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Dimensionality Reduction via the Laplace-Beltrami Operator:
Application to EEG-based BCI

Xiaoqi Xu, Nicolas Drougard and Raphaélle N. Roy

Abstract— Neural oscillations captured by electroencephalog-
raphy (EEG) can be used by Brain-Computer Interfaces (BClIs)
to reveal the underlying mental processes and enable explicitly
or implicitly interacting with one’s environment. Most feature
extraction techniques are based on spatial filters and power
analyses in multiple frequency bands. The global geometry
feature is seldom investigated. In this paper, the spatial aspects
of EEG signals are studied using the Laplace-Beltrami operator.
The eigenvectors of the Laplace-Beltrami operator form an
orthonormal basis for square-integrable functions over the scalp
and capture the geometry of electrodes’ position in a hierar-
chical way. The signals are decomposed into different spatial
frequency components by the projection into the eigenspaces of
the Laplace-Beltrami operator. Dimensionality reduction could
be done by using only the low frequency components. This
method is compared with Principal Component Analysis (PCA)
filtering on publicly available motor imagery BCI data and
achieved comparable results while being unsupervised, data-
independent and requiring 33.7% less computation time.

[. INTRODUCTION

Electroencephalography (EEG) records the electrical brain
activity through electrodes placed along the scalp. Using
features extracted from EEG signals, a Brain-Computer Inter-
face (BCI) [1] can decode brainwaves into useful information
to interact with one’s environment. In BCI, as well as
neuroscience, brainwaves are often analysed using time-
frequency analysis. Different frequency bands, such as the
well-known alpha and gamma waves are linked to different
cognitive processes or states [2], [3]. On the contrary, the
spatial frequency of EEG signals is rarely investigated in
the literature. One of the reasons could be that the volume
conduction makes the spatial interpretation of EEG signals
more challenging [4]. Yet the spatial information could help
better characterize relevant mental states for both clinical and
everyday life applications, as well as increase the efficiency
and robustness of active and passive BCls.

The Laplace-Beltrami operator, a generalization of the
Laplacian in Euclidean spaces to Riemannian manifolds,
finds its origin in differential geometry. It encodes plenty
geometric information of the underlying manifold and is
extensively used in the field of computer graphics and
geometry processing [5], [6], [7], [8], [9]. The eigenfunctions
of the Laplace-Beltrami operator form an orthonormal basis
for square integrable functions on the manifold. Moreover,
the basis is well adapted to the geometry and the topology
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of the manifold [6] and the eigenfunctions corresponding to
larger eigenvalues have higher spatial variation.

For the neuroscience community, the Laplace-Beltrami
operator is known under the name of Surface Laplacian
and is mainly used as a spatial filter to mitigate volume
conduction effects [10], [11], [4]. Its computation is also not
very precise as it is supposed that the electrodes are placed
over a sphere [10]. The most relevant work for this study was
done by Graichen et al. [12]: they constructed a mesh from
the coordinates of EEG electrodes and decomposed the EEG
signals into the eigenspaces of the Laplace-Beltrami operator
of the mesh. In their following work different methods of
discretization of Laplace-Beltrami operator are compared
[13]. They also compared the capability of dimensionality
reduction of their method with principal component anal-
ysis (PCA) and independent component analysis (ICA) in
terms of recovering total energy of the original EEG signal.
However, no experiments were performed to show benefits
for BCI applications and the noise suppression effects were
only tested on artificial data. In a similar spirit, Huang
et al. analyzed functional brain networks using graph fre-
quency analysis [14]. They discovered a strong relationship
between graph spectral properties and the level of exposure
to tasks performed by the participants. However, they did
not investigate their method for EEG signals, and the graph
Laplacian used depended only on topology. We however
advocate for the use of the discrete Laplacian that would
keep the geometric properties of the underlying manifold.

II. METHODS

In the following, raw EEG signals with n channels and ¢
time points are noted as X € R™**. The Laplace-Beltrami
operator is denoted by A in the continuous setting, and
its matrix representation by L € R"™*"™ in the discrete
setting. The i eigenvector of the Laplace-Beltrami operator

is denoted by ¢;, i € {1,...,n}.

A. Laplace-Beltrami operator

Let M be a compact Riemannian manifold and f €
L?(M) a square integrable function over M. The Laplace-
Beltrami operator is defined as a linear operator taking
functions to the divergence of its gradient vector field:

Af = div(gradf).

Intuitively, the Laplace-Beltrami operator applied on a
function f measures the average extent to which the value of
f at a certain point deviates from the value of f at nearby
points. Since most natural phenomena, e.g. heat diffusion,



have the property of depending on the difference of neighbor-
hood points, this operator is ubiquitously used across many
fields. However, in this work this operator will not be directly
used as a filter. Instead, we use its eigenvectors, which are the
analogue of trigonometric functions or spherical harmonics,
to study the spatial properties of EEG signals and reduce
their dimension as we detail in the next subsection.
By solving the eigenvalue problem

Af =\, (D

we get a series of non-negative and discrete eigenvalues
M =0< A < ... < )\ < ..., as well as the corre-
sponding eigenvectors {¢;};>o which form an orthonormal
basis for square integrable functions on the manifold. For any
function f € L?(M), we can rewrite it as f = >.. ¢;¢;,
where c; are the coefficients defined as the surface integral
¢ =/ i J@i» which describe the amplitude of f in each
component.

B. Computation in the discrete setting

The real scalp can be approximated by a triangle mesh
constructed from the 3D coordinates of the electrodes in the
standard 10-20 system. Since the Laplace-Beltrami operator
is an important tool for the geometry processing community,
its computation in the discrete setting is extensively studied
[15], [16], [17]. Here we use the well-known cotangent
formula [18], detailed in [5], for its good theoretical (con-
vergence) properties and fast computation time.

The discrete Laplace-Beltrami operator is represented by a
n X n matrix L where n is the number of nodes (or vertices),
representing electrodes in our case. It is defined by L =
S~'M where M is the cotangent weights matrix and S the
area matrix. The cotangent weights matrix M is defined by

Zk#mik le :j,

M;j = § —mij if ¢ and j adjacent, )
0 otherwise.
where m;; are cotangent weights: m;; = 1 (cot(a;;) +

cot(f;;)) when i and j are adjacent and m;; = 0 otherwise.
The area matrix S is the diagonal matrix with diagonal
values s;, which is sum of area of small patches surrounding
the i*" vertex (see [18] for more details).

Algorithm 1 Computation of the eigenvectors and eigenval-
ues of the Laplace-Beltrami operator

Input: EEG electrodes’ 3D coordinates (z,y, 2)
Output: Laplacian eigenvectors and eigenvalues
1: Create a mesh using the Delaunay triangulation [19]
2: Compute the area matrix S and the cotangent matrix M
3: Solve the eigenvalue problem M7 = ASU using the
eigs MATLAB function

The discrete version of the eigenvalue problem (Equation
1) is LY = AU and can then be rewritten as a generalized
eigenvalue problem Mu = AS¥. This can be solved effi-
ciently by the Arnoldi method of ARPACK (implemented
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Fig. 1: (a) Topomaps of the first 9 eigenvectors and eigenval-
ues of the Laplace-Beltrami operator. (b) Underlying mesh
constructed using the MI dataset montage [20], [21]. Note:
first eigenvector always constant and the spatial variation of
the eigenvector increases with the corresponding eigenvalue.

inside MATLAB). In the following, the discrete Laplace-
Beltrami operator is called Laplacian for short. In Fig. 1,
we show the topomaps of the first 9 eigenvectors and corre-
sponding eigenvalues of the Laplacian computed as described
in Algorithm 1. The first eigenvector that corresponds to
the eigenvalue 0 is always a constant vector. The larger the
eigenvalue is, the larger spatial variation the eigenvector has.

C. Application to EEG signals

Traditionally, EEG signals X € R"*? are regarded as a set
of time series data. This point of view neglects the geometric
information of the electrodes’ positions. If EEG signals are
thought of as functions over the manifold of the scalp, then
their coefficients, or projection, in each Laplacian eigenspace
constitute a decomposition of the signals into different spatial
frequency components. The matrix of Laplacian eigenvectors
is denoted by ® = [¢1,...,0,] € R™ ™. Then, the
coefficient matrix:

C=3"X

is the projection of the original signal into the Lapla-
cian spectral domain. Hence, the original signal can be
reconstructed without loss. Each row (coefficients in each
eigenspace) represents the evolution over time of a certain
spatial frequency component.

As we mentioned in the introductory section, time fre-
quency bands (e.g. alpha band) have been studied extensively
[22], [23], [24], but very little is known about the spatial
properties of EEG signals. Using the Laplacian spectral
coefficients well suited to analyse EEG signals spatially, we
explored several aspects:

o The average power in the Laplacian spectral domain
is computed. The spectral coefficients are squared to
remove sign ambiguity and averaged over trials.

o Elementary experiments are done to test classical EEG
signal classification methods in the spectral domain.
Two golden standard classification methods for BCI are
used as baseline: Common spatial patterns (CSP) with
linear discriminant analysis (LDA) [25], and Minimum
Distance to Mean with geodesic filtering (FgMDM)



[26]. Even though spectral decomposition via Laplacian
keeps essentially the same information of the original
signal, using the above classification methods in the
spectral domain has a different interpretation compared
to using them in the classical spatial domain. CSP
in the spectral domain could be seen as finding a
linear combination of spectral components that best
differentiate between classes. And the covariance matrix
used in FgMDM contains the correlation coefficients of
pairs of spectral components instead of pairs of spatial
components (i.e. electrodes).

« Lastly, dimensionality reduction can be done by keeping
only the first spatial frequency components, as most
information is retained by the smoothest components
(cf. section III-B and Algorithm 2). This can induce
a low-pass effect on signals thus naturally suppressing
noise and leading to better classification results.

Algorithm 2 Classification with Laplacian-based dimension-
ality reduction

Input: X: raw MI EEG signal, ®: Laplacian eigenvector
matrix of the associated mesh
Output: Classification accuracy
1: Apply a band-pass filter (8-30 Hz) and extract epochs
2: Project epoch data into the first ¢ eigenspaces of the
Laplacian X' = ®(:,:4)" X
3: Apply baseline classification method on X’ and estimate
the classification accuracy using 5-fold cross-validation

III. EXPERIMENTS AND RESULTS
A. Data and preprocessing

To promote the reproducibility of results and facilitate
comparison with other methods, our experiments were based
on a publicly available dataset: Physionet EEG motor im-
agery dataset [20], [21]. It contains over 1500 one- and 2-
minute EEG recordings, obtained from 109 volunteers. 64-
channel data were recorded using the BCI2000 system while
subjects performed different MI tasks. In our experiments, we
used only trials concerning the MI of opening and closing
either both fists or both feet. No specific prepossessing was
used for all experiments. Raw data was read and split into
epochs according to event annotations. A band-pass filter was
used to extract the o and 8 bands (8-30 Hz) since they are
particular discriminant for motor imagery [27].

B. Spatial analysis

For the MI EEG signals, the average power in the spectral
domain presented strong common patterns across individuals.
Fig. 2 (b) shows the mean (over subjects) average (over
trials) power of the MI EEG signals in the spectral domain.
Two high peaks can be noticed over the 3"¢ and 5"
Laplacian eigenspaces. The topomaps of these eigenvectors
are shown at the top row in the middle of the same figure.
¢s captures features along the longitudinal axis, while ¢5
captures differences along the lateral axis (near the center of
the brain). This pattern could reflect the greater involvement

of the motor areas - located at central sites - during motor
imagery compared to other areas. This would explain also the
greater spectral power for the 5" eigenspace in the hands
MI condition as compared to the feet one (as seen in Fig. 2
(b). Indeed, given that the feet area is located deeper into the
interhemispheric fissure, feet MI mostly impacts the vertex
electrode while hands MI impacts the lateral ones (i.e. C3
and C4). There are also some small peaks over the high
frequency eigenvectors whose topomaps are shown at the
bottom of Fig. 2 (a). These eigenvectors highlight the C6 and
FC6 electrode sites, i.e. electrodes on the right hemisphere
which might also play an important role during MI tasks,
irrespective of the imagined body part.

14
12
g 08

Zos

(a) Avg power per spectral domain (b) Eigenvectors ¢3, ¢5, ¢58, P62

2 271 2 W @
Spectral domain

Fig. 2: Average power of MI EEG signals in the spectral
domain and their corresponding eigenvectors. Power aver-
aged over 45 trials of hands/feet MI over 109 subjects [20],
[21]. In (a) the values for n = 1 are omitted to allow correct
visualization (hands: 9.003 x 10~7; feet: 8.604 x 10~7).

C. Classification and dimensionality reduction

The binary (i.e. hands vs feet) classification accuracy
of baseline classification methods applied on the Motor
Imagery EEG dataset and on an increasing number of PCA or
Laplacian spectral components is shown in Fig. 3. This was
estimated using a 5-fold cross-validation procedure. Note
that for CSP+LDA, applying dimensionality reduction before
the classifier did not lead to a significant increase in the
classification accuracy. This could find an explanation in
[25] where the authors explain that in theory any prefiltering
either harms or does not change the performance of the
CSP. Indeed, applying a prefiltering or projection P, whether
invertible or not, we always have:

W' PTY Pw <

"X GRS, P =
The improvement of classification accuracy might result
from noise reduction as a byproduct of using the smoothest
spatial frequency components. On the contrary, for Fg-
MDM, classification accuracy was substantially increased
after applying dimensionality reduction. This indicates that
the covariance matrix of smooth components contains much
less noise. Moreover, the computation time can be con-
siderably reduced, especially for FgMDM, see Fig. 3 (b)
(computation done on a desktop computer with Inter Core i7-
4790 CPU and 15.6 GB of RAM memory). The best number
of components to use can be chosen by cross validation. The
classification pipeline with the proposed method achieves
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Fig. 3: (a) Classification accuracy as a function of the number of PCA or Laplacian spectral components used for
dimensionality reduction, averaged over 109 subjects. Baseline: CSP+LDA and FgMDM respectively. (b) Computation
time depending on the number of kept Laplacian spectral components.

comparable results compared to the one with PCA while
requiring 33.7% less computation time.

IV. CONCLUSION AND FUTURE WORK

In this paper, the possibility of using the Laplace-Beltrami
operator as a geometric tool to study the spatial properties of
EEG signals for MI-based BCI has been explored. Interest-
ingly, the average power in the spectral domain coincides
with the physiology knowledge of the underlying brain
activity. Moreover, dimensionality reduction can be done by
passing a low-pass filter in the Laplacian spectral domain.
The results showed the efficiency of the proposed method
and an improved classification accuracy in BCI applications.
An interesting perspective would be to compare or integrate
this type of operator with Geometric Deep Learning methods,
which tends to generalize deep learning methods to non-
Euclidean domains.
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