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ON THE SHORT PRINCIPAL IDEAL PROBLEM OVER SOME REAL KUMMER FIELDS

ANDREA LESAVOUREY1, THOMAS PLANTARD2, AND WILLY SUSILO2

Abstract. Several cryptosystems using structured lattices have been believed to be quantum resistant. Their
security can be linked to the hardness of solving the Shortest Vector Problem over module or ideal lattices. During
the past few years it has been shown that the related problem of finding a short generator of a principal ideal
can be solved in quantum polynomial time over cyclotomic fields, and classical polynomial time over a range of
multiquadratic and multicubic fields. Hence, it is important to study as many as possible other number fields, to
improve our knowledge of the aformentioned problems. In this paper we generalise the work done over multiquadratic
and multicubic fields to a larger range of real Kummer extensions of prime exponent p. Moreover, we extend the
analysis by studying the Log-unit lattice over these number fields, in comparison to already studied fields.

Key words and phrases: Post-quantum cryptography, Ideal lattices, Short Principal Ideal Problem, Kummer
fields, Log-units

1. Introduction

One of the most important family of cryptosystems explored as a post-quantum solution is based on euclidean
lattices. For efficiency reasons most of these systems use structured lattices, and their security can be linked to the
problems of finding a short vector in a module lattice, namely the Module Shortest Vector Problem (MSVP), or in
an ideal lattice which is the Ideal Shortest Vector Problem (ISVP). The oldest and simplest cryptosystems using
ideal lattices such as in [21, 22, 34] are based on the related problem of finding a short generator of a principal
ideal. They can be described as follows. Consider a number field K and I = gOK a principal ideal with a short
g when I is considered as a lattice. Then K and I are public and g is private. The private key security relies on
the hardness of finding g. Finding a generator is called the Principal Ideal Problem (PIP) and is referred as one
of the main tasks of Computational Number Theory by H. Cohen in [14]. Finding a short generator is referred as
the Short Principal Ideal Problem (SPIP). A generic way of recovering g is done in two steps:

(1) recover a generator h of I;
(2) find a short generator given h.

As mentioned previously, the first step is considered to be a hard problem in classical computational number
theory and the best known generic algorithm runs in sub-exponential time [14]. However, it can be computed in
polynomial time with quantum computing as in [6], for any principal ideal. The second step is a reduction phase
which is the kind of tasks that seem difficult even with quantum computing. In order to solve it, one may use the
structure of the set of generators of I and the Log-unit lattice. This strategy was mentioned in [12] where it was
claimed that in the case of cyclotomic fields the group of cyclotomic units has a good enough geometry in the Log-
unit lattice to help recovering a short generator. A proper analysis over cyclotomic fields has been done by Cramer
et al. in [17] where the authors gave a bound for the norm of the vectors of the dual basis. In [2] Bauch et al. studied
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another family of fields, namely multiquadratic fields, and were able to recover a short generator of an ideal in clas-
sical polynomial time for a wide range of fields. This latest approach has been generalised to multicubic fields in [27].

Even though the actual propositions of lattice based cryptosystems rely on other problems such as the MSVP
or the ISVP, it is important to study the SPIP. Indeed such works can help determining which fields or structures
are weak. Moreover one could build upon such analysis a successful strategy for harder problems, or even draw a
definitive line between these problems. Furthermore one has to remark that solving an instance of the SPIP is one
step of the strategy to solve the ISVP introduced by Cramer et al. [16], and that the other line of work – namely
the PHS algorithm – initiated by Hanrot et al. [29] and modified by Bernard and Roux-Langlois in [3] can be seen
as an extension of the strategy described above to solve the SPIP. Indeed, it can be described as using a Log-S-unit
lattice to shorten an element α of the ideal considered.

Finally from a post-quantum perspective the PIP can be solved in polynomial time. Indeed, all the number
theoretical objects used can be computed efficiently following [6, 19]. Over general number fields the last unknown is
therefore the possibility of retrieving a short generator using the Log-unit lattice. In order to study these problems
without a quantum computer, it is important to obtain more efficient algorithms to be able to operate over number
fields with large degrees.

Our contribution. As mentioned earlier, the SPIP is shown to be solvable with quantum computers over cy-
clotomic fields [17], and experimental data from [2, 27] indicate that it is also the case over multiquadratic and
multicubic fields. However the methods are not similar. Over the two last families, the algorithms use the strong
structure of the set of subfields. The authors of [2, 27] show that the unit group of high degree number fields can
be computed in a reasonable amount of time (polynomial in the degree for a wide range of number field), as well as
generators of principal ideals. We generalised these works to all real Kummer extensions of prime exponent p, i.e.
generated by p-th roots of integers. We also considered real Kummer extensions of Q with two exponents – gener-
ated by p-th and q-th roots of integers where p and q are prime integers – in order to break the structure and see
if one can still solve the SPIP with a good probability. Moreover, once implemented, our algorithms allowed us to
study the Log-unit lattice of these fields and classify them with respect to their security level. Our implementation
in Magma V2.24-9 is publicly available 1.

In this work we:

(1) describe algorithms to compute the unit group and solve the PIP of Kummer extensions;
(2) study the hardness of solving the SPIP over real Kummer fields using our implementation of these algo-

rithms.

In particular we were able to evaluate the probability of success of shortening a generator with the Log-unit
lattice, and study the quality of the basis obtained for this lattice. Our implementation allowed us to study high
dimensional fields, and the data gathered highlights the need for considering such fields to draw conclusions on
asymptotic behaviours. We therefore divided them in two categories: fields of degree less than 120 are called low
dimensional fields and the others are called high dimensional fields. One can find in Table 1 a summary of the
results obtained from our computations.

From the experimental data that we computed, general Kummer extensions of Q with only one exponent seem
to show the same properties than multiquadratic fields. In particular we obtained high probabilities to retrieve
private keys for a wide range of fields. However, within this family, we were able to identify a subcategory over
which solving the SPIP is more difficult than over other fields. Indeed the probability of success of solving the SPIP
is smaller for fields with degree p2 and defined by small integers, especially (2,3). Moreover the data computed
on the key and the basis of the Log-unit lattice show that the quality of the basis obtained is not as good as over
cyclotomic fields, and cannot be used to solve the SPIP over high dimensional fields. This is highlighted by the

1https://github.com/AndLesav/spip-on-kummer
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Table 1. Summary of the data obtained with: probability of shortening a generator, quality of
the basis obtained, and for which category of fields the data is available

Field Dimension achieved Probability of shortening Quality of the basis

Cyclotomics [17] High High Good
Multiquadratics [2] High High Good
Multicubics [27] High High Good

Most of Kummer of exponent p High High Good
Kummer with two exponents p, q Low High Good

Kummer of degree p3 defined by small integers (2,3,5) High High Medium
Kummer of degree p2 defined by small integers (2,3) High Low Bad

fact that over these fields, the enumeration cost necessary to retrieve the Log-embedding of a short generator g
grows exponentially with the rank of Log-unit lattice, which is not the case for cyclotomic fields. This is shown in
Figure 1.

Figure 1. Median values of the bit-size of enumeration costs for retrieving a key LogK(g), plotted
against r1 + r2 − 1 for Kummer fields of degrees p2 and p3, and cyclotomic fields after BKZ20

reductions

Moreover, the data gathered on Kummer fields with degree p3 show that the basis obtained for the Log-unit
lattice is already well reduced – since using BKZ instead of LLL does not have much impact – but with worse
orthgonality parameters than for cyclotomic fields.
All of these observations can indicate than Kummer fields – especially with degree p2 and defined by small integers
– could be an alternative to cyclotomic fields for asymptotic cryptography. Obviously, more work is required to
infirm or confirm this. We stress that these observations can be made only because we were able to compute the
units of such fields for dimensions larger than 121, where significant differences between the type of fields truly
appear. This leads us to think that one should always consider high dimensional fields (if the computational power
at hand allows it) when studying problems such as the SPIP or the ISVP.

We were not able to compute as much data for Kummer extensions with two exponents, particularly for high
dimensional fields. The data gathered seems to show that these extensions have the same global properties than
Kummer fields with one exponent, despite behaviours which are less consistent. Further improvements could be
necessary to confirm it.
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Related work. Biasse et al. generalised in a concurrent work [9] the approach of [2, 8, 27] to compute the unit group,
S-units and the class group to normal fields. They give necessary and sufficient conditions for the existence of what
is called norm relations, which allow to design algorithms based on reduction to computations into subfields, in
order to compute several number theoretical objects such as the maximal order, S-units and the class group. The
algorithms we designed for general Kummer – Algorithms 1 and 2 – can be seen as a specialisation of their work,
when considering normal Kummer extensions. The core of our study are real Kummer fields, which are not normal,
so [9] cannot be applied directly. Finally, note that our implementation is a necessary part of our work, and that
Biasse et al. did not provide an implementation regarding the computation of objects like S-units that could be
applied or easily modified to suit our needs.

Future work. Further work can consist in studying other important tasks of computational number theory over these
fields such as computing the class group and S-units. The authors of [8] provide a polynomial time algorithms for
these over multiquadratic fields. It could be possible to implement the algorithms presented and studied in [29, 3]
to solve the ISVP, and compare its performance over Kummer extensions and cyclotomic fields, especially since a
recent work implemented the Tw-PHS algorithm from [3] over large degree cyclotomic fields, and using a sublattice
of the Log-S-unit lattice [4]. Finally, the work of Biasse et al. [9] could be used to extend these considerations to a
variety of other number fields.

Organisation of the paper. The rest of the article is organised as follows.

• In Section 2, we give some useful background on lattices, number fields and the SPIP.
• In Section 3, we describe the number field extensions L/K we are interested in, i.e. general Kummer

extensions of degree p2 with p a prime integer. We provide general recursive algorithms to compute O×L
and solve the PIP following the framework of the ones in [2, 27].

• In Section 4 we study number fields for which we implemented said procedures, i.e. real fields of the form
Q( p
√
m1, . . . , p

√
mr, q
√
n1, . . . , q

√
ns) with p and q primes. In particular, if we write P for the product of

prime integers dividing
∏
i,jminj , we:

– recall some results from a note of the first author [25] concerning the splitting of prime ideals in these
number fields and their discriminants – Propositions 10 and 11 describe in what manner it depends
on P in some cases – which leads to exhibiting a Q-basis of L useful for implementation;

– give details on some of the auxiliary procedures used in our implementation, such as p-th roots ex-
traction;

– describe heuristic algorithms to compute O×L and solve the PIP running in time

Poly(ln |DL|)eÕ((lnP )2/3)

and

Poly(ln |DL|, ln N(I))eÕ((lnP )2/3).

• We provide data gathered from our implementation in Section 5 and study the possibility of solving the
SPIP over real Kummer extensions. In particular we are able to evaluate the probability that an attack is
successful where Kannan’s embedding technique [23] is used for step 2. of the strategy, i.e. the reduction
using the Log-unit lattice, and compute several parameters linked to the basis of the lattice to evaluate its
quality. We also compare these values to the ones obtained for a range of cyclotomic fields.

• We provide in Appendix A some timings regarding the computation of their unit group with our imple-
mentation.

2. Background

In this section we will quickly present the essential background regarding lattices, number theory and cryptology
necessary to understand this article. However some parts might be left out for clarity.
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Notations. The inner product is denoted by (· | ·). When we consider a tuple (λ1, . . . , λn) we can write it λ.
Algebraic closures of number field extensions considered will be designated by Ω. We will write δ(P(n)) for the
indicator function of proposition P(·), i.e. δ(P(n)) is equal to 1 if P(n) is true and 0 otherwise. Finally, given
two ordered sets A and B we will denote by A ⊗ B the tensor product of A and B (when it makes sense), i.e.
A⊗ B = {ab, b ∈ B | a ∈ A}. If A and B are not ordered A⊗ B will be the collection of all the products ab such
that a ∈ A and b ∈ B. Finally, we also use this notation for the tensor product of vectors and matrices.

2.1. Lattices. We refer the reader to the part dedicated to lattices in the book of S. Galbraith [20]. One can find
a fine exposé on lattices and their use in public-key cryptography. We refer the reader interested in more in-depth
presentations on Euclidean lattices to [28, 15].

An euclidean lattice is a discrete subgroup of Rn where n is a positive integer. A basis of a lattice L is a basis
of L when considered as a Z-module. One way of representing a lattice is then to consider the matrix of a basis of
the lattice. Let us denote by λ1(L) the norm of the shortest non zero vector of L. There is an approximation of
λ1(L) called the Gaussian heuristic which tells that the expected value of λ1(L) is in O(

√
r

2πe ×
r
√

det(L)). This
gives an expected value for the norm of what we call a short vector. The classical problems over lattices are :

(1) the Shortest Vector Problem (SVP) : «Given a a lattice L of dimension n, find u ∈ L \ {0} such that
‖u‖ = λ1(L) »;

(2) the Closest Vector Problem (CVP) : «Given a lattice L of dimension n and t ∈ Rn, find u ∈ L such that
∀v ∈ L, ‖t− u‖ 6 ‖t− v‖; »;

(3) the Bounded Distance Decoding (BDD) : «Given a basis B of a lattice L, a target vector t such that
d(t,L) < λ1(L)/2, find the lattice vector v ∈ L closest to t. ».

In practice we can consider relaxed versions of these problems with respect to an approximation factor. For
general lattices these problems are NP-hard thus at least as hard as factorising for example. Moreover we do not
have any result showing that quantum computers can solve these problems for general lattices. These problems
are easier to solve if we have a good basis at our disposal, i.e. a basis built with relatively short vectors which are
nearly orthogonal to each other.

Despite the hardness of these problems over random lattices, high-dimensional lattices are large objects and slow
to handle. A way of copping with that is to work with lattices with extra algebraic structure such as ideal lattices.
However this can introduce a security weakness as it may be easier to find good basis related to such lattices or to
use the algebraic structure to solve lattice problems.

2.2. Number fields. We refer the reader to [14, 13, 31] for anything related to number fields and computational
number theory.

A number field K is a field which is a finite extension of Q. It can always be described as a polynomial quotient
ring Q[X]

(P (X)) where P (X) is irreducible in Q[X]. Equivalently if we choose θ to be any root of P (X) we can see K
as Q(θ) the smallest field containing Q and θ. If we write n the degree of P (X) then the dimension of K over Q
– written [K : Q] – is n. We will consider two types of number fields in this paper. The fields of the first type
are the most used in cryptography and well-studied in mathematics. They are called cyclotomic fields. They are
generated by a root of unity ζm, with m being called the conductor of the field. The second type of number fields
are Kummer extensions and are the subject of this paper. They are generated by p-th root of integers, and we will
describe them more thoroughly in Section 3.

Complex embeddings and ring of integers. A number field K of dimension n over Q admits n distinct complex field
embeddings K ↪→ C usually denoted by σ1, . . . , σn. This set is denoted by Hom(K,C). There are r1 real embeddings
and r2 pairs of complex embeddings. The two elements of a given pair are conjugates one from each other. It is
the usage to write σ1, . . . , σr1 the real embeddings and to consider that σj+r2 = σj for all j ∈ Jr1 + 1, r1 + r2K.
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Given a complex embedding σ ∈ Hom(K,C) the set {x ∈ K | σ(x) = x} is a subfield of K. We will denote it by
Kσ. One important map is the Minkowski embedding and is usually defined as

σK : K −→ Cr1+r2

x 7−→ (σi(x))i∈J1,r1+r2K.

This allows to see K as embedded in Rn. In this paper we relax the definition and consider σK to be defined as

σK : x 7−→ (σi(x))i∈J1,nK,

where all complex embeddings are taken into account.

The ring of integers of K denoted by OK consists of the elements of K which are roots of a monic polynomial
of Z[X]. This ring as well as its ideals are full rank sub-Z-module of K. In fact for a given ideal I one can
find a basis (b1, . . . , bn) of elements of OK such that K =

⊕n
i=1 Qbi, OK =

⊕n
i=1 Zbi and I =

⊕n
i=1 Zdibi with

(d1, . . . , dn) ∈ Zn. The images of OK and of any ideal I of OK under the action of any embedding of K into
Rn are lattices. The usual embedding corresponds to view a number field K as a quotient Q[X]

(f(X)) . Then every
element g(X) = g0 + · · · + gnX

n of K can be seen as the vector with coordinates (g0, . . . , gn) in Rn. The other
fundamental example is the Minkowski embedding. Given a family (x1, . . . , xn) of a number fieldK the discriminant
D(x1, . . . , xn) is the rational number det((σj(xi))i,j)

2. Given O an order ofK the discriminant of O isD(x1, . . . , xn)

where (x1, . . . , xn) is an integral basis of O. The discriminant of K written DK is the discriminant of its integer
ring, and its absolute value can be seen as the squared volume of OK when seen as a lattice through the action of
the Minkowski embedding.

Embeddings in an algebraic closure and Galois group. As it is the case for complex embeddings, a number field K
of dimension n over Q with algebraic closure Ω admits n distinct field embeddings K ↪→ Ω. This set is denoted
by Hom(K,Ω). Similarly, given an extension of number fields L/K we will denote by Hom(L/K,Ω) the set of
K-embeddings of L into Ω, i.e. elements of Hom(L,Ω) congruent to IdK when restricted to K.
The Galois Group of a field extension L/K denoted by Gal(L/K) is the group of field automorphisms of L which
are congruent to the identity when restricted to K. It is a subset of Hom(L/K,Ω). An extension L/K is called
a Galois extension when the cardinality of Gal(L/K) equals the dimension [L : K]. Moreover we have the Galois
correspondence which states that given a Galois extension K/L there is a one-to-one correspondence between the
subgroups of Gal(L/K) and the subfields of K containing L. Given a subgroup H of Gal(L/K) we will write
LH the corresponding subfield of K. In the case of a number field K we say it is a Galois field if it is Galois
as an extension of Q. For example the cyclotomic fields are Galois number fields as well as the multiquadratic
fields considered in [2]. However this property is not verified by a general number field K and we have to consider
the Galois closure of K which is in fact the smallest extension containing all the roots of the irreducible polyno-
mial P (X). Given p a prime integer, we will denote by τp a generator of Gal(Q(ζp)/Q) the Galois group of the
cyclotomic field generated by ζp. Therefore the action of τp can be described by τp(ζp) = ζi0p for a fixed i0 ∈ J1, p−1K.

It is usual for the two approaches of field embeddings described above – algebraic or complex – to be identified,
as it the case in [13] for example. We will do the same, and the context will help determine which objects
are considered. We might therefore talk about “complex embeddings” and use the notations Hom(L/K,C) and
Hom(L,C), even when considering morphisms from a number field into an algebraic closure.

Unit group and Log embedding. The group of units of OK written O×K is the set
{
u ∈ OK | u−1 ∈ OK

}
. It has a

specific structure that we can take advantage of. Given a number field K of degree n with n = r1 + 2r2 as before,
we have

O×K
∼=

Z
mZ
× Zr1+r2−1.
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This isomorphism which allows to see the units of O×K modulo its torsion group as a lattice is realised by an
important embedding which is the Log-embedding of K. Consider (cj)j∈J1,r1+r2K such that cj = 1 if j 6 r1 and
cj = 2 otherwise. Then the Log-embedding is defined as

LogK : K∗ −→ Rr1+r2

x 7−→ (ci ln |σi(x)|)i∈J1,r1+r2K .

The set LogK(O×K) is a lattice of the hyperplane orthogonal to the all ones vector. It is called the Log-unit lattice.
One can also define the Log-embedding by using all of the embeddings σi and forgetting the cj :

(1)
LogK : K∗ −→ Rn

x 7−→ (ln |σi(x)|)i∈J1,nK .

By doing so the Log-unit lattice is a lattice of rank r1 + r2 − 1 in Rn. The volume of LogK(O×K) is
√
r1 + r2RK if

we use the first definition and
√

n
2r2/2

RK is we use the second, where RK is the regulator of K. In the rest of the
paper we will use the second form of the Log-embedding, and denote by VK its volume.

Log-unit lattice and SPIP. For a general introduction on ideal lattices and their use in cryptography, one could
refer to the survey of Ducas [18]. Recall that ideal based cryptosystems such as presented in [21, 22, 34] have in
general a private key which is a short generator of a public ideal I. The security of such cryptosystems relies on
the supposed hardness of finding such a generator given an ideal, problem called the Short Principal Ideal Problem.
The Principal Ideal Problem consists in finding any generator of the principal ideal, i.e. given an ideal I = gOK ,
find some h such that I = hOK . As mentioned the process done to solve the SPIP relies essentially in two steps
: solve the PIP and then shorten the retrieved generator. The set of generators of I is {gu | u ∈ O×K}. Therefore
solving the PIP yields h = gu with u ∈ O×K . It is then possible to retrieve g from h by finding u. This is where we
can use the Log-unit lattice. If we transpose the situation with the Log-embedding, for every generator h we have
LogK(h) = LogK(g) + LogK(u). Using that remark and finding the element of the Log-unit lattice closest to h it is
possible to retrieve g. This corresponds to solve the CVP with respect to the target h and the lattice LogK(O×K),
and even the BDD because we know the generator g is short. The success of such a method is therefore dependent
on the length of LogK(g) and the particular geometry of the Log-unit lattice meaning that we want to have access
to a somehow good basis, i.e. orthogonal enough. This attack requires to

(1) solve the PIP : this is considered hard classically and can be done in quantum polynomial time;
(2) compute O×K : this is also considered hard classically and can be done in quantum polynomial time;
(3) shorten a generator h by solving the BDD with respect to LogK(O×K) : this will depend on the basis

obtained.

One can remark that since the Log-unit lattice lies into H, the hyperplane orthogonal to 1 = (1, . . . , 1), the last
step is to be carried over H. Thus the attack will require to retrieve pH(LogK(g)) from pH(LogK(h)). Because of
this and to recall the cryptograhic setting, we will call pH(LogK(g)) the key (vector) of the problem. As a matter
of fact, step 3 will correspond to a BDD depending on the norm of the target. Solving a CVP or BDD can be done
by several techniques. The main ones are Babaï’s rounding technique and nearest-plane algorithm [1], as well as
Kannan’s embedding technique [23]. In [17, 2] the authors considered the rounding technique, and we follow [27]
where the authors used an embedding technique to compute the output of the nearest plane algorithm.

Representation of elements. A fairly natural way of representing an element of K is by its coefficients in Q−basis,
typically (θi)i∈J1,nK or an integral basis of OK if one is available. We will call this the standard representation. How-
ever during computations some objects can become very large and one can use the so-called compact representation,
which expresses x as a product x0xl1xl

2

2 . . . x
lr

r with xi having a bounded size.
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Complexities. Because the discriminant of a number field measure the volume of its ring of integers, complexity of
algorithms are often expressed in terms of log(|∆(K)|). The best algorithms to compute an integral basis of OK
are sub-exponential in general but one can find more efficient algorithms for specific number fields. This is the
case for multiquadratic fields for instance as stated in [35]. The unit or the class groups can also be computed in
sub-exponential time as in [7]. Finally in [7] the authors showed that the compact representation of an element can
be computed polynomial time with respect to the size of the input. Complexities are often expressed by mean of
the L-notation. Given a variable N and two constants α and c with α ∈ [0, 1] and c > 0, LN (α, c) is defined by

exp
(
(c+ o(1)) ln(N)α(ln lnN)1−α

)
.

3. Structure of Kummer extensions

Definition 1. A number field extension L/K is called a Kummer extension of exponent n if ζn ∈ K and there are
elements m1, . . . ,mr of K such that L = K( n

√
m1, . . . , n

√
mr).

Remark 1. In our work we relax this definition to allow ζn to not belong to L. We will also only consider extensions of
prime exponents p. First let us recall some facts and fix some notations about the structure of Kummer extensions,
and Hom(L/K,C). We refer the reader interested in a more general and in-depth presentation of Kummer extensions
to [13].

3.1. Field embeddings and Galois closure.

3.1.1. Simple extensions.

Definition 2. Consider L/K an extension of number fields, and prime number p. Then L/K is called a simple
Kummer extension of exponent p if there is m ∈ K such that p

√
m 6∈ K and L = K( p

√
m).

Proposition 1. Consider L = K( p
√
m) a simple Kummer extension. Then the following properties are true.

(1) L/K is a field extension of degree p.
(2) The elements of the set Hom(L/K,Ω) can be fully described by their action on p

√
m as σ(i) : p

√
m 7−→

ζip
p
√
m, i ∈ J0, p− 1K.

(3) If ζp ∈ L then L/K is Galois. If ζp 6∈ K then the Galois closure of L/K is L̃ = L(ζp) and if p is odd then
Gal(L̃/K) = 〈τp〉n 〈σ〉 where σ is the extension of the complex embedding σ(1) which acts trivially on ζp.
If p is 2 then L is Galois.

Proposition 2. Let L = K( p
√
m) be a simple Kummer extension of exponent p, and n ∈ K. Then L = K( p

√
n) if,

and only if, there is a ∈ K such that n = map.

3.1.2. General extensions. The properties described for simple Kummer extensions can be extended to general
extensions.

Proposition 3. Consider L = K( p
√
m1, . . . , p

√
mr) be a Kummer extension. Then the following assertions are

equivalent.

(1) [L : K] = pr;
(2) (∀α ∈ Zr), mα1

1 mα2
2 · · ·mαr

r ∈ (K∗)p ⇐⇒ ∀i ∈ J1, rK, p | αi.

Definition 3. Given a prime p, an integer r ∈ N∗ and a sequence m of rational numbers m1, . . . ,mr we will say
that m is p-reduced for K if it verifies the condition of Proposition 3.

Proposition 4. Consider p a prime number and L = K( p
√
m1, . . . , p

√
mr) a Kummer extension of exponent p.

Then L can be described as K( p
√
n1, . . . , p

√
ns) with n = (n1, . . . , ns) being a p-reduced sequence.

From now on, all Kummer extensions are considered to be generated by reduced sequences.
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Notation. Consider m = (m1, . . . ,mr) ∈ Kr such that L = K( p
√
m1, . . . , p

√
mr) is an extension of degree pr. For

i ∈ J1, rK the field Lmi = K( p
√
mi) is a simple Kummer extension of K of exponent p. Given any j ∈ J0, p − 1K,

write σ(j)
mi the field embeddings of Lmi ↪→ Ω following the notation described previously and σjmi the corresponding

element of Gal(L̃mi/K).

The simple extensions of a Kummer extension L/K are important as they allow to fully describe L/K, as we
will see later.

Proposition 5. Consider L/K which verifies the equivalent assertions of Proposition 3. Then the following
assertions are true.

(1) L/K has exactly pr−1
2 simple subextensions of degree p over K and they are of the form Lα := L(

∏r
i=1

p
√
mi

αi)

with α ∈ J0, p− 1Kr. Moreover Lα and Lβ are equal if, and only if, there is an integer λ such that α = λ · β
(mod p).

(2) Any subextension of L/K can be written as K( p
√
M1, . . . ,

p
√
Mr′) where 0 6 r′ 6 r and Mj =

∏r
i=1

p
√
mi

α
(j)
i

with α(j) ∈ J0, p− 1Kr for any j ∈ J1, r′K.

The set complex embeddings of L and the Galois group of L̃/Q can also be fully described with the ones of the
subfields Lmi .

Proposition 6. Consider L/K which verifies the equivalent assertions of Proposition 3. Then the following
assertions are true.

• Hom(L/K,Ω) ∼=
⊗r

i=1 Hom(Lmi/K,Ω) = {⊗ri=1σ
(βi)
mi | β ∈ J0, p− 1Kr}.

• L(ζp)/K(ζp) is abelian with Galois group isomorphic to 〈σm1
〉 × · · · × 〈σmr 〉 ; if ζp ∈ K then the previous

extension is L/K.
• If ζp 6∈ K then L(ζp)/K is Galois with Galois group isomorphic to 〈τp〉n 〈σm1

〉 × · · · × 〈σmr 〉.

Notation. Given a tuple β we will write σ(β) the complex embedding ⊗ri=1σ
(βi)
mi and σβ its extension in Gal(K̃/Q).

Given a subset S of Hom(K,Ω) we will denote by S̃ the subset of Gal(K̃/Q) whose elements are the direct extension
of elements of S.

3.2. Structural result. The main brick of the efficient algorithms in [2, 8, 27] are structural results which allow
to express a power of any field element as a product of relative norms over several subfields. As the fields studied
here are the generalisation of multiquadratic and multicubic fields, the same structural result appears.

Notation. Given an integer k and a subset S of a field F we will denote by Sk the set {xk | x ∈ S}.

Proposition 7. Let p be an odd prime number. Consider L = K( p
√
m1, p
√
m2) a Kummer extension such that

[L : K] = p2. Let u and v be two elements of Hom(L/K,Ω) such that their extensions ũ and ṽ are independent.
Then the following properties are true.

(1) Lp ⊂ LuLuv . . . Luvp−1

Lv;
(2) (O×L )p ⊂ O×LuO

×
Luv . . .O

×
Luv

p−1O×Lv .

Proof. The proof is similar to the ones of the corresponding results in [2]. Let x ∈ L∗ and u, v be two elements of
Hom(L/K,Ω) such that ũ and ṽ are independent. Then we have:

(2) xp =

∏p−1
i=0

∏p−1
j=0(ũṽi)j(x)∏p−1

i=0

∏p−1
j=1(ũṽi)j(x)

=

∏p−1
i=0 NL̃/L̃ũṽi (x)∏p−1

j=1 ũ
j
(∏p−1

i=0 ṽ
ij(x)

) .
For any j ∈ J1, p− 1K the sets {i | i ∈ J0, p− 1K} and {ij | i ∈ J0, p− 1K} are the same, therefore:

(3) xp =

∏p−1
i=0 NL̃/L̃ũṽi (x)∏p−1

j=1 ũ
j
(

NK̃/L̃ṽ (x)
) =

∏p−1
i=0 NL̃/L̃ũṽi (x)

NL̃/L̃ṽ

(∏p−1
j=1 ũ

j(x)
) .
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Now let us assume first that ζp ∈ K. Then L/K is Galois, u = ũ, v = ṽ and Equation (3) can be written as

xp =

∏p−1
i=0 NL/Luvi (x)

NL/Lv

(∏p−1
j=1 u

j(x)
) .

For any morphism w the relative norm NL/Lw(x) is an element of Lw and if x is an integer (resp. a unit) then its
relative norms are also integers (resp. units). Therefore on has

(4) xp ∈ LuLuv . . . Luv
p−1

Lv

and if x ∈ O×L we can replace the fields by their unit groups. Finally 4 is true for any x different from 0, but
it is obviously correct for 0 as well, which proves that the claimed results are true if ζp ∈ K. Now assume that
ζp 6∈ K. Then for all i, j ∈ J0, p− 1K the action of (ũiṽj) on x is the same as the action of u(i)v(j). Therefore for all
i ∈ J0, p− 1K the relative norm NL̃/L̃ũṽi (x) is equal to N

L/Luv
(i) (x) which is an element of Kuv(i) . The statements

about integers and units are again true. In Equation (3) we know that xp belongs to L as well as the numerator,
so the denominator belongs to L̃ṽ ∩ L = Lv. Finally the claimed results are also true if ζp 6∈ K. �

If one remove zero from all of the sets, then the set inclusions in Proposition 7 become group inclusions. In fact
remark that U = O×LuO

×
Luv . . .O

×
Lu

p−1v
O×Lv is a full-rank subgroup of O×L such that (O×L )p < U < O×L .

Corollary 1. Let p be an odd prime number. Consider L = K( p
√
m1, . . . , p

√
mr) a Kummer extension such that

[L : K] = pr. Then the following holds:

(1) Lp
r−1 ⊂

∏
α Lα;

(2) (O×L )p
r−1

<
∏
αO
×
Lα

.

Definition 4. Given a Kummer extension L = K( p
√
m1, . . . , p

√
mr) we will call simple units of L/K and denote

by SU(L/K) the subgroup of O×L defined by the following equation.

SU(L/K) =
∏
α

O×Lα

3.3. General algorithms. The general procedures follow the same shape than the ones in [2, 27]. The algorithms
rely on two tasks:

(1) detecting non trivial p-powers in the subgroup of L∗ generated by a given finitely generated subgroup
S = 〈s1, . . . , sn〉 < L∗;

(2) computing the roots of the detected powers.

We will write DetectPowers the first procedure and ElementsFromPower the second. The procedure which finds
a basis of a subgroup of O×L given a generating family by reducing through the Log-embedding will be denoted by
BasisFromGeneratingSet.

3.3.1. Detecting powers. One can use the Saturation technique mentioned in [5, 8]. For any prime ideal Q such that
p | N(Q)− 1 one can construct a “character” χQ : S → F ∗Q/(F

∗
Q)p where FQ is the residue class field. If u ∈ S is a

p−power then χQ(u) is trivial but the inverse is not true in general. In order to detect proper powers, one only has
to intersect kerχQ for sufficiently many Q. If n is the cardinal of a minimal generating family of S, then the rank
S/(S ∩ (L∗)p) is n′ 6 n. If we consider the χQ to be uniformly distributed in the dual then one can adapt Lemma
8.2 of [11] to show that n′ + s characters generate the dual – so the intersection of their kernels is S ∩ (L∗)p – with
probability at least 1 − p−s. If B is a bound on the size of the basis elements generating S then DetectPowers
can be computed in Poly(B,maxQ ln(N(Q)), n′ + s). For the case of multiquadratic fields, the authors of [2] give
a practical way of computing these characters and a precise analysis of the cost of the overall procedure, that we
refer to. It can be generalised to the real Kummer extensions that we will study below.
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3.3.2. Computing units. Algorithm 1 describes the recursive algorithm which can be used to compute the unit
group of a Kummer extension L/K. It is the generalisation of the ones for multiquadratic fields or multicubic fields
presented in [2, 27]. We denote by UnitGroup the general procedure computing the unit group of a number field
as input. Depending on the number field, different algorithms can be used.

Algorithm 1 Compute the unit group of a Kummer extension L/K of exponents p. – KE_Units

Require: A Kummer extension L = K( p
√
m1, . . . , p

√
mr).

Ensure: A basis of the unit group O×L
1: if (r = 1) then
2: return UnitGroup(L).
3: else
4: Choose u, v two independent elements of ˜Hom(L/K,Ω).
5: Recursively compute a basis of U = O×LuO

×
Luv . . .O

×
Luv

p−1O×Lv
6: V ← DetectPowers(U, p)

7: V ← ElementsFromPower(V, p)

8: U ← BasisFromGeneratingSet(〈U, V 〉)
9: return U

10: end if

Proposition 8. Given a Kummer extension L/K, Algorithm 1 is correct, and returns a basis with probability
at least 1 − p−[L:Q] provided that one computes Poly([L : Q]) characters for each subfield L′ reached during the
algorithm, and that the characters are uniformly distributed.

Proof. By Proposition 7 the subgroup U of step 5 is such that (O×L )p < U < O×L . Therefore O×L is isomorphic to

U × U∩(O×L )p

Up . The only part left to verify is the the validity of the recursion. Clearly each of the fields Li is a
Kummer extension of K but such that [Li : K] = pr−1 so the algorithm can be applied to it. Since the dimension
is strictly decreasing, after r − 1 recursion steps the algorithm reaches simple extensions of L, i.e. the case r = 1.
Then following the analysis done during the proof of Theorem 4.6 in [8], the probability of success is at least
(1− p−(s))[L:K] > 1− 2[L:K]/ps where s characters are computed for each field. Therefore if s ∈ Poly([L : Q]) one
can reach the desired probability of success. �

3.3.3. Solving the Principal Ideal Problem. In order to solve the Principal Ideal Problem, i.e. retrieve a generator of
a principal ideal I, we do as follow. First compute the relative ideal norm of I over subfields of K. Then recursively
compute a generator of these ideals. By using Proposition 7 it is easy to see that a combination of these elements
is a generator h of Ip (see [2, 27]). The final steps are finding a unit u such that hu is a p-power and compute
its p-th root. This is summarised in Algorithm 2. The relative norm computations are polynomial with respect to
the dimension and the size of the ideal. Moreover Algorithms 1 and 2 are very similar in shape. One can easily
deduce that the validity and complexity analysis are also similar. One can see that Algorithm 2 will go through
subextensions of L/K down to simple subextensions, where it will call the procedure Generator to solve the PIP.
As for UnitGroup, different algorithms depending on the field can be used. In the general case one might need to
compute the class group of the field so one cannot hope better than a sub-exponential complexity.

4. Real Kummer extensions

In this section we will focus on real Kummer extensions. More precisely we are interested in fields of the form
L = K( p

√
m1, . . . , p

√
mr) with K = Q( q

√
n1, . . . , q

√
ns) with p and q prime integers. We always consider p

√
mi and

q
√
nj to be the real roots of the polynomials Xp−mi and Xq−nj respectively. Then K is a real Kummer extension

of Q of exponent q and L is a real Kummer extension of K of exponent p. We will call such fields real Kummer
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Algorithm 2 Solve the PIP in a Kummer extension of exponent p – KE_PIP

Require: A principal ideal I of a Kummer extension L = K( p
√
m1, . . . , p

√
mr), the unit group O×L

Ensure: A generator g of I.
1: if (r = 1) then
2: return Generator(I).
3: else
4: Choose u, v two independent elements of ˜Hom(L/K,Ω).
5: Recursively compute generators of NLu(I),NLuv (I), . . . ,NLu

p−1v (I),NLv (I) and use Equation 3 to have h
a generator of Ip.

6: h← DetectPowers(O×L ∪ {h}, p).
7: return ElementsFromPower(h, p).
8: end if

extension of exponents p, q. For the particular case of s = 0 the field K is Q. Multiquadratic and multicubic fields
studied in [2, 27] fall in this category. We will call these fields real Kummer extensions with exponent p.

4.1. Field structure. First let us describe the structure of considered extensions.

Proposition 9. Consider a Kummer extension L/K as before. Then the following assertions are true :

(1) Hom(L,Ω) ∼=
⊗r

i=1 Hom(Lmi ,Ω)
⊗s

j=1 Hom(Knj ,Ω) = {⊗ri=1σ
(βi)
mi ⊗sj=1 σ

(γj)
nj | β ∈ J0, p − 1Kr, γ ∈ J0, q −

1Ks}.
(2) L(ζp)/K(ζp) is abelian with Galois group isomorphic to 〈σm1〉 × · · · × 〈σmr 〉
(3) L(ζp)/Q(ζp) is abelian with Galois group isomorphic to 〈σm1

〉 × · · · × 〈σmr 〉 × 〈σn1
〉 × · · · × 〈σns〉.

(4) L(ζp)/K is Galois with Galois group isomorphic to a subgroup of 〈τp〉n 〈σm1
〉 × · · · × 〈σmr 〉.

Notation. Given tuples β and γ we will denote by σ(γ,β) the morphism ⊗ri=1σ
(βi)
mi ⊗sj=1 σ

(γj)
nj its extension in

Gal(L̃/Q). Given a subset S of Hom(L,Ω) we will write S̃ for the subset of Gal(L̃/Q) whose elements are the direct
extension of elements of S.

4.2. Basis and discriminant. We will state some facts about Qbases of real Kummer extensions considered, and
about their discriminants. These results and their proofs appear in a note from the first author in [25].

Knowing the discriminant of a number field is important as it is a measure of the size of the ring of integers, and
one usually express complexities of algorithms in term of the discriminant. It can be difficult to find a formula for
it. However it can be done over multiquadratic fields and multicubic fields [32, 27]. Moreover we wish to exhibit
a simple Q-basis of real Kummer extensions L and dL ∈ L such that dLOL is included in the order generated by
this basis. Knowing such basis and a coefficient dL allows us to represent an element x of OL in this basis and
guarantee that we can reduce computations on x to computations to an element with integral coefficients, namely
dLx. This is notably important for root extraction, since the method we use in our implementation handle only
integral coefficients.

Regarding the discriminant and other mathematical objects linked to the problems studied in what follows, we
refer the reader to [14, 13, 31].

4.2.1. Extensions with one exponent. First we will study fields of the form K = Q( p
√
m1, . . . , p

√
mr).

Notations. Given a tuple m = (m1, . . . ,mr), we will write P(m) the set {p ∈ P, p |
∏r
i=1mi}. For m ∈ Q

and n ∈ N we will denote by PF (m,n) the rational number
∏
p∈P(m)m

vp(m) (mod n). Similarly if m ∈ Qr then
PF (m,n) = (PF (m1, n), . . . , PF (mr, n)). Finally we extend PF (·, p) to elements in Q1/p and sequences in Q1/p

with PF (x, p) = PF (xp, p)1/p.
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A canonical Q−basis of K. One can define two fairly natural bases of K. One has already be mentioned earlier.

Definition 5. Let K = Q( p
√
m1, . . . , p

√
mr) be a real Kummer field. Then the naive basis of K relative to m is

(
∏r
i=1m

αi/p
i )α∈J0,p−1Kr . It will be denoted by B(p,m). The power-free basis of K relative to m is PF (B(p,m), p).

It will be denoted by IB(p,m).

Remark 2. Both bases were considered in several work on Kummer fields such as [8, 36].

The first property that can be proven is that IB(p,m) is somehow independent on the choice of m.

Lemma 1. Let K be a real Kummer field. Consider m and n be two sequences defining K. Then IB(p,m) and
IB(p, n) are equal as sets.

The equality given by Lemma 1 shows that the set of power-free basis of a real Kummer field is a canonical
choice of a Q-basis of K.

Definition 6. Let K be a real Kummer field with one exponent p defined by a sequence m. The power-free basis
of K is the unordered sequence set IB(p,m). It will be denoted IB(K).

Theorem 1. Let K = Q( p
√
m1, . . . , p

√
mr) be a real Kummer extension, and denote by O the order Z[IB(K)].

Then the following propositions are true.

• ∀q ∈ P(m) \ {p}, O is q−maximal.
• [K : Q]OK < O.

Theorem 1 is proven by studying the discriminant of both OL and O. In particular, the following result
concerning primes ramifying in L different from the exponent p is achieved.

Proposition 10. Consider K = Q( p
√
m1, . . . , p

√
mr) a real Kummer extension with one exponent, and q ∈ P(m) \

{p}. Then vq(DK) = (p− 1)pr−1.

4.2.2. Extensions with two exponents. For general extensions with two exponents, the “denominator” dL is not
proven to be [L : Q], but is expressed is terms of P(m) ∩ P(n).

Definition 7. Let L/K be a real Kummer extension with two exponents p, q. We will call power-free basis of L/K
and denote by IB(L/K) the basis IB(M)⊗ IB(K).

Theorem 2. Let L = K( p
√
m1, . . . , p

√
mr) with K = Q( q

√
n1, . . . , q

√
ns) be a real Kummer extension with two

exponents. Denote by O the order Z[IB(L)], and A = (P(m) ∩ P(n)) \ {p, q} and PA =
∏
a∈A a. Then the

following properties are true.

• ∀a ∈ P(m) ∪ P(n) \ (A ∪ {p, q}), O is a−maximal.
• PA[L : Q]OL < O.

Again, one can express how the discriminant of L depends on the primes dividing the defining coefficients of L.

Proposition 11. Let L = K( p
√
m1, . . . , p

√
mr) with K = Q( q

√
n1, . . . , q

√
ns) be a real Kummer extension with two

exponents. Let a ∈ P(m) ∪ P(n) \ {p, q}. Then the splitting of a in L/Q and va(DL) verify the following.

(1) a ∈ P(m) \ P(n) =⇒ va(DL) = [L : Q]p−1p .
(2) a ∈ P(n) \ P(m) =⇒ va(DL) = [L : Q] q−1q .
(3) a ∈ P(m) ∩ P(n) =⇒ va(DL) = [L : Q]pq−1pq .
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4.3. Geometry under LogL.

Lemma 2. Consider K1 and K2 two number fields, and K = K1K2 their compositum. Assume that Hom(K,C) ∼=
Hom(K1,C)⊗Hom(K2,C). Then one has the following.

∀(x1, x2) ∈ K1 ×K2, (LogK(x1) | LogK(x2)) = ln|NK1/Q(x1)| ln|NK2/Q(x2)|.

In particular LogK(O×K1
) is orthogonal to LogK(x2) for any x2 ∈ K2.

Proof. Let us denote by H, H1 and H2 the sets Hom(K,C), Hom(K1,C) and Hom(K2,C) respectively. Moreover
we will write S for (LogK(x1) | LogK(x2)). Then we have

S =
∑
σ∈H

ln|σ(x1)| ln|σ(x2)| =
∑
σ1∈H1

∑
σ2∈H2

ln|σ1 ⊗ σ2(x1)| ln|σ1 ⊗ σ2(x2)|.

Then for i ∈ {1, 2} we get σ1 ⊗ σ2(xi) = σi(xi). Thus we obtain

S =
∑
σ1∈H1

∑
σ2∈H2

ln|σ1(x1)| ln|σ2(x2)| =
∑
σ1∈H1

ln|σ1(x1)|
∑
σ2∈H2

ln|σ2(x2)|

which gives the first result. The statement about the orthogonality of the units follows from the fact that their
algebraic norm is ±1. �

Corollary 2. Let K = Q( p
√
m1, . . . , p

√
mr) be a real Kummer field with one exponent. Then we have the following.

(5) LogK(SU(K)) =

⊥⊕
α∈

Frp\{0}
∼

LogK(O×Kα)

Proof. Just remark that for any pair (α, β) ∈ Frp \ {0} such that α 6∼ β we can apply Lemma 2 to Kα and Kβ . �

We know that SU(K) is a full-rank subgroup of O×K following Corollary 1, and equivalently LogK(SU(K)) is a
full-rank sublattice of LogK(O×K). In the case of multiquadratic and multicubic fields, one can see from Corollary 2
that each set of fundamental units {εα | α ∈

Frp\{0}
∼ } is sent by LogK to an orthogonal basis of this sublattice. This

is the best situation possible when it comes to solving lattices problems. In particular one could hope to decode
respectively to LogK(SU(K)), and use enumerations like over cyclotomic fields in [17]. However as mentioned in [2]
the index [O×K : SU(K)] is too large for this strategy to be efficient. On the other hand, Algorithm 1 shows that
one can obtain LogK(O×K) from LogK(SU(K)) by doing simple operations on vectors: additions and division by a
scalar (2 or 3 depending on the case).

For Kummer extensions with one exponent p > 3, we obtain blocks of size p−1
2 orthogonal one to each other, i.e.

if we consider a matrix basis M of LogK(SU(K)) then its Gram matrix MMT is a block diagonal matrix
Gα 0 . . . 0

0 Gβ
. . .

...
...

. . . . . . 0

0 . . . 0 Gγ


with the diagonal blocks being of the form MαM

T
α , with Mα = LogK(O×Kα). The basis from which we construct

the unit group is therefore not orthogonal anymore. One can wonder whether it has an impact on the quality of
the basis obtained for LogK(O×K) and on performance of the SPIP procedure.

For Kummer extensions with two exponents, we cannot apply Lemma 2 to the minimal subfields reached by the
recursion of the version of Algorithm 1 adapted to these type of extensions, i.e. Algorithm 6. Indeed, we will see
that they are of the form Q( p

√
Mα

q
√
Nβ), which do not satisfy the required properties of Lemma 2. The reunion



ON THE SHORT PRINCIPAL IDEAL PROBLEM OVER SOME REAL KUMMER FIELDS 15

of their unit groups will still generate a full-rank sublattice, but not as a direct sum anymore. Thus we obtain a
situation more entangled than with real Kummer extensions with one exponent. Again one may ask how it impacts
the possibility of recovering a short generator through the Log-unit lattice.

4.4. Auxiliary algorithms. First we will describe the procedures used in Algorithm 1 when applied to real
Kummer extensions, as well as how we compute the final reduction step to solve the SPIP. Most of the procedures
are very similar to the ones in [2, 27]. We present them for completness purposes. In the following we will denote
by N the absolute dimension of L. As in [2, 27] we will always assume that an element x is represented together
with an approximation of LogL(x), that we will denote by ApproxLogL(x). Moreover, we used the power-free basis
defined and studied in Subsection 4.2 to represent elements x. This way we know that there is a coefficient dL such
that the coefficients of dLx are integers.

4.4.1. Finding Good Primes. As in [2] we will need to be able to find primes verifying fixed conditions with respect
to the mi’s.

Definition 8. Consider m = (m1, . . . ,mr), C = (c1, . . . , cr) ∈ {0, 1}n and a prime number p. A good prime
relatively to (m,C, p) is a prime Q such that:

∀i ∈ J1, rK,∃ai | mi ≡ api mod Q ⇐⇒ ci = 1.

In particular we need to find good primes Q for the condition sequence (1, . . . , 1) in order to construct morphisms
from K∗ into finite fields FQ. Remark that the primes should not divide any of the integers mi. Now if we fix a
prime Q > 3 we have the following situation:

• if Q ≡ 1 mod p then FQ contains a primitive p-th root of unity and F∗Q
(F∗Q)p ' Fp;

• if Q 6≡ 1 mod p then FQ does not contain a primitive p-th root of unity and F∗Q
(F∗Q)p ' {1}.

Therefore we can have different strategies depending on our goal. If we want the condition (1, . . . , 1) to be
verified we might consider primes which are not congruent to 1 modulo p as long as we do not need a non-trivial
p-th root of 1 to be in the field FQ.

Let us now describe how the algorithm operates to find a good prime Q ≡ 1 mod p. First we have to draw a
prime Q and verify that it is congruent to 1 modulo p. This happens with probability 1

p−1 . Then we have to check

whether the sequence of conditions C is verified by (m1, . . . ,mr) and Q. We know that m
Q−1
p

i mod Q has order
1 or p which is equivalent to mi being a power or not. We have therefore Algorithm 3 where we make use of two
functions: CheckPowerCondition which has been explained, and DrawPrime which corresponds to the way we select
the candidates for the prime numbers. One can follow [2] and generate a random prime number in a range given as
argument. We could also generate a random prime first and then draw the next prime each time we need a new one.

For a random prime Q ≡ 1 mod p the probability that a condition is true is equal to p−1
p if ci = 0 and 1

p if
ci = 1. Therefore if Hw(C) designates the Hamming weight of C we have

P

(
r∏
i=1

CheckPowerCondition(mi, c1, Q, p) = 1

)
= (

1

p
)Hw(C) × (

p− 1

p
)r−Hw(C).

In average the algorithm will try pr

(p−1)r−Hw(C) primes before finding one verifying the condition sequence C. In

particular the probability that each mi is equal to a p-th power in FQ is
1

pr
and the algorithm will try O(pr) primes

before finding one verifying the condition sequence C = (1, . . . , 1). Moreover we check if a mi is a power or not
modulo Q by doing a modular exponentiation. Therefore if Q is polynomial in N as it is expected, the complexity
of CheckCubeCondition will be polynomial in log(N).
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Algorithm 3 Finding a good prime for a sequence d and a condition sequence C - OneGoodPrime

Require: A reduced sequence (m1, . . . ,mr), C = (c1, . . . , cr) ∈ {0, 1}r and a prime p
Ensure: A good prime Q relatively to (m,C, p) which does not divide any of the mi’.
1: b← 0

2: while b = 0 do
3: Q← DrawPrime
4: while Q 6≡ 1 mod p do
5: Q← DrawPrime
6: end while
7: b←

∏r
i=1 CheckPowerCondition(mi, ci, Q, p)

8: end while
9: return Q

If we need to find good primes for a given sequence C – as it will be the case to detect non trivial cubes of units –
we repeat Algorithm 3 until obtaining enough primes. The only thing to be careful with is the function DrawPrime
in the case we generate random primes in a given range. It needs to be large enough so that the time taken before
generating the desired number of “good” primes is low enough. If DrawPrime generate primes by finding the next
one then we repeat this process.

4.4.2. Detecting powers. As mentioned earlier the authors of [2, 27] showed how to realise the characters in the
case of multiquadratic and multicubic fields. It can be adapted to general real Kummer extension. Consider L/K
a Kummer extension of exponents p, q and S = 〈s1, . . . , sn〉 a subgroup of L∗. In order to obtain a non trivial
character χQ : S → Fp one can do as follow. First select a prime Q such that one can construct a ring morphism
from Z[ p

√
m1, . . . , p

√
mr, q
√
n1, . . . , q

√
ns] to FQ. The prime Q must be such that for all i ∈ J1, rK the rational mi has a

p-th root in FQ, and that for all j ∈ J1, sK the rational ni has a q-th root in FQ. Moreover since the character needs
to be non trivial, FQ has to contain a primitive p-th root of unity, i.e. Q = 1 (mod p). After the reduction modulo
Q, one can verify if φQ(si) is a p-power by computing an exponentiation with exponent p−1

Q . The composition of
this and φQ will be the character χQ. Following the analysis of [2], finding such a prime Q can be done in time
Poly(N) so finding R good primes can be done in Poly(NR) with the maximum of the Q to be also in Poly(NR)

Finally if B is an upper bound for the size of the coefficients of s1, . . . , sn then one can construct and apply the
characters in time Poly(BNRn). Then detecting the powers can be done using Algorithm 4 in polynomial time
with respect to the entries.

Algorithm 4 Compute non trivial p-powers of a subgroup of K∗ – DetectPowers

Require: A real Kummer extension L/K of exponents p, q, S = 〈s1, . . . , sn〉 a subgroup of K∗

Ensure: λ1, . . . , λn′ ∈ J0, p− 1Kn such that
∏n
i=1 s

λj,i
i is a p-power in K, for all j ∈ J1, n′K.

1: Generate sufficiently enough characters χQ1 , . . . , χQR . . Use OneGoodPrime
2: M ← [χQj (si)]i,j ∈Mn,R(Fp)
3: N ← ker(M) . Left Kernel in Fp
4: return N as a matrix in Z

Remark that Algorithm 4 returns exponents corresponding to true p−powers with probability at least 1−p−(R−n)

under assumption that the characters constructed are uniformly distributed in the dual of S/(S ∩Kp). We never
encountered failure during our computations.

Heuristic 1. Let S < K∗ with L/K a real Kummer extension of exponents p, q. Then the characters χQ described
previously are uniformly distributed in Hom(S/(S ∩Kp),Fp).
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4.4.3. Reducing a basis subgroup. In order to find a basis of a subgroup U < O×K one can use Pohst’s modified LLL
[30] algorithm on the matrix ApproxLogL(U). In order to find a transformation matrix with small coefficients, one
can follow [2] and compute a LLL on a matrix of the form

[
Id|C ·ApproxLogL(U)

]
. This leads to a reduction in

Poly(NB) if B is a bound on the size of the elements of ApproxLogL(U), as we take C with size polynomial in
N . The use of a reducing algorithm allows also to find a basis of better quality. One can choose to use another
reducing algorithm such as BKZ [33].

4.4.4. Reducing an element with respect to a lattice. In order to retrieve a short generator g of a principal ideal
from another generator h, we mentioned that one can try to solve a CVP with respect to the Log-unit lattice.
In order to do so, we followed [27] and computed the result of Babaï’s nearest plane algorithm using Kannan’s
embedding technique. This technique can be used more generally to reduce an element [h,ApproxLogL(h)] with
respect to a sublattice ApproxLogL(U) of ApproxLogL(O×L ), in order to control the size of the elements which are
handled. Recall that if B is an upper bound of the norm of the vectors of the basis of ApproxLogL(U) then one
can consider the matrix

[
ApproxLogL(U) 0

ApproxLogL(h) B

]
=



ApproxLogL(u1) 0

ApproxLogL(u2) 0
...

...
ApproxLogL(um) 0

ApproxLogL(h) B


.

Reducing it with a LLL algorithm is expected to reduce the last row to the Log-embedding of a shorter element in
the same coset. In order to obtain again a transformation matrix with small coefficients, we consider a matrix of
the form [

Id |
C ×ApproxLogK(U) 0

C ×ApproxLogK(h) B

]
.

We will denote by RKEBabai(U, h) this procedure.

4.4.5. Computing p-th roots. The authors of [2] were able to exhibit a recursive algorithm in order to compute
square roots in a multiquadratic field. The method cannot be adapted to Kummer extension of exponents larger
than 3. We then implemented a classical method using approximations of complex embeddings – which can be
traced back to the seminal paper introducing LLL algorithm [24] – and developped a version allowing to decode
approximations of elements in a subfield (if one exists) instead of the largest field. Let us briefly describe these
algorithms. We refer the interested reader to the PhD thesis of the first author [26], which study them in details
and generalise them to the computation of roots of general polynomials.

If y = xp, since L/K is a real extension, one can compute xl a rational approximation of x with precision l

together with bl the vector of approximations of the Q−basis elements of L. Store LLL
([

bl|C · Id
])

in the matrix
Ll and the transformation matrix in Ul. Then create the row vector xl = [dLxl | 0 | B] with B being a coefficient

larger than the maximum euclidean norm of the rows of Ll. Then apply a LLL reduction on

[
Ll | 0
xl

]
which is

essentially a reduction on

[
bl C × Id 0

dLxl 0 B

]
. After the reduction, the central part of the last row vector is

expected to be the vector of coefficients of dLx in K. Theorems 1 and 2 ensure that dLx as integral coefficients in
the basis IB(L). Then one obtains a candidate xtest for x. If x

p
test 6= y then increase the precision. We will denote

by TestDecode the procedure which takes Ll and xl as input and outputs x. As explained in [27] an advantage of
this method is that one can save the unitary matrix Ul. Therefore if the precision needs to be increased from l to
l′, one can apply Ul to

[
bl|dL · Id

]
before applying LLL. This is expected to save some time. A last advantage is
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that one can used Ll for several p-th root extractions, such as in the computation of O×K . Finally the complexity
of this method is in Poly(N,B) if B is an upper bound on the bit size of the coefficients of x [26].

Implementing these ideas, we obtain Algorithm 5 which computes roots of powers such as outputted by DetectPowers.
In this context, we will write InitBasisLatt and UpdateBasisLatt the procedures which respectively initialise
and update to a larger precision the basis lattice matrix of L/K.

Algorithm 5 Compute the p-th roots in L/K – ElementsFromPower

Require: A Kummer extension L = K( p
√
m1, . . . , p

√
mr) with K = Q( q

√
n1, . . . , q

√
ns), a subgroup S = 〈s1, . . . , sn〉

of K∗ and V = 〈y1, . . . , yt〉 < Sp non-trivial powers of p
Ensure: A basis 〈x1, . . . , xt〉 of V 1/p

1: Y ← RKEBabai(Sp, V ) . Reduce in the Log-representation
2: Y ← Sort(X)

3: X ← ∅
4: [L,U, l]← InitBasisLatt(L/K)

5: for i = 1 to n do
6: [L,U, l]← UpdateBasisLatt(L/K, PrecisionEvaluation(yi), U)

7: x← (xi)l

8: x← TestDecode(L, x)

9: X ← X ∪ {x}
10: end for
11: return X

Improvement. One can use the relative twisted Fourier transform to do LLL algorithms in subfields. Consider
L = K( p

√
m1, . . . , p

√
mr) a real Kummer extension. Given a complex embeddings σ of y up to precision l there are

p possibilities for a p-th root of σ(y), i.e. for the good approximation of σ(x). This leads to pp
r

possibilities (in fact
p(p

r−1)/2 if p is odd because there are (pr − 1)/2 pairs of conjugate embeddings). Fix one of these possibilities. It
gives a set of possible approximations of coefficients of x over L by the twisted Fourier transform. Then it is possible
to decode these coefficients in L using the LLL method and test if the good element has been computed. If not, test
another possibility. Because the number of possibilities is exponential, this technique becomes quickly impractical.
If one assumes that the complexity of LLL is N4 where N = [K : Q] then this technique requires to compute
p(p

r−1)/2 × p LLL algorithms on matrices of dimensions N/pr, which leads to a complexity in p(p
r−1)/2−4r+1 times

the complexity of the original technique with LLL. Experimentally it is useful to descend down to r = 2 for p < 5

and down to r = 1 for p < 11.

Finally, in order to reduce the running time, one can try to bound the norm of the powers. Let y be one of
the powers outputted by DetectPowers, and S = 〈s1, . . . , sn〉 the subgroup of K∗ given as input. Then one can
reduce y with respect to ApproxLog(Sp) using RKEBabai as explained above. Experimentally, it allows to hasten
the computations.

4.5. Computing the unit group and solving the PIP. In order to compute the unit group of a real Kummer
extension of exponents p, q we will able to use Algorithm 1 several times. Indeed if L/K is a Kummer extension
of exponents p, q then each of the minimal subextensions L( p

√
Mα) can be written as Q( p

√
Mα)( q

√
n1, . . . , q

√
ns), i.e.

a Kummer extension of Q( p
√
Mα) of exponent q. Therefore if one applies Algorithm 1 to L/K, when it reaches

the simple subextensions L( p
√
Mα) in step 2, one can again apply KE_Units instead of UnitGroup. This leads to

Algorithm 6. We do not show its complexity, and instead refer to the analysis done in [2, 8, 9, 27].

Theorem 3. Consider K = L( p
√
m1, . . . , p

√
mr) with L = Q( q

√
n1, . . . , q

√
ns) a real Kummer extension with p and

q prime integers such that [L : Q] = prqs. Under the assumption of Heuristic 1 and GRH Algorithm 6 heuristically
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Algorithm 6 Compute the unit group of a Kummer extension L/K of exponents p, q. – RKE_Units

Require: A Kummer extension L = K( p
√
m1, . . . , p

√
mr) with K = Q( q

√
n1, . . . , q

√
ns).

Ensure: A basis of the torsion-free part of the unit group O×K .
1: if (r = 1 and s 6 1) then
2: return UnitGroup(L).
3: end if
4: if (r = 1 and s > 1) then
5: return KE_Units(L/Q( p

√
m1)). . Compute a basis of U = O×L by considering L as a Kummer extension of

Q( p
√
m1).

6: else
7: Choose u, v two independent elements of ˜Hom(L/K).
8: Recursively compute a basis of U = O×LuO

×
Luv . . .O

×
Lu

p−1v
O×Lv

9: V ← DetectPowers(U, p)

10: V ← ElementsFromPower(V, p)

11: U ← BasisFromGeneratingSet(〈U, V 〉)
12: return U

13: end if

computes O×L in Poly(ln(|DL|))LP (2/3 + ε, c) for some c > 0 and ε > 0 as small as desired, with probability at least
1− (pq)−N , where P is the product of all primes dividing the mi and nj.

As we saw the procedure to find a generator of a principal ideal is very similar to the one to compute the unit
group. Therefore we obtain easily Algorithm 7. The analysis of the running time is similar to the one of Algorithm
6 which gives the same complexity since solving the PIP on the subfields of dimension pq is also sub-exponential.

Theorem 4. Consider L = K( p
√
m1, . . . , p

√
mr) with K = Q( q

√
n1, . . . , q

√
ns) a real Kummer extension with p and

q prime integers such that [L : Q] = prqs and a principal ideal I. Under the assumption of Heuristic 1 and GRH
Algorithm 7 heuristically computes a generator of I in Poly(ln(NL/Q(I)), ln(|DL|))LP (2/3 + ε, c) for some c > 0

and ε > 0 as small as desired, with probability at least 1 − (pq)−N , where P is the product of all primes dividing
the mi and nj.

Algorithm 7 Solve the PIP in a Kummer extension of exponents p, q – RKE_PIP

Require: A principal ideal I of a Kummer extension L = K( p
√
m1, . . . , p

√
mr) with K = Q( q

√
n1, . . . , q

√
ns), the

unit group O×L .
Ensure: A generator g of I.
1: if (r = 1 and s 6 1) then
2: return Generator(I).
3: end if
4: if (r = 1 and s > 1) then
5: return KE_PIP(L/Q( p

√
m1)). . Compute a generator of I by considering L as a Kummer extension of

Q( p
√
m1).

6: else
7: Choose u, v two independent elements of ˜Hom(L/K).
8: Recursively compute generators of NLu(I)NLuv (I), . . . ,NLuvP−1 (I),NLv (I) and use Equation 3 to have h a

generator of Ip.
9: return ElementsFromPower([O×L , h], p).

10: end if
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Again, for the proof of Theorem 4 we refer to the analysis done in [2, 8, 9, 27].

Solving the SPIP. In order to solve the SPIP, one only has to reduce the ouput h of Algorithm 7 modulo the
Log-unit lattice. For this we apply RKEBabai to O×L and h.

5. Experimental results

We implemented the algorithms for real Kummer extensions using Magma V2.24-9 [10], with the procedures
described but without the compact representation of elements, which leads to exponential algorithms. We recall
that ourimplementation is publicly available 2. The section is organised as follows.

• We study in Subsection 5.1 the probability to retrieve a short generator of a principal ideal through an
attack using the algorithms presented in Section 4 ; we computed data for Kummer extensions with one
and two exponents, and compare the results to the ones of [2, 27]. This allows us to identify Kummer fields
with degree p2 and defined by small integers to be fields over which the SPIP is more difficult to solve.

• Then in Subsection 5.2 we study further the geometrical situation. In particular we compute the size of
the key vector normalised by the volume of the Log-unit lattice and the quality of the basis obtained for
the Log-unit lattice through Algorithm 6. We focus on Kummer extensions with one exponent with degree
p2 and compare them with other number fields.

Some timings concerning the running time of Algorithm 6 can be found in Appendix A.

5.1. Probability of solving the SPIP. The first way we studied the possibility of solving the SPIP over real
Kummer extensions was to launch attacks with Algorithm 7 and RKEBabai. As a matter of fact, we did not
do proper attacks because computing ideal norms can be quite long even though the theoretical complexity is
polynomial. However the knowledge of the secret key allows us to compute the HNF of the norms efficiently, and
the rest of the attack is unchanged. We tried to retrieve generator of principal ideals (g) such that the coefficients
of the generators g are drawn uniformly in {−1, 0, 1}. The previous observations in [2, 27] seemed to show two
phenomena. The probability of retrieving a generator increased when:

• the length of the sequence defining the field was increasing;
• the size of the coefficients of the sequence was increasing.

Part of our work has been to verify that it happens on all Kummer extensions.

5.1.1. Kummer extensions with one exponent. First let us consider fields of the form K = Q( p
√
m1, . . . , p

√
mr). We

present the results obtained in Tables 2 and 3. There is one table for each exponent p defining the field, except for
Table 3 which presents the results for the three exponents (11, 13, 17). For each exponent we computed attacks for
fields defined by sequences of increasing length and increasing coefficients ; moreover the coefficients are consecutive
prime numbers. For each field we provide the probability of retrieving a generator when LLL or BKZ20 is used to
reduce the different basis during the algorithms.

Table 3. Experimental results for Kummer extension of Q with degree p2 and exponents 11, 13 and 17.

Field exponent 11 13 17
Rank of lattice 60 84 144
First coefficient 2 3 5 7 11 2 3 5 7 11 2

Success LLL (%) 52 100 100 100 100 20 99.6 100 100 100 0
Success BKZ (%) 82 100 100 100 100 78 100 100 100 100 18

2https://github.com/AndLesav/spip-on-kummer

https://github.com/AndLesav/spip-on-kummer


ON THE SHORT PRINCIPAL IDEAL PROBLEM OVER SOME REAL KUMMER FIELDS 21

Table 2. Experimental results for Kummer extension of Q with exponents 3, 5, and 7

(a) p = 3, and r = 2 or 3

Sequence length r 2 3
Rank of the lattice r1 + r2 − 1 4 13

First coefficient 2 3 5 7 11 2 3 5 7 11

Success LLL (%) 38 86 98 98 99.99 47 100 100 100 100
Success BKZ (%) 41 89 100 99 100 48 100 100 100 100

(b) p = 3, and r = 4 or 5

Sequence length r 4 5
Rank of lattice r1 + r2 − 1 40 121

First coefficient 2 3 5 7 11 2 3 5 7 11

Success LLL (%) 56 100 100 100 100 77.6 100 100 100 100
Success BKZ (%) 61 100 100 100 100 74.3 100 100 100 100

(c) p = 5, and r = 2 or 3

Sequence length r 2 3
Rank of lattice r1 + r2 − 1 12 62

First coefficient 2 3 5 7 11 2 3 5 7 11

Success LLL (%) 58 75 100 100 100 65 99 100 100 100
Success BKZ (%) 64 79 99 100 100 73 97 100 100 100

(d) p = 7 and r ∈ {2, 3}

Sequence length r 2 3
Rank of lattice r1 + r2 − 1 24 171

First coefficient 2 3 5 7 11 2 3 5 7 11

Success LLL (%) 86.6 100 100 100 100 80.6 100 100 100 –
Success BKZ (%) 84.9 100 100 100 100 98.7 100 100 100 –

We can remark that the two phenomena described before seem to be true for all exponents p. Moreover the
probability of success seems to converge quickly to one. For similar degrees and rank of LogK(O×K) we can remark
that we obtain a better probability of success with fields defined by longer sequences and smaller exponents.
Compare for instance fields of degree 73 in Table 2.c and fields of degree 132 or 172 in Table 3.
Fields with degree p2 :. Let us now focus our attention on the subclass of fields of the form K = Q( p

√
m1, p
√
m2).

First we see that again the probability of success converges quickly to 1 whenm1 increases. Now fix (m1,m2) = (2, 3)

and let p vary. One can find the percentages of success plotted in Figure 2.
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Figure 2. Percentage of success of an attack with LLL or BKZ20 for fields K = Q( p
√

2, p
√

3)

plotted against the rank r1 + r2 − 1 of LogK(O×K)

We can notice that for one or the other method used as a reduction algorithm throughout the procedures, the
probability of retrieving a short generator starts to increase but decreases when p is larger than 11. It converges
to 0 when using LLL and is bigger when using BKZ20 but is still quickly decreasing.

Remark 3 (Importance of studying high degree number fields). One important observation is that computations on
high degree number fields were required to observe meaningful data. Indeed when restricted to fields with degree
less than 121, i.e. to primes strictly smaller than 11, the probability of success of an attack is quickly increasing
and there is no difference between using LLL or BKZ20. This highlights the need to work over high degree number
fields.

Finally one could consider Kummer fields of degree p2 defined by small integers as an alternative to number
fields already used in cryptography such as cyclotomic fields. Indeed, in addition to the data gathered here, their
structure could be used to build an efficient arithmetic as done over multiquadratic fields in [2]. One could also
consider Kummer fields of degree p if the pattern concerning the probability of success (decreasing with the length
of the sequence) is still valid. However we cannot confirm or invalidate it. We only have access to the classical
algorithms to do computations on these fields, thus preventing examining fields with high degree.

5.1.2. Kummer extensions with two exponents. Consider real Kummer extensions of the form L = K( p
√
m1, . . . , p

√
mr)

with K = Q( q
√
n1, . . . , q

√
ns). We tried to verify whether the phenomena mentioned earlier were still true over such

fields or not. To do so, we computed data for several fixed ground field K and varying parameters for the extension
L. Because of efficiency reasons, we were restricted in our choice of parameters. Indeed, our implementation seems
to be slower over Kummer extensions with two exponents than extensions with one exponent. We only present the
probabilities with LLL because the ones with BKZ20 are very similar, due to the fact that the ranks of the Log-unit
lattices manipulated are small.

Simple Kummer field as ground field and square relative degree. First let us consider fields such that K is a simple
Kummer field Q( q

√
n) and L = K( p

√
p1, p
√
p2) with p1, p2 being consecutive prime numbers. The data gathered can

be found in Tables 4, 5 and 6.
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Table 4. Success of an attack (in %) with over Kummer extensions of the form L = K( p
√
p1, p
√
p2)

with K = Q( 2
√
n)

Exponent p 3 5 7

r1 + r2 − 1 9 25 49

Coefficient p1 2 3 5 7 11 2 3 5 7 11 2 3 5 7 11

n = 2 – 62 71 63 69 – 64 77 59 70 – 82 78 73 65
n = 5 12 50 – 44 42 11 61 – 64 54 66 61 – 55 58
n = 13 24 86 86 90 79 60 67 89 89 88 79 90 92 81 92

Table 5. Success of an attack (in %) over Kummer extensions of the form L = K( p
√
p1, p
√
p2)

with K = Q( 3
√
n)

Exponent p 5

r1 + r2 − 1 37

Coefficient p1 2 3 5 7 11

n = 2 – 76 87 86 77
n = 5 31 92 – 100 97
n = 13 67 86 97 97 –

Table 6. Success of an attack (in %) with over Kummer extensions of the form L = K( p
√
p1, p
√
p2)

with K = Q( 5
√
n)

Exponent p 3

r1 + r2 − 1 22

Coefficient p1 2 3 5 7 11

n = 2 – 73 85 79 72
n = 5 54 97 – 96 97
n = 13 47 92 96 98 97

We can see that the results are different for these fields than for Kummer extensions with one exponent. For
each pair (p, q) it seems that the probability of success does not converge to 1 when the coefficients (p1, p2) increase
; for some pairs the probability is even decreasing. We are still able to retrieve a high percentage of generators,
but one should remark that the dimensions are all relatively low. We mentioned in Remark 3 the importance of
studying high dimensional number fields i.e. with dimension at least greater than 100, and we stress that the data
we were able to produce regarding Kummer extensions with two exponents do not meet this requirement. Thus
the observations made from these data might not be representative of the asymptotic behaviours.

Increasing [L : K] with constant exponent. Now let us consider extensions L = K( p
√
p1, . . . , p

√
pr) with fixed L and

p, with increasing length sequence r of consecutive prime numbers.
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Table 7. Success of an attack over Kummer extensions of the form L = K( 3
√
p1, . . . , 3

√
pr) with

K = Q( q
√

11)

Exponent q 2 5

Length r 2 3 4 2 3 4
r1 + r2 − 1 9 27 81 22 67 202

Success with LLL (%) 28 37 47 52 52 –

The data in Table 7 seems to show that again, the phenomena observed over Kummer fields with one exponent
cannot be seen as clearly over Kummer extensions with two exponents, at least for q = 2.

Conclusion. The probabilities of successfully retrieving the private key seem to be smaller and to differ much more
than for the previous type of fields. It could be an indication that breaking the regularity of the field structure
makes the attack more difficult. However one has to remark that we lack of data, and that they are essentially over
fields with relatively low degrees.

5.2. Kummer field with square degrees. Let us now focus on Kummer extensions with one exponent, since
we are able to compute data for high dimensional fields. Moreover recall that we identified Kummer extensions of
degree p2 defined by the sequence (2, 3) as fields for which recovering a short generator through the Log-unit lattice
could be more difficult than over other number fields. Thus all Kummer extensions considered further are defined
by sequences of the first prime integers. In order to study further the situation we looked into the possibility of
recovering a short generator through an enumeration process. In order to evaluate the cost of enumerations, we
used the function EnumerationCost(L,m2) of MAGMA. It computes an estimation of the number of nodes to
visit during an enumeration process of short vectors of lattice L within the ball B(0,m). Moreover we studied
the quality of the basis obtained by computing several parameters. Given a basis B (whose vectors are sorted by
increasing norms), evaluating its orthogonality can be difficult. Let us denote by r and V respectively the rank
and the volume of the lattice generated by B. We chose to compute:

(1) the Hermite factor δ0 = ‖b1‖
r√
V

which is used to evaluate the quality of basis reduction on random lattices;

(2) the orthogonality defect δ =
r

√∏r
i=1 ‖bi‖
V which expresses the overall orthogonality of the basis.

We gathered data of cyclotomic fieldsand Kummer fields. In order to obtain data on cyclotomic fields of larger
degree we used the subgroup C of cyclotomic units, which has a very small index [17]. For some fields they are
even equal, for example for power-of-2 cyclotomics (under GRH). Even if C is not O×K one can argue that it is close
to it and is used by the authors of [17] to solve the SPIP over cyclotomic fields.

5.2.1. Comparison with naïve attacks. We compared the results exhibited in Subsubsection 5.1.1 with naïve attacks
consisting in reducing the basis given as input and looking at the small vectors obtained. We again considered LLL
and BKZ20 as reduction algorithms. Using only LLL, we could not retrieve any generator starting from p = 11. All
keys were retrieved with BKZ20 up to p = 13, but no generator were found for p = 17. This tends to indicate that
the ideal lattices considered react as generic lattices under reduction algorithms. Hence, one can expect reduction
algorithms to be ineffective asymptotically, and that using Algorithm 7 together with a reduction modulo the
Log-unit lattice will produce better results.

5.2.2. Norm of the retrieved vector. We also compared the norm of retrieved generators with the norm of the key
(in coefficient representation), to verify that the attack does not retrieve short enough solutions. We will call
approximation factor the quotient ‖h‖2 / ‖g‖2, where h is the generator obtained after Algorithm 7 together with
a reduction modulo the Log-unit lattice and g is the key generator. One can find data about the approximation
factors that we got in Figure 3.
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(a) With LLL (b) With BKZ20

Figure 3. Approximation factors plotted against the dimension of the field (in logarithmic scale),
after LLL or BKZ reduction.

One can remark that after both reduction algorithms, the approximation factors seem to have an exponential
behaviour, even if using BKZ20 gives significantly better results. Thus, the attack through the Log-unit lattice
coupled with the level of lattice reduction that we considered does not allow us to solve the SPIP of Kummer fields
of the form Q( p

√
2, p
√

3), even approximately. This is clearly different from the situation over cyclotomic fields [17].

5.2.3. Norm of the key vector. One important geometrical parameter is the size of the key when compared to the
volume of the Log-unit lattice, in order to know if retrieving it through a CVP computation or an enumeration pro-
cess is conceivable. In addition to the size of the key vector we studied the cost one would obtain for an enumeration.

Let us recall a quick result which can be found in [3, 17].

Lemma 3. Let K be a number field, H be the subspace of Rn orthogonal to 1 = (1, . . . , 1) and pH be the orthogonal
projection on H. Then for any g ∈ K one has LogK(g) = pH(LogK(g)) +

ln |NK/Q(g)|
n 1.

One can conclude from Lemma 3 that if g is the secret key, then the norm of the key is√√√√ n∑
i=1

(
ln |σi(g)| − ‖LogK(g)‖1

n

)2

.

For each field we computed the ratio of the norm of pH(LogK(g)) by the scaled volume of the Log-unit lattice r
√
VK

where r = r1 + r2 − 1. We computed the median value of this ratio for each set of keys, and the corresponding
enumeration cost. Let us denote byMK said median value, and ECK the bit-size of the corresponding enumeration
cost.

The attacks showed that the SPIP seems to be more resistant over fields of the form Q( p
√

2, p
√

3), so we will focus
on them. In order to have a better idea of the situation, let us compare them with:

• cyclotomic fields of prime conductor p;
• cyclotomic fields of the form Q(ζ2n);
• Kummer fields of degree p3 and Kummer fields of exponent 3 and defined by successive primes i.e. of the

form Q( 3
√

2, 3
√

3, . . . , 3
√
pr).

Remember that in order to compute data for high degree cyclotomic fields, we considered C the subgroup of cyclo-
tomic units. Again we computed the median values of the quotients ‖pH(LogK(g))‖2 /V

1/r
K and the corresponding

enumeration costs. One can find the values corresponding to the first parameter plotted in Figure 4.
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Figure 4. Median values MK plotted against r1 + r2− 1 for Kummer fields of degrees p2 and p3,
and different types of cyclotomic fields

We can remark that the values for Kummer extensions of square degrees are close to the ones for cyclotomic
fields, in particular the ones of the form Q(ζ2n). Moreover the values for cyclotomic with conductor of the form
pk with k > 2 are also similar, even if we did not plot them for clarity purposes. For Kummer fields of degree
p3, the plot suggests that the values could asymptotically be close to the ones over the previous fields. However
we cannot confirm this because the state of our implementation does not allow us to compute the units for the
following prime p = 11, which corresponds to a field of degree 1331. We can see that the size of keys over multicubic
fields is decreasing quickly, which is coherent with the probability of success already observed. This also confirms
the differences between fields with increasing exponents such that the defining sequence has a constant length, and
fields with a constant exponent such that the length of the defining sequence is increasing.

Figure 5. Median values of enumeration cost ECK plotted against r1+r2−1 over Kummer fields
of degrees p2 and p3, and cyclotomic fields, after LLL reductions

Enumeration costs. With the previous observations, one could expect to obtain similar enumeration costs for
cyclotomic and Kummer fields. However we can see on Figures 5 and 6 – which show the corresponding enumeration
costs with the use of LLL and BKZ20 respectively – that the costs are low over cyclotomic fields (and close one
to each other) but asymptotically bigger over Kummer fields of degree p2 and p3. Again the situation is worse for
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Kummer fields of degree p2 than p3. Regarding the influence of BKZ20, it has again a positive and noticeable impact
for ranks greater than 80 i.e. degrees greater 160, and only over Kummer fields of degree p2. These observations
coupled with the values of the enumeration cost obtained seem to indicate that Kummer extensions of degree p2

could be better options than cyclotomic fields when it comes to building a cryptosystem which security relies on
the hardness of solving the SPIP or the ISVP. Indeed for the field Q( 19

√
2, 19
√

3), the enumeration cost after BKZ20

is still large enough to prevent an enumeration process.

Figure 6. Median values of enumeration cost ECK plotted against r1 + r2− 1 for Kummer fields
of degrees p2 and p3, and cyclotomic fields after BKZ20 reductions

5.2.4. Basis of Log-unit lattice. As mentioned before, we studied further the situation by computing several param-
eters to evaluate the quality of the basis of LogK(O×K) for the fields K considered. Results of these computations
are gathered in Figures 7, 8 and 9 for the same type of fields considered in the previous analysis.

Hermite factor. One can see that for all types of fields considered, the shortest vector of the basis of the Log-unit
lattice is relatively short, as shown in Figure 7 where the δ0 is plotted. There is only one plot for each type of field
because the values are not widely modified by BKZ20.

Figure 7. Values of δ0 over Kummer fields of degrees p2 and p3, and over cyclotomic fields after
LLL reductions
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Orthogonality defect. Now let us consider the orthogonality defect δ for high degree number fields. We plotted
the values obtained after LLL in Figure 8 and after BKZ20 in Figure 9. One can notice that the only fields for
which BKZ20 has a significant impact are Kummer fields with degree p2, as it was the case for the enumeration
cost shown in Figures 5 and 6. This indicates that for these fields, the basis of the Log-unit lattice obtained by our
procedures is not well reduced, and better reduction algorithms modify the basis. This is completely different than
over cyclotomic fields where the basis formed by cyclotomic units are massively orthogonal and are not modified
by reduction algorithms. We can also conclude from the values for Kummer extensions of degree p3 that it is
possible to obtain reduced basis of Log-unit lattices which are not as orthogonal as over cyclotomic units, but are
not reduced further by BKZ20.

Figure 8. Values of δ over Kummer fields of degrees p2 and p3, and over cyclotomic fields after
LLL reductions

Figure 9. Values of δ over Kummer fields of degrees p2 and p3, and over cyclotomic fields after
BKZ reductions
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Appendix Appendix A Timings for unit group computation

Kummer extensions with one exponent. We first report some timings for fields with one exponent, i.e. of
the form K = Q( p

√
m1, . . . , p

√
mr). We considered fields such that m1, . . . ,mr are consecutive prime numbers. One

Table 8. Timings for some Kummer fields with one exponent

Coefficients m1, . . . ,mr Exponent p Dimension Timings for O×K(s)

(2, 3, 5, 7) 3 81 9.6801
(5, 7, 11, 13) 3 81 10.140

(11, 13, 17, 19) 3 81 24.880
(2, 3, 5, 7, 11) 3 243 233.57
(5, 7, 11, 13) 3 243 1181.8

(11, 13, 17, 19, 23) 3 243 16520.0

(2, 3, 5 5 125 36.690
(3, 5, 7) 5 125 73.720
(5, 7, 11) 5 125 549.37

(2, 3, 5) 7 343 3628.5
(3, 5, 7) 7 343 18700.
(5, 7, 11) 7 343 98449.

(2, 3) 11 121 167.03
(5, 7) 11 121 1007.9

(11, 13) 11 121 6908.8

(2, 3) 13 169 1297.2

(2, 3) 17 289 32230.

(2, 3) 19 289 1.2026E5

can see from Table 8 that the timings increase with respect to the size of the coefficients of the defining sequence
m = (m1, . . . ,mr) similarly to what has been observed for multicubic and multiquadratic fields [2, 27]. This is
not surprising as we saw in Proposition 10 that the discriminant of these number fields is deeply connected to∏
q∈P(m) q.

Kummer extensions with two exponents. We then give timings for fields with two exponents, i.e. of the form
L = K( p

√
m1, . . . , p

√
mr) with K = Q( q

√
n1, . . . , q

√
ns). We considered fields such that K is a simple field – meaning

of the form Q( q
√
n) – and such that m1, . . . ,mr, n are prime integers.
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Table 9. Timings for some Kummer extension L/K with two exponents

n (m1, . . . ,mr) q p Dimension O×L (s)

2 (3, 5) 2 5 50 9.02
2 (11, 13) 2 5 50 38.56
13 (2, 3) 2 5 50 7.99
13 (11, 17) 2 5 50 58.53

2 (3, 5) 2 7 98 131.36
2 (11, 13) 2 7 98 2489.4
13 (2, 3) 2 7 98 94.91
13 (11, 17) 2 7 98 11170.0

2 (3, 5) 3 5 75 29.90
2 (11, 13) 3 5 75 436.38
13 (2, 3) 3 5 75 33.30
13 (11, 17) 5 5 75 4191.0

11 (2,3,5,7) 2 3 162 208.40

11 (2,3,5) 5 3 135 305.93
11 (2,3,5,7) 5 3 405 25371.0

Again, we see that the running times are quite sensible to the increase of the primes defining the field.
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