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Abstract. After introducing a new distance measure of a preference
profile to single-peakedness, directly derived from the very definition of
single-peaked preferences by Black [4], we undertake a brief compari-
son with other popular distance measures to single-peakedness. We then
tackle the computational aspects of the optimization problem raised by
the proposed measure, namely we show that the problem is NP-hard and
we propose an integer programming formulation. Finally, we carry out
numerical tests on real and synthetic voting data. The obtained results
show the interest of the proposed measure, but also shed new light on
the advantages and drawbacks of some popular distance measures.

1 Introduction

The study of structured preferences in social choice [7, 21] starts from the ob-
servation that, although the opinions of individuals on candidates in an election
are heterogeneous, the voters often agree on the way the candidates are related
to each other, more precisely on the ideological proximities between them. Var-
ious preference structures can be considered to model these proximities, among
which are single-peaked preferences [4] and its extensions (see e.g. [18]), as well
as Euclidean models where the ideological positions of voters and candidates are
viewed as points in an Euclidean space [8].

A preference structure is also called a domain restriction in social choice
theory, because it restricts the domain of possible preferences for the voters by
assuming a consistency of the preferences with the proximities between can-
didates. Domain restrictions often make it possible to overcome social choice
paradoxes (such as the famous Arrow’s impossibility theorem [1]), and impact
the computational complexity of determining the winner of an election, as well
as the complexity of manipulating an election. For more details regarding these
computational aspects, we refer the reader to the survey by Elkind et al. [12].

Another issue addressed in the survey is that of recognizing structures in
preferences, i.e., determining whether a set of preferences has a given struc-
tural property and, if yes, returning the corresponding structure (left-right axis,
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graph or positions in the Euclidean space). The work we present here deals with
this recognition problem. We focus on the most well-known domain restriction,
that of single-peaked preferences. More precisely, we introduce a new distance
measure to single-peakedness for an election.

As emphasized by Feld and Grofman [15], the assumption that preferences
are perfectly single-peaked is indeed very strong if the alternatives are candidates
in an election (the case of numerical alternatives, such as tax levels, is obviously
different). We recall that preferences are said to be single-peaked if 1) all voters
agree on a left-right axis on the alternatives, and 2) the preferences of all voters
decrease along the axis when moving away from their most preferred alternative
to the right or left. Single-peakedness in the strictest sense thus requires that
no individual preference deviates (even slightly) from the single-peakedness con-
dition. Given an axis A, the number of rankings consistent with A (i.e., such
that condition 2 holds) is 2m−1, over m! possible rankings in total, where m
is the number of alternatives. The proportion of consistent rankings within all
possible rankings thus quickly becomes tiny when m increases (2m−1/m!≈0.01
for m= 7), as well as the likelihood that no voter deviates from this subset of
preferences. This observation is corroborated by the numerical tests carried out
by Sui et al. [20] on 2002 Irish General Election data in Dublin West and Dublin
North, where the best axes explain only 2.9% and 0.4% of voters’ preferences.

Conitzer [7] distinguishes between two interpretations of nearly single-peaked-
ness (see e.g. [13] for a systematic study of nearly single-peaked electorates): an
interpretation where preferences are said nearly single-peaked if only a few vot-
ers’ preferences deviates from a given axis A and the other voters’ preferences are
perfectly single-peaked w.r.t. A (the numerical tests reported above corresponds
to this interpretation); another interpretation where one allows all voters’ pref-
erences to deviate to some extent from a given axis A. The distance measure we
propose in this paper falls under the second interpretation, which has been less
studied and tested than the first one.

Given an axis A on the candidates and a set P of preferences, the idea is to
measure how far from single-peakedness w.r.t. A each individual preference is.
Put another way, each preference in the electorate partially fits with the axis
(according to a non-binary measure), and one sums up the degrees of fitness of
preferences in P to obtain the “degree of single-peakedness” of P w.r.t. A. More
precisely, one defines a distance to single-peakedness, i.e., the degree is 0 if P
is single-peaked w.r.t. A. We are thus seeking a procedure that returns both a
degree of single-peakedness of a profile and an axis that witnesses the obtained
value. These outputs allow the analysis of a political landscape, by answering
the questions: How close to single-peakedness is an electorate? How the voters
perceive the ideological proximities between candidates?

Related Work While recognizing perfectly single-peaked preferences is a poly-
nomial time problem [3, 10], determining the distance to single-peakedness (ac-
cording to various measures) is often NP-hard. Various notions of nearly single-
peakedness are present in the literature. We briefly review here notions that
do not relax the assumption of a one-dimensional axis on all the candidates,
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which excludes other approaches that return, e.g., an axis on a subset of can-
didates [13], an axis on clone sets [9], or multiple axes [2, 20]. Most of them
have been introduced and/or studied by Faliszewski et al. [14], Erdélyi et al.
[13] and Elkind and Lackner [11]. Faliszewski et al. [14] studied k-voter dele-
tion single-peakedness, also known as partial single-peakedness in economics [19].
One says that an electorate is k-voter deletion single-peaked consistent if all but
k of the voters preferences (“maverick” voters) are consistent with a common
axis on the candidates. The smallest number k such that there exists an axis
w.r.t. which the electorate is k-voter deletion single-peaked can be viewed as a
distance to single-peakedness. Erdélyi et al. [13] as well as Bredereck et al. [6]
have proved that determining this distance is NP-hard. Elkind and Lackner [11]
have proposed a polynomial time 2-approximation algorithm for this distance,
and have established fixed-parameter tractability results (complexity O∗(1.28k)
if k<n/2, and O∗(2.08k) if k≥n/2, where n is the number of voters).

Erdélyi et al. [13] introduced k-local candidate deletion single-peakedness.
They first defined single-peaked consistency of a partial preference (linear order
on a subset of candidates) w.r.t. an axis A on all candidates: a partial preference
is single-peaked w.r.t. A if it is single-peaked w.r.t. the axis obtained from A
by removing the missing candidates. Then they say that an electorate is k-local
candidate deletion single-peaked consistent if, by removing at most k candidates
from each preference, one obtains a set of partial preferences that are single-
peaked with respect to a common axis. As above, the smallest k for which the
property holds can be viewed as a distance. Here again, the authors have proved
that determining this distance is an NP-hard problem.

The class of distance measures that is the closest to our work is that of swap
distances. Erdélyi et al. [13] introduced k-global swaps single-peakedness, where k
is the number of swaps of consecutive candidates that need to be performed in the
preferences to make the election single-peaked. Following Faliszewski et al. [14],
they also considered a “local budget” for swaps, i.e., they allow up to k swaps per
vote. They call k-local swaps this notion of nearly single-peakedness. For both
notions, Erdélyi et al. [13] have proved that computing the smallest k enabling to
make the election single-peaked is NP-hard. Finally, let us mention the notion of
PerceptionFlipk single-peakedness [14]. An electorate is PerceptionFlipk single-
peaked if there exists an axis A such that, for each voter, the axis A can be
transformed into an axis A′ by at most k swaps of consecutive candidates in
A so that the voter’s preference is single-peaked with respect to A′. Erdélyi
et al. [13] have proved that k-local swaps single-peakedness and PerceptionFlipk
single-peakedness are equivalent, in the sense that an electorate is k-local swaps
single-peaked iff it is PerceptionFlipk single-peaked.

Our Contribution The originality of the distance measure we introduce in the pa-
per is that it directly follows from the very definition of Black’s single-peakedness
condition. For a given axis on the candidates, it consists in counting the num-
ber of violations of the single-peakedness condition in the preferences. We give
a formal definition in Section 2, as well as some insights on the differences be-
tween this measure, k-voter deletion single-peakedness and k-global swap single-
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peakedness. We tackle computational complexity in Section 3: we prove that,
as for most of the proposed measures in the literature, computing an axis at
minimum distance to an electorate is NP-hard for our measure. We nevertheless
propose an exact method to compute such an axis, that turns out to be efficient
in practice. Then, in Section 4, we present the results of numerical tests on both
real and synthetic election data, to evaluate the relevance of the returned axes
on the candidates, providing also comparisons with the other notions of nearly
single-peakedness. Some proofs are missing due to lack of space.

2 Definition and Comparison with Voter Deletion and
Global Swap

2.1 Definition

We start by recalling some basic terminology of social choice theory. Given a set
C = {c1, c2, . . . , cm} of candidates and a set V of n voters (|V |= n), each voter
v ∈ V ranks all the candidates from the most to the least preferred one. This
ranking is called the preference relation of v. The (multi)set P of preference
relations of all the voters in V is called a profile. The couple (C,P) is called an
election. The definition of a single-peaked profile states as follows:

Definition 1 (Single-peakedness). Let an axis A be a total order /A over a
set C = {c1, . . . cm} of candidates. Let >v denote the preference relation (total
order) of a voter v over C. Let c∗ denote the most preferred candidate of v (also
called the peak of v), i.e., c∗ >v c for all c 6= c∗. The preference >v is single-
peaked with respect to A if for any ci, cj ∈C, if cj /A ci /A c

∗ or c∗ /A ci /A cj
then c∗ >v ci >v cj holds. A profile P is said to be single-peaked with respect to
A if every vote is single-peaked with respect to A.

Definition 2 (Betweenness relation). The betweenness relation induced by
an axis A is the relation RA defined by:

RA={(ci, cj , ck) ∈ C3 : ci /A cj /A ck or ck /A cj /A ci}.

Put another way, (ci, cj , ck)∈RA means that cj is between ci and ck on the
axis A (note that ci, cj and ck do not need to be consecutive on A). The notion
of A-forbidden triple that we introduce now will make it possible to measure the
consistency of a profile with an axis:

Definition 3 (A-forbidden triple). Let c∗ be the peak of a voter v. If c∗>v
ci>v cj and (c∗, cj , ci)∈RA, then the triple T = (c∗, ci, cj) is called A-forbidden
in v.

Counting the number of A-forbidden triples in a profile P (by summing over
all >v∈P) amounts to counting the number of violations of the definition of
single-peakedness w.r.t. A. Note that the number of A-forbidden triples per
voter is upper bounded by (m−1)(m−2)/2 as c∗ is unique.
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Example 1. Let us consider the following profile with 5 candidates {1, 2, . . . , 5}
and 20 voters with the following preferences:

– 5 > 4 > 3 > 2 > 1 for 1 voter (type I);
– 1 > 2 > 3 > 4 > 5 for 10 voters (type II);
– 1 > 5 > 3 > 2 > 4 for 9 voters (type III).

Let us consider the axis A: 1 /A 2 /A 3 /A 4 /A 5. The voter of type I is
single-peaked with respect to A, so there is no A-forbidden triple for her. Voters
of type II are also single-peaked w.r.t. A, so the A-forbidden triples only occur
with voters of type III. There, for each of them there are 4 A-forbidden triples:
(1, 3, 2) (as 1 > 3 > 2 for the voters, but 1 /A 2 /A 3), (1, 5, 2), (1, 5, 3) and
(1, 5, 4). Then the number of A-forbidden triples in the profile is 36.

More generally, we define a new notion of nearly single-peakedness, that also
entails a distance measure to single-peaked profiles. Let FT (P, A) denote the
number of A-forbidden triples in P, and FT (P)=minA FT (P, A).

Definition 4 (k-forbidden triples single-peakedness). We say that a pro-
file P is k-forbidden triples single-peaked consistent if FT (P) ≤ k.

We will denote by AFT (P) an optimal axis, i.e., AFT (P) ∈ arg minA FT (P, A).

Example 2 (Example 1, continued). Now, let us consider the following axis B:
4 /B 2 /B 1 /B 3 /B 5. Voters of type II are single-peaked w.r.t. B. For voters of
type III there is only one B-forbidden triple ((1, 5, 3)), and there are 4 forbidden
triples for the unique voter of type I. In total, there are 13 B-forbidden triples,
much smaller than 36 A-forbidden triples. Indeed, 19 voters are single-peaked or
very close to being so w.r.t. B. Actually, B is an optimal axis, i.e., FT (P) = 13
and AFT (P) = B.

2.2 Forbidden Triples, Voter Deletion and Global Swap

Let us highlight some differences between k-forbidden triples single-peakedness
and other notions of nearly single-peakedness. We focus on the notions of k-voter
deletion single-peakedness (we denote by V D the corresponding distance mea-
sure), k-global swaps single-peakedness (GS), and of course k-forbidden triples
single-peakedness (FT ). They all result in a single axis on all candidates (con-
trary to, e.g., multi-dimensional single-peakedness [20] and k-candidate deletion
single-peakedness [13]). Formally, V D(P, A)=

∑
>∈P δ(>,A) where δ(>,A)=0

if > is single-peaked w.r.t. A, otherwise 1, and GS(P, A) =
∑
>∈P dswap(>,A),

where dswap(>,A) is the minimum number of swaps of consecutive candidates
to make > single-peaked w.r.t. A.

A major difference between V D, on the one hand, and FT and GS, on the
other hand, lies on the fact that the latter ones are much smoother. Namely, they
quantify how far a preference is from being single-peaked with respect to an axis,
by a distance which lies from 0 (single-peaked) to Θ(m2). On the opposite side,
V D only looks if a preference is single-peaked or not, so the distance is 0 or 1.
This may prevent V D to find interesting axis, with respect to which almost all
the preferences are almost single-peaked. We illustrate this point on Example 1.
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Example 3 (Example 1, continued). There is no axis compatible with voters of
type II and III, so the axis 1/A 2/A 3/A 4/A 5 is the (unique, up to reversal) axis
compatible with voters of type I and II. Thus, it is optimal for V D. As pointed
before, this axis is not satisfactory, as almost half of the voters have preferences
very far from being single-peaked with respect to this axis. The axis B optimal
for FT seems to better fit nearly single-peakedness, as among the 20 voters, 10
are single-peaked w.r.t. it and 9 are very close to being single-peaked.

GS and FT are intuitively closer to each other than V D, but still have
some important differences. A first difference is computational, and will be dealt
with in the next sections: while both of them are NP-hard, FT is much easier
to compute in practice. FT and GS have also qualitative differences, and we
illustrate this through a property for which they behave differently.

Let us consider the following unpopularity property. It states that beyond a
certain level of unpopularity a candidate c can hardly be viewed as intermediate
between others, and thus there should be an optimal axis where c is at an
extremity. Let us say that a candidate is unpopular if she is never ranked in first
position, and ranked last by at least dn/2e voters1.

Property 1 (Unpopularity). Let (C,P) be an election. A distance d verifies the
unpopularity property if for any unpopular candidate c there exists an axis A
minimizing d(P, A) where c is at an extremity.

It is well-known that, if a profile is single-peaked, then such an unpopu-
lar candidate is indeed necessarily at an extremity of any compatible axis [10].
Interestingly, we show that dealing with nearly single-peakedness, among the
considered measures, FT is the only one for which the unpopularity property
holds.

Theorem 1 FT satisfies the unpopularity property, while GS and V D do not.

Proof. (sketch) We prove that the property holds for FT .
Let c be a candidate never ranked in first position, and ranked in last position

by at least half of the voters. Let A be an arbitrary axis such that c is not one of
its extremities. Let us denote by m1 the number of candidates on the left of c in
A, and by m2 the number of candidates on the right of c. We define two axes Al
and Ar obtained from A by putting c respectively on the extreme left position
for Al, and on the extreme right position for Ar. We prove that at least one of
the axis Al, Ar is at least as good as A. To do so, for each voter v, we count
down the difference of the number of forbidden triples with respect to A and
with respect to Al and Ar. It consists in counting for each of axes the number
of triples involving the candidate c. In fact, as c is never ranked first and the
restrictions of A, Al and Ar on C \{c} lead in the same axis, we observe that the

1 As in any axiomatic approach, the specific situation considered here does not need
to often happen in practice: it is a thought experiment in which one considers a
hypothetical situation and examines whether the measure would behave well in such
a case.
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triple (ci, cj , ck) (with ci, cj , ck different from c) is forbidden with respect to A
if and only if it is forbidden with respect to Al (resp. Ar). Let v be an arbitrary
voter and c∗ the peak of v. Four configurations are possible:

(i) v ranks c in last position and c∗ is on the left of c in A;
(ii) v ranks c in last position and c∗ is on the right of c in A;
(iii) v does not rank c in last position and c∗ is on the left of c in A;
(iv) v does not rank c in last position and c∗ is on the right of c.

The table 1 expresses FT (>v, Al) and FT (>v, Ar) in function of FT (>v, A) - if
the exact value can not be given, the upper bound (representing the worst case)
is given. For v of type (i), (c∗, c, c′) is forbidden (w.r.t. A) if and only if c′ is on
the right of c in A (there are m2 such positions). The candidate c is not involved
in any forbidden triple with respect to an axis Al or Ar, as it is placed on the
extremity. The same reasoning applies to v of type (ii). For a v of type (iii), in
the worst case c is not involved in any forbidden triple with respect to A, but
moving it on the left (resp. right) extremity will create up to m1 − 1 (resp. m2)
new forbidden triples. We reason the same way for type (iv).

type FT (>v, Al) FT (>v, Ar)

(i) FT (>v, A)−m2 FT (>v, A)−m2

(ii) FT (>v, A)−m1 FT (>v, A)−m1

(iii) ≤ FT (>v, A)+m1−1 ≤ FT (>v, A)+m2

(iv) ≤ FT (>v, A)+m1 ≤ FT (>v, A)+m2−1

Table 1. Values of FT (>v, Al) and FT (>v, Ar) in function of FT (>v, A), according
to the type of v.

Assume that m1≤m2. We prove that Al is always at least as good as A, i.e.,
FT (P, Al)≤FT (P, A), which is written:∑

>v∈P
FT (>v, Al) ≤

∑
>v∈P

FT (>v, A).

Thanks to Table 1 it is sufficient to prove that:

n(i)m2 + n(ii)m1 ≥ (n(iii) + n(iv))m1 − n(iii)

with nt the number of voters of type t. By assumption, n(i) + n(ii)≥ n
2 . As we

assume that m1≤m2, the inequality holds all the time.
If m1≥m2, we prove in the same manner that Ar is always at least as good

as A. ut

We will present several other qualitative differences between the measures in
the experimental section.

3 Computational Aspects

Given a preference profile P, we first note that determining FT (P, A) for a given
axis A can be handled in polynomial time O(nm2), where n = |P| and m= |C|,
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by brute force enumeration of all triples. This complexity can be improved to
O(nm

√
logm) (proof omitted).

Let us now focus on the complexity of determining if FT (P)≤k for a given
k, i.e., the following problem:

FT Single-peaked Consistency
Input: An election (C,P) and an integer k.
Output: Yes if FT (P)≤k, otherwise no.

We show that, similarly to other measures such as GS or V D, this is an NP-
complete problem:

Theorem 2 FT Single-peaked Consistency is NP-complete.

We now provide an Integer Program (IP) formulation, that turns out to be
efficient in practice in our experiments on this consistency problem. For each pair
{ci, cj} of candidates (with i 6= j ∈ {1, . . . ,m}), we introduce a binary variable
xij describing their relative position on the sought axis A. More precisely, the
constraints of type 1 and type 2 detailed below will ensure that: xij = 1 if ci/Acj ,
and 0 otherwise.

Additionally, for each voter v∈{1, . . . , n} and each pairwise preference ci>v
cj with π(v) 6∈{i, j}, where π(v) is the index of the peak of v, we define a binary
variable zvij related to the triple (cπ(v), ci, cj). More precisely, the constraints
of type 3 and type 4 detailed below will ensure that zvij = 1 if (cπ(v), ci, cj) is
A-forbidden in v, and 0 otherwise.

The sum of variables zvij is the number of forbidden triples in the profile P.
The IP objective function is then min

∑
(v,i,j)∈T zvij , where T ={(v, i, j) : π(v) 6∈

{i, j}, i 6=j}.
We now detail the four types of constraints in the program:

1. For each pair {ci, cj} of candidates, one and only one of the variables {xij , xji}
equals 1.

2. For each tuple (ci, cj , ck), if xik=1 and xkj=1 then xij=1 (because ci /A ck
and ck /A cj ⇒ ci /A cj).

3. For each (v, i, j) such that π(v) 6∈{i, j} and ci>v cj , if cπ(v) /A cj and cj /A ci
then zvij=1 ((cπ(v), ci, cj) is A-forbidden in v, on the right side of the peak).

4. For each (v, i, j) such that π(v) 6∈ {i, j} and ci>v cj , if ci /A cj and cj /A cπ(v)
then zvij=1 ((cπ(v), ci, cj) is A-forbidden in v, on the left side of the peak).

Altogether, we obtain the following IP, where T ={(v, i, j) : π(v) 6∈{i, j}, i 6=j}:

min
∑

(v,i,j)∈T

zvij

s.t.



xij + xji = 1 ∀{ci, cj} with i 6= j (1)

xij ≥ xik + xkj − 1 ∀(ci, cj , ck) with i 6=j 6=k (2)

zvij ≥ xπ(v)j + xji − 1 ∀(v, i, j) ∈ T with ci>v cj (3)

zvij ≥ xjπ(v) + xij − 1 ∀(v, i, j) ∈ T with ci>v cj (4)

xij ∈{0, 1} ∀i, j, zvij ∈{0, 1} ∀(v, i, j) ∈ T
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4 Experimental Study

We carried out numerical tests2 on real and randomly generated preference pro-
files in order to compare experimentally the distance measures GS, V D, FT . For
optimizing the V D distance, we used the C++ code developed by Sui et al. [20],
made available on the web3. For optimizing the FT distance, we used the Gurobi
software to solve the IP formulation. Finally, for optimizing the GS distance, we
used a brute force algorithm - to the best of our knowledge, no efficient algo-
rithm is known for this problem so far. In particular, no efficient IP formulation
is available in the literature for swap measures.

We study the quality of optimal axes on real data, compared to reference
axes whose design is detailed below. To evaluate the quality of an axis, we use
the following distance ρ between two axes A and A′ defined on the same set of
candidates: ρ(A,A′)= |RA∩RA′ |/|RA| (note that |RA|= |RA′ |). Put another way,
we measure the proportion of the betweenness relation (see Definition 2) that
is common to the optimal axis and the reference axis. We call this proportion,
expressed in percentage in the sequel, recognition rate.

To go further and better understand the impact of the characteristics of the
profiles on the numerical results, we also study the quality of optimal axes on
profiles randomly generated according to diverse probability distributions for
structured preferences.

4.1 Numerical Tests on Real Data

The real data sets were taken from the 2007 Glasgow city council election and
a 2017 voting experiment during the French presidential election. The first data
set is available on the PrefLib website4, a library of preference data and links
assembled by Mattei and Walsh [17]. The second data set comes from the website
of the experiment called Voter autrement5 [5].

The Glasgow election was separated in 21 wards (with one list of candidates
per ward). The data from 20 of them were used in our tests. Each ward involved
different candidates and voters, and elected 3 or 4 councillors using the Single
Transferable Vote (STV) system. This implies that some political parties had
several candidates for the same voting district. In order to fit the data with
our setting, we restricted ourselves to the votes (ballots) consisting of complete
rankings of the candidates. The number of candidates in the Glasgow data set
ranges from 8 to 11, and the number of complete votes from 320 to 1003. In the
Voter autrement data set, one file was usable for our purpose (file stv111.csv,
here also reporting the results of an experiment about STV), with 11 candidates
from as many distinct political parties and 4068 complete votes.

Regarding the computation times, an optimal axis for V D was computed
in less than 3 seconds (sec.) on all data sets, and generally in around 30-40

2 Tests performed on an Intel Core i7 (1.3 Ghz base, 3.9 Ghz turbo) with 8 GB RAM.
3 http://www.cs.toronto.edu/ lex/code/asprgen.html
4 https://www.preflib.org/data/index.php
5 https://zenodo.org/record/1199545
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sec. (resp. 82 sec.) for FT on a Glasgow ward (resp. on the French presidential
election data). Of course, the brute force algorithm used for GS was much slower:
determining an optimal axis with 6 candidates and 100 voters took about 20 sec.,
which became 2 minutes for 7 candidates, and 10 minutes for 8 candidates.

For each election (at the level of a ward or a country), we built a reference
left-right axis on the candidates. To do so, we used Wikipedia as external source.
The free encyclopedia provides indeed a political position (of course debatable)
for each political party (e.g., left wing, centre, centre right, etc.). We assumed
that the political position of an affiliated candidate corresponds to that of the
belonging party, and we built an axis over the affiliated candidates based on
these positions. We excluded the non-affiliated candidates from the data sets as
we were not able to define a political position for them. Actually, the “Wikipedia
axis” is not unique since several parties can be labeled by the same political
position, or some parties can have several candidates in an election. For instance,
a Wikipedia axis reads ((1, 3), 2, (4, 5)), where the numbers are the indices of
candidates, and candidates {1, 3} as well as {4, 5} have indistinguishable political
positions. This leads to a set of 2·2=4 compatible axes : 1/3/2/4/5, 3/1/2/4/5,
1 / 3 / 2 / 5 / 4, and 3 / 1 / 2 / 5 / 4.

Note that indistinguishable political positions do not mean here that the
candidates share the same position on the political spectrum, but that we have a
partial knowledge of the exact axis. The sets of candidates with indistinguishable
political positions (as {1, 3} and {4, 5} above) are called blocks in the following.
Given a distance measure d (in {V D,FT,GS}) and a profile P, the recognition
rate is formulated in the following manner to take into account blocks:

min{ρ(Ad(P), A′) :A′ compatible with the Wikipedia axis}
where Ad(P) is an optimal axis according to d.

Apart from the recognition rate, we also distinguish three classes of results
for the optimal axis w.r.t. a distance:

– T (True): The optimal axis is compatible with the Wikipedia axis, e.g. 3 /
1 / 2 / 4 / 5 for ((1, 3), 2, (4, 5)).

– EE (Exchanged Extremities): The optimal axis can be made compatible
with the Wikipedia axis by swapping the far left and far right blocks, e.g.
an optimal axis 5 / 2 / 6 / 4 / 3 / 1 for the Wikipedia axis ((1, 3), 2, 6, 4, 5).

– F (False): The optimal axis is called false otherwise.

We distinguish class EE because the experiments revealed a difficulty in
recognizing the two extreme blocks. To get an intuition of what is going on,
consider a profile where the two “extreme” candidates are ranked in the two last
positions by a large number of voters, in an arbitrary order, and the voters who
rank one of them in first position do not want to rank anyone else. The data do
not provide then much information to distinguish who is left wing and who is
right wing.

The results obtained are summarized in Table 2. Note that only the results
for the V D and FT measures are given in the table, because the brute force
algorithm used for the GS measure was not able to compute an axis in a reason-
able amount of time for more than 8 candidates. Regarding the two profiles with
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8 candidates in the Glasgow data set, the results obtained with the GS measure
are of class EE, while with FT one result is of class T and the other of class EE
(the result is of class F in both cases with V D).

d T EE F Rate T EE F Rate

Glasgow city council French election

V D 2 1 17 57.25% 0 0 1 58.8%

FT 5 5 10 67% 0 0 1 74.6%
Table 2. Results on real election data. Rate means recognition rate.

Table 2 indicates how many times each class occurs for the V D and FT
measures (over 20 preference profiles for the Glasgow city council election and 1
for the French presidential election), as well as the average recognition rate. The
results tend to show that the recognition ability of the FT measure is better
than that of V D. When the FT measure is used, an axis perfectly compatible
with Wikipedia is recognized in nearly 24% of cases; it reaches 48% if one adds
the cases when the extremities are swapped.

Let us detail now in a more down-to-earth manner the results obtained on the
voting data from the French election. The Wikipedia axis is W = ((1, 2, 3), 4, 5,
(6, 7), (8, 9), 10), with one non-affiliated candidate excluded from the voting data
(for readability, the candidates are here numbered in function of their position
in W ). The axis AV D minimizing V D is 7 / 8 / 5 / 4 / 3 / 2 / 1 / 6 / 9 / 10, the
axis AFT minimizing the FT measure is 8 / 1 / 2 / 3 / 4 / 5 / 6 / 9 / 7 / 10; both
axes are not compatible with W , but AFT is much better than AV D in terms
of recognition rate. While it can be objected that this result may follow from
the fact that FT explicitly relates to triples while V D does not (although only
triples involving the peak are used in FT , not the whole betweenness relation),
note that, by swapping candidates 7 and 9 and moving candidate 8 in AFT , an
axis compatible with W is obtained, while many more fixes are needed in AV D.

As for the recognition rate, it is slightly higher for the French election. It
may reflect the fact that a national election is commonly more structured by the
left-right political spectrum than a local election.

4.2 Numerical Tests on Synthetic Data

We also generated synthetic election data to deepen the analysis of the recogition
abilities of the V D, FT and GS measures. The aim is to model situations where
the preferences are noisy but there is a strong underlying structure. Given an
axis A, each preference relation is generated in two steps:

1. A candidate c∗ is drawn uniformly at random in C and an auxiliary prefer-
ence relation >0 of peak c∗ single-peaked w.r.t. A is generated uniformly at
random.

2. A preference relation> is drawn from the Mallows model centered around>0.

We recall that the Mallows model defines a probability distribution on rankings.
A central ranking >0 has the highest probability, and the probability of other
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rankings > decreases in a Gaussian manner with the Kendall tau distance from
>0. The central ranking >0 is often interpreted as a “ground truth”, and rank-
ings > as noisy views of >0. Formally, given a dispersion parameter θ≥ 0, the
probability P (>) of a ranking > is proportional to e−θd(>,>0), where d(., .) is the
Kendall tau distance. If θ=0, the uniform distribution is obtained. The greater
the value of θ, the higher the probabilities of the rankings around >0. It is known
that using the Mallows model with parameters >0 and θ is equivalent to gen-
erating a binary relation R where, for each pair ci, cj of candidates, if ci >0 cj ,
then ciRcj with probability p=eθ/(1 + eθ); if the obtained binary relation R is
transitive then stop and return the corresponding ranking, otherwise repeat the
process until R is transitive. For the sake of interpretability, in the tables, we
give the value of p instead of θ.

We used the PerMallows R package6 for generating rankings according to
the Mallows model. For a fast generation of the profiles, the number of voters
is set to 100 and the number m of candidates varies from 7 to 9. The above
probability p takes its values in {0.7, 0.75, 0.8, 0.85, 0.9}. For each couple (m, p)
of parameter values, 100 instances were generated and one counted the number
of instances for which the axis is perfectly recognized.

As the GS brute force algorithm is not usable in practice for more than 7
candidates, we give only the results for V D and FT . However, we generated
instances with 5 to 7 candidates and observed very similar results with GS and
FT .

The results are reported in Table 3. It appears that the V D measure is the one
for which axis A is the most often recognized. This result was quite unexpected
because it is well-known, as mentioned in the introduction, that an optimal axis
for V D explains only a few percentage of voter preferences in real election data
- and this is the case in these election data. Nevertheless, the good behaviour
of V D can be simply explained by the manner in which the preferences are
generated here: the probability that a voter preference is perfectly compatible
with A is low but is the highest among all the preferences, thus the law of large
numbers plays in favor of V D, and this with all the more intensity as probability
p is high.

To refine the analysis, we also studied the recognition rates for FT and V D,
since it is a smoother criterion than the previous one. The results are reported
in Table 4. The differences are then much narrower, which means that, for the
instances where A is not perfectly recognized, the optimal axis for FT is very
similar to A.

Computation Times for Optimizing the FT Distance We also carried out some
numerical tests with a greater number of candidates and/or voters to evaluate
how the running time scales for initializing and solving the IP of Section 3. In
preliminary tests, the running times did not appear to vary significantly with the
value of θ used for generating the profiles, thus we set θ=0, which corresponds to
a uniform distribution on the rankings. The running times obtained seem to be

6 https://cran.r-project.org/package=PerMallows
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much more sensitive to the number of candidates than to the number of voters:
on the one hand, for 100 voters, solving the IP took about 3-4 (resp. 10) minutes
for 15 (resp. 20) candidates; on the other hand, for 11 candidates, it took about
50 seconds (resp. 2 minutes, 5 minutes) for 1000 (resp. 5000, 10000) voters.

7 candidates 8 candidates 9 candidates

p
d

VD FT VD FT VD FT

0.7 39% 9% 26% 5% 12% 3%

0.75 85% 46% 74% 29% 58% 16%

0.8 100% 93% 98% 81% 91% 67%

0.85 100% 98% 100% 98% 100% 95%

0.9 100% 100% 100% 100% 100% 100%
Table 3. Percentage of profiles where the axis is perfectly recognized, w.r.t. distance
measure d and probability p.

7 candidates 8 candidates 9 candidates

p
d

VD FT VD FT VD FT

0.7 83.5% 75% 77.5% 72% 72% 69.1%

0.75 96% 89.1% 93.7% 86.7% 58% 83.2%

0.8 100% 99.1% 99.5% 97.3% 91% 96.2%

0.85 100% 99.8% 100% 99.9% 100% 99.7%

0.9 100% 100% 100% 100% 100% 100%
Table 4. Recognition rates w.r.t. measure d and probability p.

Robustness to Similar Candidates Another case which can make single-peaked
preferences noisy is the presence of similar candidates. We say that candidates
c and c′ are similar if some voters perceive c as the left neighbour of c′ on the
left-right spectrum while others perceive the opposite. More generally, a subset
of candidates are similar if they are consecutive on the left-right spectrum and
the perception of their order changes with the voters. Such a subset of candidates
is called block below. We studied here the robustness to the presence of similar
candidates of each of the considered measures.

Let us call weak axis an axis where several candidates are similar, and de-
scribe such an axis with the same notation used for Wikipedia axes. We con-
sidered weak axes where the blocks contained approximately the same number
of candidates - that means there were no political position shared by (consid-
erably) more candidates than the others. In practice, we worked with the axes
((1,2),(3,4),(5,6)) for m = 6 candidates, ((1,2),(3,4),(5,6),(7,8)) for m = 8, and
((1,2),(3,4,5),(6,7,8),(9,10)) for m = 10. For each weak axis, number of voters
and number of candidates, we generated 1000 profiles7 and computed an opti-
mal axis according to FT and V D. For each measure, we counted the number

7 For a weak axis A, each preference relation in the profile is generated in two steps: (1)
an axis A′ compatible with A is generated uniformly at random; (2) a candidate c∗
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of times the returned axis was compatible with the weak axis. Regarding the
FT measure, the optimal axis was compatible with the weak axis in all tests
performed, independently of the number of voters or candidates. In contrast,
the V D measure is much less robust to the presence of similar candidates: the
percentages of profiles for which the optimal axis for V D was compatible with
the weak axis are given in Table 5.

#cand.
#voters

100 200 500 1000

6 47% 25% 23% 10%

8 17% 8% 0% 0%

10 8% 1% 0% 0%
Table 5. Percentages of profiles for which the optimal axis for V D was compatible
with the weak axis.

5 Conclusion

We have proposed a new distance measure to single-peakedness, based on count-
ing the number of violations of Black’s definition. After a brief comparison with
other existing measures, we have shown that determining an optimal axis for this
measure is NP-hard. We have then presented an IP formulation, and carried out
numerical tests on real and synthetic data. They show that the proposed measure
compares favorably to other popular measures. In particular, the IP formulation
is operational while no efficient procedure is known for minimizing the number
of swaps in the preferences to make them single-peaked; it is more robust to
noise in preferences than minimizing the number of votes to delete.

For future work, from a computational viewpoint, one may wonder whether
problems that are NP-hard in general but polynomial time on single-peaked pro-
files remain tractable for nearly (w.r.t. FT ) single-peaked electorates. Besides,
a local version of the new measure (where, instead of the sum, we minimize
the maximum over the voters of the number of forbidden triples), together with
a comparison to local versions of V D and GS, might be investigated. Also, it
would be interesting to undertake the same type of approach, based on the very
definition of a restricted domain, for defining distance measures to other do-
mains, such as the single-crossing domain [16], or single-peaked preferences on
a graph [18].
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