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Introduction

Supply vessel planning (SVP) is one of the most important parts in upstream offshore logistics in order to make sure that all needed installations are sent at the right time (Kisialiou et al., 2018a). A basic SVP problem refers to a system that includes one onshore base, some special supply vessels, and final customers in upstream [START_REF] Kisialiou | The periodic supply vessel planning problem with flexible departure times and coupled vessels[END_REF]. Upstream is one of the critical parts of an offshore oil and gas supply chain. In order to produce oil and gas in the sea continuously, materials, equipment, and other consumables should be sent to offshore units. Supply vessels, which are very costly, are the only vessels to send cargoes to offshore units and return backloads to onshore bases. A basic SVP model is aimed to determine the number of supply vessels and related voyages to satisfy the demands of final customers. In this model, the total cost of the system that contains routing and supply vessels costs is minimized [START_REF] Halvorsen-Weare | Optimal fleet composition and periodic routing of offshore supply vessels[END_REF]. Figure 1 shows the basic SVP model. 

Review of the literature

For the first time, the basic SVP model was presented by [START_REF] Fagerholt | Optimal policies for maintaining a supply service in the Norwegian Sea[END_REF] during a project, which was requested by Statoil Company in the Norwegian Sea. The aim of the study was to analyze the effects of having some or all offshore units closed during night on the total cost. The results showed that the company could save about seven million dollars during a year by implementing this method. In the other study in the Norwegian oil and gas industry by [START_REF] Aas | Routing of supply vessels to petroleum installations[END_REF], the effects of limitations in offshore unit's capacity were investigated. A mixed-integer linear programming (MILP) model was presented and tested for different real-life cases. [START_REF] Gribkovskaia | A tabu search heuristic for a routing problem arising in servicing of offshore oil and gas platforms[END_REF] presented a new SVP model by considering pickups, deliveries, and backloads. The purpose of the model is to minimize the total cost of chartering supply vessels and sailing distances, while the needed cargoes of offshore units are supplied. In their model, supply vessels must start and finish their voyages from the same onshore base. A tabu search (TS) algorithm was introduced for large cases. [START_REF] Iachan | A Brazilian experience: 40 years using operations research at Petrobras[END_REF] presented a new model of a fleet sizing mix vehicle routing problem (FSMVRP) for special supply vessels. Simulation and operations research were used in this study. The model was implemented in Petrobras, which is the biggest Brazilian oil company.

A genetic algorithm (GA) was used to solve it. [START_REF] Aas | The role of supply vessels in offshore logistics[END_REF] mentioned the role of supply vessels as the highest cost element in upstream logistics. Loading and unloading capabilities and capacities of supply vessels were mentioned as the most important features in their model. [START_REF] Shyshou | A simulation study of the fleet sizing problem arising in offshore anchor handling operations[END_REF] presented a fleet sizing model for anchor handling operations, and used a simulation model to determine the optimal fleets, which should be chartered for a long time to manage future operations. Halvorsen-Weare and [START_REF] Halvorsen-Weare | Robust supply vessel planning[END_REF] 3 voyage-based approach to find the optimal fleet composition of supply vessels, related weekly voyages, and schedules in the Norwegian Sea. They illustrated the application of the model by studying a case. Furthermore, a what-if analysis to find the possibility of using one less supply vessel was utilized.

In order to solve large instances of a periodic SVP problem, a heuristic adaptive large neighborhood search (ALNS) was developed by [START_REF] Shyshou | A large neighbourhood search heuristic for a periodic supply vessel planning problem arising in offshore oil and gas operations[END_REF]. [START_REF] Norlund | Supply vessel planning under cost, environment and robustness considerations[END_REF] applied a simulation-optimization method by considering the speed of supply vessels as a new parameter. [START_REF] Christiansen | Operational planning of routes and schedules for a fleet of fuel supply vessels[END_REF] considered a real-case of the FSMVRP for fuel supply vessels in a port. They used arc-flow and path-flow models to formulate the problem. The results of the path-flow model were better than the results of the arc-flow model. [START_REF] Cuesta | Vessel routing with pickups and deliveries: an application to the supply of offshore oil platforms[END_REF] presented a new vehicle routing problem (VRP) with selective pickups and deliveries (VRPSPD) in an offshore oil and gas industry. Furthermore, a multi-VRP with pickups and deliveries (MVRPPD) was introduced. [START_REF] Dulebenets | Vessel scheduling in liner shipping: Modeling transport of perishable assets[END_REF] presented a new MINL model for a vessel scheduling problem in a liner shipping route. The aim of their model was to decrease the total cost of routing. The results showed that the model can be an effective planning tool for this kind of problem. A new strategy to reduce the total cost and delivery time in a maritime bilateral trade problem was presented by [START_REF] Jeong | Direct shipping service routes with an empty container management strategy[END_REF]. The results of some meta-heuristic algorithms were compared in this study.

Offshore oil and gas companies deal with two significant problems. The first problem is the optimal fleet composition and designing routes, and the second one is the location of the onshore base(s). Some studies have shown that location and routing decisions are not independent. If they are considered separately, they may lead to sub-optimal planning results [START_REF] Koç | The fleet size and mix location-routing problem with time windows: Formulations and a heuristic algorithm[END_REF]. The basic location-routing problems (LRPs) include arbitrary types of facilities (e.g., plants, depots, warehouses, hubs, and cross-docks) with opening costs and a set of customers with recognized demands. The goal is to minimize the total cost of deciding the number and locations of the facilities over a set of feasible locations, the number of vehicles to distribute the products, and related routes to fulfil the needed demand of final customers [START_REF] Drexl | A survey of variants and extensions of the locationrouting problem[END_REF]. LRPs are considered as NP-hard combinatorial optimization problems. Some algorithms have been presented to solve LRPs, such as greedy randomized adaptive search procedure (GRASP) by [START_REF] Prins | Solving the capacitated location-routing problem by a GRASP complemented by a learning process and a path relinking[END_REF], GA by [START_REF] Derbel | Genetic algorithm with iterated local search for solving a location-routing problem[END_REF], simulated annealing (SA) by [START_REF] Vincent | A simulated annealing heuristic for the capacitated location routing problem[END_REF], ANLS by [START_REF] Hemmelmayr | An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics[END_REF], variable neighborhood search (VNS) by [START_REF] Jarboui | Variable neighborhood search for location routing[END_REF], and adaptive variable neighborhood search (AVNS) by [START_REF] Hof | Solving the battery swap station location-routing problem with capacitated electric vehicles using an AVNS algorithm for vehicle-routing problems with intermediate stops[END_REF]. In addition, some exact methods for capacitated and uncapacitated LRPs have been developed (e.g., [START_REF] Albareda-Sambola | A compact model and tight bounds for a combined location-routing problem[END_REF][START_REF] Belenguer | A branch-andcut method for the capacitated location-routing problem[END_REF].

Two-echelon LRPs (2E-LRPs) are new and challenging optimization problems in LRPs, which consider location and routing decisions in two-echelon supply chains [START_REF] Pichka | The two echelon open location routing problem: Mathematical model and hybrid heuristic[END_REF]. In this type of LRPs, the routes are designed to send goods to depots. Figure 2 shows an example, in which these routes make the first echelon. In addition, the routes from the selected depots to the final customers make the second echelon [START_REF] Prodhon | A survey of recent research on location-routing problems[END_REF]. The first study about 2E-LRPs was published by [START_REF] Jacobsen | A comparative study of heuristics for a two-level routing-location problem[END_REF], who developed a 2E-LRP for a newspaper distribution problem. [START_REF] Lin | Distribution systems design with two-level routing considerations[END_REF] presented a new 2E-LRP model, which includes two kinds of customers and some depots. The goal of this model was to locate the distribution centers, and design the routes in both echelons. A GA was introduced to solve the model using a cluster-based routing heuristic algorithm. The computational study showed that the proposed method for small cases obtains the results of the exact methods. In the other study, a 2E-LRP with a single center depot and some potential depots was presented by [START_REF] Nguyen | Solving the two-echelon location routing problem by a GRASP reinforced by a learning process and path relinking[END_REF]. They considered some depots with different opening costs and limited capacities. According to the literature review, 2E-LRPs have been used in some real-life cases.

However, no paper has considered a 2E-LRP for SVP problems. Therefore, appropriate models should be developed to fill this research gap. Our paper focuses on the 2E-LRP for SVP problems.

Research contributions

In this paper, for the first time in an oil and gas upstream supply chain, a novel two- In this research, an innovative solution approach based on some new heuristic methods is developed to convert the model into a linear programming model. This model is helpful to obtain the optimal solutions in a reasonable time. A Lagrangean decomposition method, which is a certain part of the Lagrangean relaxation method is developed to find the solutions.

This method is based on partitioning the original problem into several sub-problems. Finally, the proposed model and the solution approaches are applied in a real case, and the results are analyzed. The results of the case study show noticeable economic improvements.

The purpose of the proposed model is to decide the number, type, routes and voyages of heterogeneous vehicles in both echelons while the total cost is kept minimum. In addition, some factors (e.g., optimal onshore bases) in order to install central warehouse(s) and the best allocation of suppliers to send cargoes to the central warehouse(s) are determined.

The rest of this paper is organized as follows. In Section 2, the problem is described. Then, a novel mathematical model is proposed in Section 3. Section 4 is devoted to the proposed solution approach. In Section 5, the application of the model and the computational results are discussed. Finally, conclusions and future research are provided in Section 6.

Problem definition

In this section, a 2E-FCMPLRPTW is introduced as an extension of SVP model in an offshore oil and gas industry. The basic SVP model is a mixture of a fleet composition problem and a maritime transportation problem. The new system consists of three dependent levels by considering heterogeneous road and marine vehicles as depicted in Figure 3. In an offshore oil and gas industry, most installations and operational regions are located in the sea. In order to supply final customers (i.e., offshore units), some onshore purchasing offices (i.e., suppliers) are required. In addition, different road vehicles to send cargoes from suppliers to onshore bases are available. Each road vehicle is allowed to load from a certain supplier, and to visit different onshore bases to unload the cargoes. Some potential onshore bases to berth marine vehicles are available. The customer's needs are sent from the selected onshore bases to the offshore units by supply vessels. Offshore units are the final customers of this system. They are supplied during a time horizon by different heterogeneous marine vehicles.

This system is aimed to obtain the number and type of road vehicles (trucks), related routes and their schedules, and assignment of open onshore base(s) to suppliers in the first echelon. In the second echelon, the selection of optimal onshore base(s) in order to install central warehouse(s), the number and type of marine vehicles, related weekly voyages, and their schedules are determined. The total cost of both echelons should be kept minimum, and the needs of final customers must be fulfilled [START_REF] Ehmke | Optimizing for total costs in vehicle routing in urban areas[END_REF].

The assumptions of the problem and the related model are as follows:

1. Each route in the first echelon starts from a supplier, serves one or more onshore bases, and returns to the same supplier (i.e., VRP). In the second echelon, each voyage starts from an onshore base, serves one or more customers, and returns to the same onshore base in the second level (i.e., VRP).

2. The needs of offshore units are considered as a single-commodity, and the demands of offshore units are known at the beginning of the period.

3. All levels of the system are capacitated. The capacities of offshore units to receive cargoes in different days are various. Suppliers and onshore bases have different capacities. In addition, potential onshore bases have different opening and variable costs, and different capacities to install central warehouses (i.e., capacitated LRP).

4. There is no limitation for using different facilities and vehicles in each echelon (i.e., multiple sourcing).

5. Different kinds of vehicles with various fixed and variable costs and capacities in both echelons are considered (i.e., heterogeneous fleets).

6. In the first echelon, a time horizon by considering two days (i.e., 48 hours), and in the second echelon, a time horizon by considering seven days (i.e., 168 hours) are assumed for sending cargoes from suppliers to offshore units (periodic). Furthermore, the demands of offshore units are estimated for one week (i.e., weekly demand).

7. The potential onshore bases and offshore units have opening hours. Loading and unloading are allowed during these hours. The potential onshore bases are open between 8:00 and 16:00 for unloading cargoes from road vehicles and for loading marine vehicles. Offshore units are open between 7:00 and 19:00 for unloading needs and loading backloads (i.e., time windows).

8. Different service times for loading and unloading of vehicles in both echelons are considered.

9. Some offshore units should be visited a number of certain times during a week by marine vehicles.

10. The type of supply vessels in potential onshore bases is important. Some onshore bases are not capable to service large-sized supply vessels.

11. Experience has shown that the deck capacity is more important than the bulk capacity for supply vessels to send cargoes to offshore units.

12. The volumes of backloads of offshore units are considered less than their demands.

Therefore, there will be enough spaces to transfer them.

13. It is necessary to consider the spread of departures in order to minimize the total cost in an offshore oil and gas industry. For instance, consider an offshore unit, which needs two visits during a week, and both visits are done on Saturday and Sunday. If there is a necessary visit on Monday, an extra supply vessel must be sent to the offshore unit that increases the total cost.

14. The duration of a route is a function of the distance, the speed of road vehicles, and the service time for all potential onshore bases which should be visited on a route.

15. The duration of a voyage is a function of the sailing distance, the speed of supply vessels, and the service time for all offshore units which should be visited on a voyage.

The node-based 2E-FCMPLRPTW model is presented for the first time in this paper. Table 1 includes some information about the model. Considering suppliers with different features, limitation in the type of marine vehicles in onshore bases, installing central warehouse(s) to reduce the total cost by considering different fixed and variable costs, considering time windows for central warehouses, and using Lagrangean decomposition method to solve the problem are the most important research contributions of this paper. 

Proposed model

In our study, we refer a two-echelon location routing problem when the problem involves both strategic and tactical planning decisions, and routes are present at both echelons. In our model, the available goods at different origins (suppliers) have to be delivered to the respective destinations (final customers) moving mandatory through intermediate facilities (potential onshore bases). In this section, a new mathematical model is presented. The model determines the optimal type and number of road and marine vehicles, the optimal routes and voyages and related schedules, and the optimal locations of the onshore base(s) in order to send the needs of the offshore units by minimizing the total cost.

Mathematical model

Tables 2 to 5 include sets, indices, parameters, and decision variables. The mathematical model for the node-based 2E-FCMPLRPTW problem is as follows:

(1) 

Min Cost = 𝑍 1 + 𝑍 2 𝑍 1 = ∑ ∑ 𝑐𝑓 𝑘 𝑅 .
𝑡𝑖𝑚𝑒 𝑛𝑜𝑑𝑒1,𝑡𝑜𝑢𝑟,𝑘 1 ≤ 48; ∀𝑛𝑜𝑑𝑒1, 𝑘, 𝑡𝑜𝑢𝑟 (14) 
𝑧 𝑣,𝑗 𝑉 ≤ 𝑒 𝑗𝑣 ; ∀𝑣, 𝑗 14) means the maximum hours to send cargoes from suppliers to onshore bases must be less than 48 hours. Constraint (15) means that the number of optimal onshore bases cannot be more than Np.

The number of needed weekly visits for each offshore unit is checked by Constraint (16).

Constraint ( 17) ensures that each offshore unit must not be visited more than once in a day.

Sending the needed demands of offshore units is ensured by Constraint (18). Constraint (19) means that the volume of cargoes, which are sent to offshore units on a certain day, must not be exceeded from onshore base's capacity. The capacity of offshore units to receive cargoes on a certain day is checked by Constraint (20). Constraint ( 21) shows that all cargoes that enter to an onshore base from different suppliers must be equal to all cargoes which are sent to different offshore units during the horizon time. Constraint ( 22) states that marine vehicles cannot be assigned to more than one onshore base. Constraint ( 23) means that no cargo can be sent to offshore units by marine vehicle v, if only this vehicle has been assigned to a certain onshore base previously.

Constraint (24) states the allowable type of marine vehicles, which can be berthed in central warehouses. Constraint (25) means that a marine vehicle cannot be sent from a warehouse to offshore units unless it has been assigned to that warehouse before. 

Linearization of the model

A linear programming model consists of a linear objective function and linear constraint(s). Linear programming is useful for solving several practical problems such as LRPs. The main advantage of linear models rather than nonlinear models is the simplicity of them. Nonlinear models are complex, and most of them need a polynomial time to find the solution [START_REF] Chen | Applied integer programming: Modeling and solution[END_REF].

By using binary variables and preprocessing non-linear constraints, we linearize our proposed model to obtain the solution in a reasonable time. Constraint ( 13) must be changed to Constraints ( 55) and ( 56), Constraint (33) to Constraints ( 57) and ( 58), Constraint [START_REF] Shyshou | A large neighbourhood search heuristic for a periodic supply vessel planning problem arising in offshore oil and gas operations[END_REF] to Constraints ( 59) and ( 60), Constraint (36) to Constraints ( 61)-( 67), and finally Constraint (37)

to Constraints ( 68)-( 70).

(55) 

Solution approach

The 2E-LRP integrates two different decision levels. Strategic level which is related to facility location problem, and tactical level which is about routing problem. Each of these problems is NP-hard, and the combination of them is a very complex optimization problem.

Solving such a hard problem using MILP solvers (e.g., CPLEX) is time-consuming, and it is not possible in some cases.

The solution approach to solve the proposed model has two phases. In the first phase, a

Lagrangean decomposition method is used. Then, a VRPTW by considering Equations ( 16), ( 20) and (38-40) is solved. These equations are not considered in Lagrangean decomposition due to their complexity. Figure 4 shows the details.

(66) The Lagrangean decomposition that is developed in this study is a particular case of Lagrangean relaxation. In Lagrangean relaxation method, some constraints are added to the objective function with a penalty term proportional to the amount of violation of the dualized constraints [START_REF] Geoffrion | Lagrangean relaxation and its uses in integer programming[END_REF]. On the other hand, in the Lagrangean decomposition, the main problem is divided into several sub-problems by defining a copy of the decision variables in each generated sub-problem. In addition, new constraints are added in order to ensure the similarity between the new and the original variables. Furthermore, some penalty terms are considered in the objective function [START_REF] Guignard | Lagrangean decomposition: A model yielding stronger Lagrangean bounds[END_REF].

Lagrangean decomposition method is a popular technique to solve complicated problems such as multi-periodic train timetabling problem [START_REF] Zhou | Multi-periodic train timetabling using a period-type-based Lagrangean relaxation decomposition[END_REF], and multi-period supply investment planning problem [START_REF] Oliveira | A Lagrangean decomposition approach for oil supply chain investment planning under uncertainty with risk considerations[END_REF].

Original Problem

Phase 1: Lagrangean Decomposition

Step 1 Sub-Problem 1 Sending needs from suppliers to onshore bases.

Outputs:

1-Optimal locations of central warehouses.

2-Optimal flows of needs from suppliers to warehouses. 3-Optimal fleet composition in the first echelon. 4-Optimal routes from suppliers to onshore bases.

-Deciding Lagrangean multiplier.

-Solving two sub-problems simultaneously.

Step 2 Sub-Problem 2 Sending needs from onshore bases to offshore units.

Phase 2: Vehicle Routing Problem with TW

Optimal flows of needs from warehouses to offshore units by considering complicated constraints: 1-Capacity of customers. 2-Number of needed visits to offshore units. 3-Spread departures of offshore units.

Outputs:

1-Optimal flows of needs from warehouses to offshore units. 2-Optimal fleet composition in the second echelon. 3-Optimal voyages from onshore bases to offshore units.

-Solving the problem.

Defining a strategy to divide our problem is an important step. Our decomposition is based on Equation ( 21). As a result, we obtain the following sub-problems:

1) Sending needs from suppliers to onshore bases.

2) Sending needs from onshore bases to offshore units.

At the end of the first phase and after solving these sub-problems, the optimal locations of central warehouses are determined. Then, the VRPTW problem is solved in the second phase.

Phase 1: Lagrangean decomposition

In this paper, a Lagrangean decomposition method is developed by dividing the original problem into two sub-problems. Figure 5 illustrates an overview of the Lagrangean decomposition algorithm.

The following model is considered for the Lagrangean decomposition method.

{ 𝐏𝐡𝐚𝐬𝐞 𝟏 Min 𝑍 = 𝑍 1 + 𝑍 2 𝑠. 𝑡. 𝐸𝑞𝑠 {1 -15} 𝐸𝑞𝑠 {16 -40}\𝐸𝑞 {21}\{16,20,38 -40} 𝐸𝑞 {21}, 𝐸𝑞{41 -54} (71) 
By not considering Equation, the original problem is divided into the following two subproblems:

• Sub-problem 1: Equations (1-15) are related to this step. It shows the flow of needs from suppliers to onshore bases. In this step, the total cost of sending needs from suppliers to central warehouses should be minimized.

• Sub-problem 2: Equations (16-40) except spread departure equations (16,20,(38)(39)(40) are related to this step. It shows the flow of needs from onshore bases to offshore units.

In this step, the total cost of sending needs from warehouses to offshore units should be kept at a minimum. The main problem should be separated. To this aim, Equations ( 72) and ( 73) are defined in the first and second steps of the Lagrangean decomposition method, respectively. Equation ( 72) is related to the input flow to each onshore base. Besides, Equation (73) states the output flow from each onshore base. 𝑴𝒊𝒏 𝒁 𝑳𝑫 (𝒌) = 𝒁 𝟏 (𝒌) + 𝒁 𝟐 (𝒌) + 𝑼 𝑻(𝒌) . (𝑶𝒖𝒕 (𝒌) -𝑰𝒏 (𝒌) )

NO YES YES NO YES NO ‖𝑶𝒖𝒕 (𝒌) -𝑰𝒏 (𝒌) ‖ 𝟐 = 𝟎 ‖𝑼 (𝒌+𝟏) -𝑼 (𝒌) ‖ 𝟐 ≤ 𝜺 𝑼 𝒋 (𝒌+𝟏) = 𝑼 𝒋 (𝒌) + (𝑶𝒖𝒕 𝒋 (𝒌) -𝑰𝒏 𝒋 (𝒌) )
‖𝑶𝒖𝒕 (𝒌) -𝑰𝒏 (𝒌) ‖ 𝟐 . 𝜽 𝒌 (𝒁 𝑼𝑩 -𝒁 𝑳𝑫 (𝒌) )

𝒁 𝑼𝑩 = 𝒎𝒊𝒏 {𝒁 𝑼𝑩|𝑩 * 𝟏 , 𝒁 𝑼𝑩|𝑩 * 𝟐 } Equation ( 21) is complex and should be redefined to decompose the problem. Thus, it is replaced by Equation ( 74). The objective function is defined in Equation ( 75), where 𝑈 is a Lagrangean multiplier convex, and (𝑂𝑢𝑡 -𝐼𝑛) is the difference between the outputs and the inputs of warehouses.

𝑂𝑢𝑡 𝑗 = 𝐼𝑛 𝑗 ∀𝑗 ∈ 𝐵 (74) 
Min 𝑍 𝐿𝐷 = 𝑍 1 + 𝑍 2 + 𝑈 𝑇 . (𝑂𝑢𝑡 -𝐼𝑛)

In the next stage, two sub-problems are defined by Equations ( 76) and ( 77). After decomposing the original problem to the sub-problems, the initial value, updated multiplier 𝑈, and stop conditions of the algorithm must be determined [START_REF] Guignard | Lagrangean decomposition: A model yielding stronger Lagrangean bounds[END_REF].

( 

Initial value of multiplier 𝑈

By setting 𝑈 (1) = 0, there is no connection between the two sub-problems, and they should be optimized separately. Besides, the value of 𝑍 * that is obtained by setting 𝑈 = 0 (𝑍 * = 𝑍 1 * + 𝑍 2 * ) is a lower bound of the original problem. This value is shown by 𝑍 𝐿 .

Updating multiplier 𝑈

In order to update multiplier 𝑈, the following formulation is suggested, where 𝑘 shows the number of iterations. In this formula, 𝑂𝑢𝑡 𝑗 (𝑘) , 𝐼𝑛 𝑗 (𝑘) ; ∀𝑗 ∈ 𝐵 indicate the input and output of warehouses in iteration 𝑘. Furthermore, 𝜃 𝑘 = 1 1+𝑘 , and 𝑍 𝑈𝐵 is an upper bound of the original problem.

𝑈 𝑗 (𝑘+1) = 𝑈 𝑗 (𝑘) + (𝑂𝑢𝑡 𝑗 (𝑘) -𝐼𝑛 𝑗 (𝑘) )

‖𝑂𝑢𝑡 (𝑘) -𝐼𝑛 (𝑘) ‖ 2 . 𝜃 𝒌 (𝑍 𝑈𝐵 -𝑍 𝐿𝐷 (𝑘) )

(78)

In addition, the following relations exist.

• 𝐼𝑓 𝑂𝑢𝑡 𝑗 (𝑘) -𝐼𝑛 𝑗 (𝑘) > 0 𝑡ℎ𝑒𝑛 𝑈 𝑗 (𝑘+1) > 𝑈 𝑗 (𝑘)

• 𝐼𝑓 𝑂𝑢𝑡 𝑗 (𝑘) -𝐼𝑛 𝑗 (𝑘) < 0 𝑡ℎ𝑒𝑛 𝑈 𝑗 (𝑘+1) < 𝑈 𝑗 (𝑘)

Upper bounding procedure

In this section, a particular heuristic method for finding a valid upper bound is developed.

First, SubP1 by considering 𝑈 = 0 is solved, and the optimal locations of central warehouses (𝐵 * 1 ⊆ 𝐵), and the optimal input for each warehouse (𝐼𝑛 𝑗 ; ∀𝑗 ∈ 𝐵 * 1 ) are obtained. In this case, the optimal value of the objective function is shown by 𝑍 1 * . In the next step, SubP2 by considering 𝑈 = 0, and setting the output of each warehouse by the input of each warehouse which was issued in SubP1 (𝑂𝑢𝑡 𝑗 = 𝐼𝑛 𝑗 ; ∀𝑗 ∈ 𝐵 * 1 & 𝑂𝑢𝑡 𝑗 = 0; ∀𝑗 ∉ 𝐵 * 1 ), is solved. In this case, the optimal value of the objective function is shown by 𝑍 * 2|𝐵 * 1 . Finally, a sub-optimal solution, which is an upper bound for the original problem is obtained (𝑍 𝑈𝐵|𝐵 * 1 = 𝑍 1 * + 𝑍 * 2|𝐵 * 1 ).

Similarly, SubP2 by considering 𝑈 = 0 is solved, and the optimal locations of central warehouses (𝐵 * 2 ⊆ 𝐵), and the optimal output for each warehouse (𝑂𝑢𝑡 𝑗 ; ∀𝑗 ∈ 𝐵 * 1 ) are decided. In this case, the optimal value of the objective function is shown by 𝑍 2 * . In the next step, SubP1 by considering 𝑈 = 0, and setting the input of each warehouse by the output of each warehouse which was issued in SubP2 (𝐼𝑛 𝑗 = 𝑂𝑢𝑡 𝑗 ; ∀𝑗 ∈ 𝐵 * 2 & 𝐼𝑛 𝑗 = 0; ∀𝑗 ∉ 𝐵 * 2 ), is run. In this case, the optimal value of the objective function which is shown by 𝑍 * 1|𝐵 * 2 , is another suboptimal solution, and an upper bound for the original problem (𝑍

𝑈𝐵|𝐵 * 2 = 𝑍 2 * + 𝑍 * 1|𝐵 * 2 ). Generally, if 𝑍 𝑈𝐵|𝐵 * 1 = 𝑍 𝑈𝐵|𝐵 * 2 or | 𝑍 𝑈𝐵|𝐵 * 2 -𝑍 𝑈𝐵|𝐵 * 1 𝑍 𝑈𝐵|𝐵 * 1
| ≤ 𝜀 (where 𝜀 is the tolerance value), then the optimal solution of Phase 1 (Lagrangean decomposition method) has obtained. Then, 𝐵 * 1 or 𝐵 * 2 is considered as the optimal locations of central warehouses.

Otherwise, 𝑍 𝑈𝐵 = 𝑚𝑖𝑛 {𝑍 𝑈𝐵|𝐵 * 1 , 𝑍 𝑈𝐵|𝐵 * 2 } , which is considered as an upper bound of the problem. Then, the Lagrangean decomposition process starts.

Stopping conditions

Whenever one of the following conditions occurs, the Lagrangean decomposition process stops. Then, the second phase of the solution approach starts. At the end of Phase 1, the optimal locations (𝐵 * ⊆ 𝐵) of central warehouses, and the optimal input (𝐼𝑛 𝑗 * ; ∀𝑗 ∈ 𝐵 * ) of each central warehouse are determined. In the second phase of the solution approach, and by considering the outputs of Phase 1, the optimal distribution of cargoes to offshore units is determined.

In this phase, a vehicle routing problem with time windows (VRPTW) should be solved while the number of needed visits for offshore units, capacities of offshore units to receive cargoes, and the spread of departure constraints are added to the problem. According to the outputs of Phase 1, the optimization model for the second phase is as follows: becomes equal to the optimal inputs. Furthermore, the number of needed visits by offshore units, the capacities of receiving cargoes and spread of departures are considered by using Equations (16,20,[38][39][40].

Computational results

The new 2E-FCMPLRPTW model is applied in a real case in Iranian Offshore Oil Company (IOOC). IOOC is a subsidiary of National Iranian Oil Company (NIOC). GAMS (22.1) that is an optimization software has been utilized. The purpose of this section is to test and analyze how the model can be used for real cases in an offshore oil and gas industry.

Case description

NIOC with massive amounts of oil and gas resources is a very large oil company consisting of seventeen production companies. It's contribution in Iranian's crude oil exports is more than 33%. The main operating area of IOOC (a subsidiary of NIOC) is in Persian Gulf and the sea of Oman.

IOOC includes four offshore units (i.e., Kharg, Lavan, Siri, and Gheshm), which produce oil and gas. Furthermore, there are three potential onshore bases along the coastline (i.e., Nakhilo, Bushehr, and Bahregan) with private ducks in order to berth marine vehicles and send the needed cargoes to offshore units. In addition, Shiraz and Esfahan are two main suppliers of IOOC. They supply needed cargoes for offshore units. The locations are shown in Figure 6. In the second echelon, the demand of offshore units (by considering 10% increase during the next 5 years) is varied between 20 m 3 and 90 m 3 . All demands of offshore units must be supplied during seven days. Offshore units have certain capacities to receive cargoes, between 10 m 3 and 45 m 3 , which are dependent on the days of week. It is supposed that the backload of offshore units is less than the cargoes, which are sent to them in a certain day. The number of weekly visits for offshore units is between two and four. The service time for loading supply vessels in potential onshore bases is considered eight hours. In addition, the service time for unloading in offshore units is considered between two and four hours. Onshore bases have opening hours between 8:00 and 16:00 for loading supply vessels. Besides, offshore units have opening hours between 7:00 and 19:00 for unloading supply vessels. The allowable type of supply vessels in potential onshore bases is different. The capacity of supply vessels is varied between 120 m 3 and 160 m 3 . The rate of time-chartering for supply vessels is varied from $31,500 to $47,250 for a week. The sailing cost is between $100 and $200 for one hour.

The sailing speed for supply vessels is different from 8 knot to 12 knot, and supply vessels are ready to be used for 144 hours in a week.

The results are obtained by a 2.8 GHz, Intel(R)Core(TM)i7(4CPUs) computer with 8 GB memory.

Case study results

The 2E-FCMPLRPTW model has been applied for the IOOC case. This model has been solved in a reasonable time by GAMS using CPLEX solver. There are 7,391 decision variables. Besides, the total cost is $317,560.5. Table 6 comprises the results divided into two sections, namely the first and the second echelons. The first row is related to the CPU time and the total cost. The second row shows the number of selected suppliers and the onshore bases. The number of vehicles is shown in the third row.

Sensitivity analyses

In most cases, a real schedule is different from the primary plan. Therefore, some changes are required. Sensitivity analyses are helpful for planners to make more reliable plans in uncontrollable events. In this section, we consider two scenarios to analyze the problem. They are illustrated in Figure 8. The goal of this section is to find whether it is possible to decrease the total cost by considering some changes in the original problem.

In the first scenario, the number of weekly visits to offshore units is studied. Offshore units C2, C3, and C4 need 10 visits during a week. We would like to know what will happen if the number of weekly visits of each offshore unit (C2, C3, C4) is reduced by one visit. According to Table 7, the results show that there are three optimal alternatives for the IOOC by considering different total numbers of weekly visits. They are as follows:

▪ Alternative 1: By reducing just one weekly visit from offshore unit C4, the company will save $55,875 in a week.

▪ Alternative 5: By reducing two weekly visits from offshore units C2 and C4, the company will save $66,875 in a week.

▪ Alternative 7: By reducing just three weekly visits from offshore units C2, C3, and C4, the company will save $67,875 in a week.

Scenario 1: Reducing the number of weekly visits of operation regions.

Scenario 2: Opening some of offshore units during night.

Table 7. Results of decreasing weekly visits

In the second scenario, the company wants to know what will happen if some onshore

bases can be open during the night. The results of the seven alternatives are written in Table 8.

By considering opening hours during the night for onshore bases, no reduction can occur in the total cost of the optimal solution. In addition, it is required to hire 15 people ($2,850 extra costs for a week) for each onshore base, which is open during the night. 

Conclusion

A novel two-echelon fleet composition mix periodic location-routing problem with time windows (2E-FCMPLRPTW) has been proposed in this paper. In addition, a novel Lagrangean decomposition method, which is a particular part of Lagrangean relaxation method has been developed. The proposed method consists of two phases. In the first phase, the main problem has been divided into two sub-problems using Lagrangean decomposition.

Then, a VRPTW problem has been solved in the second phase. The computational study showed that the real-life instances can be solved by this approach using GAMS software, in a reasonable time. According to the results of this study, the company can save about $2,056,600 each year due to the reduction of road vehicles from three to two, decrease in the number of supply vessels from four to three, and installing two new central warehouses. In the first scenario of the sensitivity analyses, the number of weekly visits of offshore units has been studied. The results showed that by reducing just one weekly visit from offshore unit C4, the company will save $55,875 in a week. In addition, by reducing two weekly visits from offshore units C2 and C4, the company will save $66,875 in a week. Finally, by reducing three weekly visits from offshore units C2, C3, and C4, the company will save $67,875 in a week. In the second scenario of the sensitivity analyses, considering opening hours during the night for onshore bases, no reduction in the number of vehicles, routes, and voyages occurred.

Therefore, the total cost is fixed, and the company cannot have a profit. On the other hand, it is needed to hire fifteen persons by $2,850 hiring cost in a week to handle the tasks, for each onshore base which is open during the night. Therefore, the best option for the company is keeping closed all onshore bases during the night.

There are some avenues for future research. It is valuable to consider and study some uncertain parameters, such as sailing time, offshore unit's demand, and service time in offshore units. The other important direction of future research is to consider environmental aspects for vehicles, their routes and voyages in both echelons. In addition, developing a path flow approach for the 2E-FCMPLRPTW model is another noticeable future study.
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 1 Figure 1. Basic SVP model

  presented a robust model for a SVP problem for the first time. Applying different approaches and considering weather conditions are unique features in their model. Halvorsen-Weare et al. (2012) used a two-stage Supply Vessel: 1, Voyage: 2
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 2 Figure 2. Two-echelon location-routing problem (2E-LRP)

  [START_REF] Schwengerer | A variable neighborhood search approach for the two-echelon location-routing problem[END_REF] and[START_REF] Contardo | Lower and upper bounds for the two-echelon capacitated location-routing problem[END_REF] presented new models for 2E-LRPs.[START_REF] Rahmani | A local search approach for the two-echelon multi-products location-routing problem with pickup and delivery[END_REF] presented a LRP-MPPD-2E model by adding three new concepts (i.e., multi-product, pickup and delivery, and using processing center as an intermediate facility) to the basic LRP-2E. In addition, they presented two local search methods to solve the problem. Zhao et al. (2018) presented a new 2E-LRP in a parcel delivery industry. In addition, they developed a new heuristic algorithm to solve the model. Pickka et al. (2018) introduced a twoechelon open LRP (2E-OLRP). In this model, the vehicles do not return to the depots. The authors presented a hybrid heuristic algorithm to solve this problem.
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  Figure 3. 2E-FCMPLRPTW model

  1}; 𝑡𝑜𝑢𝑟 ∈ 𝑡𝑜𝑢𝑟𝑅, 𝑘 ∈ 𝐾, 𝑛1𝑖 ∈ 𝑁𝑜𝑑𝑒1, 𝑛1𝑗 ∈ 𝑁𝑜𝑑𝑒1 (44) 𝑄 𝑠,𝑗,𝑡𝑜𝑢𝑟,𝑘 𝑠𝑢 ≥ 0; 𝑠 ∈ 𝑆, 𝑗 ∈ 𝐵, 𝑡𝑜𝑢𝑟 ∈ 𝑡𝑜𝑢𝑟𝑅, 𝑘 ∈ 𝐾 Equation (1) is the objective function which is divided into two sections. The total cost in the first echelon is shown by Z1, which minimizes the chartering cost of the road vehicles, the locating cost of the onshore bases to install central warehouses, the variable cost of the cargoes in central warehouses, the purchasing cost of the cargoes from suppliers and the transportation cost of the cargoes from suppliers to onshore bases. The total cost in the second echelon is shown by Z2. It minimizes the cost of chartering the marine vehicles plus the transportation cost of the cargoes from onshore bases to offshore units.
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 5 Figure 5. Lagrangean decomposition algorithm

  𝑂𝑢𝑡 𝑗 = ∑ ∑ ∑ 𝑄 𝑗,𝑐.𝑡𝑜𝑢𝑟,

  Phase 2: Vehicle routing problem with time windows

Figure 6 .

 6 Figure 6. Locations of onshore bases, offshore units, and suppliers of IOOC
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 8 Figure 8. Two scenarios of the sensitivity analyses

  echelon fleet composition mix periodic location-routing problem by considering time windows (2E-FCMPLRPTW) is presented. The problem is a node-based one. In this paper, a unique mathematical model is proposed to solve the problem. Considering suppliers and

defining a road-based periodic routing problem in the first echelon to send cargoes to potential onshore bases are unique features of this model. The presented model is comprehensive and includes number and type of road vehicles considering time windows for potential onshore-bases. Locating central warehouses by considering some practical attributes (e.g., type and number of allowable supply vessels) is another feature of this study.

Table 1 .

 1 Comparison of basic models with the present study

	Title	Fagerholt and Lindstad (2000)	Halvorsen-Weare et al. (2012)	Proposed model
	New mathematical model			
	Marine fleet composition			
	Marine periodic routing			
	The possibility of more than one visit for customers			
	Simulates delivery and pick up			
	Considering time windows for offshore units			
	Capacity of central warehouses			
	Considering variable cost for supply vessels			
	Spread of departures			
	Node-based two-echelon location-routing model			
	Considering suppliers			
	Locating central warehouses			
	Considering variable cost for cargoes in central warehouses			
	Road fleet composition			
	Considering capacity for road vehicles			
	Road-based periodic routing problem			
	Considering time windows for unloading in central warehouses			
	Considering capacity for receiving cargoes with offshore units			
	Capacity limitation for the type of vehicles in onshore bases			
	Relaxation method (Lagrangean decomposition)			

Table 2 .

 2 Definitions of the sets in the new model

	Sets	Definition
	𝑁𝑜𝑑𝑒	Set of suppliers, potential onshore bases and offshore units
	𝑁𝑜𝑑𝑒 1 ⊆ Node	Set of suppliers, potential onshore bases
	𝐵 ⊆ Node	Set of potential onshore bases to install central warehouse(s)
	𝑆 ⊆ Node	Set of suppliers
	𝐾	Set of road vehicles
	𝑁𝑜𝑑𝑒 2 ⊆ Node	Set of potential onshore bases and offshore units
	𝐶 ⊆ Node	Set of offshore units
	𝐶 2 ⊆ 𝐶	Set of offshore units that need two weekly visits
	𝐶 3 ⊆ 𝐶	Set of offshore units that need three weekly visits
	𝐶 4 ⊆ 𝐶	Set of offshore units that need four weekly visits
	𝑉	Set of marine vehicles
	𝐷𝑎𝑦	Set of days of a week
	𝑇𝑜𝑢𝑟 𝑅	Set of tours in the first echelon
	𝑇𝑜𝑢𝑟 𝑉	Set of tours in the second echelon

Table 3 :

 3 Definitions of the indices in the new model

	Indices	Definition
	𝑛𝑜𝑑𝑒1, 𝑛1𝑗, 𝑛1𝑖	Indices of suppliers and potential onshore bases
	𝑗, 𝑏𝑖, 𝑏𝑗	Indices of potential onshore bases
	𝑠, 𝑠𝑠	Indices of suppliers
	𝑘	Index of road vehicles
	𝑛𝑜𝑑𝑒2, 𝑛2𝑗, 𝑛2𝑖	Indices of potential onshore bases and offshore units
	𝑐, 𝑐𝑖, 𝑐𝑗	Indices of offshore units
	𝑣	Index of marine vehicles
	𝑑𝑎𝑦	Index of the days in a week
	𝑡𝑜𝑢𝑟	Index of the tours in both echelons

Table 4 .

 4 Definitions of the parameters in the new model

	Parameters	Definition
	𝑐𝑓 𝑘 𝑅	Fixed cost of road vehicle k
	𝑐𝑣 𝑘 𝑅	Variable cost of road vehicle k per kilometer
	𝑠𝑝𝑒𝑎𝑑 𝑘 𝑅	Average velocity of road vehicle k per one hour
	𝑐 𝑗 𝑏𝑓	Fixed cost of installing central warehouses in onshore base j
	𝑐 𝑗 𝑏𝑣	Variable cost of per unit of cargo in onshore base j
	𝑐 𝑠 𝑠𝑢	Purchasing cost of per unit of cargo from supplier s
	𝑐𝑎𝑝 𝑘 𝑅	Capacity limitation of road vehicle k
	𝑐𝑎𝑝 𝑗 𝑏	Capacity limitation of onshore base j
	𝑐𝑎𝑝 𝑠 𝑠𝑢	Capacity limitation of supplier s
	𝑁𝑝	Number of needed onshore bases
	𝐷𝑖𝑠 𝑛1𝑖,𝑛1𝑗	Distance between suppliers and onshore bases
	𝑠𝑡𝑜𝑝 𝑘,𝑛𝑜𝑑𝑒1 1	Stop time of road vehicle k in the first echelon
	𝑓 𝑣	Allowable days of using marine vehicles
	𝑒 𝑐𝑓 𝑣 𝑉	Fixed cost of vehicle v
	𝑐𝑣 𝑣 𝑉	Variable cost of vehicle v
	𝑠𝑝𝑒𝑎𝑑 𝑣 𝑉	Velocity of marine vehicle v
	𝑠𝑡𝑜𝑝 𝑣,𝑛𝑜𝑑𝑒2 2	Stop time of vehicle v in the second echelon
	𝑐𝑎𝑝 𝑣 𝑉	Capacity of marine vehicle v
	𝐷𝑖𝑠 𝑛2𝑖,𝑛2𝑗 𝑀	Distance between onshore bases and offshore units
	𝑀	Very large number

𝑗𝑣 Allowable type of marine vehicles in onshore-base j 𝑑𝑒𝑚 𝑐 Demand of offshore unit c 𝑠𝑛 𝑐 Number of needed visits for offshore unit c 𝑢 𝑑𝑎𝑦,𝑐 𝐶 Daily capacity of offshore unit c to receive needs 𝑢 𝑑𝑎𝑦,𝑗 𝐵 Daily capacity of onshore base j to load marine vehicles [𝑤𝐿 𝑐 , 𝑤𝑅 𝑐 ] Time windows of offshore unit c to receive needs

Table 5 .

 5 Definitions of the variables in the new model

	Variables	Definition
	𝑧 𝑘,𝑠 𝑅	1 if vehicle k is assigned to supplier s; 0, otherwise
	𝑌 𝑗	1 if onshore base j is selected; 0, otherwise
	𝑋 𝑡𝑜𝑢𝑟,𝑘,𝑛1𝑖,𝑛1𝑗 1	1 if road vehicle k starts a special tour; 0, otherwise
	𝑄 𝑠,𝑗,𝑡𝑜𝑢𝑟,𝑘 𝑠𝑢	Quantity of sending cargoes from supplier s to onshore base j by vehicle k
	𝑡𝑖𝑚𝑒 𝑛𝑜𝑑𝑒1,𝑡𝑜𝑢𝑟,𝑘 1	Visiting time a supplier or an onshore base by vehicle k on a certain tour
	𝑈 𝑡𝑜𝑢𝑟,𝑘,𝑗 1	Slack variable to omit the sub tour of vehicle k on a special tour
	𝑧 𝑣,𝑗 𝑉	1 if vehicle v is assigned to onshore j; 0, otherwise
	𝑋 𝑡𝑜𝑢𝑟,𝑣,𝑛2𝑖,𝑛2𝑗 2	1 if vehicle v starts a special tour; 0, otherwise
	𝑄 𝑗,𝑐.𝑡𝑜𝑢𝑟,𝑣 𝑏	Quantity of sending cargoes from onshore base j to offshore unit c by vehicle v
	𝑡𝑖𝑚𝑒 𝑛𝑜𝑑𝑒2,𝑡𝑜𝑢𝑟,𝑣	

2

Visiting time of an onshore base or an offshore unit by vehicle v on a certain tour 𝑋 𝑑𝑎𝑦,𝑛𝑜𝑑𝑒2,𝑡𝑜𝑢𝑟,𝑣 1 if vehicle v on a special day visits an onshore base or an offshore unit; 0, otherwise 𝑄 𝑑𝑎𝑦,𝑗,𝑐,𝑡𝑜𝑢𝑟,𝑣 Quantity of sending cargoes from onshore base j to offshore unit c by vehicle v 𝑈 𝑡𝑜𝑢𝑟,𝑣,𝑐 2 Slack variable to omit the sub tour of vehicle v on a special tour 𝜉 𝑗,𝑘,𝑡𝑜𝑢𝑟 1 Integer slack variable to define the problem as a linear programming 𝜉 𝑗,𝑘,𝑡𝑜𝑢𝑟 2 Integer slack variable to define the problem as a linear programming 𝜉 𝑐,𝑘,𝑡𝑜𝑢𝑟 2 Integer slack variable to define the problem as a linear programming 𝑋 𝑑𝑎𝑦,𝑛𝑜𝑑𝑒2,𝑡𝑜𝑢𝑟,𝑣 ′ Binary slack variable to define the problem as a linear programming 𝑋 𝑑𝑎𝑦,𝑛𝑜𝑑𝑒2,𝑡𝑜𝑢𝑟,𝑣 " Binary slack variable to define the problem as a linear programming 𝜃 𝑐 Binary slack variable to define the spread of departures

  Constraint (2) assures that if road vehicle k is rented, this vehicle must be assigned to a certain supplier. The capacity of road vehicle k is controlled by Constraint (3). Constraint (4) means road vehicle k cannot start a tour from supplier s unless this vehicle has assigned to this Continuity of tours in the first echelon is ensured by Constraint (10). The visiting time of road vehicles in each onshore base is calculated by Constraint (11). Constraint (12) calculates the loading time of road vehicles from suppliers. Visiting onshore bases between 8:00 and 16:00 is controlled by Constraint (13). Constraint (

	𝑡𝑖𝑚𝑒 𝑛𝑜𝑑𝑒1,𝑡𝑜𝑢𝑟,𝑘 1	≥ 0; 𝑛𝑜𝑑𝑒1 ∈ 𝑁𝑜𝑑𝑒1, 𝑡𝑜𝑢𝑟 ∈ 𝑡𝑜𝑢𝑟𝑅, 𝑘 ∈ 𝐾	(45)
	𝑈 𝑡𝑜𝑢𝑟,𝑘,𝑗 1	≥ 0 ; 𝑡𝑜𝑢𝑟 ∈ 𝑡𝑜𝑢𝑟𝑅, 𝑘 ∈ 𝐾, 𝑗 ∈ 𝐵	(46)
	𝑧 𝑣,𝑗 𝑉 ∈ {0,1}; 𝑣 ∈ 𝑉, 𝑗 ∈ 𝐵	(47)
	𝑋 𝑡𝑜𝑢𝑟,𝑣,𝑛2𝑖,𝑛2𝑗 2	∈ {0,1}; 𝑡𝑜𝑢𝑟 ∈ 𝑡𝑜𝑢𝑟𝑉, 𝑣 ∈ 𝑉, 𝑛2𝑖 ∈ 𝑁𝑜𝑑𝑒2, 𝑛2𝑗 ∈ 𝑁𝑜𝑑𝑒2	(48)
	𝑄 𝑗,𝑐.𝑡𝑜𝑢𝑟,𝑣 𝑏	≥ 0; 𝑗 ∈ 𝐵, 𝑐 ∈ 𝐶, 𝑡𝑜𝑢𝑟 ∈ 𝑡𝑜𝑢𝑟𝑉, 𝑣 ∈ 𝑉	(49)
	𝑡𝑖𝑚𝑒 𝑛𝑜𝑑𝑒2,𝑡𝑜𝑢𝑟,𝑣 2	≥ 0; 𝑛𝑜𝑑𝑒2 ∈ 𝑁𝑜𝑑𝑒, 𝑡𝑜𝑢𝑟 ∈ 𝑡𝑜𝑢𝑟𝑉, 𝑣 ∈ 𝑉	(50)
	𝑋 𝑑𝑎𝑦,𝑛𝑜𝑑𝑒2,𝑡𝑜𝑢𝑟,𝑣 ∈ {0,1}; 𝑑𝑎𝑦 ∈ 𝐷𝑎𝑦, 𝑛𝑜𝑑𝑒2 ∈ 𝑁𝑜𝑑𝑒, 𝑡𝑜𝑢𝑟 ∈ 𝑡𝑜𝑢𝑟𝑉, 𝑣 ∈ 𝑉	(51)
	𝑄 𝑑𝑎𝑦,𝑗,𝑐,𝑡𝑜𝑢𝑟,𝑣 ≥ 0; 𝑑𝑎𝑦 ∈ 𝐷𝑎𝑦, 𝑗 ∈ 𝐵, 𝑐 ∈ 𝐶, 𝑡𝑜𝑢𝑟 ∈ 𝑡𝑜𝑢𝑟𝑉, 𝑣 ∈ 𝑉	(52)
	𝑈 𝑡𝑜𝑢𝑟,𝑣,𝑐 2	≥ 0; 𝑡𝑜𝑢𝑟 ∈ 𝑡𝑜𝑢𝑟𝑉, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶	(53)
	𝜃 𝑐 ∈ {0,1}; 𝑐 ∈ 𝐶	(54)
	supplier previously. Constraint (5) means no cargo can be sent to onshore bases by road
	vehicle k, before assigning it to a certain supplier. Constraint (6) implies that sending cargoes
	from supplier s to onshore base j by road vehicle k is permitted if only road vehicle k visits
	onshore base j. Constraint (7) means it is not allowed to send cargoes to potential onshore

base j unless this potential onshore base has been selected as a central warehouse previously.

In addition, the capacity of central warehouse is checked. The capacity of supplier s is controlled by Constraint (8). Constraint (

9

) is used to omit sub-tours in the first echelon.

Table 8 .

 8 Results of not considering time windows for onshore bases

	Alternative	Offshore units	No. of weekly visits (As is)	No. of be) weekly visits (To	Cost ($)	Supplier: Trucks	Onshore Base: Supply vessels	Saving in a week ($)	Optimal alternative
	1	C2	3	2	306,560.500	S2: T1 & T4	B1: V2 V3 B2: V1,	11,000	-
	2	C3	3	2	317,060.500	S2: T1 & T4	B1: V2 V3 B2: V1,	500	-
	3	C4	4	3	261,685.500	S2: T1 & T4	B1: V2 B2: V1	55,875	OK
	4	C2, C3	6	4	305,560.500	S2: T1 & T4	B1: V2 V3 B2: V1,	12,000	-
	5	C2, C4	7	5	250685.500	S2: T1 & T4	B1: V2 B2: V1	66,875	OK
	6	C3, C4	7	5	261185.500	S2: T1 & T4	B1: V2 B2: V1	56,375	-
	7	C2, C3, C4	10	7	249685.500	S2: T1 & T5	B1: V2 B2: V1	67,875	OK

Alternative Onshore bases with TW Selected supplier: #truck(s) / #routes Selected onshore base Cost ($) Hiring cost of persons for a week ($)

  

	1	B1, B2	S2: T1 & T4	B1: V2 B2: V1, V3	320,410.500	2,850
	2	B1, B3	S2: T1 & T3	B1: V2 B2: V1, V3	320,410.500	2,850
	3	B2, B3	S2: T1 & T4	B1: V2 B2: V1, V3	320,410.500	2,850
	4	B1	S2: T1 & T3	B1: V2 B2: V1, V3	323,260.500	5,700
	5	B2	S2: T1 & T3	B1: V2 B2: V1, V3	323,260.500	5,700
	6	B3	S2: T1 & T3	B1: V2 B2: V1, V3	323,260.500	5,700
	7	-	S2: T1 & T4	B1: V2 B2: V1, V3	326,110.500	8,550

Acknowledgement

The authors would like to thank the editor and reviewers for the great comments that improved the quality of the paper significantly. This research has been supported by the NSERC Discovery grant.

The total cost consists of $237,560.5 weekly cost and $80,000 fixed cost to install the central warehouses in Nakhilo (B1) and Bushehr (B2). The number of road vehicles can be reduced from three to two. In addition, the number of supply vessels can be reduced from four to three (i.e., current situation). This reduction in a number of vehicles corresponds to a total saving of $39,550 for nine days. The optimal network and the related results are demonstrated in Figure 7.