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Abstract: 22 

 23 

Pharmaceutical drugs have become consumer products, with a daily use for some of 24 

them. The volume of production and consumption of drugs is such that they have 25 

become environmental pollutants. Their transfer to wastewater through urine, feces or 26 

rinsing in case of skin use, associated with partial elimination by wastewater treatment 27 

plants generalize pollution in the hydrosphere, including drinking water, sediments, 28 

soils, the food chain and plants. Here, we review the potential effects of environmental 29 

exposure to three classes of pharmaceutical drugs, i.e. antibiotics, antidepressants 30 

and non-steroidal anti-inflammatory drugs, on neurodevelopment. Experimental 31 

studies analyzing their underlying modes of action including those related to endocrine 32 

disruption, and molecular mechanisms including epigenetic modifications are 33 

presented. In addition, the contribution of brain imaging to the assessment of adverse 34 

effects of these three classes of pharmaceuticals is approached. 35 

 36 

  37 
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1. Introduction 38 

 39 

Human and veterinary medicine uses a large variety of pharmaceutical drugs and their 40 

consumption can reach several thousands of tons in some countries (Hider-Mlynarz et 41 

al., 2018; Ortiz de García et al., 2013; Van Boeckel et al., 2014). The hepatic route 42 

leads to their partial conjugation (glucuronidation, sulfation, methylation, for 43 

elimination) leaving a proportion of pharmacologically active molecule in urine and/or 44 

feces during their elimination (Kokki, 2010; Lucas, 2016; Rainsford, 2009; Verbeeck et 45 

al., 1983). Pharmaceutically active compounds and their metabolites are not 46 

completely eliminated by wastewater treatment plants transforming them into 47 

environmental pollutants (Aemig et al., 2021; Bisognin et al., 2020; Chiffre et al., 2016; 48 

Lonappan et al., 2016). At the worldwide level, pharmaceutical drugs are detectable in 49 

surface and ground water with a transfer in sediment and soil showing a global 50 

environmental contamination (Ahkola et al., 2017; aus der Beek et al., 2016; Awad et 51 

al., 2014; Besse and Garric, 2008; Charuaud et al., 2019; Desbiolles et al., 2018; Ortiz 52 

de García et al., 2013; Wang et al., 2017). 53 

In many species, brain development and function are dependent on internal factors 54 

including steroid and thyroid hormones (Coumailleau et al., 2015; Duarte-Guterman 55 

and Trudeau, 2010). In mammals, neurogenesis, cell migration and neuro-glial 56 

differentiation in  the cerebral cortex, hippocampus and hypothalamus are mediated 57 

by sex steroids and thyroid hormones (Adhya et al., 2018; Parent et al., 2011; Zoeller 58 

et al., 2002). During development, the sexual differentiation of the brain is regulated by 59 

sex steroids through the masculinization of several brain areas including the preoptic 60 

area (POA), a sexually dimorphic region of the hypothalamus regulating sexual 61 

behavior in male and maternal behavior in female (Schwarz and McCarthy, 2008a). At 62 

the adult stage, sex steroids play a crucial role in reproductive function since they 63 

trigger the puberty and control the neuro-glial Gonadotropin-Releasing Hormone 64 

(GnRH) and kisspeptin networks (Delemarre et al., 2008; Nestor et al., 2018; Vigil et 65 

al., 2011). This dependence on steroids and thyroid hormones makes the brain a target 66 

for molecules with endocrine disrupting activity during perinatal stage and adulthood. 67 

In addition, thyroid hormones also target the brain through their involvement in 68 

maturation phases. In particular, they have a crucial role for the myelination and myelin 69 

turnover (Calzà et al., 2015). Moreover, recent studies show that thyroid hormones 70 

play an important role in microglial development (Rousseau et al., 2020). 71 
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Many of the pharmaceutical drugs, which are now considered also as environmental 72 

pollutants, exert their therapeutic action by interacting with the endocrine system and 73 

for many of them, with neural cells. 74 

The benefits of pharmaceutical drugs as therapeutic agents is no longer to 75 

demonstrate. These molecules undergo both pre-clinical and clinical trial phases 76 

before their marketing, consisting in toxicologic assessments to evaluate potential risks 77 

(carcinogenicity, genotoxicity, reproductive toxicity…) according to the guidelines 78 

proposed by the International Council on Harmonization or ICH (Goineau et al., 2013; 79 

“https://www.ich.org/,” n.d.) for human pharmaceuticals and VICH for veterinarian 80 

compounds (https://vichsec.org/en/). The adverse impact of candidate drugs on the 81 

central nervous system (CNS) are evaluated during the pre-clinical phase in 82 

accordance with three guidelines: i) the guideline S7A (safety pharmacology studies) 83 

with behavioral tests after a single injection of the pharmaceutical candidate in adult 84 

animals, ii) the Pre- and Post-Natal development (PPND) study of the guideline S5 85 

(R3) (reproductive toxicology) with behavioral tests after developmental exposure, 86 

from E6 to PN21 in rat (from the 6th day of embryonic (E) development to the 21st Post-87 

Natal (PN) day) and iii) the guideline S11 or Juvenile Animal Study (JAS) for the 88 

assessment of potential toxic effects on neonate, infant, child and/or adolescent with 89 

behavioral tests, learning and memory tests and neuro-histopathology evaluations. 90 

These regulatory assessments do not evaluate adverse effects of pharmaceutical 91 

drugs at neuroanatomical, cellular or molecular level (Barrow, 2018; 92 

“https://www.ich.org/page/safety-guidelines,” n.d.). Only very few studies reported the 93 

impact of these candidate molecules as environmental pollutants. Nevertheless, an 94 

environmental risk assessment has to accompany an application for a marketing 95 

authorization for a pharmaceutical. It consists in the determination of the Predicted 96 

Environmental Concentration (PEC) of the drug substance in surface water and the 97 

evaluation of adverse effects (if the PEC exceeds 0.01µg/L) on algae, Daphnia and 98 

fish (https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-99 

environmental-risk-assessment-medicinal-products-human-use-first-version_en.pdf). 100 

 101 

The aim of this article is to review the potential adverse effects of three categories of 102 

pharmaceutical environmental pollutants: the antibiotics, the antidepressants and the 103 

anti-inflammatory drugs, on the development of the central nervous system (CNS) in 104 

mammals. These three categories of pharmaceuticals were chosen according to the 105 
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following criteria: i) they are largely consumed, ii) they are quasi-systematically listed 106 

in dosing studies reported in the scientific literature and iii) they are huge environmental 107 

contaminants and notably for the hydrosphere. The mechanisms underlying the 108 

potential endocrine disrupting effects of these pharmaceuticals will be discussed. 109 

Since a delay exists between the exposition during development and the manifestation 110 

of the adverse effects, at adult stage, we will expose the implication of epigenetic 111 

modifications that may account for such delayed effects. Finally, we will briefly 112 

introduce the potential of neuroimaging techniques for measuring and following the 113 

endocrine changes induced by pharmaceutical agents. 114 

 115 

2. Neural effects of exposure to antibiotics 116 

 117 

Antibiotics are widely used in human medicine and most importantly in veterinary 118 

medicine and agriculture (Jechalke et al., 2014; Machowska and Stålsby Lundborg, 119 

2018). Therefore, their emission in the environment is mainly due to human sources 120 

(hospital waste, and wastewater treatment plant…), and to a larger extent to 121 

agricultural uses as therapeutic molecules but also as promoters of animal growth 122 

(Puckowski et al., 2016). Previous research highlighted the worldwide presence of 123 

antibiotics, with regional differences among the five analyzed regions across Eastern 124 

and Western Europe, Asia, Africa and America (aus der Beek et al., 2016). Studies 125 

monitoring the occurrence of pharmaceutical substances detected antibiotics in 126 

wastewater treatment plants, surface water, groundwater sediments and aquatic 127 

species including invertebrates and vertebrates (Ahkola et al., 2017; Awad et al., 2014; 128 

Charuaud et al., 2019; Chiffre et al., 2016; Guo et al., 2021; Ortiz de García et al., 129 

2013; Wee et al., 2021; Xie et al., 2017). The resulting measured concentrations in the 130 

environment vary from nanograms or micrograms to milligrams, with seasonal 131 

variations and higher concentrations in winter than in summer (Awad et al., 2014; Kot-132 

Wasik et al., 2016). 133 

 134 

In mammals, the neural effects of antibiotics were mainly studied in the context of 135 

therapeutic use. Encephalopathy, optic neuropathy, seizures and peripheral 136 

neuropathy are some examples of undesirable neurotoxic side effects associated with 137 

their use (Koppel et al., 2001; Lamoth et al., 2009; Weinstein et al., 2009). It has been 138 

shown, in particular, that following therapeutic use certain antibiotics induced 139 
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neurotoxic effects via the disruption of neurotransmitter release or the functional 140 

alteration of neurotransmitter receptors, the increase in glutamate levels, the release 141 

of cytokines in the brain as well as the modification of blood-brain barrier permeability 142 

(Chow et al., 2005; Fiekers et al., 1983; Sugimoto et al., 2003).  143 

Fetal, postnatal and early childhood are critical periods for neural development. The 144 

disruption of the systems involved in brain homeostasis during these early periods of 145 

neurodevelopment can have long-term consequences. Future studies are needed to 146 

determine whether environmental exposure to antibiotics directly affects brain 147 

development or whether microbiome molecules that travel to the brain disrupt gene 148 

activity and cause cognitive deficits. In humans, a longitudinal cohort study showed 149 

that 70% of European children who received antibiotics in early life, but not during 150 

pregnancy, presented higher ratings of social difficulties, attention deficit hyperactivity 151 

disorder and depression symptoms at a later age compared to non-exposed children 152 

(Slykerman et al., 2017). It was shown in several mammalian studies that 153 

administration of high doses of antibiotics during critical periods of development 154 

induced long-term effects on brain and behavior by acting directly on the nervous 155 

system or indirectly through microbiota modifications (reviewed by Champagne-156 

Jorgensen et al., 2019). In rodents, pre-breeding and/or gestational exposure to one 157 

antibiotic (1% succinylsulfathiazole in diet) or to an antibiotic cocktail (5 mg/ml 158 

neomycin, 5 mg/ml bacitracin and 1.25 μg/ml pimaricin in drinking water) elicited 159 

changes in social and emotional behaviors (Degroote et al., 2016; Tochitani et al., 160 

2016). In agreement with this study, it was recently shown that perinatal exposure of 161 

mice to a relatively low-dose  of penicillin (31 mg/kg/d) induced long-term modifications 162 

in the cortical cytokine expression, blood–brain barrier integrity, and behavior (Leclercq 163 

et al., 2017). In particular, antibiotic-treated offspring exhibited impaired anxiety-like, 164 

social and aggressive behaviors.  165 

The cellular and molecular mechanisms reported for antibiotics are briefly summarized 166 

here. Several scientific studies using electrophysiology have shown that some of these 167 

antibiotics interfere with the glutamatergic and / or gabaergic systems. These 168 

interactions had been demonstrated in the past for all quinolone antibiotics, such as 169 

norfloxacin and ciprofloxacin, which inhibited the specific binding of ligands to GABAA 170 

and ionotropic glutamate receptors in a concentration-dependent manner, with an IC20 171 

of 220-930 µM and 70-480 µM, respectively, in mammalian cells (Dodd et al., 1989; 172 

Halliwel et al., 1995). Given the importance of the gabaergic and glutamatergic 173 
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systems in various processes of neurogenesis, this raises the question of the risk of 174 

chronic exposure to these antibiotics during development, due to environmental 175 

contamination. Otherwise, the neurotoxic effects of some quinolones in combination 176 

with certain non-steroidal anti-inflammatory drugs enhanced the inhibitory potency of 177 

ciprofloxacin by approximately 3000-fold (100 µM versus 0.03 µM) as previously 178 

reported (Halliwel et al., 1995). 179 

Another cellular mechanism that was widely reported for the neural effects of antibiotics 180 

involves microglia. It has been established for several years that certain antibiotics, 181 

such as tetracyclines or minocycline, have an inhibitory action on microglial cells, the 182 

immune cells of the central nervous system (Schmidtner et al., 2019; Scott et al., 2018; 183 

Tikka et al., 2001). Recent studies demonstrated that microglial activation is not only a 184 

hall-mark of neuroinflammation, but plays important roles during brain development. 185 

Inhibition of microglial activation by minocycline was shown to induce extensive 186 

neuronal cell death and impair neurogenesis in the subventricular zone (SVZ) and 187 

synaptic pruning in the early postnatal and adolescent rodent brain, respectively (Inta 188 

et al., 2016). These deleterious effects contrast with the neuroprotective actions of 189 

minocycline at adult stages (Arnoux et al., 2014; Liu et al., 2017; Ueno et al., 2013). 190 

It has been reported in mammals that catalase and glutathione s-transferase are also 191 

modulated by tetracycline in some organs, including the brain (Satpute et al., 2017; 192 

Turkan et al., 2020). It is of particular interest to note that these two enzymes are 193 

important in microglial cells to promote pro-inflammatory astro-microglia 194 

communication (Kano et al., 2019). Therefore, changes in microglial function could 195 

trigger important brain disturbance if exposure to antibiotics occurs during 196 

developmental periods. 197 

 198 

Neural effects of exposure to antibiotics were also reported in aquatic models, which 199 

with other wild life represent good sentinels for the environmental contamination 200 

(Animals as Sentinels of Environmental Health Hazards, 1991). Exposure of zebrafish 201 

to norfloxacin (600, 900 and 1200 mg/L) affected not only the hatching rate, increased 202 

mortality and malformation rate of the embryos, but also inhibited the expression of 203 

glial (Glial fibrillary acidic protein or GFAP), stem cell (sex determining region Y-box 2 204 

or sox2) and mature neuronal (enolase 2) markers (Xi et al., 2019). In addition, 205 

exposure to norfloxacin induced cell apoptosis in the brain of zebrafish embryos as 206 

evidenced by measurement of caspase 3 activity and expression ratio of Bcl-2–207 
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associated X (Bax) to B-cell lymphoma 2 (Bcl2). The apoptotic phenotype was rescued 208 

by administration of MK-801, a noncompetitive antagonist of the N-Methyl-D-aspartate 209 

(NMDA) receptor, suggesting that the activation of NMDA receptors mediated the 210 

developmental neurotoxicity of this antibiotic. Another study focused on acute 211 

exposure effects of tetracycline (5, 50 and 500 ng/L), an antibiotic subclass 212 

representing the second highest frequency of detection in environmental matrices, in 213 

the freshwater fish Gambusi holbrooki (Nunes et al., 2015). The results suggested the 214 

existence of a cause-and-effect relationship between tetracycline exposure and 215 

antioxidant effects, neurotoxicity, histological alterations and glutathion-S-transferase, 216 

catalase and acetylcholinesterase enzymatic activities as described above in 217 

mammals. 218 

The potential effects of antibiotics were also studied in the context of combined 219 

exposure with other environmentally detected pharmaceuticals. Liu et al. (2017) 220 

showed that combined exposure of Crucian carp to an antibiotic, erythromycin, at 2 221 

μg/L and an anti-fungal molecule, ketoconazole, at 0.2, 2 or 20 μg/L inhibited 222 

acetylcholine esterase activity and swimming behavior and enhanced shoaling. 223 

Exposure of fish, Astyanax bimaculatus, to sewage effluents added with five 224 

pharmaceuticals including four antibiotics (ciprofloxacin at 11.44 μg/L, oxytetracycline 225 

at 7.93 μg/L, sulfamethoxazole at 188.69 μg/L, trimethoprim at 30.65 μg/L) and 226 

paracetamol at 151.17 μg/L increased glutathione-S-transferase activity in the brain 227 

(Bisognin et al., 2020). 228 

 229 

Whether antibiotics found in the environment trigger neural adverse effects for human 230 

health and environment through endocrine mode(s) of action still needs a thorough 231 

investigation, in particular at environmental doses. However, some evidences in 232 

aquatic animals point out a possible alteration of neuroendocrine systems. Chronic 233 

exposure of Japanese medaka (Oryzias latipes) for 120 days to cefadroxil at 84.8 µg/L 234 

and cefradine since 73.9 µg/L impaired growth and reproduction (Kim et al., 2017). 235 

These effects were associated with altered expression levels of gnrh1, gnrh2, estrogen 236 

receptors (esr1, esr2), and cyp19b in the brain (Kim et al., 2017). Modifications in the 237 

pituitary expression of gnrh1r and gnrh2r encoding GnRH receptors and in estradiol 238 

levels were also observed (Kim et al., 2017). In a previous study, the same group 239 

showed that chronic exposure of Japanese medaka to lincomycin at 0.42 mg/L 240 

significantly reduced juvenile survival at 30 day post-hatch (Kim et al., 2012). 241 
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Interestingly, exposure to lincomycin also increased vitellogenin levels in male fish at 242 

90-day post-hatch. In the same study, exposure of human adrenal cells to lincomycin 243 

also altered steroidogenesis and increased estradiol concentrations. In accordance 244 

with these data, another antibiotic, ciprofloxacin has been previously reported to inhibit 245 

the activity of cytochrome P450, a key enzyme in hormone synthesis, in rat and human 246 

(Granfors et al., 2004; McLellan et al., 1996). Besides these studies reporting 247 

alterations in the gonadotropic axis and/or in steroidogenesis, thyroid disruption was 248 

also observed in a study addressing long-term exposure of Zebrafish embryos to 249 

environmentally relevant concentrations of oxytetracycline (1000 or 5000 ng/L) from 2 250 

h to 120 d post-fertilization (Yu et al., 2020). In particular, exposure to oxytetracycline 251 

increased triiodothyronin concentrations, reduced levels of thyroid stimulating 252 

hormone, and affected growth and development of Zebrafish. From these studies, it 253 

appears that relatively low doses of antibiotics can exhibit endocrine modes of action 254 

in aquatic models, through impairment of the gonadotropic or the thyroid axes. This 255 

raises the question of the potential adverse effect on the nervous system, given the 256 

importance of thyroid and sex hormones in neural processes during critical periods of 257 

development. 258 

 259 

3. Effects of antidepressants on CNS development 260 

 261 

Numerous psychiatric pharmaceuticals are widely prescribed to treat mental illnesses 262 

such as depression, psychosis, anxiety, epilepsy or mood disorders. Therefore antide-263 

pressants constitute one of the most commonly prescribed drugs in developed coun-264 

tries (France, Aemig et al., 2021; Spain, Ortiz de García et al., 2013; USA, Pratt et al., 265 

2017; reviewed by Castillo-Zacarías et al., 2021). The growing consumption of antide-266 

pressants is associated to a growing occurrence of these drugs in urban waters as well 267 

as in rivers and oceans (aus der Beek et al., 2016; Martin et al., 2019; Mole and Brooks, 268 

2019; Saaristo et al., 2019), leading to an emerging environmental contamination by 269 

antidepressants. Antidepressants act directly on brain’s biochemistry by modifying 270 

neurotransmitter metabolism. Various classes of antidepressants implicate different 271 

mechanisms of action within the CNS, regulating notably the serotonin neurotrophic 272 

effects. Each class is identified according to its mechanism of action on neurotransmit-273 

ters: the selective serotonin reuptake inhibitors (SSRIs), which are the most widely 274 
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prescribed (Kulikov et al., 2018); the serotonin and norepinephrine reuptake inhibitors 275 

(SNRIs); the serotonin modulators and stimulators (SMSs); the serotonin antagonists 276 

and reuptake inhibitors (SARIs); the noradrenergic and selective serotoninergic anti-277 

depressants (NaSSAs); the norepinephrine reuptake inhibitors (NeRIs); the serotonin, 278 

norepinephrine and dopamine reuptake inhibitors (SNDRIs) or triple reuptake inhibitors 279 

(TRIs); and the melatonin and serotonin agonists (MaSAs) (Fitzgerald and Watson, 280 

2019). SSRIs are mainly prescribed for treating major depressive disorder, and partic-281 

ularly perinatal depression (Latendresse et al., 2017). Among them, fluoxetine (Pro-282 

zac®) is metabolized by cytochrome P-450 isoenzymes to norfluoxetine, which retain 283 

the pharmacological activity (Mandrioli et al., 2006). This active metabolite is elimi-284 

nated in the urine and then disseminates into wastewaters. Fluoxetine and norfluoxe-285 

tine are widely detected into various environmental compartments such as surface, 286 

ground, marine and drinking waters, soils and sediments in the range of ng/L to mg/L 287 

(Biel-Maeso et al., 2018). In the United Kingdom, fluoxetine can be detected in drinking 288 

water at low concentrations (0.27 ng/L; Peng et al., 2019). In this review, fluoxetine is 289 

taken as an example of SSRIs antidepressant that constitutes an environmental pollu-290 

tant. 291 

According to a report from the Organization for Economic Cooperation and 292 

Development (OECD) on pharmaceuticals consumption in 2019 (OECD iLibrary), the 293 

consumption of antidepressant drugs doubled in OECD countries between 2000 and 294 

2017. Such an increase in human consumption generated an amplification in 295 

environmental contamination (reviewed by Castillo-Zacarías et al., 2021). Therefore 296 

antidepressants constitute emerging environmental pollutants. Regarding the wide 297 

dissemination of antidepressants in the environment, numerous studies demonstrated 298 

deleterious biological effects on aquatic wildlife ecosystems due to antidepressant 299 

contamination in the environment (reviewed by Sehonova et al., 2018). Antidepressant 300 

dissemination in rivers, estuaries and coastal waters exposes aquatic organisms like 301 

fishes, amphibians or mollusks, leading to alterations in essential physiological and 302 

behavioral processes through neurological and neuroendocrine effects. For example, 303 

in eastern mosquitofish (Gambusia holbrooki), fluoxetine exposure at environmental 304 

doses alters antipredator and anxiety-related behaviors (Martin et al., 2019, 2017), as 305 

well as reproductive behaviors such as courtship and sexual partners interactions 306 

(Martin et al., 2019) or copulatory behavior (Bertram et al., 2018; Fursdon et al., 2019). 307 
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In the meagre (Argyrosomus regius), Duarte et al. (2020) demonstrated alterations in 308 

fish growth, oxidative stress, detoxification mechanisms and lipid peroxidation in the 309 

liver (Duarte et al., 2020). Such results suggest an endocrine disruption mode of action 310 

implicating alterations within the hypothalamic-pituitary-adrenal (HPA) axis, the 311 

gonadotropic axis or the thyroid hormones regulation. 312 

Beyond such effects disturbing aquatic wildlife ecosystems, antidepressant 313 

metabolites concentrate in brain and liver tissues (David et al., 2018; Pan et al., 2018), 314 

as well as in plasma, of fishes consumed by humans (Sims et al., 2020). Therefore, 315 

either through direct effects via drinking water or through indirect effects via aquatic 316 

food, environmental contamination by antidepressants may constitute a risk for human 317 

health. 318 

Antidepressant drugs such as fluoxetine are commonly prescribed in women for 319 

treating major depressive disorder during pregnancy and/or postpartum depression. 320 

As these drugs cross the placental barrier (Arumugasaamy et al., 2019; Hendrick et 321 

al., 2003) and diffuse in breast milk (Schoretsanitis et al., 2020, 2019), and because of 322 

their action on neurotransmitter metabolism, antidepressants are expected to affect 323 

the developing fetal and postnatal brain of respectively fetuses and newborns. Then 324 

antidepressants may constitute a risk for human health as their potential disrupting 325 

effects during embryonic and postnatal brain development may alter development, 326 

growth and regulation of neural systems, as well as neural plasticity, with long-term 327 

consequences. 328 

 329 

In rodents, developmental exposure to antidepressants during prenatal life and/or 330 

lactation has been demonstrated to induce long-term endocrine, behavioral and neural 331 

alterations. Most of the results are relatives to the control of the HPA axis. In mice, 332 

developmental fluoxetine exposure alters endocrine and behavioral response to stress 333 

in adult female and male progeny (Avitsur, 2017; Avitsur et al., 2016). Indeed prenatal 334 

fluoxetine exposure disrupts the negative feedback control of the HPA axis response 335 

to stress and reduces anxiety- and depressive-like behaviors at adulthood, that could 336 

be due to a glucocorticoid insensitivity. In rats, postnatal fluoxetine exposure up to 337 

weaning induces in male offspring only, at adult stage, an increase in anxiety-like 338 

behavior and impairments in HPA axis negative feedback (Gobinath et al., 2016). 339 

These impairments are associated with sexually dimorphic adult hippocampal 340 

neurogenesis alterations, since hippocampal neurogenesis is amplified in adult males 341 
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after preweaning fluoxetine exposure and reduced in adult females. Otherwise, 342 

perinatal fluoxetine has been shown, in male rats, to decrease corticosterone levels, 343 

to increase both serotonin levels in the hippocampus and pre-synaptic density in the 344 

dentate gyrus (Gemmel et al., 2017), and to induce sexually differentiated effects on 345 

hippocampal neurogenesis and glucocorticoid receptor density (Gemmel et al., 2019). 346 

Moreover, on prenatally stressed progeny, developmental fluoxetine exposure 347 

modifies the dopaminergic system in the hippocampus and decreases monoamine 348 

levels (Gemmel et al., 2016). Decreases in hippocampal BDNF IV and its receptor TrkB 349 

mRNA expression after developmental fluoxetine exposure constitute other molecular 350 

processes that may be implicated in long-term programming effects on brain and 351 

behavior (Boulle et al., 2016). 352 

Other studies reported fluoxetine-induced alterations within the reproductive function. 353 

In male mice, fluoxetine exposure during fetal development and lactation reduces at 354 

adulthood sexual motivation (Gouvêa et al., 2008). In rats, developmental fluoxetine 355 

exposure induces in adult male sexual behavior impairments (Rayen et al., 2013). 356 

Moreover, it decreases the area of the sexually dimorphic nucleus of the preoptic area 357 

(SDN-POA), implicated in rodents in the control of sexual behavior. 358 

Comparable to fluoxetine, sertraline, a frequently prescribed SSRI, has been 359 

demonstrated to modify as well neuroendocrine and behavioral parameters in progeny 360 

of maternal exposure in rodents. In rats, Kott et al. (2019) described alterations in HPA 361 

axis secretions, anxiety behavior and cognition, with sex-specific effects in the adult 362 

offspring (Kott et al., 2019). Moreover, sertraline developmental exposure throughout 363 

gestation modifies permanently in adult mice the levels of serotonin receptors and 364 

transporters mRNAs in the cerebral cortex (Meyer et al., 2018). 365 

Altogether, these results demonstrate long-term endocrine and behavioral, as well as 366 

neural, effects after prenatal and perinatal SSRIs exposure. The neural effects are 367 

suspected to be involved in endocrine and behavioral alterations, as some remodeling 368 

of neural circuits in early life are able to modulate behavioral responses at adulthood. 369 

If literature reporting endocrine, behavioral and neural effects induced by 370 

developmental exposure to pharmacological SSRI doses is significant, in contrast 371 

literature related to human risk constituted by antidepressants exposure at 372 

environmental doses during pre- and peri-natal development is poorly documented. 373 

We can notice that, through in vitro and in silico approaches using differentiated human 374 

neuroblastoma cells treated with a mixture of psychoactive pharmaceuticals including 375 
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fluoxetine at environmentally relevant concentrations, Kaushik et al. (2016, 2017) 376 

identified alterations in neuronal gene expression associated with neurological 377 

disorders such as Autism Spectrum Disorders (ASD), Alzheimer’s disease and 378 

schizophrenia. Among the genes exhibiting expression alterations, several genes 379 

coding synaptic proteins associated with ASD are affected (Kaushik et al., 2017, 2016). 380 

Finally, it can be mentioned that some indirect effects may be suspected, implicating 381 

the gut microbiota. Gut microbial metabolites participate to homeostasis and 382 

development. If maternal SSRIs treatment modifies maternal microbiota, the progeny 383 

central nervous system may be the trigger of alterations with long-term consequences 384 

(Ramsteijn et al., 2020). 385 

Therefore more studies using environmentally relevant doses are needed to evaluate 386 

the risk for human health of antidepressants environmental contamination. 387 

Technological progress is aiming to remove pharmaceuticals from sewage (reviewed 388 

by de Oliveira et al., 2020). If, over last years, such progress has improved, however, 389 

such as for most of pharmaceuticals, wastewater treatments remain only partially 390 

efficient in removing antidepressant molecules. Considering the diversity of 391 

pharmaceuticals detected in various environmental compartments, notably 392 

antidepressant molecules, triggering the CNS and neurotransmitter metabolism, 393 

cocktail effects have to be defined. 394 

 395 

4. NSAIDs and neurodevelopment 396 

 397 

Nonsteroidal anti-inflammatory drugs (NSAIDs) are pharmaceuticals that reduce pain, 398 

decrease fever and inflammation. Diclofenac, ibuprofen, indomethacin, ketoprofen, 399 

naproxen and paracetamol (or acetaminophen) are the most common, they are free 400 

sold in numerous countries (Rayen et al., 2013). In 2010’s approximatively 250 000 kg 401 

of ibuprofen were consumed in Germany, France, Spain; 1 065 000 kg and 3 300 000 402 

kg of paracetamol were consumed respectively in Spain and France (Chiffre et al., 403 

2016; Ortiz de García et al., 2013). Pharmacokinetic studies show that NSAIDs are 404 

excreted via urine and feces in conjugated and free forms (Lucas, 2016; Rainsford, 405 

2009; Small, 1989). These metabolized and non-metabolized NSAIDs forms in addition 406 

to creams, gel and patch are not totally eliminated by wastewater treatment plants 407 

(Wang et al., 2017). Therefore, NSAIDs are frequently dosed in the hydrosphere, 408 

sediments and soil showing a general contamination (Amalric and Togola, 2011; aus 409 
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der Beek et al., 2016; Ortiz de García et al., 2013). The consequences of this general 410 

pollution is the contamination of the animal trophic chain, from phytoplankton to 411 

predators (Bean et al., 2018; Xie et al., 2017), vegetables (Wu et al., 2013) and drinking 412 

water. Indeed, contamination of drinking water is reported in several studies in multiple 413 

areas with maximum concentrations of 1 350 ng/L for ibuprofen in United States, 166 414 

ng/L for ketoprofen and 114 ng/L for diclofenac in Poland and 210 ng/L for paracetamol 415 

in France (Caban et al., 2015; Kot-Wasik et al., 2016; Mompelat et al., 2009; Togola 416 

and Budzinski, 2008). This generalized environmental contamination, outside the 417 

therapeutic context, leads to chronic human exposure to NSAIDs which physiological 418 

effects need to be documented. 419 

 420 

NSAIDs exert their pharmaceutical action by inhibiting the activity of cyclooxygenases 421 

COX-1 and COX-2 enzymes (Brideau et al., 1996; Patrignani et al., 1997; Van Hecken 422 

et al., 2000). COX-1 and COX-2 are encoded by PTGS1 and PTGS2 (prostaglandin-423 

endoperoxide synthase) genes respectively and catalyze the bis-dioxygenation and 424 

reduction of Arachidonic Acid to Prostaglandin E2 (PGE2), mediator of neuropathic 425 

pain (Ma and Quirion, 2008; Rouzer and Marnett, 2009). For the CNS pain, NSAIDs 426 

are largely prescribed or indicated in case of headache or migraine in adult and their 427 

toxicity were reported in case of overdose (Auriel et al., 2014; Becker, 2015; May, 428 

2018). If adverse effects of NSAIDs are well identified in adult and if the communication 429 

exists to sensitize the consumers and to prevent CNS disorders, little is known about 430 

the effects of NSAIDs exposure during brain development. However, developmental 431 

exposure to NSAIDs exists as shown by several studies. First, placenta is not a barrier 432 

preventing NSAIDs fetal exposure since Siu (2000) demonstrated that after an 433 

administration of diclofenac to pregnant women before legal termination of pregnancy, 434 

this drug was measured in amniotic and coelomic fluids with a mean ratio of 0.95 for 435 

maternal plasma/fetal tissues. Fetal exposure was confirmed with the presence of 436 

ibuprofen, naproxen and indomethacin in the meconium of 101 infants in the Michigan 437 

(Alano et al., 2001). NSAIDs exposure is potentially prolonged to neonatal stage since 438 

ibuprofen and naproxen were measured in human breast milk at 0.37 µg/kg and 1.9 439 

µg/kg respectively. In the same study, diclofenac was dosed at 0.09 µg/kg, ketoprofen 440 

at 0.15 µg/kg and naproxen at 0.35 µg/kg in powdered infant milk according the 441 

provenance (Azzouz et al., 2011). Knowing that NSAIDs inhibit the production of 442 
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PGE2, we can ask ourselves if developmental exposure to NSAIDs has an impact on 443 

the brain differentiation. 444 

 445 

PGE2 is involved in the development of specific brain areas and in particular in 446 

hypothalamus and cerebellum differentiation. Its four receptors, EP1 to EP4 (or 447 

PTGER1-4: prostaglandin E receptor) are not ubiquitously distributed in the CNS. In 448 

rat, maximum expression of EP1 is found in pituitary gland and cerebellum, in 449 

hypothalamus and pituitary gland for EP2, in thalamus and hypothalamus for EP3 and 450 

cerebellum and cortex for EP4 (Myren et al., 2012). Several studies showed a direct 451 

implication of PGE2 in the development of the cerebellum and the preoptic area (POA), 452 

a subdivision of the hypothalamus controlling masculinization of adult sex behavior 453 

(Schwarz and McCarthy, 2008b). Amateau and McCarthy (2002) show, using POA 454 

neurons of newborn female rats (1-2 h), that PGE2 changes neuron morphology by 455 

increasing the number and density of dendritic spines. Using in vivo experiments, they 456 

reported the expression of PGE2 receptors EP1, EP2 and EP3 genes in the POA of 457 

PN0 female rat. In the same study, it was demonstrated that PGE2 is a mediator of E2 458 

signal for the induction of the Spinophilin protein production, a marker of dendritic 459 

spines. Finally, Amateau and McCarthy (2002) have also identified the POA as a 460 

sexual dimorphic structure since they observed a greater Spinophilin protein quantity 461 

(two and half more) in newborn males than in newborn females (Amateau and 462 

McCarthy, 2002). Two years later, the same team has demonstrated that PGE2 is 463 

directly implicated in the male sexualization of the developing POA and induced sex 464 

behavior in adult male rat. They also showed that E2 regulates the synthesis of PGE2 465 

by upregulating PTGS2 expression and COX-2 enzyme production in the POA of 3 466 

days old rat (Amateau and McCarthy, 2004). The cerebellum is an area located in the 467 

rostral roof of the 4th ventricle and functionally associated with emotional control, motor, 468 

cognitive, and social behaviors (Adamaszek et al., 2017; Voogd and Glickstein, 1998). 469 

In 2012, Dean et al. brought the demonstration for the pivotal role of PGE2 in the 470 

development and functional acquisition of the cerebellum. In this study it was reported 471 

that PGE2 regulates the dendritic spines of Purkinje cells and cerebellum volume 472 

between PN7 and PN13 in male and female rats. This involvement of PGE2 in the 473 

differentiation of the cerebellum in this short window is directly associated with adult 474 

behavior induction like play, sensory threshold and object exploration (Dean et al., 475 

2012). These studies indisputably show a key role of PGE2 in the differentiation of 476 
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POA and of the cerebellum and therefore of the brain at an early postnatal stage. 477 

NSAID-inhibition of PGE2 during brain development could have disruptive effects and 478 

could be a real concern. 479 

 480 

Very few studies were published on the toxicological effects of NSAIDs at 481 

environmental doses. Exposing common carps with NSAIDs-manufacturing plant 482 

effluent causes genotoxicity and apoptosis in blood cells (SanJuan-Reyes et al., 2015). 483 

Other studies show, after environmental NSAIDS exposure, an induction of oxidative 484 

stress in fish, crustaceans and bivalves (Gonzalez-Rey and Bebianno, 2014; Novoa-485 

Luna et al., 2016; SanJuan-Reyes et al., 2015). Teratogenicity experiments using 486 

Xenopus embryos indicate that diclofenac at environmental doses causes 487 

malformation of several organs with acephaly, cephalic edema and a diminution of 488 

axial length (Chae et al., 2015). No studies reporting NSAIDs effects on neurotoxicity 489 

in mammals are available, nevertheless inhibiting COX-1 and COX-2 enzymes and so 490 

preventing PGE2 production has a negative impact on brain development. In vitro 491 

incubation of POA neurons with indomethacin prevents dendritic spines formation and 492 

spinophilin production induced by PGE2 (Amateau and McCarthy, 2002). 493 

Administration of indomethacin in newborn rats (6hrs of birth) blocks the production of 494 

spinophilin and decreases the density of dendritic spines in POA male rats (Amateau 495 

and McCarthy, 2004, 2002). This structural modification of POA impacts the behaviors 496 

it controls. Indeed, exposure of neonate rats (between PN0 and PN1) to NSAID 497 

disturbs sexual behavior in adult males, not in adult females. Thereby a neonatal 498 

indomethacin treatment induces an decrease of sexual adult male behavior with an 499 

increasing of latency to mount, intromission, a decreasing of mounts and intromissions 500 

frequency and a cancellation of ejaculation (Amateau and McCarthy, 2004). Non-501 

neuronal cells of the POA are also sensitive to NSAIDs since POA microglial cells are 502 

more numerous and ameboid in male than female in neonate rats. This sexual 503 

dimorphism, dependent of PGE2, is abolished with indomethacin treatment inducing a 504 

loss of masculinization of the POA (Lenz et al., 2013). Curiously the inhibition of COX-505 

1 and COX-2 enzymes in the cerebellum has an opposite effect on neuron morphology 506 

but still impacts adult behavior. Treating neonate rats with NSAIDs (indomethacin and 507 

paracetamol) between PN7 and PN13 induces an increase of dendritic spine length of 508 

Purkinje cells only in male PN14 cerebellum and a modification of behaviors associated 509 

to this cerebral structure. Male adult rats exposed to NSAIDs in neonatal stage present 510 
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a reduction of play behavior and the sensory threshold and an increase of object 511 

exploration time (Dean et al., 2012). NSAIDs doses used in these studies are 512 

pharmaceutical and greatly extra-environmental, but a chronic NSAID developmental 513 

exposure with environmental doses and especially in the precocious postnatal window 514 

could have a real impact and remains largely underexplored. 515 

 516 

5. When drugs become environmental pollutants: what about epigenetics 517 

consequences? 518 

 519 

Recently, it became evident that epigenetics prior to or around the birth can profoundly 520 

modify brain development and can be linked to various neurodevelopmental 521 

syndromes (reviewed by Lo and Zhou, 2014). Epigenetics disorders fit well with the 522 

time lag often observed for such syndromes, which may appear many years after 523 

exposure or in offspring. Although less is known about epigenetic consequences of in 524 

utero and perinatal chronic exposures to environmental pollutants, data presented in 525 

the current review ask questions about the putative role of epigenetics input, especially 526 

in behavioral changes observed between childhood and adulthood, or for the brain 527 

sexualization. For instance, in human, maternal exposure to environmental heavy 528 

metals during pregnancy is associated with differential DNA methylation in new-borns, 529 

especially on genes involved in neurogenesis (Zeng et al., 2019). 530 

 531 

This question is made relevant by the outcome of works establishing a causal link 532 

between a well-known endocrine disrupting compound, the Bisphenol A (BPA), and its 533 

epigenetic consequences. In mouse, BPA exposure modifies the expression of several 534 

genes involved in brain development by altering the genomic imprinting at various 535 

genetic loci. This effect is transmitted across generations. In addition, BPA has been 536 

suggested to affect the DNA methylation status, as well as histones post-translational 537 

modifications after in utero exposure (reviewed by Santoro et al., 2019). Similar effects 538 

are suspected about other pollutants, such as Permethrin (Bordoni et al., 2019), for 539 

which low dosage exposures during neonatal brain development led to significant 540 

reduction of H3K9me3 marks at Th and Nurr1 promoter regions, both genes being 541 

related to the dopamine-synthesis pathway. Although these pollutants are outside the 542 

scope of our review, they clearly illustrate the potential epigenetic impact of pollutants. 543 

What’s about drugs when they are pollutants? Even if no studies are available at this 544 
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level (epigenetics aftermath of drugs detected in the environment), data are now known 545 

on the epigenetic effect of drugs when administered during pregnancy or gestation, or 546 

around the perinatal period.  547 

 548 

Antibiotics.  549 

In addition to the overall effects of antibiotics on the nervous system (described above), 550 

various studies concerning the epigenetics alterations mediated by antibiotics have 551 

been published. It was demonstrated that zebrafishes are sensitive to a common 552 

biocide (Triclosan), when administrated to 8-cells developing larvae at low doses (50 553 

or 100 µg/L), until hatching. This treatment modifies DNA methylation in a locus-554 

specific manner (mainly within introns and intergenic sequences), while global DNA 555 

methylation is not affected. Consequently, the expression of few genes is modified. 556 

Interestingly, in zebrafish, antibiotics trigger mechanisms of acclimation leading to an 557 

increase resistance of organisms. Here, DNA methylations are likely to precede the 558 

adaptive response (Falisse et al., 2018). 559 

Recently, a special attention was paid to how the composition of gut microbiota may 560 

contribute to establish epigenetic changes, leading to modulation of lifelong health and 561 

diseases, via the gut-brain axis. In humans, the role of maternal and neonatal nutrition, 562 

as well as microbiota composition has been reviewed by Indrio et al (2017). The period 563 

during which epigenetic imprinting is the most active is referred as the 1,000 days 564 

period (from conception to the second anniversary). During this period the microbial 565 

colonization takes place first in utero, then after birth. Because the microbiota-related 566 

epigenetic regulation of gene expression could take place in various brain regions, the 567 

impact of the “quality” of the maternal microbiota has been suspected of importance in 568 

preventing or promoting brain development disorders (Indrio et al., 2017). Evidence 569 

accumulate that a disturbed microbiota is related to various neurodegenerative 570 

diseases (Quigley, 2017). In fact, gut microbiota is now looked as an important 571 

epigenetic regulator since some of their metabolites (as SCFAs) act as HDAC 572 

inhibitors, and play a role through DNA methylation, post-transcriptional histone 573 

modification, and chromatin restructuring, all together resulting in altering genes 574 

expression (Kaur et al., 2021). By the way, pharmacological factors (such antibiotics) 575 

that modify microbiota can be related to the development of chronic diseases. In 576 

human, the predominant gut microbiota of pregnant women was associated to the 577 

postpartum methylation profile of their blood DNA and correlated with differential 578 
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methylation status of gene promoters linked to cardiovascular diseases (Kumar et al., 579 

2014).  580 

Even if there is no direct evidence between epigenetics, antibiotics in the environment 581 

and neurodegenerative diseases, all the ingredients are there to consider a possible 582 

impact, including via pathways other than the microbiota.  583 

 584 

Antidepressants.  585 

Literature related to human risk constituted by antidepressants exposure at 586 

environmental doses during pre- and peri-natal development is poorly documented, 587 

but epigenetic consequences of maternal treatment during pre- and perinatal 588 

development are more documented (in animal models or in human clinical studies). 589 

Since fluoxetine is commonly prescribed for the treatment of depression in pregnancy, 590 

its impacts on in utero exposed children has been questioned, including at the 591 

epigenetics level. Alteration of DNA methylation levels has been detected in the 592 

hippocampus of rats that were exposed to fluoxetine during their development (Silva 593 

et al., 2018). This alteration correlates with modifications of the anxiety-related (social) 594 

behavior at adulthood, as result of an acquired imprinting. These studies converged 595 

with the findings of Boulle et al. (2016), which demonstrate that fluoxetine modifies the 596 

epigenetic regulation of the hippocampal brain-derived neurotrophic factor (BDNF) 597 

coding gene, in the offspring of treated female. It was actually found that 598 

developmentally administered fluoxetine increases H3K27me3 levels at the BDNF 599 

promoter, in accordance with the decreased expression of BDNF mRNA in the 600 

hippocampus of offspring. More, these modifications were associated to increased 601 

depressive-related behaviors in adult female offspring, suggesting a long-term effect 602 

of fluoxetine treatment during gestation and/or lactation. Epigenetic effects of 603 

developmental exposure to fluoxetine were also suggested by studies on zebrafish 604 

(Boulle et al., 2016). In addition, a 6-day exposure to fluoxetine at a fetus-relevant 605 

concentration inhibits cortisol secretion at adulthood in developmentally exposed 606 

zebrafish, and this alteration is persistent for three generations of unexposed progeny, 607 

as well as alterations in exploratory behaviors in males(Vera-Chang et al., 2018). 608 

Transcriptomic analysis of kidneys cells showed that fluoxetine exposure modified 609 

signaling pathways implicated in cortisol production on animals of the three 610 

generations. Neural effects are suspected to be involved through the HPA axis control 611 

(Vera-Chang et al., 2018).  612 
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In human, the involvement of epigenetic mis-regulations is suggested through in vitro 613 

and in silico approaches using differentiated human neuroblastoma cells treated with 614 

a mixture of psychoactive pharmaceuticals including fluoxetine at environmentally 615 

relevant concentrations. A recent study identified alterations in neuronal gene sets 616 

expression associated with neurological disorders such as Autism Spectrum Disorders 617 

(ASD), Alzheimer’s disease and schizophrenia. Among the genes exhibiting 618 

expression alterations, several genes coding synaptic proteins associated with ASD 619 

were affected (Kaushik et al., 2017). 620 

 621 

Non-Steroid Anti-Inflammatory Drugs (NSAIDS).  622 

Here again, no studies are available to prove a direct correlation between NSAIDS (as 623 

pollutants) and epigenetics alteration of brain development. But there is straight 624 

evidence of (i) epigenetic changes due to NSAIDS, (ii) the epigenetic control of brain 625 

feminization and (iii) the epigenetic control of PGE2 biosynthesis via an induced COX2 626 

expression. In this context, it is tempting to propose that chronic exposure to NSAIDs 627 

may alter sexual behavior also through epigenetic mechanisms. 628 

Epigenetic changes due to NSAIDS have been studied in patients having various 629 

cancers. Clinical trials and ex-vivo analyses both suggest that aspirin and other 630 

NSAIDS induced changes in promoters’ methylation, thus leading to gene silencing. 631 

This effect has been attributed to DNMT1 inhibition (reviewed by Yiannakopoulou, 632 

2014). In animal studies, this local effect was found associated to an overall effect. 633 

Indeed, NSAIDS reverse global DNA hypomethylation in colon cancer rat-models. 634 

Finally, the fact that aspirin is known to acetylate proteins leads to assay whether it 635 

also acetylates histones, among other cellular proteins. This is actually the case, but it 636 

remains to establish whether this direct post-translational modification impairs gene 637 

expression (Bhat, 2011). More recently, it has been found that Ibuprofen and 638 

Ibuprofen-CoA causes dose-dependent inhibition of histone acetylation, especially 639 

H2B K12/K15Ac and H3 K56Ac, in cultured cells (Shrimp et al., 2018).  640 

Because epigenetics is involved in various endogenous and exogenous pathways to 641 

exert long-term control over gene expression, it was tempting to verify its role in 642 

estradiol-mediated brain masculinization, an effect herein described (see previous 643 

paragraph). Doing so, it was demonstrated that estradiol suppresses DNMT activity, 644 

leading to an overall DNA demethylation in male developing POA. This study confirms 645 
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that feminization is an active repression of masculinization process, reinforced by 646 

epigenetics imprints (Nugent et al., 2015). 647 

Finally, the epigenetic activation of the COX2 promoter by p300, a histone acetyl 648 

transferase, has been confirmed in activated monocytes, leading to PGE2 production 649 

(Liu et al., 2020). As mentioned before, increased COX2 expression and PGE2 650 

production within dendritic spines leads to the hypothesis that COX2 is an active 651 

modulator of neuronal plasticity, involved in sex differentiation (Amateau and 652 

McCarthy, 2002). The fact that COX2 activation appears finely and strictly controlled 653 

at the spatial level speaks up for an epigenetic control in neurons, as previously 654 

demonstrated in monocytes.  655 

 656 

In conclusion, albeit no direct evidence about epigenetic consequences of in utero 657 

and/or perinatal chronic exposures to drugs as environmental pollutants still exists, 658 

converging evidence suggests a possible impact. It therefore appears important not to 659 

overlook epigenetics effects when addressing this issue. Further studies remain to be 660 

done, especially in humans. The central issue being the dose at which these effects 661 

could be significant. 662 

 663 

6. Non-invasive neuroimaging to advance knowledge on EDCs? 664 

 665 

Evidence from epidemiological and experimental data of the close relationship 666 

between environmental contaminants and adverse functional and metabolic effects are 667 

mounting. Nevertheless, to date, there are very few dedicated non-invasive and 668 

translational methods with the ability to measure, demonstrate and validate a direct 669 

and specific link between the alteration of the function of the endocrine system and 670 

Endocrine disruptor compounds (EDCs) in-vivo in the brain. Methodologies and 671 

models are lacking for evaluating the mechanisms and pathways underlying the effects 672 

of EDCs and their development into diseases. Here, the potential of magnetic 673 

resonance (MR) techniques to assess risk factors induced by potential EDCs is 674 

introduced. In this paragraph, we aim to show in a non-exhaustive manner that non-675 

invasive neuroimaging methods can be adapted to further advance and fasten 676 

knowledge on EDCs. 677 

 678 
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Magnetic Resonance Imaging and Spectroscopy (MRI and MRS) (Haacke et al., 679 

1999). 680 

That Nuclear Magnetic Resonance (NMR) techniques are powerful for the investigation 681 

of the structure, function and metabolism of the brain both in animal models and human 682 

is not to demonstrate anymore. MR imaging (MRI) is well known for its non-683 

invasiveness, its important contrast between soft tissues and its high spatial resolution 684 

compared to other macro-imaging techniques (X rays, Positron Emission Tomography, 685 

Ultrasound). In addition, crucial technological developments have been carried out 686 

during the past 20 years and the advent of high magnetic field strength horizontal 687 

superconducting magnets (up to 11.7T in humans, up to 21T in rodents) coupled to 688 

improved hardware enabled an unprecedented increase of the sensitivity (Hespel and 689 

Cole, 2018; Wald, 2019), the spatial and temporal resolutions and the development of 690 

novel molecular applications (Chemical Enhanced Saturation Transfer (CEST, 691 

PARACEST (De Leon-Rodriguez et al., 2009; Soesbe et al., 2013), Hyperpolarisation 692 

techniques…). Despite all these assets, MR techniques lack sensitivity. Thus, 693 

molecular imaging possibilities are limited with extremely low compound 694 

concentrations (below millimolar). This poor sensitivity may explain the lack of interest 695 

for MR investigations on potential EDCs, which can be present in brain structures as 696 

traces only and which presence can rarely be measured and quantified with MRI or 697 

MR Spectroscopy (MRS) techniques. Interestingly, the MR literature represents an 698 

abundant source of knowledge on the potential effects of EDCs and their mechanisms 699 

since many studies investigated the dose-effect of various pharmaceuticals albeit not 700 

at the very low concentrations encountered in the environment. 701 

 702 

MR biomarkers could benefit knowledge on the endocrine effects of compounds.  703 

MRI facilitates the in-vivo diagnosis, prognosis and therapeutic monitoring of various 704 

brain diseases such as cancer, neurodegenerative diseases and neuropsychiatric 705 

diseases (Alzheimer, Parkinson, dementia, epilepsy, multiple sclerosis…). Studies can 706 

be performed relatively fast, and longitudinally with little discomfort for patients. 707 

Therefore, assessment of repeatability and reproducibility of the outcome can be 708 

performed with increased accuracy. MR can also detect various conditions such as 709 

stroke and traumatic brain injury, hemorrhage, inflammation and edema. 710 

Endocrine disruption also involves metabolic alterations resulting in obesity, diabetes 711 

and liver diseases that remain to be understood... Multinuclear applications of MRS 712 
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and chemical shift imaging (CSI) can be useful for investigating neurometabolic 713 

disorders. Moreover, metabolic changes can reveal the very early stages of disease 714 

prior to lesion detection (Lei et al., 2009). This is important since EDCs’ effects may 715 

develop over years and even decades or have consequences in adulthood only.  716 

Also, MR investigations demonstrated their usefulness upon assessment of the effects 717 

of various compounds (Cherix et al., 2020; Kluza et al., 2011; Padhani and Leach, 718 

2005; Wassmuth et al., 2001) both in humans and in animal models. The dose-719 

responses of a variety of MR contrast agents such as gadolinium (Gd)-based contrast 720 

agents (Prybylski et al., 2019; Robert et al., 2020; Woodard et al., 2012) or iron oxide 721 

nanoparticles, were largely assessed (Diana et al., 2013; Kim et al., 2013). Many other 722 

MR studies also investigated the effects of antidepressants (Cherix et al., 2020), 723 

antibiotics or analgesics (Bar-Or et al., 2018; Jantzie et al., 2020). MR techniques 724 

(Diffusion, Perfusion, blood oxygen level-dependent (BOLD) functional MRI…) can be 725 

used to assess the dose-impact of these compounds using surrogate markers of 726 

various parameters (permeability, vessel radius, water diffusion, blood volume, blood 727 

flow…) that can be mapped on a voxel-by-voxel basis thereby also displaying the 728 

heterogeneity and extent of the effects. Moreover, the impact of a defined compound 729 

on the behavior or alterations of this behavior can also be investigated with functional 730 

MR techniques.  731 

 732 

Investigating the effects of antidepressants and NSAIDs with MR techniques. 733 

With advanced technological developments in MRI across the past 20 years, BOLD-734 

fMRI and resting-state-(RS)-fMRI became the methodologies of choice for 735 

investigating neuropsychiatric disorders. Task-based fMRI has identified altered 736 

functional activity in a wide spectrum of psychiatric disorders while RS-fMRI is 737 

recognized as a predictor of treatment response in major depressive disorder (MDD), 738 

schizophrenia, anxiety disorders and autism where brain connectivity is often altered. 739 

fMRI was also extensively used for a better understanding of pain and analgesia-740 

related phenomena (Borsook and Becerra, 2006). There has recently been increased 741 

use of RS- fMRI in the context of studies addressing brain network dynamics involved 742 

in response to antidepressant and analgesics treatments, both in terms of predicting 743 

response to treatment as well as understanding changes in functional brain 744 

connectivity after effective treatments. Dichter et al. (2014) reviewed the linkages 745 

between RS-fMRI and treatment response in MDD thereby identifying specific 746 
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biomarkers and specific patterns of brain network dynamics affected by 747 

antidepressants. A variety of antidepressant substances that have been increasingly 748 

examined with these MR techniques demonstrated to have toxic effects on the 749 

reproductive system and hormones (Dichter et al., 2015). This is the case of ketamine, 750 

which recently attracted a large interest for its impact on metabolism (Bednarik et al., 751 

2021; Qi et al., 2017). Fluoxetine and norfluoxetine were also abundantly studied with 752 

MRI and MRS and are well-known EDCs present in aquatic systems (Mennigen et al., 753 

2011). Moreover, several agents used to correct the endocrine imbalance were also 754 

employed  as antidepressants such as melatonin and glucocorticoids (Antonioli et al., 755 

2012). Numerous effects of these agents was examined and identified (Kalafatakis et 756 

al., 2018). In particular, glucocorticoid receptors are recognized as important targets 757 

for EDCs. Of note, important knowledge on the underlying effects of these agents and 758 

their potential markers examined with MR techniques was accumulated. An important 759 

database exists therefore allowing the identification of risk factors linked to EDCs. In 760 

addition, important cohorts of responder and non-responder patients followed over 761 

years could serve to examine the long-term effects of a variety of compounds and their 762 

mixture. Their physiological and endocrine status is already often followed across 763 

years. 764 

Neuroimaging techniques have also a considerable role to play in the more appropriate 765 

development of analgesics. Most of them only have a significant effect on a minority of 766 

patients. Despite the promise of interesting signs of progress, the use of mild 767 

analgesics such as paracetamol, ibuprofen and aspirin in the general public and 768 

pregnant women increases and is generally perceived to be safe (Thiele et al., 2013). 769 

Unfortunately, they also have potent disrupting effects on hormonal homeostasis, 770 

leading to congenital malformation in both animals and humans through anti-771 

androgenic mechanisms (Kristensen et al., 2018, 2011). Neuroimaging techniques are 772 

usually effective at discriminating responsive and non-responsive patients and reveal 773 

novel targets, which could be of value for a better understanding of the endocrine mode 774 

of action of these compounds.  775 

 776 

Metabolism and EDCs. 777 

EDCs interfere with the endocrine system by altering mechanisms linked to hormone 778 

secretion or elimination. EDCs can also mimic hormone action. All these modes of 779 

action can disrupt the regulation of general homeostasis of the body and contribute to 780 
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adverse metabolic phenotypes. EDCs can also predispose patients to several 781 

metabolic syndromes and alter nutrient ingestion and metabolism. Moreover, specific 782 

individuals may be more affected than others such as the developing fetus, which is 783 

more sensitive to endocrine perturbations. Fetus exposure to EDCs may cause 784 

irreversible effects that may become detectable later in life. In this context, MRS can 785 

be useful. An example was given by Kunz et al. (2011) who used proton MRS at 9.4T 786 

to assess the effect of perinatal exposure to bisphenol A (BPA) on cerebral structural 787 

development and metabolism after birth in rat pups. On postnatal day 20, in vivo 788 

metabolite concentrations in the rat pup hippocampus were measured. Exposure to 789 

low dose BPA during gestation and lactation resulted in subtle and regional neuronal 790 

and glial alterations in brain development in offspring. Furthermore, BPA exposure led 791 

to significant changes in the Glutamate to Aspartate ratio in the hippocampus, which 792 

is postulated to reflect impaired mitochondrial function and probably implicates a 793 

reduced ability of the brain to oxidize glucose especially in conditions of elevated 794 

energetic demand (Kunz et al., 2011). The changes observed after prenatal BPA 795 

exposure will likely imply long-lasting effects on cognitive development and function. 796 

While such studies are needed and somehow not difficult to realize, investigations of 797 

EDCs effects in huge cohorts of humans may benefit the assessment of the levels of 798 

exposure to EDCs. Such screening studies can be performed with NMR metabolomics 799 

and were proposed by the EDCMET project (Küblbeck et al., 2020). Using serum NMR 800 

platforms, NMR spectroscopy can simultaneously quantify 230 metabolic features 801 

such as serum proteins, lipids, fatty acids, glycolysis substrates, amino acids, ketone 802 

bodies and many other molecules to obtain signature metabolic profiles affected by 803 

EDCs. 804 

Although few MR studies have been conducted yet in the context of pharmaceutical 805 

EDCs, the specific case of MR contrast agents can illustrate the potential of MRI and 806 

MRS for the detection and evaluation of endocrine disruption.  807 

Gd is a heavy metal of the lanthanide group. Chelated forms of Gd are used in MRI 808 

and MR angiography to avoid the toxicity of Gd3+. Recently, tissue deposition of Gd 809 

was demonstrated in various rodent and human tissues of the body (Sato et al., 2013; 810 

Wáng et al., 2015) and of the brain (Gulani et al., 2017). Free Gd3+ ions induced cell 811 

death, oxidative stress and accumulation of reactive oxygen species (ROS) in rat 812 

cortical neurons (Feng et al., 2011). Briner et al. (2000) reported important behavioral 813 

responses of mice exposed to lanthanides with consequences on their development 814 
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further confirmed by Feng et al. (2006) who also showed altered DNA and protein/DNA 815 

concentrations in the brain. Interestingly, the current literature does not report 816 

longitudinal BOLD-fMRI or perfusion studies in animal models or humans combined 817 

with behavioral assessments following Gd injections although 30 million doses are 818 

consumed each year (Guo et al., 2018). Non-invasive functional evaluations could be 819 

insightful as predictive factors of parkinsonism since Gd deposition in the dentate 820 

nucleus and the globus pallidus induced symptoms (Welk et al., 2016) but require long-821 

term follow up. In the context of EDCs, cell cultures demonstrated that toxic effects on 822 

thyroid hormones depended on the chemical structure and dose of Gd- based contrast 823 

agents (Ariyani et al., 2016) but no in-vivo study has been conducted to date. Again, 824 

as described earlier for other pharmaceuticals, Gd-based contrast agents are difficult 825 

to remove with the usual sewage treatment technology. Amounts of Gd-based contrast 826 

agents in wastewater significantly increased with the increasing use of MRI technology 827 

(Brünjes and Hofmann, 2020; Inoue et al., 2020) emphasizing the need to change 828 

medical practices. 829 

More recently, manganese ions (Mn2+) attracted overwhelming interest owing to their 830 

paramagnetic properties enabling them to be used as contrast agents and to depict 831 

the rodent brain cytoarchitecture with unprecedented dose-dependent MR contrast. A 832 

better understanding of their toxicity was also obtained using MRS (Just et al., 2011; 833 

Just and Gruetter, 2011). Mn-induced neurotoxicity is well known with reference to 834 

occupational Mn exposure. Due to the risk exposure of smelters and welders, it was 835 

shown that Mn-exposure disrupted the endocrine systems of Mn-exposed workers 836 

(Long et al., 2014). Mn uptake was reported in various human brain structures (caudate 837 

nucleus, substantia nigra, pituitary gland, ventromedial hypothalamus…). A wealth of 838 

human studies demonstrated that significant hyperintensities in T1-weighted MR 839 

images of Mn-exposed workers occur (Criswell et al., 2019). Various MR 840 

methodologies can be used to identify Mn toxicity: the pallidal index (PI) can be used 841 

to quantify hyperintensities due to increased Mn2+ concentrations but relaxometry may 842 

also quantify Mn content while proton MRS can be useful in detecting the impact of Mn 843 

on metabolites (Just et al., 2011). Notably, metabolites can be markers of Mn-induced 844 

Parkinson or encephalopathic symptoms (Peres et al., 2016). 845 

Many other metal compounds play a role as EDCs (reviewed in Iavicoli et al. (2009)). 846 

MRI/MRS can identify the influence of these metals on the endocrine system by 847 

exploring their mechanisms of action, their content or their effects on behavior. Iavicoli 848 
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et al (2009) also pointed at the lack of studies on the effects of mixtures of these metals. 849 

Some of them such as Zinc (Zn) or Europium (Eu) or copper (Cu), iron (Fe3+) can also 850 

be used in the chemical structure of contrast agents .In an identical manner to Gd-851 

based compounds, metal compounds used in the medical practice find their way to 852 

rivers, where they may have deleterious effects on invertebrates and vertebrates 853 

(Iavicoli et al., 2009). 854 

In conclusion, the in-vivo detection of EDCs’ amounts and an improved understanding 855 

of their mechanisms and modes of action are much needed to validate the associated 856 

risks factors and determine appropriate predictive markers. But this is challenging. 857 

Magnetic Resonance techniques can represent a major tool in this context with long-858 

term accumulated data and already developed methodologies that just need to be 859 

used. 860 

 861 

7. Discussion 862 

 863 

Are pharmaceutical drugs endocrine disruptor compounds? 864 

The pharmaceutical drugs considered in this article (antibiotics, antidepressants, anti-865 

inflammatories) induce neural effects. Whether all these neural effects occur through 866 

an endocrine disrupting mode of action still needs to be thoroughly documented, in 867 

particular at doses close to the environmental exposure. There are, however, several 868 

evidences highlighted in this article that suggest that these substances may act as 869 

endocrine disruptors. 870 

 871 

For antibiotics, the evidences in favor of an endocrine disrupting mode of action are 872 

provided by the studies performed in aquatic models and using low environmentally 873 

relevant doses of these substances. In fish, exposure to these molecules impaired 874 

reproduction probably through modifications of the gonadotropic axis and 875 

steroidogenesis (Kim et al., 2017, 2012). The thyroid axis was also targeted leading to 876 

affected growth and development (Yu et al., 2020). In mammals, such studies are still 877 

lacking. In particular, whether the effects induced by exposure to antibiotics on social 878 

and mood behaviors in children (Slykerman et al., 2017) and animal models (Degroote 879 

et al., 2016; Leclercq et al., 2017; Tochitani et al., 2016) involve a disruption of 880 

neuroendocrine systems needs further investigation. It is, however, important to keep 881 
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in mind that these behaviors are known to be regulated by sexual and thyroid 882 

hormones. 883 

 884 

The SSRIs antidepressants such as fluoxetine or sertraline, the most commonly 885 

prescribed ones, showed to affect social, anxiety-related and reproductive behaviors 886 

in aquatic species after developmental exposure to doses compatible with 887 

environmental contamination (Sehonova et al., 2018). Such alterations suggest 888 

endocrine disruption effects triggering the hypothalamic-pituitary-adrenal and 889 

gonadotropic axis (Mennigen et al., 2011). For human assessment of the risk 890 

associated with developmental antidepressant exposure, the literature deals with 891 

developmental exposure to SSRIs at pharmacological doses, in the context of maternal 892 

treatment for major depressive disorder during pregnancy and/or postpartum 893 

depression. Studies in rodents report long-lasting endocrine and behavioral alterations 894 

on the developmentally exposed offspring, and neural alterations are described, 895 

susceptible to be responsible for these long-term effects. In the study of Soiza-Reilly 896 

et al. (2019), it was shown that all the inhibitors tested exerted endocrine disrupting 897 

effects, with different mechanisms from one molecule to another. Therefore, potential 898 

effects of SSRIs as endocrine disruptors at environmental doses have to be 899 

investigated on mammal models. 900 

 901 

The NSAIDs interfere with the E2 dependant mechanisms during brain development. 902 

One of the numerous actions of E2 signal is to activate COX-1 and COX-2 enzymes 903 

for the conversion of Arachidonic Acid to PGE2 (Hermenegildo et al., 2006). PGE2 904 

have a key role in the brain sexualization by regulating the male differentiation of the 905 

preoptic area and cerebellum (Amateau and McCarthy, 2004, 2002). So, the inhibition 906 

by NSAIDs of COX enzymes and consequently of PGE2 production during CNS 907 

development results in a reduction of sexual behaviour, play behavior, and of the 908 

sensory threshold as well as an increase of object exploration time in adult male 909 

(Amateau and McCarthy, 2004; Dean et al., 2012). At the cellular level, NSAIDs impact 910 

the morphology of neuronal and microglial cells by inhibiting spinophilin production, a 911 

protein specific to dendritic spines (Amateau and McCarthy, 2004, 2002; Lenz et al., 912 

2013). Since microglia produce prostaglandins, express prostaglandin receptors, and 913 

are activated during the critical period for sexual differentiation, some authors have 914 

hypothesized a role of microglia in E2-induced PGE2 production in the POA (Welberg, 915 
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2013). Microglial PGE2 has been shown to play an important role in the proliferation of 916 

astrocytes, identifying PGE2 as a key neuro-inflammatory molecule that triggers the 917 

pathological response related to the uncontrollable proliferation of astrocytes (Zhang 918 

et al., 2009). These results are important to elucidate the role of activated microglia 919 

and PGE2 in astrocyte proliferation and to suggest a potential disturbance in chronic 920 

exposure to anti-inflammatory agent molecules. 921 

 922 

Even if reported studies in this review have used pharmacological doses, whether 923 

antibiotics, antidepressants and anti-inflammatories induce adverse effects on the 924 

central nervous system development at environmental exposure remains to be 925 

answered. 926 

 927 

Pharmaceutical drug exposure and susceptibility to neurodegenerative disease, what 928 

about epigenetic? 929 

The epigenome is responsible for the functional use and stability of information within 930 

the genome, but in contrast to the stable genetic material, the epigenome fluctuates in 931 

response to environmental exposures. Pharmaco-epigenetics is an emerging aspect 932 

of the usual pharmaco-vigilance. It concerns alterations in gene expression of drug-933 

metabolizing enzymes and transporters that result in interindividual variations in drug 934 

responses. During the developmental period from newborn to childhood, inter-935 

individual variations are combined with changes related to the differentiation and 936 

growth of tissues and organs. All are under epigenetic control, and therefore sensitive 937 

to epigenetic deregulations. As previously mentioned, about nothing is known about 938 

relationships between epigenetic and pharmaceutical pollutants (i.e. low-doses and 939 

long exposures). However, there is growing evidence suggesting such relationships. 940 

(1) Brain development and neuro-degenerative diseases are under epigenetic control. 941 

Indeed, individuals with neuropsychiatric and neuro-degenerative diseases display 942 

epigenetic brain programming disturbances (Abdolmaleky et al., 2008). Studies of 943 

monozygotic twins discordant for schizophrenia and bipolar disorders reveal a 944 

significant difference in DNA hypomethylation of gene networks and pathways directly 945 

relevant to psychiatric disorders and neurodevelopment. Analyses of post-mortem 946 

brain tissues reveal DNA hypomethylation in psychosis patients (when compared to 947 

controls), for the same DNA regions than those identified in twins (Dempster et al., 948 

2011). Brain masculinization is a consequence of testosterone production which 949 



30 

 

epigenetically regulates sex differences in the neuronal structure of some 950 

hypothalamus nuclei (McCarthy et al., 2009). (2) Pharmaceutical drug exposure alters 951 

epigenetic pathways of brain development. Indeed, in utero exposure to many 952 

substances results in neuronal injury related to epigenetic changes and results in long-953 

term neuro-developmental impairment in the offspring. More, transgenerational 954 

epigenetics may also explain the fact that developmental abnormalities, impairment in 955 

learning and memory, and attention deficit can occur even in the absence of direct fetal 956 

exposure, when drugs are used prior to conception (Neri et al., 2015). (3) The 957 

consequences of intrauterine exposure to drugs can appear very late, at adolescence 958 

or adulthood. As an example, prenatal exposure to xenobiotics probably leads to 959 

alteration of the hypothalamic-pituitary-adrenal (HPA) axis. These alterations are 960 

believed to increase the susceptibility to adult neuropsychiatric disorders (such as 961 

depression and schizophrenia). Among the possible mechanisms of action, 962 

xenobiotics can directly induce epigenetic alterations, modifying the expression of main 963 

fetal genes (such as hippocampal glucocorticoid receptor, adrenal steroidogenic acute 964 

regulatory protein…) (Zhang et al., 2014).  965 

 966 

To conclude, it appears essential to keep in mind that epigenetic deregulations are a 967 

powerful way to account for time-lagged and even transgenerational effects, often 968 

observed in neurodegenerative pathologies and could be crucial to validate the 969 

involvement of environmental pollutants at their onset (during childhood or later in life). 970 

 971 

Alternative methods for the assessment of the impact of endocrine disruptor 972 

compounds on the central nervous system: 973 

A large set of MR-based data and know-how has been accumulated across years to 974 

evaluate brain dose-responses to various pharmaceuticals. This knowledge could be 975 

advantageous to evaluate in-vivo the impact of various molecules acting as EDCs. 976 

Long-term follow-up of changes in behaviour, neuroanatomy, function and metabolism 977 

of EDC-exposed populations could be envisaged and associated with various 978 

measurements in drinking water or sewage. Moreover, important databases of the 979 

effects of antidepressants, antibiotics and NSAIDS on brain function and metabolism 980 

exist and could be helpful for modelling purposes. Although novel methods exist, one 981 

important disadvantage of MR techniques is their low sensitivity, which does not permit 982 

the detection of traces or very low doses of pharmaceuticals, impeding reliable and 983 
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direct attribution of longitudinal changes to specific molecules considered as EDCs. 984 

Nevertheless, MR can be efficiently coupled to other imaging modalities such as 985 

ultrasound, CT or PET, which have molecular imaging possibilities. Nowadays, PET-986 

MRI is a well-accepted technique both in rodents and humans allowing the coupling of 987 

the molecular potential of PET to the high spatial resolution of MRI (Musafargani et al., 988 

2018) with little-invasiveness and could be effective at EDC detection at very low 989 

doses. While in vivo analysis is of paramount importance, the use of MR microscopy 990 

and MR spectroscopy to evaluate ex-vivo and in-vitro specimens is not to be neglected. 991 

In this regard, one can think of the systematic and longitudinal analysis of water 992 

samples with high-resolution MR techniques (HR MAS) (Lucas-Torres and Wong, 993 

2019), which could reveal the presence of various substances and can be coupled to 994 

mass-spectroscopy techniques (Emwas, 2015). 995 

 996 

8. Conclusion 997 

 998 

Scientific literature reported in this review shows real adverse effects of pharmaceutical 999 

products present in the environment on the development of the central nervous system. 1000 

The risk for future generations could be a concern and has to be evaluated. Indeed, 1001 

food and water for human consumption are contaminated and the exposure to these 1002 

pharmaceutical substances occurs during the adult life but also at earlier stages 1003 

including foetal development. The chronic exposure to these drugs even at 1004 

environmental doses for human but also farm animals and wild life is, at this time, 1005 

largely underestimated. Metrology studies have to be multiplied to measure these 1006 

pharmaceuticals in the whole environment (macro and microenvironment) to define our 1007 

exposome and evaluate the risk of this environmental exposure. The question of the 1008 

implication of the microbiota is emerging, futures studies have to precise if these drugs 1009 

exert their adverse effects on the CNS development by disrupting the gut-brain axis. 1010 

 1011 
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Graphical Abstract Caption 1786 

 1787 

Ingested pharmaceutical drugs have therapeutic effects on the brain that have been 1788 

widely characterized with invasive and non-invasive techniques. A number of these 1789 

molecules have known endocrine effects. Among the most used therapeutic 1790 

compounds, antidepressants, antibiotics and NSAIDs account for a large percentage. 1791 

They are excreted via urine and feces and can be found at environmental doses in the 1792 

sewage and the wastewater, where they affect acquatic milieux and can be re-1793 

absorbed by humans. They become potential endocrine disruptor compounds. What 1794 

are their neural effects and mechanisms ? How can they be measured ? Can 1795 

neuroimaging techniques contribute to the efforts for a better assessment of endocrine 1796 

risk factors with their accumulated knowledge and non-invasive markers (Connectivity 1797 

studies, fMRI, MR Spectroscopy…)? The present review addresses the current status 1798 

and needs of research on pharmaceutical pollutants with endocrine-disrupting modes 1799 

of action. 1800 




