Supplementary information

Association of AXL and PD-L1 expression with clinical outcomes in Patients with advanced Renal Cell Carcinomas treated with PD-1 blockade

Stéphane Terry¹*, Cécile Dalban², Nathalie Rioux-Leclercq³, Julien Adam¹, Maxime Meylan⁴, Stéphanie Buart¹, Antoine Bougouin⁴, Alexandra Lespagnol⁵, Frédéric Dugay⁶, Irelka Colina Moreno⁴, Guillaume Lacroix⁴, James B. Lorens⁵, Gro Gausdal⁶, Wolf H. Fridman⁴, Fathia Mami-Chouaib¹, Nathalie Chaput⁶,10,11, Benoit Beuselinck¹², Sylvie Chabaud², Janice Barros Monteiro¹³, Yann Vano⁴,¹⁴, Bernard Escudier¹,¹⁵, Catherine Sautès-Fridman⁴, Laurence Albiges¹,¹⁵, and Salem Chouaib¹,16⁵

¹INSERM UMR 1186, Integrative Tumour Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Université Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France

²Clinical research department - Biostatistics unit, Centre de lutte contre le cancer - Centre Léon Bérard, 69008 Lyon, France

³Service Anatomie et Cytologie Pathologiques, CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, 35000 Rennes, France

⁴Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe inflammation, complément et cancer, 75006 Paris, France.

⁵Service de Génétique Moléculaire, CHU Rennes, 35000 Rennes, France

⁶Service de Cytogénétique, CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR S 1085, 35000 Rennes, France

⁷Department of Biomedicine, Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Bergen, Norway.

⁸BerGenBio, Bergen, Norway

⁹Laboratory of Immunomonitoring in Oncology, Gustave Roussy Cancer Campus, CNRS-UMS 3655 and INSERM-US23, F-94805 Villejuif, France.

¹⁰Faculty of Pharmacy, University Paris-Saclay, F-92296 Chatenay-Malabry, France

¹¹Laboratory of Genetic Instability and Oncogenesis, UMR CNRS 8200, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France

¹²Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium; Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium

¹³Research and development, Unicancer, Paris, France

¹⁴Medical Oncology, Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris, Université de Paris, 75015 Paris, France

¹⁵Department of Medical Oncology, Gustave Roussy, 94805 Villejuif, France 14

¹⁶Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman-4184, United Arab Emirates

*Corresponding authors

Supplementary Information Index

Supplementary Figure S1 - Protein expression pattern of AXL in ccRCC
specimens3
Supplementary Figure S2 - Response rates, Survival and Biomarker analyses
according to AXL ^{neg} , AXL ^{low} and AXL ^{high} expression
Supplementary Figure S3 - ORR and Progression-Free Survival according to
PD-L1 Status alone or by grouping AXL expression plus PD-L1 status5
Supplementary Figure S4 - High AXL expression plus PD-L1 TC positivity is
associated with worse OS in Nivolumab-treated patients in IMDC intermediate-
risk/poor-risk group6
Supplementary Figure S5 - VHL status does not interfere with outcomes or AXL
expression upon treatment with Nivolumab7
Supplementary Figure S6 - Biomarker distribution across AXL groups stratified
based on VHL status8
Supplementary Table S19
Multivariate analysis of prognostic factors for PFS in the Nivoren cohort 9
Supplementary Table S29
Multivariate analysis of prognostic factors for OS in the Nivoren cohort
Supplementary Table S3: Patient characteristics when categorized by 0, Low
or High AXL H-scores10
Supplementary Table S4 : gene signatures11
Supplementary Table S5: Multivariate analysis of prognostic factors for OS in
the Nivoren cohort12

Supplementary Figure S1 - Protein expression pattern of AXL in ccRCC specimens.

Representative micrographs of tumor specimens with no expression (\mathbf{A}) or AXL expression in RCC (\mathbf{B}) with membranous/cytoplasmic staining, (\mathbf{C}) nuclear staining of carcinoma cells, or in myeloid-like immune cells (\mathbf{D}). Microphotographs were taken at 20x objective.

Supplementary Figure S2 - Response rates, Survival and Biomarker analyses according to AXL^{neg}, AXL^{low} and AXL^{high} expression

A, Kaplan–Meier survival curves for PFS and OS when RCC patients (n = 316) are stratified according to AXL expression score into 3 groups (negative, Low]0;50] and High >50). Corresponding Objective Response rates, hazard ratios, median PFS (mPFS), and survival OS and PFS estimates at 12 months post-treatment are shown. Pie charts show the proportion of patients in each group. **B**, Distribution of the biomarkers PD-L1, VEGF, CD8, CD3, CD163 and CD20 expression in the respective AXL groups. Data are presented as means. Errors bars are s.e.m. Kruskal-Wallis test was applied.

Supplementary Figure S3 - ORR and Progression-Free Survival according to PD-L1 Status alone or by grouping AXL expression plus PD-L1 status

A, Objective response rates and Kaplan-Meier estimates for PFS according to PD-L1 TC status (pos/neg) or by AXL expression and PD-L1 TC status (four biomarker subgroups). **B**, Objective response rates (Fisher's exact test) and Kaplan-Meier estimates for PFS according to PD-L1 TIL status (pos/neg) or by AXL expression and PD-L1 TIL status (four biomarker subgroups).

AXL and PD-L1 TC in IMDC intermediate-risk/poor-risk patients

Supplementary Figure S4 - High AXL expression plus PD-L1 TC positivity is associated with worse OS in Nivolumab-treated patients in IMDC intermediaterisk/poor-risk group

73.1 (65.4-79.3%)

n=156 ref

Kaplan-Meier estimates for OS according to AXL expression combined with PD-L1 TC status (four biomarker subgroups). Hazard ratios, and survival estimates at 12 months post-treatment, as well as P value from Log rank test is shown.

Supplementary Figure S5 - VHL status does not interfere with outcomes or AXL expression upon treatment with Nivolumab

A, Kaplan–Meier survival curves for PFS, OS as well as ORR (**B**) of 257 RCC patients stratified according to *VHL* status (*VHL*^{neg/neg} vs *VHL*^{neg/neg}/*VHL*^{+/neg}). ORR for patients according to AXL and *VHL* status are also shown. **C**, Graphs showing the distribution of cases of AXL and PD-L1 (neg/pos) staining in tumor cells or TILs in the groups according to either *VHL*^{neg/neg} or *VHL*^{neg/neg}/*VHL*^{+/neg} status, **D**, violin plots comparing gene expression of *CD274*, *VHL* and scores for hypoxia and angiogenesis signatures according to *VHL* status in 83 cases analyzed by RNA-Seq.

Supplementary Figure S6 - Biomarker distribution across AXL groups stratified based on *VHL* status

A, PD-L1, VEGF, CD8; CD3, CD163, CD20 expression bases on *VHL* status of the tumors. Data are presented as means. Errors bars are s.e.m (Mann-Whitney test). **B**, same as **A**) for VEGF, CD8; CD3, CD163, CD20 expression, but dichotomizing by $AXL^{Neg/Low}$ versus AXL^{high} cases. Corresponding results for PD-L1 TC are shown in Figure 5D. **C**, A heatmap illustrating the biomarker composition according to $AXL^{Neg/Low}$ to AXL^{High} expression and *VHL* status.

Supplementary Table S1

Multivariate analysis of prognostic factors for PFS in the Nivoren cohort

Multivariate COX analysis model

Variable	Hazard ratio	95% CI	P value
AXL H score >50 vs [0;50]	1.28	0.96-1.71	0.0976
Sex (F/M)	1.19	0.87-1.62	0.2742
Age [65;75[vs <65; >=75 vs <65	0.97; 0.90	0.74-1.28; 0.60-1.34	0.8737
IMDC (intermediate; poor vs favorable)	1.19; 1.39	0.84-1.70; 0.92-2.09	0.2864
Number of lines > 2	1.15	0.84-1.58	0.3785

CI = confidence interval; IMDC = International Metastatic Renal Cell Carcinoma Database Consortium prognostic risk

Supplementary Table S2

Multivariate analysis of prognostic factors for OS in the Nivoren cohort

Multivariate COX analysis model

Variable	Hazard ratio	95% CI	P value
AXL H score >50 vs [0;50]	1.30	0.88-1.90	0.18
Sex (F/M)	0.79	0.51-1.22	0.2791
Age [65;75[vs <65 ; >=75 vs <65	1.09; 1.66	0.76-1.58; 1.01-2.72	0.1322
IMDC (intermediate; poor vs favorable)	2.19; 4.48	1.19-4.02; 2.36-8.53	<0.0001*
Number of lines > 2	1.25	0.84-1.85	0.2667

CI = confidence interval; IMDC = International Metastatic Renal Cell Carcinoma Database Consortium prognostic risk

Supplementary Table S3 : Patient characteristics when categorized by 0, Low or High AXL H-scores

	,	AXL Tumor cell score	9		
Variables	0]0;50]	>50	All Patients	Tests
	n=144	n=97	n=75	n=316	
Age (years)					
N	144	97	75	316	T-test
Mean (Std)	63.4 (9.9)	61.5 (12.1)	61.9 (10.4)	62.4 (10.7)	P = 0.365
Median (min; max)	64.5 (31.0; 87.0)	62.0 (22.0; 85.0)	62.0 (41.0; 86.0)	64.0 (22.0; 87.0)	
Gender					
Male	118 (81.9%)	76 (78.4%)	63 (84.0%)	257 (81.3%)	Chi-2
Female	26 (18.1%)	21 (21.6%)	12 (16.0%)	59 (18.7%)	P = 0.620
IMDC group					
Favorable	26 (18.1%)	16 (16.5%)	12 (16.0%)	54 (17.1%)	Chi-2
Intermediate	82 (56.9%)	60 (61.9%)	49 (65.3%)	191 (60.4%)	P = 0.792
Poor	36 (25.0%)	21 (21.6%)	14 (18.7%)	71 (22.5%)	
ECOG					
Missing	6	2	3	11	
0 or 1	118 (85.5%)	81 (85.3%)	63 (87.5%)	262 (85.9%)	Chi-2
2 or 3	20 (14.5%)	14 (14.7%)	9 (12.5%)	43 (14.1%)	P = 0.904
M Stage					
Missing	8	6	5	19	
0	60 (44.1%)	23 (25.3%)	28 (40.0%)	111 (37.4%)	Chi-2
1	33 (24.3%)	26 (28.6%)	20 (28.6%)	79 (26.6%)	P = 0.048
Χ	43 (31.6%)	42 (46.2%)	22 (31.4%)	107 (36.0%)	
Furhman					
Missing data	4	3	2	9	
1, 11	49 (35.0%)	20 (21.3%)	13 (17.8%)	82 (26.7%)	Chi-2
III, IV	91 (65.0%)	74 (78.7%)	60 (82.2%)	225 (73.3%)	P = 0.010
Brain Metastasis					
Missing	8	8	3	19	
NO	116 (85.3%)	81 (91.0%)	65 (90.3%)	262 (88.2%)	Chi-2
YES	20 (14.7%)	8 (9.0%)	7 (9.7%)	35 (11.8%)	P = 0.353
Sugery	144 (100.0%)	97 (100.0%)	75 (100%)	316 (100%)	
Nephrectomy					
NO	5 (3.5%)	4 (4.1%)	3 (4.0%)	12 (3.8%)	Chi-2
YES	139 (96.5%)	93 (95.9%)	72 (96.0%)	304 (96.2%)	P = 1.000
Radiotherapy					
NO	80 (55.6%)	68 (70.1%)	47 (62.7%)	195 (61.7%)	Chi-2
YES	64 (44.4%)	29 (29.9%)	28 (37.3%)	121 (38.3%)	P = 0.073

Supplementary Table S4 : gene signatures

Immotion_angio	Immotion_Teff	inflammation	immunosuppression	Buffa_hypoxia
VEGFA	CD8A	TNF	CXCL12	ACOT7
KDR	EOMES	LTA	TGFB1	ADM
ESM1	PRF1	IL6	TGFB3	ALDOA
PECAM1	IFNG	IL6R	LGALS1	ANKRD37
ANGPTL4	CD274	CD40LG	IL10	ANLN
CD34		CD70		BNIP3
		FASLG		CA9
		TNFSF8		CDKN3
		TNFSF10		CHCHD2
		TNFSF13B		CORO1C
		IRF1		DDIT4
				ENO1
				ESRP1
				GAPDH
				GPI
				HK2
				KIF20A
				KIF4A
				LDHA
				LRRC42
				MAD2L2
				MAP7D1
				MCTS1
				MIF
				MRPL13
				MRPL15
				MRPS17
				NDRG1
				P4HA1
				PFKP
				PGAM1
				PGK1
				PSMA7
				PSRC1
				SEC61G
				SHCBP1
				SLC16A1
				SLC25A32

		SLC2A1
		TPI1
		TUBA1B
		TUBA1C
		TUBB6
		UTP11L
		VEGFA
		ҮКТ6

Supplementary Table S5: Multivariate analysis of prognostic factors for OS in the Nivoren cohort

Multivariate COX analysis model

Hazard ratio	95% CI	P value
2.01	1.18-3.44	0.0847
1.17	0.74-1.85	
1.06	0.64-1.74	
1		
0.75	0.48-1.17	0.2100
1.10; 1.62	0.76-1.59; 0.99-2.67	0.1582
2.16; 4.26	1.17-3.97; 2.23-8.15	<0.0001*
1.29	0.87-1.92	0.2070
	2.01 1.17 1.06 1 0.75 1.10; 1.62 2.16; 4.26	2.01 1.18-3.44 1.17 0.74-1.85 1.06 0.64-1.74 1 0.75 0.48-1.17 1.10; 1.62 0.76-1.59; 0.99-2.67 2.16; 4.26 1.17-3.97; 2.23-8.15

CI = confidence interval; IMDC = International Metastatic Renal Cell Carcinoma Database Consortium prognostic risk