, in L2(Ω).

Proof of Theorem 3.4. The proof follows by Lemma 3.2. Moreover, the estimates hold to be true
by letting ε→ 0, in the estimate (3.8) and (3.9) for vε and pε.

3.2 Existence for the evolution problem

To study the evolution problem, we use Euler-implicit discretization scheme. For an arbitrary 0 < ε ≤
ε0, and n ∈ IN∗ being such that (n + 1)ε = T, we consider the sequence (ui, pi)i=0,...N given by the
ε−Euler implicit scheme associated with (1.2) :

(3.28)


ui+1 − ε∆pi+1 + ε∇ · (ui+1 V ) = ui + ε fi
pi+1 = umi+1

}
in Ω

pi+1 = 0 on ∂Ω,

i = 0, 1, ...n− 1,

where, for each i = 0, ...n− 1, fi is given by

fi =
1

ε

∫ (i+1)ε

iε
f(s) ds, a.e. in Ω.
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Now, for a given ε−time discretization 0 = t0 < t1 < t1 < ... < tn < tn+1 = T, satisfying ti+1 − ti ≤ ε,
we define the ε−approximate solution by

(3.29) uε :=
n−1∑
i=0

uiχ[ti,ti+1), and pε :=
n∑
i=1

piχ[ti,ti+1).

In order to use the results of the previous section and the general theory of evolution problem governed
by accretive operator (see for instance [6, 5]), we define the operator Am in L1(Ω), by µ ∈ Am(z) if
and only if µ, z ∈ L1(Ω) and z is a solution of the problem{

−∆zm +∇ · (z V ) = µ in Ω
z = 0 on ∂Ω,

in the sens that z ∈ L2(Ω), zm ∈ H1
0 (Ω) and∫

Ω
∇zm · ∇ξ −

∫
Ω
z V · ∇ξ =

∫
Ω
µ ξ, ∀ ξ ∈ H1

0 (Ω) ∩ L∞(Ω).

As a consequence of Theorem 1.1, we see that the operator Am is accretive in L1(Ω) ; i.e. (I+λAm)−1

is a contraction in L1(Ω), for small λ > 0 (cf. Appendix section). Moreover, thanks to Theorem 3.4,
R(I+λAm) ⊇ L2(Ω), for small 0 < λ < λ0 := 1/‖(∇·V )−‖∞, so that Am, the closure of Am in L1(Ω),
is m-accretive in L1(Ω) ; i.e. R(I+λAm) = L1(Ω), for any λ > 0. One sees easily that D(Am) = L1(Ω).
Furthermore, for any u0 ∈ L1(Ω), thanks to the general theory of nonlinear semi-group governed by
accretive operator, as ε→ 0, we have (see Appendix)

(3.30) uε → u, in C([0, T ), L1(Ω)),

and u is the so called ”mild solution” of the evolution problem

(3.31)


ut +Amu 3 f in (0, T )

u(0) = u0.

To accomplish the proof of existence for the problem (1.2), we prove that the mild solution u
satisfies all the conditions of Definition 1.1. More precisely, we prove the following result.

Proposition 3.3. Assume V ∈W 1,2(Ω), (∇ · V )− ∈ L∞(Ω) and V satisfies the outpointing condition
(1.1). For any u0 ∈ L2(Ω) and f ∈ L2(Q), the mild solution u of the problem (3.31) is the unique
solution of (1.2).

To prove this result, thanks to (3.30), it is enough to study moreover the limit of sequence pε given
by the ε−approximate solution.

Lemma 3.3. Let uε and pε be the ε−approximate solution given by (3.29). We have

1. For any q ∈ [1,∞], we have

(3.32) ‖uε(t)‖q ≤M ε
q , for any t ≥ 0,

19



M ε
q :=



(
‖u0‖q +

∫ T

0
‖fε(t)‖q dt

)
exp

(
(q − 1) ‖(∇ · V )−‖∞

)
if 1 ≤ q <∞

(
‖u0‖∞ +

∫ T

0
‖fε(t)‖∞ dt

)
exp

(
‖(∇ · V )−‖∞

)
if q =∞.

2. For each ε > 0, we have

(3.33)

1

m+ 1

∫
Ω
|uε(t)|m+1 +

∫ t

0

∫
Ω
|∇pε|2 ≤

∫ t

0

∫
Ω
fε pε dx+

∫ t

0

∫
(∇ · V )− pε uε dx

+
1

m+ 1

∫
Ω
|u0|m+1.

Proof. Thanks to Theorem 3.4, the sequence (ui)i=1,...n of solutions of (3.28) is well defined in L2(Ω)
and satisfies∫

Ω
ui+1 ξ + ε

∫
Ω
∇pi+1 · ∇ξ − ε

∫
Ω
ui+1 V · ∇ξ =

∫ (i+1)ε

iε

∫
Ω
fi ξ, for i = 1, ..., n− 1,

for any ξ ∈ H1
0 (Ω). Thanks to (3.4), for any 1 ≤ q ≤ ∞, we have

‖ui‖q ≤ ‖ui−1‖q + ε ‖fi‖q + ε (q − 1) ‖(∇ · V )−‖∞‖ui‖q.

By induction, this implies that, for any t ∈ [0, T ), we have

‖uε(t)‖q ≤ ‖u0‖q +

∫ T

0
‖fε(t)‖q dt+ (q − 1) ‖(∇ · V )−‖∞

∫ T

0
‖uε(t)‖q dt.

Using Gronwall Lemma, we deduce (3.32), for any 1 ≤ q < ∞. The proof for the case q = ∞ follows
in the same way by using (3.4) with q =∞. Now, using the fact that

(ui − ui−1) pi = (ui − ui−1)umi ≥
1

m+ 1

(
um+1
i − um+1

i−1

)
and ∫

ui V · ∇pi ≤
∫ ∫

(∇ · V )− pi ui,

we get

1

m+ 1

∫
Ω
|ui|m+1 + ε

∫
Ω
|∇pi|2 ≤ ε

∫
Ω
fi pi dx+ ε

∫
(∇ · V )− pi ui dx

+
1

m+ 1

∫
Ω
|ui−1|m+1.

Summing this identity for i = 1, ...., and using the definition of uε, pε and fε, we get (3.33).
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Proof of Proposition 3.3. Recall that we already know that uε → u in C([0, T );L1(Ω), as ε → 0.
Now, combining (3.32) and (3.33) with Poincaré and Young inequalities, one sees that

1

m+ 1

d

dt

∫
Ω
|uε|m+1 dx+

∫
Ω
|∇pε|2 dx ≤ C(N,Ω)

(∫
Ω
|fε|2 dx+ ‖(∇ · V )−‖∞ (M ε

2 )2

)
, in D′(0, T ).

This implies that pε is bounded in L2(0, T ;H1
0 (Ω)). This implies that

pε → um, in L2(0, T ;H1
0 (Ω))− weak, as ε→ 0.

Recall that taking

ũε(t) =
(t− ti)ui+1 − (t− ti+1)ui

ε
, for any t ∈ [ti, ti+1), i = 1, ...n,

we have

(3.37) ∂tũε −∆pε +∇ · (uε V ) = fε, in D′(Q).

Moreover, we know that ũε → u, in C([0, T ), L1(Ω)). So letting ε→ 0 in (3.37), we deduce that u is a
solution of (1.2). Letting ε→ 0 in (3.32) and (3.33), we get respectively (1.4) and (1.5).

Proof of Theorem 1.2. The proof follows by Proposition 3.3.

4 The limit as m→∞.

Since the solution of the problem (1.2) is the mild solution associated with the operator Am, we begin
by studying the L1− limit, as m → ∞, of the solution of the stationary problem 3.1. Formally, this
limiting problem is given by

(4.1)


v −∆p+∇ · (v V ) = f
v ∈ Sign(p)

}
in Ω

p = 0 on ∂Ω.

This is the stationary problem associated with the so called Hele-Shaw problem. Thanks to [28], for
any f ∈ L2(Ω), (4.1) has a unique solution (u, p) in the sense that (v, p) ∈ L∞(Ω)×H1

0 (Ω), v ∈ sign(p)
a.e. in Ω, and

(4.2)
∫

Ω
v ξ +

∫
Ω
∇p · ∇ξ −

∫
Ω
v V · ∇ξ =

∫
Ω
f ξ, for any ξ ∈ H1

0 (Ω).

First, by using the results of the previous section, we have
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Proposition 4.4. Under the assumptions of Theorem 3.4, let us consider vm the solution of (3.1). As
m→∞, we have

(4.3) vm → v, in L2(Ω)-weak,

(4.4) vmm → p, in H1
0 (Ω),

and (v, p) is the solution of (4.1).

Proof. Thanks to (3.4), there exists v ∈ H1
0 (Ω), such that (4.3) is fulfilled. Thanks to (3.5), we see

that the sequences pm is bounded in H1
0 (Ω), which implies that

(4.5) vmm → p, in H1
0 (Ω)-weak.

Using monotonicity arguments we see that v ∈ Sign(p) a.e. in Ω, and letting m → ∞ in (3.7), we
obtain that (u, p) satisfies (4.2). To prove the strong convergence of pm, we use the same argument of
the proof of Lemma 3.2. Indeed, taking pm as a test function in (3.2), we have

λ

∫
|∇pm|2 dx =

∫
(f − vm) pm dx+ λ

∫
∇ · V

(∫ pm

0
r

1
mdr

)
dx

=

∫
(f − vm) pm dx+ λ

m

m+ 1

∫
∇ · V vm pm dx.

Letting m→∞, and using (4.4) and (4.5), we see that

lim
m→∞

λ

∫
|∇pm|2 dx =

∫
(f − u) p dx+ λ

∫
∇ · V up

=

∫
(f − u) p dx+ λ

∫
∇ · V |p|.

We know that (u, p) is a solution of (4.1), so one sees easily that

λ

∫
|∇p|2 dx =

∫
(f − u) p dx+ λ

∫
∇ · V |p|,

so that
lim
m→∞

λ

∫
|∇pm|2 dx = λ

∫
|∇p|2 dx.

Thus the strong convergence of ∇pm.

For the strong convergence of vm, we need to use the assumption (1.10).

Theorem 4.5. Under the assumptions of Theorem 4.6 ; i.e. V ∈ W 1,2(Ω), ∇ · V ∈ L∞(Ω) and
satisfies (1.10), for any 0 < λ < λV , the convergence (4.3) holds to be true strongly in L1(Ω). Here

λV :=
∑
i,k

‖∂xiVk‖∞.
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Corollary 4.2. Under the assumptions of Theorem 4.5, the operator Am converges to A in the sense
of resolvent in L1(Ω), where A is defined by : µ ∈ A(z) if and only if µ, z ∈ L1(Ω) and z is a solution
of the problem 

−∆p+∇ · (z V ) = µ in Ω

z ∈ sign(p)

p = 0 on ∂Ω,

in the sense that z ∈ L∞(Ω), ∃ p ∈ H1
0 (Ω) such that p ∈ H1

0 (Ω), u ∈ sign(p) a.e. in Ω and∫
Ω
∇p · ∇ξ −

∫
Ω
z V · ∇ξ =

∫
Ω
µ ξ, ∀ ξ ∈ H1

0 (Ω) ∩ L∞(Ω).

Moreover, we have
D(A) =

{
z ∈ L∞(Ω) : |z| ≤ 1 a.e. in Ω

}
.

The main element to prove Theorem 4.5 is BVloc-estimates on vm. Recall that a given function
u ∈ L1(Ω) is said to be of bounded variation if and only if, for each i = 1, ...N,

TVi(u,Ω) := sup

{∫
Ω
u ∂xiξ dx : ξ ∈ C1

c (Ω) and ‖ξ‖∞ ≤ 1

}
<∞,

here C1
c (Ω) denotes the set of C1−function compactly supported in Ω. More generally a function is

locally of bounded variation in a domain Ω if and only if for any open set ω ⊂⊂ Ω, TVi(u, ω) < ∞
for any i = 1, ..., N. In general a function locally of bounded variation (as well as function of bounded
variation) in Ω, may not be differentiable, but by the Riesz representation theorem, their partial
derivatives in the sense of distributions are Borel measure in Ω. This gives rise to the definition of the
vector space of functions of bounded variation in Ω, usually denoted by BV (Ω), as the set of u ∈ L1(Ω)
for which there are Radon measures µ1, ..., µN with finite total mass in Ω such that∫

Ω
u ∂xiξ dx = −

∫
Ω
ξ dµi, for any ξ ∈ Cc(Ω), for i = 1, ..., N.

Without abusing we’ll continue to point out the measures µi by ∂xiv anyway, and by |∂xiv| the total
variation of µi. Moreover, we’ll use as usual Du = (∂x1u, ..., ∂xNu) the vector valued Radon measure
pointing out the gradient of any function u ∈ BV (Ω), and |Du| indicates the total variation measure
of u. In particular, for any open set ω ⊂⊂ Ω, TVi(u, ω) = |∂xiv|(ω) <∞, and the total variation of the
function u in ω is finite too ; i.e.

‖Du‖(ω) = sup

{∫
Ω
u∇ξ dx : ξ ∈ C1

c (ω) and ‖ξ‖∞ ≤ 1

}
<∞.

At last, let us remind the reader here the well known compactness result for functions of bounded
variation : given a sequence un of functions in BVloc(Ω) such that, for any open set ω ⊂⊂ Ω, we have

sup
n

{∫
ω
|un| dx+ |Dun|(ω)

}
<∞,
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there exists a subsequence that we denote again by un which converges in L1
loc(Ω) to a function

u ∈ BVloc(Ω). Moreover, for any compactly supported continuous function 0 ≤ ξ, the limit u satisfies∫
ξ |∂xiu| ≤ lim inf

n→∞

∫
ξ |∂xiun|,

for any i = 1, ...N, and ∫
ξ |Du| ≤ lim inf

n→∞

∫
ξ |Dun|.

Theorem 4.6. Assume f ∈ BVloc(Ω), V ∈ W 1,∞(Ω)N , ∇ · V ∈ W 1,2
loc (Ω) and satisfies (1.10). Let vm

be the solution of (3.1). For any 0 < λ < 1/λV , vm ∈ BVloc(Ω). Moreover, for any 0 < h < h0, we
have

(4.10)
(1− λλV )

N∑
i=1

∫
ξh d |∂xiv| ≤ λ

N∑
i=1

∫
(∆ξh)+ |∂xip| dx+

N∑
i=1

∫
ξh d |∂xif |

+λ
N∑
i=1

∫
ξh |v| |∂xi(∇ · V )| dx.

To prove this result we use again the regularized problem (3.6) and we let ε→ 0.

Lemma 4.4. Under the assumptions of Theorem 4.6, let us consider vε be the solution of (3.6) given
by Lemma 3.1. For each i = 1, ..N, we have

(4.11) |∂xivε| − λ
N∑
k=1

|∂xkvε|
N∑
k=1

|∂xiVk| − λ∆|∂xipε|+ λ∇ · (|∂xivε| V )

≤ |∂xifε|+ λ |vε| |∂xi(∇ · V ))| in D′(Ω).

Proof. Assume right away without loose of generality that λ = 1 and remove the script ε in the
notations of vε, pε and βε, throughout the proof. Recall that (u, p) satisfies

v −∆p = f − (∇v · V + v∇ · V ) in D′(Ω).

Since p ∈ H1(Ω), v = β(p) ∈ H1(Ω), V ∈ L∞(Ω), ∇ · V ∈ L∞(Ω) and f ∈ L2(Ω), ∆p ∈ L2(Ω) and
then u, p ∈ H2(Ω). So, for each i = 1, ...N, we see that the partial derivatives ∂xiv and ∂xip satisfy
the following equation

(4.12) ∂xiv −∆∂xip+∇ · (∂xiv V ) = ∂xif − (∇v · ∂xiV + v ∂xi(∇ · V )), in D′(Ω).

For a given ξ ∈ C2
c (Ω), taking ξHε(∂xiv) as a test function in (4.12), we obtain

(4.13)

∫ (
∂xiv ξHε(∂xiv) +∇∂xip · ∇(ξHε(∂xiv)

)
dx−

∫
∂xiv V · ∇(ξHε(∂xiv)) dx

=

∫
∂xif ξHε(∂xiv) dx−

∫
(∇v · ∂xiV + v ∂xi(∇ · V )) ξHε(∂xiv) dx.
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To pass to the limit as ε→ 0, we see first that

(4.14) H ′ε(∂xiv) ∂xiv =
1

ε
∂xiv χ[|∂xivε|≤ε] → 0, in Lq(Ω), for any q ≥ 1.

So, the last term of the first part of (4.13) satisfies

lim
ε→0

∫
∂xiv V · ∇(ξHε(∂xiv)) dx =

∫
|∂xiv| V · ∇ξ dx+ lim

ε→0

∫
∂xiv ∇∂xiv · V H ′ε(∂xiv) ξ dx

=

∫
|∂xiu| V · ∇ξ,

On the other hand, we see that∫
∇∂xip · ∇(ξHε(∂xiv)) dx =

∫
Hε(∂xiv)∇∂xip · ∇ξ dx+

∫
ξ ∇∂xip · ∇Hε(∂xiv) dx.

Since sign0(∂xiv) = sign0(∂xip), the first term satisfies

lim
ε→0

∫
Hε(∂xiv)∇∂xip · ∇ξ dx =

∫
|∂xip|∆ξ dx.

As to the second term, we have

lim
ε→0

∫
ξ ∇∂xip · ∇Hε(∂xiv) dx = lim

ε→0

∫
ξ H ′ε(∂xiv)∇∂xip · ∇∂xiv dx

= lim
ε→0

∫
ξ H ′ε(∂xiv)∇(β′(u)∂xiv) · ∇∂xiv dx

= lim
ε→0

∫
ξ H ′ε(∂xiv) β′(u) ‖∇∂xiv‖2 dx

+ lim
ε→0

∫
ξ H ′ε(∂xiv) ∂xiv β

′′(v)∇v · ∇∂xiv dx

≥ lim
ε→0

∫
ξ H ′ε(∂xiv) ∂xiv β

′′(v)∇v · ∇∂xiv dx

≥ 0,

where we use again (4.14). So, letting ε → 0 in (4.13) and using again the fact that sign0(∂xiv) =
sign0(∂xip), we get

|∂xiv| −∆|∂xip|+∇ · (|∂xiv| V ) ≤ sign0(∂xiv)∂xif − (∇v · ∂xiV

+v ∂xi(∇ · V )) sign0(∂xiv) in D′(Ω)

Coming back with λ > 0 in the formula and using the fact that

|∇v · ∂xiV | ≤
∑
k

|∂xkv|
∑
k

|∂xiVk|,

the result of the lemma follows.
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Proof of Theorem 4.6. Under the assumptions of Theorem 4.6, for any ε > 0, let us consider fε a
regularization of f satisfying fε → f in L1(Ω) and∫

ξ |∂xifε| dx→
∫
ξ d |∂xif |, for any ξ ∈ Cc(Ω) and i = 1, ...N.

Then, let us consider vε be the solution of the problem (3.1), where we replace f by the regularization
fε. Thanks to Lemma 4.4, let us remind that for any 0 ≤ ξ ∈ C2

c (Ω), we have∫
|∂xivε| ξ dx− λ

∫ N∑
k=1

|∂xiVk|
N∑
k=1

|∂xkvε| ξ dx− λ
∫
|vε| |∂xi(∇ · V )| ξ dx ≤ λ

N∑
k=1

∫
|∂xipε| (∆ξ)+ dx

+

∫
|∂xifε| ξ dx− λ

∫
|∂xivε| V · ∇ ξ dx, for any i = 1, ...N.

Now, taking ξ = ξh and using (1.10), we see that the last term satisfies∫
|∂xivε| V · ∇ξh dx =

∫
Ω\Ωh

|∂xivε| V · ∇ξh dx

= −
∫

Ω\Ωh

|∂xivε| V · νh dx

≤ 0

so that ∫
|∂xiv| ξh dx− λ

∑
k

|∂xiVk|
∫ ∑

k

|∂xkv| ξh dx ≤ λ
∑
k

∫
|∂xip| (∆ξh)+ dx

+

∫
|∂xif | ξh dx+ λ

∫
|v | |∂xi(∇ · V )| ξh dx, for any i = 1, ...N.

Summing up, for i = 1, ...N, and using the definition of λV , we deduce that∑
i

∫
|∂xivε| ξh dx− λλV

∑
k

∫
|∂xkvε| ξh dx ≤ λ

∑
i

∫
(∆ξh)+ |∂xipε| dx

+

∫ ∑
i

|∂xifε| ξh dx+ λ

∫
|vε|

∑
i

|∂xi(∇ · V )| ξh dx,

and then the corresponding property (4.10) follows for vε. Thanks to (3.4) and (3.5), we know that

vε and ∂xipε are bounded in L2(Ω). This implies that, for any ω ⊂⊂ Ω,
∑
i

∫
ω
|∂xivε| dx is bounded.

So, vε is bounded in BVloc(Ω). Combining this with the L1−bound (3.4), it implies in particular,
taking a subsequence if necessary, the convergence in (3.25) holds to be true also in L1(Ω) and then
v ∈ BVloc(Ω). At last, letting ε→∞ in (4.11) and, using moreover (3.26) and the lower semi-continuity
of variation measures |∂xivε|, we deduce (4.10) for the limit v, which is the solution of the problem
(3.1) by Lemma 3.2.

Remark 5. In connection with Remark 3, taking ξ = ωh given by (1.12) instead of ξh, the results
of Theorem 4.6 as well as the results of all this section remains to be true. Thus we can replace the
assumption (1.10) by the general one (1.12).
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Proof of Theorem 4.5. Recall that under the assumptions of the theorem, the BVloc estimate (4.10)
is fulfilled for vm. Since the constants C in (3.5) does not depend on m, this implies that um is bounded
in BV (ω). Since ω is arbitrary, we deduce in particular that the convergence in (4.3) holds to be true
also in L1(Ω), v ∈ BVloc(Ω), and (4.10) is fulfilled.

Proof of Theorem 1.3. Thanks to Corollary 4.2, we have

um → u, in C([0, T );L1(Ω)).

On the other hand, thanks to (3.4) and (3.5), it is clear that pm is bounded in L2(0, T ;H1
0 (Ω)). So,

there exists p ∈ L2(0, T ;H1
0 (Ω)), such that, taking a subsequence if necessary, we have

umm → p, in L2(0, T ;H1
0 (Ω))− weak.

Then using monotonicity arguments we have u ∈ sign(p) a.e. in Q, and letting m → ∞, in the weak
formulation we deduce that the couple (u, p) satisfies (1.11). Thus the results of the theorem.

5 Reaction case

Let us consider now the reaction-diffusion porous medium equation with linear drift

(5.24)


∂u

∂t
−∆um +∇ · (u V ) = g(., u) in Q

u = 0 on Σ

u(0) = u0 in Ω,

Thanks to Theorem 6.10 and Theorem 6.11, we assume that g : Q × IR → IR is a Carathéodory
application ; i.e. continuous in r ∈ IR and measurable in (t, x) ∈ Q, and satisfies moreover the
following assumptions :

(G1) g(., r) ∈ L2(Q) for any r ∈ IR.

(G2) There exists 0 ≤ θ, such that

∂g

∂r
(t, x, .) ≤ θ, in D′(IR), for a.e. (t, x) ∈ Q.

(G3) There exists ω1, ω2 ∈W 1,∞(0, T ) such that u0 ≤ ω2(0) (resp. ω1(0) ≤ u0), for any t ∈ (0, T ),

ω̇2(t) + ω2(t)∇ · V ≥ g(., ω2(t)) a.e. in Ω

(rep. ω̇1(t) + ω1(t)∇ · V ≤ g(., ω1(t)), a.e. in Ω).

27



Remark 6. On sees in particular that (G2) implies that, for any a, b ∈ IR, we have

sign+
0 (b− a) (g(t, x, b)− g(t, x, a)) ≤ θ (b− a)+, for a.e. (t, x) ∈ Q.

and then, for any r ∈ [−M,M ], we have

(5.25) −g−(.,M)− θ (M − r) ≤ g(., r) ≤ g+(.,−M) + θ (M + r), a.e. in Q, .

Theorem 5.7. Assume V ∈W 1,2(Ω), ∇ · V ∈ L∞(Ω) and V satisfies the outpointing condition (1.1).
Under the assumption (G1), (G2) and (G3), for any u0 ∈ L2(Ω), the problem (5.24) has a unique weak
solution um in the sense of Definition 1.1 with f = g(., u). Moreover, we have

1. u is the unique mild solution of the Cauchy problem (3.31) with f(.) = g(., u(.)) a.e. in Q.

2. for any 0 ≤ t < T, ω1(t) ≤ u(t) ≤ ω2(t) a.e. in Ω.

Corollary 5.3. Under the assumptions of Theorem 5.7, assume moreover that 0 ≤ u0 a.e. in Ω, and

(G4) 0 ≤ g(., 0) a.e. in Q.

then the solution of (5.24) satisfies

0 ≤ u(t) ≤ ω2(t), a.e. in Ω, for any t ∈ (0, T ).

Proof of Theorem 5.7. Let F : [0, T )× L1(Ω)→ L1(Ω) be given by

F (t, z(.)) = g(t, ., (z(.) ∨ (−M)) ∧M) a.e. in Ω, for any (t, z) ∈ [0, T )× L1(Ω),

where M := max(‖ω1‖∞, ‖ω2‖∞). Thanks to Remark 6, one sees that F satisfies all the assumptions
of Theorem 6.10. Then, thanks to Theorem 6.9, we consider u ∈ C([0, T ), L1(Ω)) the mild solution of
the evolution problem 

ut +Amu 3 F (., u) in (0, T )

u(0) = u0.

Thanks to (5.25), it is clear that F (., u) ∈ L2(Q), so that, using Proposition 3.3, we can deduce that
u is a weak solution of (1.2). The uniqueness follows from the equivalence between weak solution and
mild solution as well as the uniqueness result of Theorem 6.10. To end up the proof, it is enough to
show that ω1(t) ≤ u(t) ≤ ω2(t) a.e. in Ω, for any 0 ≤ t < T. Indeed, in particular this implies that
F (t, u(t)) = g(t, ., u(t)). To this aim, we use Theorem 1.1 with the the fact that ω2 is a weak solution
of (1.2) with f = ω̇2 + ω2 ∇ · V , to see that

d

dt

∫
(u− ω2)+ dx ≤

∫
[u≥ω2]

(g(., u)− ω̇2 − ω2∇ · V ) dx

≤
∫

[u≥ω2]
(g(., u)− g(., ω2)) dx

≤ θ

∫
(u(t)− ω2)+ dx.
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Applying Gronwall and using the fact that u(0) ≤ ω2(0), we obtain u(t) ≤ ω2 a.e. in Q. The proof of
u ≥ ω1 in Q follows in the same way by proving that

d

dt

∫
(ω1 − u)+ ≤ θ

∫
(ω1 − u)+.

Thus the results of the theorem.

Now, for the limit of the solution of (5.24), we have the following result.

Theorem 5.8. Assume V ∈W 1,2(Ω), ∇·V ∈ L∞(Ω) and V satisfies the outpointing condition (1.10).
Let gm be a sequence of Carathéodory applications satisfying (G1), (G2) and (G3)with θ independent
of m. For any u0m ∈ L2(Ω) being a sequence of initial data let um be the sequence of corresponding
solution of (5.24). If

(5.29) gm(., r)→ g(., r), in L1(Q), for any r ∈ IR,

and

u0m → u0, in L1(Ω), and |u0| ≤ 1 a.e. in Ω,

then, we have

1. um → u in C([0, T ), L1(Ω)

2. umm → p in L2(0, T ;H1
0 (Ω))-weak

3. (u, p) is the solution of the Hele-Shaw problem



∂u

∂t
−∆p+∇ · (u V ) = g(., u)

u ∈ sign(p

}
in Q

u = 0 on Σ

u(0) = u0 in Ω,

in the sense that (u, p) is the solution of (1.9) with f(.) = g(., u(.)) a.e. in Q satisfying u(0) = u0.

Proof. To begin with we prove compactness of um in C([0, T );L1(Ω)). We know that um is the mild
solution of the sequence of Cauchy problems

ut +Amu 3 Fm(., u) in (0, T )

u(0) = u0m,
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where, for a.e. t ∈ (0, T ), Fm(t, z) = gm(t, ., z(.)) ∨ (−M)) ∧M)), a.e. in Ω, for any z ∈ L1(Ω), and

M := max(‖ω1‖∞, ‖ω2‖∞).

Thanks to (5.25), one sees that Fm satisfies all the assumptions of Theorem 6.11. This implies, by
Theorem 6.11, that

(5.30) um → u, in C([0, T );L1(Ω)), as m→∞.

Thus the compactness of um Remember that um is a weak solution of

∂u

∂t
−∆um +∇ · (u V ) = fm in Q := (0, T )× Ω

u = 0 on Σ := (0, T )× ∂Ω

u(0) = u0m in Ω.

with fm := g(., um). Using again (5.25), (5.29) and (5.30), we have

fm → g(., u) in L1(Q), as m→∞.

So, by Corollary 4.2 and Theorem 6.11, we deduce that u is a solution of (1.4) and p is given by the
limit of umm in L2(0, T ;H1

0 (Ω))-weak. At last the uniqueness follows from the results of the recent paper
[27].

6 Appendix

6.1 Reminder on evolution problem governed by accretive operator

Our aim here is to remind the reader on some basic tools on L1−nonlinear semi-group theory. We are
interested in PDE which can be be written in the following form

(6.1)


du

dt
+Bu 3 f in (0, T )

u(0) = u0,

where B is a possibly multivalued operator defined on L1(Ω) by its graph

B =
{

(x, y) ∈ L1(Ω)× L1(Ω) : y ∈ Bx
}
,

f ∈ L1(0, T ;L1(Ω)) and u0 ∈ L1(Ω). An operator B is said to be accretif if and only if the operator
Jλ := (I + λ B)−1 defines a contraction in L1(Ω), for any λ > 0 ; i.e. if for i = 1, 2, (fi − ui) ∈ λBui,
then ‖u1 − u2‖1 ≤ ‖f1 − f2‖1.
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To study the evolution problem (6.1), the main ingredient is to use the operator Jλ, through the
Euler-Implicit time discretization scheme. For an arbitrary 0 < ε ≤ ε0, and n ∈ IN∗ be such that
(n+ 1)ε = T, we consider the sequence of (ui, pi)i=0,...n given by :

ui + εBui 3 εfi + ui−1, for i = 1, ...n,

where, for each i = 0, ...n− 1, fi is given by

fi =
1

ε

∫ (i+1)ε

iε
f(s) ds, a.e. in Ω.

Then, for a given ε−time discretization 0 = t0 < t1 < t1 < ... < tn < tn+1 = T, satisfying ti+1− ti = ε,
we define the ε−approximate solution

uε :=
n−1∑
i=0

uiχ[ti,ti+1).

Moreover, we denote by ũε its linear interpolate given by

ũε(t) =
n−1∑
i=0

(t− ti)ui+1 − (t− ti+1)ui
ti+1 − ti

χ[ti,ti+1)(t), for any t ∈ [0, T ).

In particular, one sees that uε, ũε and fε satisfies the following ε−approximate dynamic

dũε
dt

+Buε 3 fε, in (0, T ).

The main goal afterwards is to let ε→ 0, to cover the ”natural” solution of the Cauchy problem (6.1).
The following theorem known as Crandall-Liggett theorem (at least in the case where f ≡ 0, cf. [19])
pictures the limit of uε and ũε.

Theorem 6.9. Let B be an accretive operator in L1(Ω) and u0 ∈ D(B). If for each ε > 0, the
ε−approximate solution uε is well defined, then there exists a unique u ∈ C([0, T ), L1(Ω)) such that
u(0) = u0,

uε → u and ũε → u in C([0, T ), L1(Ω)), as ε→ 0.

The function u is called the mild solution of the evolution problem (6.1). Moreover, if u1 and u2 are
two mild solutions associated with f1 and f2, then there exists κ ∈ L∞(Ω), such that κ ∈ sign(u1 − u2)
a.e. in Q, and

d

dt
‖u1 − u2‖1 ≤

∫
[u1=u2]

|f1 − f2| dx+

∫
[u1 6=u2]

(f1 − f2) sign0(u1 − u2), in D′(0, T ).

On sees that this theorem figures out in a natural way a solution to the Cauchy problem (6.1) to
settle existence and uniqueness questions for the associate PDE. However, in general we do not know
in which sense the limit u satisfies the concluding PDE ; this is connected to the regularity of u as well
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as to the compactness of
dũε
dt
. We refer interested readers to [5] and [6] for more developments and

examples in this direction. One can see also the book [14] in the case of Hilbert space, for which the
concept of m-accretive operator is reappointed by maximal monotone graph notion.

One sees that besides the accretivity (monotinicity in the case of Hilbert space) the well posedness
for the ”generic” associate stationary problem

u+ λ Bu 3 g, for a given g

is first need. Thereby, a sufficient condition for the results of Theorem 6.9 is given by the so called
range condition

R(I + λB) = L1(Ω), for small λ > 0.

Indeed, in this case Euler-Implicit time discretization scheme is well pose for any i = 0, ...n − 1, and
the ε−approximate solution is well defined (for small ε > 0). Then the convergence to unique mild
solution u follows by accretivity (monotinicity in the case of Hilbert space).

In particular, Theorem 6.9 enables to associate to each accretif operator B satisfying the range
condition a nonlinear semi-group of contraction in L1(Ω). It is given by Crandall-Ligget exponential
formula

e−tBu0 = L1 − lim

(
I +

t

n
B

)−n
u0, for any u0 ∈ D(B).

In other words the mild solution of (6.1) with f ≡ 0 is given by e−tBu0.

The attendance of a reaction in nonlinear PDE hints to study evolution problem of the type

(6.2)


du

dt
+Bu 3 F (., u) in (0, T )

u(0) = u0,

where F : (0, T ) × L1(Ω) → L1(Ω), is assumed to be Carathéodory, i.e. F (t, z) is measurable in
t ∈ (0, T ) and continuous in z ∈ L1(Ω). To solve the evolution problem (6.2) in the framework of
ε−approximate/mild solution, we say that u ∈ C([0, T );L1(Ω)) is a mild solution of (6.2) if and only
if u is a mild solution of (6.1) with f(t) = F (t, u(t)) for a.e. t ∈ (0, T ). Existence and uniqueness are
more or less well known in the case where F (t, r) = f(t) +F0(r), with f(t) ∈ L1(Ω), for a.e. t ∈ [0, T ),
and F0 a Lipschitz continuous function in IR. The following theorems set up general assumptions on
F to ensure existence and uniqueness of mild solution for (6.2), as well as continous dependence with
respect to u0 and F. We refer the readers to [10] for the detailed of proofs in abstract Banach spaces.

To call back these results, we assume moreover that F satisfies the following assumptions :

(F1) There exists k ∈ L1
loc(0, T ) such that∫

(F (t, z)− F (t, ẑ)) sign0(z − ẑ) dx ≤ k(t) ‖z − ẑ‖1, a.e. t ∈ (0, T ),

for every z, ẑ ∈ D(B).
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(F2) There exists c ∈ L1
loc(0, T ) such that

‖F (t, z)‖1 ≤ c(t), a.e. t ∈ (0, T )

for every z ∈ D(B).

In particular, one sees that under these assumptions, F (., u) ∈ L1
loc(0, T ;L1(Ω)) for any u ∈

C([0, T );L1(Ω)).

Theorem 6.10. (cf. [10]) If B be an accretive operator in L1(Ω) such that Jλ well defined in a dense
subset of L1(Ω), then , for any u0 ∈ D(B) there exists a unique mild solution u of (6.2) ; i.e. u is the
unique function in C([0, T );X), s.t. u is the unique mild solution of

du

dt
+Bu 3 f in (0, T )

u(0) = u0,

with f(t) = F (t, u(t)) a.e. t ∈ (0, T ).

Another important results concerns the continuous dependence of the solution with respect to the
operator B as well to the data fn and u0n is given in the following theorem. The proof may be found
in [10].

Theorem 6.11. (cf. [10]) For m = 1, 2, ..., let Bm be an accretive operators in L1(Ω) satisfying the
range condition and Fm : (0, T ) × D(Bm) → L1(Ω) a Carathéodory applications satisfying (F1) and
(F2) with k and c independent of m. For each m = 1, 2, ... we consider u0m ∈ D(Bm) and um the mild
solution of the evolution problem 

du

dt
+Bmu 3 fm in (0, T )

u(0) = u0m,

with fm = Fm(., u). If, there exists an accretive operators B in L1(Ω) and F : (0, T )×D(B)→ L1(Ω)
such that

a) (I + λBm)−1 → (I + λB)−1 in L1(Ω), for any 0 < λ < λ0

b) Fm(t, zm) → F (t, z) in L1(Ω), for a.e. t ∈ (0, T ), and any zm ∈ D(Bm) such that lim
m→∞

zm =

z ∈ D(B).

c) there exists u0 ∈ D(B), such that u0m → u0,
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then

um → u, in C([0, T ), L1(Ω)),

and u is the unique mild solution of
du

dt
+Bu 3 F (., u) in (0, T )

u(0) = u0.
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