
HAL Id: hal-03477740
https://hal.science/hal-03477740

Submitted on 13 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spatial Evolution of Building Types: Methodological
proposals

Joan Perez, Giovanni Fusco, Sadahiro Yukio

To cite this version:
Joan Perez, Giovanni Fusco, Sadahiro Yukio. Spatial Evolution of Building Types: Methodological
proposals. UMR 7300 ESPACE. SAGEO 2021 - 16th Spatial Analysis and Geomatics Conference.
Actes de la conférence., 2021, 978-2-910545-12-1. �hal-03477740�

https://hal.science/hal-03477740
https://hal.archives-ouvertes.fr


Communications 101

SAGEO’2021 – La Rochelle, 5-7 mai 2021 [ISBN : 978-2-910545-12-1]
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2. Department of Urban Engineering, University of Tokyo, Tokyo, Japan.

ABSTRACT. This paper presents different methods implemented with the aim of studying urban 
perforation and regeneration dynamics at the building level. The minimum requirement to 
perform these methods is a building footprint available for two different periods (time depth 
of at least 10 years) and heights (or floors) as attribute data. First, basic morphometric 
indicators are computed for each building: area, floor-area, number of neighbors, 
elongation, and convexity. Based on the availability of expert knowledge, different types of 
classifications and clustering are performed to obtain building types. A grid is superimposed 
on the test region of Osaka (Japan) and the number of building types per cell and for each 
period is computed, as well as the differences between each period. Mappings are then 
performed, showing that building types have specific locations and evolution trajectories. In 
some extreme cases, a specific building type can even gradually replace a type on a declining 
dynamic.  
KEYWORDS: Spatial analysis, urban perforation, urban regeneration, building type, 
classification, clustering. 
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1. Introduction

Cities are in a perpetual flow of transformations with urban areas that constantly
make, unmake and remake themselves. Different models are discussed in the 
literature, mostly focusing on the benefits and/or drawbacks of the increase (urban 
sprawl, compact cities, regeneration, etc.) or decrease (shrinking cities, perforation, 
etc.) of building densities. A factor that is often overlooked regarding the evolution 
of densities is the role of inherited urban forms. Occurrence of areas having 
difficulties in redefining themselves are often closely related in term of urban form. 
Of course, even if the form factor is often overlooked, this issue is nothing new. The 
numerous criticisms of modernist architecture (Jacobs 1961, Salingaros 2005), 
which brought large-sized and specialized buildings, unable to evolve with the needs 
of the cities, are a good illustration of the link between urban life and urban form. 
What has changed more recently however, are the increasing possibilities to explore 
this link through: (1) the existence of large-sized datasets related to urban form and 
available at different dates, such as the French BD TOPO ® or the Japanese Zenrin 
Maps ® and (2) an increase of computing power that allows running complex 
algorithms on the aforementioned datasets. Examples of such work in the literature 
include the classification of building footprints by a Random Forest Classifier 
(Hecht et al., 2015), unsupervised Bayesian clustering for building types 
identification (Perez et al., 2019a), etc. This paper seeks to emphasize on different 
needs and precautions that shall be taken while working on the link between urban 
form and space-time evolutions of urban areas. Suggestions and recommendations 
while using building footprints as the primary source of data are also provided 
throughout the paper. 

Section 2 presents the data requirement, the test region and the computation of 
basic indicators of built-up form. Section 3 performs three different classifications, 
through a decision tree if reliable expert knowledge is available, a double k-means if 
only limited expert knowledge is available and finally, an unsupervised Self-
Organizing Map if no expert knowledge is available. Section 4 creates a grid of a 
predetermined size over the test region in order to count the numerosity of each 
building type per cell and their evolution. Thematic maps are also displayed in this 
section. Section 5 concludes the paper. 

2. Data Preparation

2.1. Minimum Data Requirement 

The bare minimum dataset required to implement the different methods 
discussed in this paper is a GIS layer of building footprints with multiple years of 
consistency (at least two different periods). The gap in years between the layers is 
dependent upon the scope of the analysis, but also on specificities of the location 
under study. A gap of 10 years is enough in countries following a 
deconstruction/reconstruction model of buildings (some countries in Asia, Africa, 
etc.) while in countries where buildings are usually renovated or rehabilitated, such 
as in Europe, a minimum time depth of 20 to 30 years is needed to observe structural 
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changes in the distribution of building types. Each building shall be digitized as a 
single unit. Corrections should thus be made to GIS layers which aggregate 
contiguous buildings (like row houses) into single units.  In addition, one attribute is 
required: building height, and another one is valuable, but not mandatory: building 
specialization. Specialization attribute allows filtering non-residential buildings to 
solely focus on residential patterns and dynamics of regeneration and perforation. 
Yet, due to mixed-use buildings, the distinction between residential and non-
residential buildings is hardly ever straightforward. Thus, according to the source of 
data, attention should be paid to how specialization is encoded.  

2.2. Test Region and Data Presentation 

The test region is an area of 15 by 18 km in Japan containing central Osaka and 
its surroundings (Fig.1 a.). The peculiarities of Japan are that houses and small 
collective residential complexes are easily demolished to be reconstructed or to 
make way to new urban projects (Shelton, 2012) and that urban areas are 
experiencing urban shrinkage phenomena (Buhnik, 2010). For example, single-
family houses have a lifespan of only 30 years (MLIT, 2007), which is in sharp 
contrast with European countries where houses are renovated and passed down from 
generation to generation. A short lifespan for buildings is an undeniable advantage 
for the study of the evolution of building types. Indeed, even now, high-quality 
datasets of building footprints are uneasy to access and, if they are, historic data of 
equivalent quality are usually not. Regarding urban shrinkage, demolitions without 
reconstructions is another interesting phenomenon to monitor over time.  

FIGURE 1. a. Osaka, OpenStreetMap. b. Buildings in Osaka in 2013-14 (Zmap 
TOWN II). 

ZENRIN Residential Maps (Zmap TOWN II1), which are digital maps focusing 
on the building footprints throughout Japan, are extracted and compiled into a 
GeoPackage file for the extent of the test region in 2003/04 and in 2013/14 (Fig 1. 

1 ZENRIN is a private map information company that holds the top share in the Japanese market for local 
residential and car navigation maps. 
https://www.zenrin.co.jp/product/category/gis/basemap/zmaptown/index.html 
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b.). The original GeoPackage file only contains the two aforementioned building 
layers, respectively named BU0304 and BU1314. BU0304 is made of 760.067 
inputs and BU1314 of 739.536, thus showing a decrease of 2.7% of the raw number 
of buildings in 10 years. ZENRIN Residential Maps possess several attribute data 
from which two are of interest in this research: the height of the buildings, expressed 
in number of floors, and building specialization. Building specialization is an 
encoded attribute, with codes as follows: 1200 for official and religious buildings 
(schools, administrative buildings, temple, etc.), 1363 for collective housing, 1364 
for single-family homes, 1365 for private offices and mixed-use buildings, etc. In 
this paper, we focus on residential buildings, both collective and individual housings 
(1363 and 1364), which concern 469.519 buildings in 2003/04 and 428.875 in 
2013/14. Each layer within the GeoPackage file originally contains 3 attribute data: 
an identifier, the number of floors and specialization. 

2.3. Indicator Computation 

The first step consists in computing a basic series of morphometric indicators for 
each building made of: the building footprint surface (area), the total amount of 
usable floor area, elongation, convexity and the number of adjoining neighbors. 
Elongation, convexity and the number of adjoining neighbors are detailed in Perez et 
al., (2019a). They respectively provide a measure of how buildings are elongated 
compared to the most compact equivalent shape (a circle), how buildings have 
intricated or squared shapes, and finally, if buildings are free-standing detached 
structures or possess adjoining neighbors. The final set of variables is made of the 
newly calculated morphometric indicators plus number of floors and specialization. 
Supplementary materials algorithm 1 shows how indicators are easily computed 
within R using the “sf” and “lwgeom” packages. This algorithm is applied to both 
BU0304 and BU1314. For the number of adjoining neighbors, we operate a small 
buffer (algorithm 1, # neighbors 1/2) with the aim of correcting buildings that shall 
be considered as adjoining, but are not due to low geolocation accuracy. Even if 
such occurrences are negligible within the ZENRIN Residential Maps, this 
precautionary step ought to be taken before computing the number of adjoining 
neighbors. Lastly, range01 is a user defined function that allows normalizing 
elongation and convexity. 

3. Residential Buildings: Classification of Types

Once a basic set of indicators has been calculated for each input layer, the next
step is to perform a classification of building types that can be applied to different 
time points. Three options arise. First, reliable expert knowledge is available, and as 
such, the number and the characteristics of the relevant building types are known in 
advance. Second, limited expert knowledge is available, which leads to partial 
information known in advance, such as the number of types sought, but not their 
characteristics. Lastly, no expert knowledge is available, thus leading to a situation 
in which both the number and the content of the building types are unknown.  
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3.1. Classification with Expert Knowledge 

When expert knowledge is available, a simple and efficient method of 
classification is found in a manually built decision tree. Successive tests on 
attributes split the original dataset into different class labels. When a solution is 
found and deemed robust by the expert, the conditional control statements can be 
used as benchmarks for other datasets possessing similar attributes. Supplementary 
materials algorithm 2 is a user defined function named DTs which allows 
classifying each row of a given dataset using the aforementioned morphometric 
indicators. Each test follows a if condition then outcome structure. Several 
conditions per test are possible, and the outcome is always a label attribution. Using 
the apply function, DTs can be used on any dataset possessing the relevant 
indicators, in our case BU0304 and BU1314. 

FIGURE 2. Visualization of the tests implemented in the DTs function 

Fig.2 is a flowchart visualization of the successive tests implemented in DTs. 
They are 9 different outcomes, in which 4 are for collective housings (C1 to C4) and 
5 are for single-family homes (S1 to S5). Each label attribution is based on expert 
knowledge. For example, C1 are high rise residential buildings following a “tower in 
the park” model, C2 are elongated residential complexes representative, amongst 
other structures, of Danchi housing (団地 ) which are complexes of apartment 
buildings built following western models after the Second World War, S3 are small 
and elongated row houses, typical of traditional wooden Nagaya (長屋), etc. The 
relevance of these building types in Japanese urban areas is derived from literature 
(e.g. Shelton, 2012; Bonnin et al., 2014; Perez et al., 2019b). 

3.2. Classification with limited Expert Knowledge 

If expert knowledge is limited, but still available in some extent, it is possible to 
make several decisions prior to a series of unsupervised cluster analyses. For 
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example, we could know the number of required clusters, as well as the fact that 
some inputs must not be grouped together. This could for instance be the case for 
collective and single-family homes, for specialized and residential buildings, or for 
building possessing large and small footprints. In such cases, standard unsupervised 
clustering techniques that minimize intra-cluster distances and maximize inter-
cluster distances can be separately used for each subset, such as K-Nearest 
Neighbors, hierarchical clustering, k-means, classification trees, random forests, 
neural networks, etc. To illustrate this point, one of the simplest technique, k-means 
clustering, which aims at partitioning inputs into clusters such that the sum of 
squares from inputs to the assigned cluster centers is minimized, is applied as 
follows: Supplementary materials algorithm 3 is a R protocol performing two 
different k-means, one for collective (attribute 1663) and one for single-family 
homes (attribute 1664). Two random subsets are draw and merged from BU0304 
and BU1314 for collective buildings only (sample size of 20% of the inputs), and, 
once again, from BU0304 and BU1314 for single-family homes only (20% again). 
Drawing and merging random samples made of both periods altogether allows 
avoiding giving more weight to one period over the other. A clustering analysis is 
then performed for each subset (collective housing and single-family homes), with a 
number of clusters per model chosen a priori. In algorithm 3, we select the same 
number of clusters as within the DTs model (section 3.1: 4 clusters for collective 
housing and 5 clusters for single-family homes). Data are scaled and, in order to 
avoid redundancy, floor and area are removed in favor of floor-area. The two 
clustering analyses are thus performed on convexity, elongation, number of direct 
neighbors and floor-area. Once the two models are trained, for both periods, and for 
both collective and single-family home inputs, the whole datasets are mapped to the 
nearest clusters. This mapping is made using the k-nearest neighbor searching 
algorithm of the “FNN” package. 

FIGURE 3. Cluster Map and Profiles for individual Clusters for Collective 
Housing (top) and Single-Family Homes (bottom) 
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The left side of Fig.3 is a possible representation of the two clustering within 
two-dimensional spaces made by extracting the first two principal components 
(package “factoextra”) along which the variation in the data is maximal. Quality 
metrics in these clustering analyses are the share of the total variance in the data set 
that is explained by the clustering, given by dividing the between sum of square 
(BSS) by the total sum of square (TSS). These values are 94.13% for 4-class 
collective housing clustering and 93.82% for the 5-class, respectively. The right side 
of Fig.3 shows radar charts for each variable. It is possible to add variables in the 
radar charts that have not been used during the clustering processes, such as area and 
floor in Fig.3. These plots are made with the package “fmsb”. The charts point at 
highly differentiated profiles, especially for collective housing, with profiles that are 
partially matching the DTs model. C3 are for example regrouping both high rise 
residential buildings and Danchi housings (団地), C4 appears to be the equivalent of 
DTs C4: small-sized complexes, etc. Cluster concordances with the DTs model are 
less clear for single-family houses, except for S2: articulated detached houses 
(equivalent to DTs S2) or S1: large villas (DTs S5). S3 and S5 are row houses with 
close characteristics, also close in the cluster map. In fact, even if literature or partial 
expert knowledge say that we shall seek for 5 different profiles of single-family 
homes, it appears that 5 is not a robust number of clusters for the k-means algorithm. 
In this respect it is possible to either (1) add/remove variables, such as using floor 
and area, instead of floor-area, or add newly computed morphometric indicators, (2) 
re-run the procedure (k-means is sensitive to the location of starting centroids) or try 
another algorithm, such as one of the algorithm discussed at the beginning of this 
section (3) re-run the algorithm with a different number of sought clusters (4) 
manually merge the clusters that have close characteristics. 

3.3. Classification with no Expert Knowledge 

Finally, in the case of a total lack of expert knowledge, any widely known 
clustering algorithms can be used, such as k-means, neural networks, or Bayesian 
networks. The main issues with unsupervised clustering are the assessment of the 
quality of the partitions, as well as the number of “interesting” partitions (Haldiki et 
al., 2001). Since there is no way to a priori determine the most suitable number of 
clusters, researchers tend to use heuristics, such as looking at a cutoff point 
regarding the improvement of the explained variance (or log-likelihood in the case 
of Bayesian clustering) for each additional partition (elbow method). An 
unsupervised Bayesian clustering on BU1314, based on the indicators detailed in 
section 2.3 (plus specialization) has been performed in Perez et al., (2019a). This 
clustering used an expectation-maximization algorithm (Dempster et al., 1977) to 
perform one thousand clustering analyses and a MDL score (combining log-
likelihood and a penalization function for the growing number of clusters) to define 
the optimal number of partitions. This application yields seven interesting clusters, 
from detached small houses to isolated high-rise buildings. In what follows, we will 
propose an alternative approach to unsupervised clustering based on Self-Organizing 
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Maps (SOM) (Kohonen, 1982). Bayesian and SOM clustering have already been 
compared in unsupervised approaches (Fusco and Perez, 2019). 

Supplementary materials algorithm 4 is a R protocol performing SOM 
clustering on a sample made of BU0304 and BU1314 (sample size of 20% of the 
inputs). This time, we do not distinguish collective from single-family homes 
buildings. Once again, the sample is made with inputs draw from both periods 
altogether. The same indicators than in section 3.2 are used. SOM use a 
neighborhood function for each input to find the Best Matching unit (competitive 
training). Units, also called nodes, are distributed on a two-dimensional space (map). 
Once the best matching unit is found, a radius parameter allows updating the 
neighboring nodes, thus giving topological properties to the map that can be 
investigated through their proximity. There are two ways to identify clusters within 
a SOM. First, the number of nodes within the two-dimensional space can be set to a 
small value. Each node is then considered as a cluster. The second approach, which 
is the one used in algorithm 4, is to parameterize many nodes for the map (225, i.e. 
15 by 15 in our application). The distances between couple of nodes form a distance 
matrix (U-Matrix). The advantage of this approach is that it allows visualizing each 
variable distribution across the map. Depicted by colors, these graphical 
representations are called heatmaps. Since similar values are aggregated in the same 
areas, heatmaps provide relevant information that can be used prior to the 
segmentation of the U-Matrix. The segmentation can then be performed using a 
simple hierarchical clustering, as in algorithm 4, in which the number of divisions 
is set manually.  

FIGURE 4. Self-Organizing Map outputs for a sample of BU0304 and BU1314 a. 
Training Progress b. Heatmap for direct neighbors c. Heatmap for floor-area d. 

Heatmap for Elongation e. Heatmap for Convexity f. Clustering results. 

Fig.4 displays the outputs of a SOM clustering performed on a sample made of 
BU0304 and BU1314 using the “kohonen” package. The first thing to control is that 
the training curve flattens, as in Fig.4 a. The training is not over if it doesn’t, the 
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rlen parameter in algorithm 4 must thus be set to a bigger value. Fig.4 b. to e. are 
the different heatmaps, showing that similar values are aggregating in the same areas. 
f. is the cluster map, where each color is a different building type. In this example,
we set the number of clusters to seven. The black lines are the cluster boundaries,
which have been retroactively mapped to the heatmaps. As in k-means, the ratio
between BSS and TSS can be calculated for different numbers of clusters. For the 7-
class solution, it reaches 84.01%. The “blue” cluster is made of different kinds of
small sized single-family houses, the “pink” is for elongated row houses such as
wooden Nagaya (長屋), the “purple” is for Danchi housing (団地), the “red” is
representative of small collective residential complexes, etc. Once the SOM is
trained with the sample, BU0304 and BU1314 data are mapped into the model using
the map.kohonen function.

4. Spatial Analysis of Perforation and Regeneration

4.1. Automated Grid Creation and Evolution Count 

In the previous section, we performed three different classifications that have 
been applied to the different periods associated with our datasets: 2003/04 and in 
2013/14. To summarize, algorithm 2, 3 and 4 are individually able to provide a new 
variable: a class label, that can be compared between two periods. This is the only 
input required in this section: a class label associated to at least two spatial datasets 
describing the same study area at different time points. Algorithm 5 creates a grid 
with predetermined cell size, 250 meters, that are superimposed on the extent of the 
test region. Cells that are not intersecting any buildings are filtered out of the grid. 
Then, using a tapply structure, a recursive intersect is performed for each remaining 
cell to count the buildings grouped by labels. Once the tapply function has been ran 
for both datasets, a final line of code groups the results of both periods in a single 
dataframe. This whole process takes only a few seconds with an Intel® Core™ i7-
8700 CPU @ 3.20GHz, 16gb RAM, while, on a traditional GIS software, for each 
and every class label, an intersect with a grid of this extent takes several minutes to 
run. For each cell, it is then possible to calculate the difference per building type, in 
order to map the temporal evolutions of each type. 

4.2. Mapping 

To map the count and evolution of building types, we use the “tmap” package, 
which allows building thematic maps following a layer-based structure. 
Supplementary materials algorithm 6 shows a layered structure leading to the 
map of the count of the number of building for the C3 profile of the DTs model 
(Fig.5 a.). Before setting the maps, we first import an OpenStreetMap background. 
C3 values are then discretized into several categories (natural breaks), sequentially 
added as new layers to the map. Algorithm 6 is interesting on both counts. First, for 
each category, cells are dissolved into a single multipart polygon before being 
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plotted. It allows plotting only the geometries thus substantially reducing 
computation time. Second, for each category, polygons are smoothed in order to 
make localized aggregates stand out.  

FIGURE 5. 2013-14 Count and 2003-4/2013-14 Evolution of building types for 
selected Profiles of the DTs model a. Count for C3 b. Evolution for C3 c. Count for 

S1 d. Evolution for S1 e. Count for S3 f. Evolution for S3 

Fig.5 shows the count and evolution of three building types from the DTs model. 
Mappings within the above figure can be realized for any building type and for any 
of the three models discussed in section 3 using the structure of algorithm 6. C3 are 
mid to high rise compact/narrow buildings, mostly located in the central part of 
Osaka. The evolution map shows different hot and cold spots within this central area, 
thus pointing at a building type which is self-regenerating. S1 are convex detached 
houses mostly located outside of the center of Osaka. The evolution map shows that 
this kind of single-family homes is increasing, which is consistent with the literature 
pointing at a spread of small-sized prefabricated homes in Japan (Buntrock, 2017). 
S3 are small and elongated row houses, typical of traditional wooden Nagaya (長屋). 
This type is also located outside central Osaka, but also highly concentrated in 
specific neighborhoods. The evolution map points at a gradual disappearance of this 
traditional building type, even perhaps at a replacement if we link this disappearance 
with the increase of modern prefabricated homes. 

5. Conclusion and Discussion

This paper put forward several recommendations and suggestions with the aim of
studying the spatial location and temporal evolution of building types in large 
metropolitan areas. The first and most important condition is that high quality GIS 
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layers of building footprints with heights (or floors) as attribute data are available 
for at least two different time points. Another attribute is valuable, but not 
mandatory: building specialization. Attention should be paid to the time depth 
between the layers, as it must be sufficient to analyze structural changes in the 
spatial organization of building types. The temporality behind these structural 
changes is also dependent on cultural specificities regarding planning, building 
norms and urban development traditions (deconstruction, dismantlement, renovation, 
etc.). If the prerequisites are fulfilled, then it is possible to compute a basic set of 
indicators for each building, such as the one presented in section 2.3. Based on the 
kind of available expert knowledge, different types of classifications have been 
performed, from manually built decision trees to fully unsupervised clustering.  
Regardless of the method, quality metrics show that significantly different clusters 
can be found. It is possible to check the validity of each classification by drawing 
random samples and go on the field, or use a street-based urban imagery (such as 
Google Street View), then calculate the usual sensitivity and specificity metrics. The 
automated superimposition of a grid then allows counting occurrences of each type, 
as well as quantify the difference per cell between the different time points. For each 
category, mappings are performed, with cells that are discretized in the same 
category dissolved into a single multipart polygon, thus highlighting localized 
aggregates and, in the case of temporal evolution, hot and cold spots of perforation 
and regeneration of building types.  

This paper focused on methodological suggestions, proposals and 
recommendations for studying building evolutions. Regarding the clustering 
applications, the methodological propositions could be improved, especially by 
focusing on maintaining output coherence over different settings or initializations. 
A matrix of similarity indexes can for example be calculated among the clustering 
results to evaluate the robustness of the protocols to pseudorandom number 
generation (seed), and cross-validation methods, such a k-fold or Jackknife 
resampling, can be used to evaluate the robustness of the outputs to different random 
samples. Yet, interesting preliminary results already stand out regarding specific 
locations and evolution trajectories of certain building types in Osaka, Japan. It 
shows that the perpetual mutation that characterize urban areas is linked, at least to 
some extent and to different degrees, to urban form. This research opens interesting 
perspectives, such as the study of the disappearance of some building types, or the 
gradual replacement of some types by other. Several methods, from standard 
correlation matrices to geographically weighted regressions, could allow exploring 
these dynamics in conjunction with other factors, such as population evolution, 
socio-demographic characteristics, planning policies, etc. These results must be 
analyzed together with literature and fieldwork related to the metropolitan area of 
Osaka. 
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