
HAL Id: hal-03476956
https://hal.science/hal-03476956v1

Submitted on 13 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-Time Optical Flow for Vehicular Perception with
Low- and High-Resolution Event Cameras

Vincent Brebion, Julien Moreau, Franck Davoine

To cite this version:
Vincent Brebion, Julien Moreau, Franck Davoine. Real-Time Optical Flow for Vehicular Perception
with Low- and High-Resolution Event Cameras. IEEE Transactions on Intelligent Transportation
Systems, 2022, 23 (9), pp.15066-15078. �10.1109/TITS.2021.3136358�. �hal-03476956�

https://hal.science/hal-03476956v1
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Real-Time Optical Flow for Vehicular Perception
with Low- and High-Resolution Event Cameras

Vincent Brebion, Julien Moreau, and Franck Davoine

Abstract—Event cameras capture changes of illumination in
the observed scene rather than accumulating light to create
images. Thus, they allow for applications under high-speed
motion and complex lighting conditions, where traditional frame-
based sensors show their limits with blur and over- or under-
exposed pixels. Thanks to these unique properties, they represent
nowadays an highly attractive sensor for ITS-related applications.
Event-based optical flow (EBOF) has been studied following
the rise in popularity of these neuromorphic cameras. The
recent arrival of high-definition neuromorphic sensors, however,
challenges the existing approaches, because of the increased
resolution of the events pixel array and a much higher through-
put. As an answer to these points, we propose an optimized
framework for computing optical flow in real-time with both
low- and high-resolution event cameras. We formulate a novel
dense representation for the sparse events flow, in the form
of the “inverse exponential distance surface”. It serves as an
interim frame, designed for the use of proven, state-of-the-art
frame-based optical flow computation methods. We evaluate our
approach on both low- and high-resolution driving sequences,
and show that it often achieves better results than the current
state of the art, while also reaching higher frame rates, 250Hz
at 346×260 pixels and 77Hz at 1280×720 pixels.

Index Terms—Machine vision, neuromorphic cameras, optical
flow, real-time applications.

I. INTRODUCTION

OVER the last decade, neuromorphic cameras have risen
in popularity, due to their unmatched qualities: low

latency, high dynamic range, no motion blur, and low energy
consumption [1]. Thanks to their asynchronous response and
their low latency, event sensors are by nature well suited for
dynamic scenes analysis, including optical flow.

Optical flow depicts the per-pixel displacement in an image
after a short period (e.g., between consecutive frames). It is
usually computed using the brightness constancy constraint
[2]: pixels intensities remain constant over short durations.
Optical flow is a key enabler for many major applications, such
as object detection and tracking [3], [4], motion estimation [5],
visual odometry [6], [7], and image segmentation [8].

However, there is no direct translation for frame-based
algorithms to event cameras. The sparse and asynchronous
nature of their output constitutes a major paradigm shift.

Considering this, several event-based optical flow (hence-
forth EBOF) methods have been proposed. Former approaches
have defined EBOF as a spatiotemporal point cloud matching

Manuscript received...
V. Brebion, J. Moreau, and F. Davoine are with Université de technolo-

gie de Compiègne (UTC), CNRS, Heudiasyc (Heuristics and Diagnosis of
Complex Systems), CS 60 319 - 60 203 Compiègne Cedex, France (e-mail:
firstname.lastname@hds.utc.fr)

This work was supported in part by the Hauts-de-France Region, and by
the SIVALab joint lab (Renault - UTC - CNRS).

problem, solved by plane-fitting algorithms [9], [10]. Others
have made the choice to accumulate events during short time
windows, to create dense image-like representations. They
transfer the event-based problem into a frame-based one [11],
[12]. The past few years have also seen the rise of neural
networks to solve the EBOF problem [13], [14].

Presented work is motivated by the arrival of new, high-
resolution event sensors. While low-resolution sensors have
been the reference for the past decade, high-resolution neu-
romorphic sensors now start to be produced [15]. They offer
increased visual details, essential for advanced driving applica-
tions. Applying the aforementioned EBOF approaches to these
new cameras, however, reveals a common flaw: they were all
designed with low-resolution event cameras in mind. For high-
resolution sensors, they output degraded or incorrect optical
flow results, and hardly handle their much higher throughput,
resulting in long computation times. This last issue forbids
the use of these methods in the real world for intelligent
transportation system applications.

As an answer to these issues, we propose a novel optimized
framework for computing real-time1 EBOF for both low- and
high-resolution event cameras. Our approach was originally
inspired by the work of Almatrafi et al. [12], who introduce
a simple and efficient way of densifying events in successive
frame-based representations. In this article, we propose key
contributions for making the method faster, more robust, and
compatible with high-definition sensors:

• a specific pipeline-based architecture, for computing real-
time optical flow using the events from low- or high-
resolution neuromorphic sensors;

• the formulation of a novel dense “inverse exponential dis-
tance surface”, that acts as the frame-based representation
computed from the events, able to feed any image-based
optical flow method;

• a coherent choice of algorithms and methods together
for all the steps up to the fast frame-based state-of-the-
art optical flow (with temporal smoothing to fit well with
potentially noisy input events);

• we finally build and share a complementary high-
definition event-based dataset of indoor sequences with
high-speed movements, used as part of our evaluation.

Videos accompanying this article, showing
results for both low- and high-resolution data,
are available at https://youtube.com/playlist?list=
PLLL0eWAd6OXBRXli-tB1NREdhBElAxisD.

1Considering a car at 120Km/h, if we tolerate to drive a distance of 1 meter
to achieve perception analysis, it means a maximum latency of 30ms.

https://youtube.com/playlist?list=PLLL0eWAd6OXBRXli-tB1NREdhBElAxisD
https://youtube.com/playlist?list=PLLL0eWAd6OXBRXli-tB1NREdhBElAxisD


IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2

In complement, our dataset and all the source code linked
to this article are available at https://github.com/vbrebion/rt
of low high res event cameras.

II. RELATED WORK

A. Optical Flow for Vehicular Perception

Optical flow is of great interest in the field of perception for
intelligent vehicles, where multiple dynamics are omnipresent.
In [3], Braillon et al. compare optical flow for the ground plane
seen from a moving vehicle with theorical optical flow in order
to detect obstacles. A similar obstacle detection problem is
explored in [4], where the authors use their optical flow results
to dynamically determine a model of the background motion,
and extract obstacles that appear as outliers. Visual odometry
using optical flow has also been explored in [6] and [7], where
the authors of both articles use an optical flow tracking and
feature matching method for estimating the ego motion of the
vehicle. An extension of optical flow to 3D, known as “scene
flow”, has also caught up the attention recently, and approaches
such as [16] aim at improving the detection of independently
moving objects. Driving benchmarks such as KITTI [17], that
includes both optical flow and scene flow, have also constituted
major milestones for improving the state of the art.

B. Frame-Based Optical Flow

The problem of optical flow with traditional frame-based
sensors has been deeply explored. Historical approaches relied
on region-based matching techniques [18], or on the use
of spatiotemporal derivatives of the input images [2]. More
recent works have proposed extensions to these approaches,
by defining pyramidal-based frameworks [19], [20], [21], or
by introducing regularization terms to add robustness [22],
[23]. The past few years have also seen the rise of neural
networks, and their capability of learning from the data to
generalize even in presence of noise and inconsistencies. Now,
they surpass traditional handcrafted methods for optical flow
and currently stand as the state of the art [24], [25], [26].

C. Event-Based Optical Flow (EBOF)

Two main approaches can be distinguished for EBOF.
On one hand, some authors use the events and all their

properties, without accumulation into frame-based representa-
tions. Such a frameless approach is proposed in [9], where is
employed a plane-fitting method on short temporal windows
of events, to determine their motion in the visual scene. Other
works [27], [28], [29] propose contrast maximization schemes
as proxies for computing optical flow, by evaluating the sharp-
ness of motion-compensated images of accumulated events.
More recently, authors such as [30], [31] exploit spiking neural
networks for a full bio-inspired EBOF estimation.

On the other hand, due to the great advances on optical
flow estimation using traditional frames, other authors have
proposed to build image-like representations from the event
flow, to use them as input for these state-of-the-art methods.
In [12], Almatrafi et al. accumulate events in short temporal
windows using the distance transform, to create stable dense

images designed to be used with any frame-based optical flow
method. In [11], Zhu et al. also create images of accumulated
events, but propose to compute a sparse optical flow by extract-
ing visual features through the use of the Harris corner detec-
tor [32], and to track them using an expectation maximization
algorithm. An alternative approach is proposed in [33], where
the authors describe a surface matching approach on short
time-shifted images of accumulated events (time surfaces), to
evaluate their displacement. Recent works have also adapted
proven neural network architectures for a use with images of
events; [13], [34] proposed FlowNet-inspired [24] networks
for inferring EBOF, while authors of [35] proposed a RAFT-
inspired [26] one. Finally, Paredes-Vallés et al. [14] designed
a light and real-time network, called FireFlowNet.

Apart from that, some methods exploit the capabilities of
certain neuromorphic sensors to produce more than events,
such as frames or inertial measurements. In [36], the flow
of events is employed as a deblurring tool for the frames
in highly dynamic scenes, allowing for a better optical flow
estimation. In [37], Rueckauer et al. used the IMU integrated
in the DAVIS240C camera to determine an exact optical flow
estimation for pure rotational movements.

Still, none of these methods has considered the issue of
computing optical flow with high-resolution event camera.
And, very few of them ([37], [10], [14]) have been able to
achieve real-time compatibility even for low-resolution inputs.

D. Our Orientation: Densifying Events

Based on the state of the art, methods able to compute
high-definition EBOF in real-time are missing. We propose
here to treat the event stream through a transformed dense
representation2 for the following reasons.

While the techniques detailed in the first paragraph of
Section II-C do treat each event independently, they result
in computationally expensive solutions, unable to reach real-
time performances on standard CPUs and GPUs, as they
perform an update stage for each new incoming event. This
design model becomes even less viable for high-resolution
neuromorphic cameras, which produce a much larger event
throughput [1]. Furthermore, the information brought by each
new event independently is very little; condensing them over
short time windows allows for richer spatial updates [1].
Building image-like structures from events also facilitates the
use of GPUs for fast parallel computations, which compensates
the slight latency induced by the short duration of events
accumulation. In addition, it allows for the use of state-of-the-
art frame-based algorithms, leveraging the decades of research
on traditional cameras. Finally, the qualities of event cameras
remain. The accumulation time can be accurately adjusted
thanks to the high time precision of the events, and the high
dynamic range of these sensors allows to operate both for
daytime and nighttime [1].

2Notice that we do not need and are not considering using image reconstruc-
tion methods for computing optical flow. Indeed, while approaches as the ones
described in [38], [39], [40], [14] do provide interesting reconstruction results,
they still show large imperfections, which would degrade the performances
of frame-based optical flow methods.

https://github.com/vbrebion/rt_of_low_high_res_event_cameras
https://github.com/vbrebion/rt_of_low_high_res_event_cameras


IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 3

Event
camera

Events accumulation Denoising & filling Inverse exponential
distance transform

Real-time frame-based
optical flow computation

CPU-only CPU and GPU

Fig. 1. Our event-based optical flow (EBOF) computation architecture, able to run in real-time with low- and high-resolution event cameras. Due to the
pipeline architecture, all four blocks are independent parallel processes. Each block depicts the result it produces, for a sample driving sequence.

At the core of this problem, however, lies the choice of
this dense frame-like representation. Accumulating the events
during a short time window results only in an image of the
scene edges, too simple for adequate optical flow computation.
Proposing a densification method for these edge images is
therefore a key issue for being able to use frame-based op-
tical flow methods. Moreover, event-based cameras are noisy
sensors; a filtering procedure is consequently required for
ensuring the stability of these dense frame-like representations.

III. A FLEXIBLE ARCHITECTURE

Following the problem formulation and the reason for the
use of a dense representation to reach real-time performances,
we detail in this section the novel framework we developed
for computing real-time EBOF.

In order to optimize computational time and reach real-time
performances, we propose the use of parallelized tasks through
a pipeline architecture [41]. An illustration of this framework
with example results of each step is available in Fig. 1. The
following subsections will therefore detail how each block
contributes towards obtaining the real-time EBOF.

A. Accumulation for Edge Images

The first component of our architecture is responsible for
receiving and accumulating the events from the camera, in
short temporal windows, to form “edge images”. These binary
matrices indicate whether or not each pixel produced at least
one event during the accumulation time ∆T . By doing so,
each edge image depicts a binary representation of the main
edges of the moving objects in the visual scene, which can be
used as a first stable medium for computing optical flow.

These edge images do not take into account the polarity
of the events: as argued by Almatrafi et al. [12], and as
we have experimented, both positive and negative events
represent similarly the edges of the objects in the visual scene.
The additional computational cost linked to treating polarities
separately would be too expensive for little improvement in the
final results. The choice of ∆T is also important and linked to
the application: taking a too short ∆T will lead to edge images
with too few events, resulting in an unstable appearance, while
taking a too long ∆T will fail to capture clearly the movement
of the objects by introducing blur.

Compared to other dense formulations from the literature
(time surface [42], [33], motion-compensated images [27],

Algorithm 1: Denoising
Inputs: An edge image E

The denoising threshold Nd
Output: The denoised edge image Ed
Ed ← E;
foreach pixel index p ∈ E do

if E[p] is an edge pixel then
nd ← count of edge pixels among the 4 direct

neighbour pixels of p in E;
if nd < Nd then

Ed[p]← not an edge pixel anymore;

Algorithm 2: Filling
Inputs: A denoised edge image Ed

The filling threshold Nf
Output: The denoised and filled edge image Edf
Edf ← Ed;
foreach pixel index p ∈ Ed do

if Ed[p] is not an edge pixel then
nf ← count of edge pixels among the 4 direct

neighbour pixels of p in Ed;
if nf ≥ Nf then

Edf [p]← becomes an edge pixel;

reconstructed images [40]), our formulation has the benefit of
keeping only the information required for frame-based optical
flow estimation. Computationally speaking, this makes this
solution extremely efficient, as each received event only needs
to be placed in a buffer structure. In parallel, a second thread,
triggered when the time window has expired, is responsible
for collecting all the events from the buffer and creating the
edge image, which is then sent for further processing.

B. Denoising and Filling

Event cameras generate a significant amount of noise,
impacting the quality and stability of the edge images, which
in return affects the final optical flow computation.

A solution could be to use one of the state-of-the-art
denoising solutions of the literature [42], [43] during the
accumulation step, that is, before creating the edge image.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 4

Fig. 2. Steps of the denoising and filling process, for a noisy edge image. From left to right: the original noisy edge image; the same image with edge pixels
identified as noise in red (Nd = 2); the denoised edge image with the newly added pixels for the filling in pink (Nf = 3); the final denoised and filled edge
image. A zoomed view of the street lamp (squared in yellow) is also provided for better visibility. Best viewed in color.

Doing so, however, would be computationally expensive, as
the sparse and asynchronous nature of the events at that step
makes hard to look for neighbour pixels states. Furthermore,
many of these solutions were designed for low-resolution
sensors, and translate difficultly to higher definition ones.

To circumvent this issue, we propose in this work a novel,
fast yet efficient, method for discarding incorrect events. Our
approach relies on applying denoising after the edge image
creation. Proposed process is then similar to image filtering
on the edge map and is computed in two steps: denoising and
filling. In the first one, described in Algorithm 1, erroneous
edge pixels are sought to be eliminated, by removing isolated
events. The second step, on the contrary, aims at filling
locations where an edge pixel is missing, but should have been
produced by the camera, in order to help stabilizing the edge
images. This process is further described in Algorithm 2. An
illustration of both these steps is given in Fig. 2.

We underline here the importance of computing denoising
and filling separately in this order, to avoid creating incon-
sistencies. Indeed, if the filling step was processed simulta-
neously with the denoising, then pixels that would later be
discarded as noise could contribute to creating incorrect filling
pixels, thus introducing new noise.

Denoising and filling thresholds, respectively Nd and Nf ,
depend on the event camera configuration, as it may give
different noise profile. The aim of the denoising is to discard
isolated pixels, that is, pixels with very few neighbours: Nd =
1 or 2 appear therefore as the best options. As can be seen in
Algorithm 1, setting Nd = 0 disables the denoising. Then, the
goal of the filling is to slightly stabilize the appearance of the
edge images, by adding edge pixels in locations where there
are enough neighbouring edge pixels to be confident that an
edge pixel should have been produced: values of Nf = 4 or 3
are therefore the best compromise to add such pixels. As can
be seen in Algorithm 2, setting Nf = 5 disables the filling.
A general advice is to select Nd < Nf . A sensitivity analysis
on Nd and Nf is done in Section IV-I.

Finally, while this formulation tends to remove small details
from the edge images by considering them as noise (as can

be seen for instance for the buildings on the right side of
the edge images of Fig. 2), it actually helps obtaining more
stable images, by extracting the main edges from the scene,
and discarding superfluous textures.

Another advantage of this formulation lies in its simple and
parallelizable formulation (the computation for each pixel is
independent from the one of its neighbours). We implemented
it using the GPU, to exploit its capabilities, and to relieve the
CPU, so that it can undertake other complex tasks.

C. The Inverse Exponential Distance Surface

As the edge images are binary matrices (still after denoising
and filling), they can hardly be used as is for computing
optical flow with traditional frame-based algorithms. In order
to make them viable for frame-based optical flow computation,
densifying them through the use of the distance transform, as
proposed by Almatrafi et al. [12], is an interesting baseline.

However, this approach has the main drawback of needing
a near-perfect denoising, as a single noisy event can disrupt
the appearance of the whole distance surface, as shown in
the second row of Fig. 3. The computed distances are not
bounded, meaning that the area of influence of each edge
pixel can be infinite, and depends on the presence of other
close neighbours. An answer to this problem could be to
introduce an upper limit to the computed distances, to restrict
the influence of an edge pixel to a fixed neighbourhood. This
solution, however, would introduce a non-smooth transition in
the distance transform function. It can become an issue for the
gradient computation on distance surfaces, often used as part
of the optical flow estimation.

Another issue of the approach of Almatrafi et al. also
appears when distinct objects come close to each other: their
edges tend to merge together in the resulting distance surface,
making the individual objects indistinguishable, such as in the
last row of Fig. 3. This phenomenon can lead to incorrect
optical flow results, especially when a block-matching or
image warping formulation is employed, due to the lack of
texture on the produced image. Giving more emphasis to the
pixels directly surrounding the edge pixels would help creating



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 5

Inverse exp.
Edge image Distance surface distance surface

Fig. 3. Comparison between the original distance surface and proposed
inverse exponential distance one (with α = 2). From top to bottom: a
simulated square with 50% of its pixels randomly removed, the same square
with an added single pixel of noise (circled in red), and an indoor flying scene
from the MVSEC dataset [44].

0 2 4 6
0

2

4

6

Euclidean distance to the closest edge pixel

V
al

ue
of

th
e

co
ns

id
er

ed
pi

xe
l

y = Id(x)

y = min(x, 6)

y = loge(x+ 1)

y = 1− e−x

y = 1− e−x/2

Fig. 4. Values of the distance transform as a function of the distance to the
closest edge pixel. Curves represent the original distance transform, the same
with an upper bound set to 6px, the natural logarithm version, and our inverse
exponential formulation, with α set to 1 and 2 respectively.

distance surfaces with more prominent object edges, limiting
this merge issue. A solution could be to employ a function
with a logarithmic shape.

To solve jointly both these issues, we propose in this work
a novel inverse exponential distance transform formulation:

dexp = 1− e−dEuc/α, (1)

where dexp is the inverse exponential distance, dEuc the Eu-
clidean distance to the closest edge pixel (i.e., the original
distance transform), both expressed in pixels, and α a spread-
ing parameter. Fig. 4 compares the aforementioned functions
over the distance to the closest edge pixel. As can be seen
through the plot, the main advantage of our inverse exponential
formulation is that, while close to a logarithmic formulation,
each edge pixel also has a restricted influence area, after which
the values saturate to a value of 1.

The spreading parameter α can be used to determine the
size of the neighbourhood influenced by each edge pixel. This
parameter conditions the appearance of the distance surface,
and regulates the remaining imperfections of the edge images.
A low value for α restricts the area of influence of each edge
pixel to only its close neighbours. It limits the influence of the
noise on its appearance, but makes the distance surface less
stable and more prone to variations. On the contrary, selecting
a higher value for α has the opposite effect: variations of
the appearance of the various objects in the scene are well
compensated, but noisy events have a more important effect.
α can be rewritten from equation (1) as a function of the
wanted distance of saturation for dEuc, namely, dsat, in pixels:

α = − dsat

ln(ε)
, (2)

with ε = 1−dexp, ε > 0. ε is formulated so as to represent the
gap between dexp and the saturation value of 1. Saturation is
therefore reached when this gap ε is as small as possible, i.e.,
ε → 0. Since we work in the discrete domain, if the inverse
exponential distance surface is coded on 8 bits (values ranging
from 0 to 1 are represented by values between 0 and 255), then
saturation is reached when ε = 1

255 . Integrating this value in
(2) results in the final formulation of α as a function of dsat:

α ≈ dsat

5.541
. (3)

The sensitivity of dsat is studied in the analysis Section IV-I.
The interest of our inverse exponential distance surface

formulation is illustrated in Fig. 3, a side-by-side visual com-
parison with the original distance surface. Inverse exponential
formulation compensates the missing pixels similarly to the
original distance surface, while limiting the impact of noisy
edge pixels. Also, this formulation displays more distinct
edges and keeps objects texture, especially visible in the real
complex scene represented in the last row (note how the
board and the barrel keep a clear appearance using inverse
exponential formulation, while they are hardly distinguishable
with the original distance surface).

Regarding the implementation of the distance transform, we
employed the fast solution described by Coeurjolly et al. [45],
slightly modified to incorporate our inverse exponential for-
mulation. The choice of this method was especially motivated
by its optimized formulation, allowing for large parallelization;
this block of our pipeline was therefore implemented on GPU.

D. Selected Frame-Based Optical Flow

The final block of our architecture is the computation of
the optical flow itself. Since the previous steps led to dense
image-like structures from the flow of events, any state-of-the-
art frame-based optical flow method could be used here.

Within the scope of this article, we selected the approach
of Adarve et al. [21]. Their method is based on an update-
prediction architecture, similar to the one of Black [46], which
predicts optical flow using an image warping process, and
temporally propagates the optical flow estimations using an
incremental framework. Multiple update-prediction loops are
stacked as a pyramidal structure, enabling the capture of both



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 6

large and fine displacements in the images. Their method was
designed for a fast and accurate estimation of the optical flow
field, and is implemented on GPU.

The choice of this method as our optical flow computation
solution was mainly guided by their use of a predictive filter-
based formulation, which, beyond enabling real-time compat-
ibility on GPU, allows for a temporal smoothing of the flow.
This property brings stability and robustness to the overall
optical flow, given its memory effect, which is beneficial given
the sometimes unstable nature of events.

Finally, while this method returns a dense optical flow,
covering the whole distance surface image, we then restrict
it to the edge pixels of the denoised edge image. Indeed,
by nature, events encode sparse information, detailing the
pixels for which a change in luminosity was observed. The
densification produced by the use of the inverse exponential
distance transform differs from an inference of missing data.
It is only intended for creating texture and smooth transitions,
which are necessary to determine the optical flow.

IV. EVALUATION

A. Setup

The implementation of our method was made using ROS
Noetic, in C++11 and CUDA 11.4, combined with the use of
the OpenCV 4.2 library. Both the implementation and the
evaluation phases were conducted on a HP ZBook 17 G6
laptop, with an Intel i9-9880H CPU, a NVIDIA Quadro RTX
5000 GPU, 64 GB of RAM, and using Ubuntu 20.04.

Regarding the parameters, two configurations were used,
respectively for low- and high-resolution input data.

For the low-resolution data (346 × 260) of the MVSEC
dataset [44], [13], on one hand, we were restricted to use a
temporal window of size ∆T = 1 frame3 for a fair com-
parison with the other state-of-the-art methods using this time
window [13], [10], [31], [34], [35], [14], [39], [47], [48], [49].
For the denoising and filling, we set Nd = 1 and Nf = 4, due
to the high noise in these recordings. The inverse exponential
distance transform was configured with α = 1.08 (so that
dsat = 6px, see (3)). Finally, the optical flow computation
library [21] was configured with 3 pyramidal layers, with
their regularization weights set respectively to 50.0, 250.0,
and 500.0, and with 50, 25, and 5 smooth iterations per layer.

For the high-resolution data (1280×720), on the other hand,
a temporal window ∆T = 15ms was used, to better capture
the movements. Nd = 2 and Nf = 3 were empirically chosen,
as the best compromise between removing noise and keeping
the main edges. α = 1.08 (dsat = 6px) also proved to be
the more adequate, allowing to keep the scene details, while
compensating potential imperfections. The optical flow library
was configured with 3 layers, with regularization weights all
set to 500.0, and with 20 smooth iterations per layer.

B. Datasets

As part of the evaluation of the proposed methods, four
datasets are going to be used in the following subsections.

3In MVSEC, ∆T = 1 frame ' 32ms for “Indoor flying” sequences, '
22ms for “Outdoor day” ones, and ' 97ms for “Outdoor night” ones.

The first one is the low-resolution MVSEC dataset [44], [13],
which is currently the only event vision dataset with real
data that includes ground truth optical flow. It will serve as
the basis for comparison with other state-of-the-art methods.
For high-definition data, three complementary datasets are
used: the 1 Megapixel Automotive Detection Dataset [50], for
a deep evaluation on daily driving sequences; a 20-minute-
long driving sequence recorded by Prophesee4, for visual
comparison with the current frame-based state of the art; and
a novel high-speed high-definition event-based indoor dataset
we recorded as part of this article, to demonstrate the accuracy
of our EBOF even under large motions. A summary of these
datasets is given in Table I.

C. Evaluation Metrics

In order to evaluate the quality of our optical flow results,
three metrics are used as part of this article.

The first two ones, the percentage of outliers and the
Average Endpoint Error (AEE), are traditional optical flow
metrics, used for instance in the KITTI benchmark [17]. The
percentage of outliers reports the number of pixels for which
the error is above 3px and 5% of the magnitude of the
flow vector. The AEE is a raw error measurement on both
orientation and magnitude of the flow, computed as following:

AEE =
1

N

N∑
i=1

|vi − ui|, (4)

where N is the total number of flow vectors, ui the ith

estimated flow vector, and vi its ground truth equivalent.
However, to this day, no complex high-resolution event-

based dataset with a ground truth for optical flow exists. In
order to still leverage high-resolution datasets, for instance
Prophesee’s 1 Megapixel Automotive Detection dataset [50],
and to provide a quantitative evaluation of our EBOF results,
we adopt the Flow Warping Loss (FWL) metric proposed
by Stoffregen et al. [39]. The principle is to compensate
and accumulate each raw event (considering its polarity and
timestamp) by its computed optical flow, in order to recreate
an image of compensated events at a reference time t. If the
optical flow is accurate, compensated events superimpose in
the same pixel position, producing sharp edges. The FWL then
evaluates the sharpness of the produced image, compared to
the one where events are not compensated:

FWL =
σ2(Icomp)

σ2(Iuncomp)
, (5)

where σ2 is the image variance function, Icomp the flow-
compensated image of events, and Iuncomp the original uncom-
pensated image. By doing so, a final FWL value greater than
1 is sought to be obtained, as it indicates that the computed
flow is better than the “zero flow” (uncompensated) reference.

Finally, in the EBOF illustrations in the following subsec-
tions, and in the videos associated to this article, the pixels
where no event was received are colored in medium gray.

4https://www.prophesee.ai

https://www.prophesee.ai


IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 7

TABLE I
COMPARISON BETWEEN EVENT-BASED DATASETS USED IN THIS ARTICLE.

Dataset Resolution Scenes Ground truth optical flow Frames available Conditions

MVSEC 346× 240 (low) Vehicular, drones Partial Yes Day, night
1 Megapixel Automotive Detection 1280× 720 (HD) Vehicular* No No Day, varying lighting and weather
20-minute-long driving sequence 1280× 720 (HD) Vehicular* No Yes Day, single long sequence

Our high-speed event dataset 1280× 720 (HD) Indoor No No Very fast and erratic motions
*Both datasets contain diverse driving environments (city, highway, suburbs, countryside, villages), which implies various traffic density and the presence of pedestrians
or other road users (cyclists, etc). As such, they are particularly representative of daily scenarios a driver may encounter.

D. Ablation Studies

To show the validity of our contributions, we also conducted
evaluations with ablations or distance surface alternatives:
OursNDF – full proposition without denoising and filling;
OursDS L – linear distance transform, y = Id(x);
OursDS LB – upper-bound distance transform (set to 6px, equal

to the used dsat value with proposed inverse exponential
formulation), y = min(x, 6);

OursDS Log – logarithmic distance transform, y = loge(x+1).
Fig. 4 illustrates the shape of these variants.

E. Evaluation on the MVSEC Dataset

We evaluated our EBOF method on the low-resolution
(346 × 260) MVSEC dataset proposed by Zhu et al. [44],
[13]. Despite several shortcomings highlighted by its authors
— namely, errors created by moving objects, an approximate
synchronization, and the use of default biases — this dataset
remains the main reference for evaluating EBOF results on
complex real-life sequences. Therefore, we present in Table II
our error measurements on this dataset, compared to other
reference methods from the literature (both non real-time and
real-time capable). We also compare them to a “zero flow”
reference, i.e., error measurements when the estimated optical
flow is set to a null vector field. Note that, similarly to
other authors such as [13], [39], for “Outdoor” sequences, we
ignored the pixels where the hood of the car is visible. In the
dataset, these pixels contain incorrect ground truth values.

From these results, we obtain AEEs in the order of one
pixel, except for nighttime sequences, where the longer accu-
mulation time of ∆T ' 97 ms results in greater magnitudes of
errors. Our AEE results are remarkably always close to or even
better than all the non-real-time state-of-the-art approaches
(EV-FlowNetHQF [39] notably). We display vastly better results
than FireFlowNet [14], which is our main comparison point
when it comes to fast EBOF methods.

Outlier percentages are also very low, only increasing for the
nighttime driving scenes. However, as noted by Ye et al. [49],
MVSEC ground truth flow is valid only for static world; the
moving objects, numerous in the nighttime scenes, could not
be kept in the reference, creating errors in the ground truth.

When compared to the ablated versions of our method, it
can be seen that the “No denoising” OursNDF performs better
for the indoor sequences, where the lighting of the scene is
controlled, and the noise therefore less prominent. In that case,
the denoising and filling step will mostly tend to eliminate
small texture details from the scene, which could in reality be

kept to improve the stability of its appearance. On the outdoor
sequences, on the contrary, our denoising shows its impor-
tance, as the noise generated by the environment becomes
much more essential to discard to obtain accurate optical flow
results. Regarding the distance surface alternatives, they all
display worse results than proposed inverse exponential, both
for indoor and outdoor sequences; the original linear distance
surface OursDS L, notably, displays here the worst results, even
worse than the zero flow baseline in some sequences.

Despite the presence of a ground truth in MVSEC dataset,
we also computed the FWL metric, in Table III. Our results
consistently surpass the value of 1, indicating an optical
flow estimation better than the zero flow reference. Most
importantly, they surpass those of EV-FlowNetMVSEC [13] and
EV-FlowNetHQF [39] in most of the sequences. While these
results may sometimes slightly contrast with those presented
in Table II, from our understanding, they further underline
the inconsistencies in the ground truth flow of the MVSEC
dataset, but still demonstrate the high accuracy of our approach
compared to non-real-time ones.

Regarding the FWL comparison with the alternative meth-
ods, proposed denoised inverse exponential formulation dis-
plays the best results for all sequences. The OursNDF version
consistently performs worse, as the small details in the scene,
not discarded as noise here, compensate more difficultly than
the main edges and lower the results yielded by the FWL
metric. Once again, the alternative distance surface formula-
tions all provide worse results than the inverse exponential
one. However, it should be underlined here that the “linear-
bound” OursDS LB method displays results closer to the inverse
exponential distance surface than anticipated.

Finally, we present in Fig. 5 qualitative optical flow results
for sequences from the MVSEC dataset. It can be seen that
our EBOF is visually close to the reference. Limitations in the
ground truth of the dataset can also be observed: the hood of
the car is not taken into account in the ground truth of the
outdoor sequences (second and third rows), and the moving
vehicle at the right of the car in the last row is associated to
an incorrectly smoothed ground truth flow.

F. Evaluation on the 1 Mp Automotive Detection Dataset

The arrival of high-resolution neuromorphic cameras means
that a more thorough evaluation including these new sensors
has to be conducted. In the context of this article, the 1
Megapixel Automotive Detection dataset [50] from Prophesee
— while initially intended for automotive object recognition
purposes — appears as the most complete, publicly available



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 8

TABLE II
RESULTS ON THE MVSEC DATASET. BOLD INDICATES THE BEST RESULTS FOR NON REAL-TIME AND REAL-TIME VERSIONS SEPARATELY.

Sequence Indoor flying 1 Indoor flying 2 Indoor flying 3 Outdoor day 1 Outdoor day 2 Outdoor night 1 Outdoor night 2 Outdoor night 3
AEE % outliers AEE % outliers AEE % outliers AEE % outliers AEE % outliers AEE % outliers AEE % outliers AEE % outliers

Zero flow 1.71 8.9 3.03 40.2 2.53 29.1 1.46 5.1 1.70 13.0 5.41 63.8 6.62 73.7 7.2 77.1

Non Real-Time
EV-FlowNetMVSEC [13] 1.03 2.2 1.72 15.1 1.53 11.9 0.49* 0.2* - - - - - - - -

EV-FlowNetMVSEC (updated)† 0.85 0.9 1.29 7.5 1.13 5.3 0.56 0.4 - - 1.90 18.6 2.26 21.9 2.13 20.4
EV-FlowNetEST [47] 0.97 0.9 1.38 8.2 1.43 6.5 - - - - - - - - - -
EV-FlowNetHQF [39] 0.56 1.0 0.66 1.0 0.59 1.0 0.68 1.0 0.82 1.0 - - - - - -
EV-FlowNetDR [14] 0.79 1.2 1.40 10.9 1.18 7.4 0.92 5.4 - - - - - - - -

Zhu et al. [48] 0.58 0.0 1.02 4.0 0.87 3.0 0.32 0.0 - - - - - - - -
Spike-FlowNet [34] 0.84 - 1.28 - 0.87 - 0.49 - - - 2.77‡ - - - - -
Nagata et al. [33]§ 0.28 - 0.42 - 0.38 - 0.26 - 0.35 - 0.33 - 0.36 - 0.36 -

Spiking EV-FlowNet [31] 0.60 0.5 1.17 8.1 0.93 5.6 0.47 0.2 - - - - - - - -
Gehrig et al. [35] - - - - - - 0.24 0.0 - - - - - - - -

Real-Time
ECNmasked [49]¶ - - - - - - 0.30 0.0 - - 0.53 1.1 0.49 1.0 0.49 1.1

Akolkar et al. [10] 1.52 - 1.59 - 1.89 - 2.75 - - - 4.47 - - - - -
FireFlowNet [14] 0.97 2.6 1.67 15.3 1.43 11.0 1.06 6.6 - - - - - - - -

Ours 0.52 0.1 0.98 5.5 0.71 2.1 0.53 0.2 0.74 1.2 2.91 30.6 3.45 39.1 3.62 39.8
OursNDF 0.49 0.1 0.92 4.6 0.68 1.6 0.54 0.4 0.75 1.3 2.99 31.8 3.56 40.4 3.70 40.9
OursDS L 1.81 16.4 2.54 26.4 1.95 18.2 2.12 21.7 1.30 8.7 4.04 45.8 4.78 55.6 5.10 58.7

OursDS LB 0.62 0.3 1.02 5.6 0.79 1.8 0.64 0.5 0.79 1.3 3.05 32.5 3.68 41.8 3.90 43.4
OursDS Log 0.70 1.4 1.07 6.5 0.82 2.4 0.69 1.6 0.79 1.9 3.08 33.0 3.70 42.1 3.93 43.8

*The authors of EV-FlowNet only evaluated this sequence on a carefully selected 18-second-long extract.
†The authors of EV-FlowNet provide an updated version of their model (https://github.com/daniilidis-group/EV-FlowNet/), which we recomputed their results with.
‡This result was computed by ourselves, using the code provided by the authors (https://github.com/chan8972/Spike-FlowNet).
§The authors used an accumulation window of ∆t = 2.5ms, whereas all the other results presented here used an accumulation window of ∆t = 1 frame (10 to 40 times longer), thus creating an unfair comparison.
Therefore, we report their measurements here, but do not consider them for comparison purposes.
¶The results of ECNmasked were obtained after manually removing from the dataset erroneous ground truth values created by independently moving objects. While allowing for better AEE and outliers results, it
creates an unfair comparison baseline. Thus, we report their measurements here, but do not consider them for comparison purposes.

TABLE III
FWL RESULTS ON THE MVSEC DATASET

Sequence Indoor flying 1 (cut)* Indoor flying 2 (cut)* Indoor flying 3 (cut)* Outdoor day 1 (cut)* Outdoor day 2 (cut)* Outdoor night 1 Outdoor night 2 Outdoor night 3

EV-FlowNetMVSEC [13]† 1.02 1.13 1.06 1.15 1.21 - - -
EV-FlowNetHQF [39] 1.14 1.36 1.23 1.27 1.20 - - -

Ours 1.21 1.41 1.37 1.17 1.17 1.35 1.45 1.42
OursNDF 1.16 1.34 1.29 1.15 1.14 1.28 1.37 1.34
OursDS L 1.16 1.29 1.27 1.13 1.12 1.21 1.28 1.25

OursDS LB 1.20 1.41 1.35 1.16 1.17 1.34 1.43 1.39
OursDS Log 1.21 1.39 1.36 1.16 1.16 1.32 1.41 1.38

*Stoffregen et al. [39] selected cuts from these sequences to evaluate their method; we use the same extracts here.
†As computed by Stoffregen et al. [39].

Grayscale Image Edge Image Ground Truth Flow Our Flow

Fig. 5. Qualitative results on MVSEC dataset. Sequences, from top to bottom: Indoor flying 1, Outdoor day 1, and Outdoor Night 1. Best viewed in color.

https://github.com/daniilidis-group/EV-FlowNet/
https://github.com/chan8972/Spike-FlowNet


IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9

TABLE IV
FWL RESULTS ON PROPHESEE’S 1 MEGAPIXEL AUTOMOTIVE DETECTION DATASET

Sequence Jan. 30 Feb. 15 Feb. 18 Feb. 19 Feb. 21 Feb. 22 Apr. 12 Apr. 18 Jun. 11 Jun. 14 Jun. 17 Jun. 19 Jun. 21 Jun. 26 Global

Ours 1.63 1.47 1.34 1.64 1.36 1.51 1.14 1.54 1.80 1.35 1.46 1.38 1.54 1.56 1.46
OursNDF 1.43 1.37 1.25 1.52 1.28 1.41 1.08 1.43 1.63 1.27 1.35 1.31 1.46 1.46 1.37
OursDS L 1.44 1.40 1.32 1.41 1.29 1.38 1.21 1.27 1.50 1.28 1.27 1.30 1.32 1.42 1.34

OursDS LB 1.63 1.48 1.33 1.63 1.35 1.49 1.14 1.55 1.78 1.34 1.43 1.37 1.52 1.57 1.45
OursDS Log 1.60 1.47 1.33 1.60 1.34 1.47 1.14 1.54 1.75 1.33 1.41 1.38 1.51 1.56 1.43

TABLE V
FWL RESULTS ON THE 20-MINUTE-LONG DRIVING SEQUENCE

Village Side Road Highway Suburban Urban Full sequence
(0’00 - 4’00) (4’00 - 7’00) (7’00 - 11’00) (11’00 - 14’30) (14’30 - 20’45) (0’00 - 20’45)

1.70 1.45 1.67 1.62 1.43 1.56

high-definition baseline for conducting our evaluation. Given
its density (1.2 TB, 14 hours of data), we settled on the use
of only its “test” sequences for the evaluation, which account
for a total of 2 hours of raw data.

We tried to adapt the codes of the low-resolution EV-
FlowNet methods proposed by Zhu et al. [13] and Stoffregen
et al. [39], to provide the same comparisons as on the MVSEC
dataset. However, the results it yielded are not representative
of the qualities of the methods, as their neural-network-based
approaches were not designed nor trained for high-resolution
input data. The most apparent and limiting issues are the
computation times (the code was not optimized for high-
resolution data), and the absence of denoising (it created large
artifacts in the optical flow results).

We therefore present our FWL results on this dataset in
Table IV, split between each recording day. Similarly to what
was observed for low-resolution data, our method always
yields FWL values greatly superior to 1, indicating an accurate
optical flow. Compared to the ablation alternatives, it can also
be observed that our final version displays the best global
result, and the best results in all sequences but four (“Feb. 15”,
“Apr. 12”, “Apr. 18”, and “Jun. 26”, where it is the second
best alternative), showing once again the importance of the
denoising and of our inverse exponential distance surface.

G. Complementary Evaluation on a 20-minute-long High-
Resolution Driving Sequence

While Prophesee’s 1 Megapixel Automotive Detection
dataset allows for a reproducible evaluation of EBOF methods
with the FWL, it contains only event recordings, preventing
the comparison with frame-based state-of-the-art methods. In
order to complete our evaluation, we make use in this sub-
section of a twenty-minute-long driving sequence, containing
both the output from high-definition frame-based and event-
based cameras. This sequence presents a wide diversity of
driving situations (urban/rural roads, highway, roundabouts,
many other vehicles, pedestrians, . . . ). It has been recorded
by and graciously shared with us by Prophesee.

The FWL results of this evaluation are presented in Table V,
split between each period of the sequence. An overall FWL
result on the complete sequence is also presented. It can

TABLE VI
FWL RESULTS ON OUR HIGH-SPEED HIGH-DEFINITION EVENT-BASED

INDOOR DATASET

Sequence Checkerboard Desk Office Fan

∆T = 15ms 1.49 1.71 1.74 1.05
∆T = 5ms 1.75 1.66 1.84 1.53

be observed that our FWL results are greatly satisfying, by
remaining quite over the value of 1.

The main advantage of this sequence, however, lies in
the possibility to compare our EBOF results to frame-based
ones. For this prospect, we used RAFT [26] as frame-based
reference, as it currently stands as one of the state-of-the-art
optical flow methods. Due to the lack of calibration between
the two sensors, only a qualitative evaluation can be presented.
Therefore, several visual optical flow results are given in
Fig. 6. Rendering on the full sequence can be viewed in video
format, at the link given at the beginning of this article. It can
be seen that, similarly to when a low-resolution input is used,
our optical flow remains visually very close to the reference.

H. Evaluation on our High-Speed High-Definition Event-
Based Indoor Dataset

For event-based driving sequences, most of our optical
flow results are restricted to a few pixels, due to the low
accumulation time of ∆T = 15ms we used throughout
this article, in accordance to movements speed. In order
to show how our method is able to handle movements of
higher magnitudes in various situations, we recorded a high-
speed high-definition event-based dataset, using a Prophesee
Gen4 camera (1280× 720) [15]. This dataset is composed of
four indoor sequences taken in office environment (namely,
“Checkerboard”, “Desk”, “Office”, and “Fan”). The first three
of them were recorded by manually shaking the camera, while
for the last one, the camera was fixed in front of a high-speed
fan. An illustration of these sequences is given in Fig. 7.

This evaluation relies also on the FWL metric, to compare
ourselves to the “zero flow” reference. The results are pre-
sented in Table VI. It can be seen here that we always obtain
a FWL greater than 1, underlining once again the accuracy
of our optical flow results, even under larger apparent mo-
tions. However, apart for the “Desk” recording, all recordings
display better FWL results when a lower accumulation time
of ∆T = 5ms is employed. This is due to the fact that, at
such high motion speeds, the edge images become slightly
too blurry to provide the best optical flow results when the
accumulation time of ∆T = 15ms is employed. Lowering



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 10

Reference Image Edge Image Image-based Flow (RAFT) Our Flow

Fig. 6. Qualitative results on the 20-minute-long driving sequence. Extracts used, from top to bottom: a village street, a motorcycle overtaking, a highway,
and an intersection. Best viewed in color.

Fig. 7. Edge images of our high-speed high-definition event-based indoor dataset sequences. From left to right: “Checkerboard”, “Desk”, “Office”, “Fan”.

Fig. 8. Sample EBOF results for the “Fan” sequence of our high-speed dataset,
with ∆T = 15ms (left) and ∆T = 5ms (right). Notice how the blades of
the fan are merged together in the first case, while they appear clearly in the
second one, leading to improved optical flow results.

accumulation time helps obtaining sharpest edge images, and
in return, more accurate optical flow and FWL results. This
remark is especially true for the “Fan” sequence, where the
very high speed of the blades leads them to appear too blurry
for a correct optical flow to be computed when ∆T = 15ms
is used; an illustration is given in Fig. 8.

I. Sensitivity Analysis

In this subsection, we analyze the sensitivity of Nd, Nf
and dsat parameters on our EBOF results. Nd and Nf define
denoising and filling thresholds (see Section III-B), dsat defines

the saturation value for the computation of the inverse expo-
nential distance surface (Section III-C). For that purpose, we
use the “Outdoor day 1” sequence from the MVSEC dataset
with the AEE metric. We display, in Fig. 9, these results
for Nd ∈ {0 = “disabled”, 1, 2, 3, 4}, Nf ∈ {1, 2, 3, 4, 5 =
“disabled”}, and dsat ∈ {3, 6, 9, 12} pixels.

From this plot, it can first be noted that the denoising should
not be too strong, that is, Nd ≤ 2. In the same time, the
filling threshold should be Nf ≥ 3. Overall best dsat value is
incontestably dsat = 6px, and it is the most sensitive parameter.
The best set of parameters is {Nd = 1, Nf = 4, dsat = 6},
with the corresponding minimal AEE = 0.53px. The worst
set of parameters is {Nd = 4, Nf = 1, dsat = 12}, with the
corresponding AEE = 0.78px, increasing by 47% compared
to the best parameters. This shows the importance of the
parameters choice to guarantee adequate optical flow results.

J. Real-Time Compliance

To finally show the real-time compliance of our approach for
both low- and high-resolution input data, we used respectively
the “Indoor flying 1” sequence from the MVSEC dataset
and the moorea_2019-01-30_000_td_671500000_



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 11

TABLE VII
AVERAGE EXECUTION TIMES AND STANDARD DEVIATION OF EACH STEP OF OUR METHOD FOR LOW- AND HIGH-RESOLUTION INPUTS, IN MILLISECONDS

Version Edge image (after accumulation)* Denoising & filling Inverse exponential distance transform Optical flow† Total

Low-resolution (346× 260)
CPU-only 0.15±0.03 0.77±0.16 5.07±2.07 3.59±0.09 9.57±2.13

CPU & GPU 0.18±0.04 0.50±0.04 1.37±0.09 3.76±0.16 5.82±0.23

High-resolution (1280× 720)
CPU-only 0.54±0.06 3.55±0.30 7.43±0.51 12.21±0.16 23.73±0.69

CPU & GPU 0.55±0.07 0.69±0.14 3.75±0.46 11.89±0.76 16.88±1.30
*This module uses only the CPU, hence the similar results between the “CPU-only” and “CPU & GPU” lines for this column.
†The optical flow library provided by Adarve et al. [21] does not contain a CPU-only version. The CPU-only experiments therefore use the GPU
for optical flow computation, hence the similar results between the “CPU-only” and “CPU & GPU” lines for this column.

1

2

3

4

5 = dis.

0 = dis. 1 2 3 4

N
f

Nd

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

AEE

dsat = 3px
dsat = 6px
dsat = 9px
dsat = 12px

Fig. 9. Sensitivity analysis of our EBOF method, using the AEE on the
“Outdoor day 1” sequence from the MVSEC dataset, along the Nd, Nf , and
dsat parameters. Lowest AEE (blue) is the best.

731500000_td test sequence from Prophesee’s 1 Megapixel
Automotive Detection dataset. The execution time for each
block was not evaluated separately, but simultaneously, as the
full pipeline should be able to run on a single computer. In
order to also underline the benefits brought by the use of the
GPU, we ran the evaluation on both the CPU-only and the
CPU+GPU versions of our code.

These results are presented in Table VII. From them, it can
be seen on one hand that the GPU-aided version can achieve
real-time performances for both low- and high-resolution input
data, if their accumulation times are set to at least 4ms and
13ms respectively (the limiting factor being the optical flow
module). The values for ∆T used throughout this article,
therefore, respect the real-time constraint. The CPU-only ver-
sion, on the other hand, can achieve real-time performances
for both low- and high-resolution data when the accumulation
time is of at least 8ms and 13ms respectively (the limiting
factor being here the distance transform and optical flow
module respectively). As noted in Table VII, however, the
optical flow can only be computed on GPU at this time, and
transferring this computation to the CPU would likely make
these execution times greatly increase.

From the results of Table VII and from the previous
conclusions, using our architecture, the best performances that
can be reached for a low-resolution input is therefore a 250Hz
flow with a latency of 10ms (for the minimal ∆T = 4ms of

accumulation time), while, for a high-resolution input, a 77Hz
flow with a latency of 30ms can be achieved (for the minimal
∆T = 13ms of accumulation time).

As a fast algorithm, FireFlowNet [14] displays a theoretical
inference frequency up to 262Hz for a low-resolution (346×
260) input, similar to ours. For a higher definition (1280 ×
720), however, our approach achieves frame rates 2- to 3-times
better than them, as their method can only reach 29Hz. The
GPU they use ranks similarly to ours in popular benchmarks.
In addition, we ran EV-FlowNet [13] on low- (346 × 260)
and on high-resolution (1280× 720) data. While EV-FlowNet
inference achieved a 125Hz flow on low-definition data, it
showed its limits on high-resolution input with a 12.5Hz flow
output. These frequencies consider only inference process, full
latency is unknown and should include events accumulation
time and specific dense representation creation.

To compare with a state-of-the-art frame-based optical flow
algorithm, we measured a 12.5Hz flow on low-resolution in-
put, and a 2Hz one on high-definition images with RAFT [26].

V. CONCLUSION

In this article, a complete pipeline for real-time computation
of event-based optical flow (EBOF) from both low- and high-
resolution event cameras has been proposed. It includes opti-
mized algorithmic choices as well as a novel inverse exponen-
tial distance surface representation. Several evaluations have
been conducted to show the relevance of our contributions.
Resulting accuracies surpass or are close to the non-real-time
state of the art for low-definition recordings, as well as on
novel high-definition sequences. Frame rates of respectively
250Hz and 77Hz for resolutions of 346×260 and 1280×720
were also achieved, making it, to the best of our knowledge,
the most accurate EBOF method for low- and especially high-
resolution event cameras that could be deployed in the wild.

Deep learning dominates EBOF estimation when looking
for accuracy at the cost of real-time ability. The EV-FlowNet
architecture is a perfect example of this trend, as shown in
Table II. On the contrary, when real-time running is needed,
this is currently our proposition, which is not a neural network,
that provided the best results. As our method is not based on
machine learning, it is independent from a training process
involving specific datasets and loss functions. In other words,
the results are expected to be similar to the ones presented
here for all types of scenes. This can be seen as an advantage,



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 12

compared for example to EV-FlowNet which shows very
different results according to the way it has been trained.

In hindsight, improvements could be brought to the current
method, especially regarding the event accumulation process.
Relying on a predetermined fixed accumulation time ∆T ,
which highly depends on the appearance and dynamics of the
visual scene, can indeed lead to instabilities in the appearance
of the edge images if not chosen carefully. Introducing an
adaptive method to dynamically determine the correct ac-
cumulation time to use, as proposed in [51] for instance,
could allow for obtaining clear edge images independently
from the scene evolution, but would also certainly make
the real-time constraint harder to achieve. Our architecture
could also benefit from a more optimized implementation on
specialized hardware (FPGA for instance, eliminating the need
for an energy-intensive GPU), which could also allow for even
higher frame rates by lowering the minimum accumulation
times. Applying our EBOF to complex automotive-related
applications, such as proposed in [52], could also be addressed
by future work, for instance for improving the detection of
obstacles appearing in the close neighbourhood of the vehicle.

ACKNOWLEDGMENT

The authors thank Renault for lending their Prophesee Gen 4
camera, Prophesee for giving us access to their twenty-minute-
long driving sequence, and in particular Davide Migliore for
providing thoughtful insight on their high-definition event
sensor.

REFERENCES

[1] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis, and D. Scara-
muzza, “Event-based vision: A survey,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 2020.

[2] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artificial
Intelligence, vol. 17, pp. 185–203, 1981.

[3] C. Braillon, C. Pradalier, J. L. Crowley, and C. Laugier, “Real-time
moving obstacle detection using optical flow models,” IEEE Intelligent
Vehicles Symposium, pp. 466–471, 2006.

[4] J. Huang, W. Zou, J. Zhu, and Z. Zhu, “Optical flow based real-time
moving object detection in unconstrained scenes,” ArXiv, 2018.

[5] M. K. Hossen and S. H. Tuli, “A surveillance system based on motion
detection and motion estimation using optical flow,” 5th ICIEV, pp. 646–
651, 2016.

[6] C. Chuanqi, H. Xiang-yang, Z. Zhen-jie, and Z. Mandan, “Monocular
visual odometry based on optical flow and feature matching,” 29th
Chinese Control And Decision Conference (CCDC), pp. 4554–4558,
2017.

[7] C. Tang, X. Zhao, J. Chen, L. Chen, and Y. Zhou, “Fast stereo visual
odometry based on LK optical flow and ORB-SLAM2,” Multimedia
Systems, pp. 1–10, 2020.

[8] S. Galic and S. Lončarić, “Spatio-temporal image segmentation using
optical flow and clustering algorithm,” Proceedings of the First IWISPA,
pp. 63–68, 2000.

[9] R. Benosman, C. Clercq, X. Lagorce, S. Ieng, and C. Bartolozzi, “Event-
based visual flow,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 25, pp. 407–417, 2014.

[10] H. Akolkar, S. Ieng, and R. Benosman, “See before you see: Real-time
high speed motion prediction using fast aperture-robust event-driven
visual flow,” IEEE TPAMI, 2020.

[11] A. Z. Zhu, N. Atanasov, and K. Daniilidis, “Event-based feature tracking
with probabilistic data association,” ICRA, pp. 4465–4470, 2017.

[12] M. Almatrafi, R. W. Baldwin, K. Aizawa, and K. Hirakawa, “Distance
surface for event-based optical flow,” IEEE TPAMI, vol. 42, pp. 1547–
1556, 2020.

[13] A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis, “EV-FlowNet:
Self-supervised optical flow estimation for event-based cameras,” in
Proceedings of Robotics: Science and Systems, 2018.

[14] F. Paredes-Vallés and G. D. Croon, “Back to event basics: Self-
supervised learning of image reconstruction for event cameras via
photometric constancy,” Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 3446–3455, 2021.

[15] T. Finateu, A. Niwa, D. Matolin, K. Tsuchimoto, A. Mascheroni,
É. Reynaud, P. Mostafalu, F. T. Brady, L. Chotard, F. LeGoff, H. Taka-
hashi, H. Wakabayashi, Y. Oike, and C. Posch, “A 1280x720 back-
illuminated stacked temporal contrast event-based vision sensor with
4.86µm pixels, 1.066GEPS readout, programmable event-rate controller
and compressive data-formatting pipeline,” ISSCC, pp. 112–114, 2020.

[16] P. Jund, C. Sweeney, N. Abdo, Z. Chen, and J. Shlens, “Scalable scene
flow from point clouds in the real world,” ArXiv, 2021.

[17] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The KITTI vision benchmark suite,” CVPR, pp. 3354–3361,
2012.

[18] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proceedings of the 7th IJCAI,
1981.

[19] J.-Y. Bouguet, “Pyramidal implementation of the Lucas Kanade feature
tracker,” Intel Corporation, Microprocessor Research Labs, Tech. Rep.,
1999.

[20] E. Meinhardt, J. Pérez, and D. Kondermann, “Horn-Schunck optical
flow with a multi-scale strategy,” Image Processing On Line, vol. 3, pp.
151–172, 2013.

[21] J. Adarve and R. Mahony, “A filter formulation for computing real time
optical flow,” IEEE Robotics and Automation Letters (RA-L), vol. 1, pp.
1192–1199, 2016.

[22] M. J. Black and P. Anandan, “The robust estimation of multiple motions:
Parametric and piecewise-smooth flow fields,” Computer Vision and
Image Understanding, vol. 63, pp. 75–104, 1996.

[23] D. Sun, S. Roth, and M. J. Black, “A quantitative analysis of current
practices in optical flow estimation and the principles behind them,”
International Journal of Computer Vision, vol. 106, pp. 115–137, 2013.

[24] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov,
P. V. D. Smagt, D. Cremers, and T. Brox, “FlowNet: Learning optical
flow with convolutional networks,” ICCV, pp. 2758–2766, 2015.

[25] S. Meister, J. Hur, and S. Roth, “UnFlow: Unsupervised learning of
optical flow with a bidirectional census loss,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[26] Z. Teed and J. Deng, “RAFT: Recurrent all-pairs field transforms for
optical flow,” in ECCV, 2020, pp. 402–419.

[27] G. Gallego, H. Rebecq, and D. Scaramuzza, “A unifying contrast
maximization framework for event cameras, with applications to motion,
depth, and optical flow estimation,” CVPR, pp. 3867–3876, 2018.

[28] T. Stoffregen and L. Kleeman, “Simultaneous optical flow and segmen-
tation (SOFAS) using dynamic vision sensor,” ArXiv, 2018.

[29] D. Liu, Á. P. Bustos, and T.-J. Chin, “Globally optimal contrast max-
imisation for event-based motion estimation,” CVPR, pp. 6348–6357,
2020.

[30] F. Paredes-Vallés, K. Y. W. Scheper, and G. de Croon, “Unsupervised
learning of a hierarchical spiking neural network for optical flow
estimation: From events to global motion perception,” IEEE TPAMI,
vol. 42, pp. 2051–2064, 2020.

[31] F. Paredes-Vallés, J. J. Hagenaars, and G. D. Croon, “Self-supervised
learning of event-based optical flow with spiking neural networks,”
ArXiv, 2021.

[32] C. G. Harris and M. Stephens, “A combined corner and edge detector,”
in Alvey Vision Conference, 1988.

[33] J. Nagata, Y. Sekikawa, and Y. Aoki, “Optical flow estimation by
matching time surface with event-based cameras,” Sensors, vol. 21,
2021.

[34] C. Lee, A. Kosta, A. Z. Zhu, K. Chaney, K. Daniilidis, and K. Roy,
“Spike-FlowNet: Event-based optical flow estimation with energy-
efficient hybrid neural networks,” in ECCV, 2020.

[35] M. Gehrig, M. Millhäusler, D. Gehrig, and D. Scaramuzza, “Dense
optical flow from event cameras,” ArXiv, 2021.

[36] L. Pan, M. Liu, and R. Hartley, “Single image optical flow estimation
with an event camera,” CVPR, pp. 1669–1678, 2020.

[37] B. Rueckauer and T. Delbruck, “Evaluation of event-based algorithms
for optical flow with ground-truth from inertial measurement sensor,”
Frontiers in Neuroscience, vol. 10, 2016.

[38] C. Scheerlinck, N. Barnes, and R. Mahony, “Continuous-time intensity
estimation using event cameras,” ArXiv, 2018.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 13

[39] T. Stoffregen, C. Scheerlinck, D. Scaramuzza, T. Drummond, N. Barnes,
L. Kleeman, and R. Mahony, “Reducing the sim-to-real gap for event
cameras,” in ECCV, 2020.

[40] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “High speed and
high dynamic range video with an event camera,” IEEE TPAMI, vol. 43,
pp. 1964–1980, 2021.

[41] C. Ramamoorthy and H. F. Li, “Pipeline architecture,” ACM Computing
Surveys, vol. 9, pp. 61–102, 1977.

[42] T. Delbrück, “Frame-free dynamic digital vision,” Proceedings of the In-
ternational Symposium on Secure-Life Electronics, Advanced Electronics
for Quality Life and Society, pp. 21–26, 2008.

[43] Y. Feng, H. Lv, H. Liu, Y. Zhang, Y. Xiao, and C. Han, “Event density
based denoising method for dynamic vision sensor,” Applied Sciences,
vol. 10, p. 2024, 2020.

[44] A. Z. Zhu, D. Thakur, T. Özaslan, B. Pfrommer, V. Kumar, and
K. Daniilidis, “The multivehicle stereo event camera dataset: An event
camera dataset for 3D perception,” IEEE RA-L, vol. 3, pp. 2032–2039,
2018.

[45] D. Coeurjolly, A. Montanvert, and J. Chassery, “Distances discrètes,” in
Géométrie discrète et images numériques. Hermès Paris, 2007, ch. 5,
pp. 123–145.

[46] M. J. Black, “Robust incremental optical flow,” Ph.D. dissertation, Yale
University, 1992.

[47] D. Gehrig, A. Loquercio, K. G. Derpanis, and D. Scaramuzza, “End-
to-end learning of representations for asynchronous event-based data,”
ICCV, pp. 5632–5642, 2019.

[48] A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis, “Unsupervised event-
based learning of optical flow, depth, and egomotion,” CVPR, pp. 989–
997, 2019.

[49] C. Ye, A. Mitrokhin, C. Fermüller, J. Yorke, and Y. Aloimonos,
“Unsupervised learning of dense optical flow, depth and egomotion with
event-based sensors,” IROS, pp. 5831–5838, 2020.

[50] E. Perot, P. de Tournemire, D. Nitti, J. Masci, and A. Sironi, “Learning
to detect objects with a 1 megapixel event camera,” 34th Conference on
Neural Information Processing Systems (NeurIPS 2020), 2020.

[51] M. Liu and T. Delbrück, “Adaptive time-slice block-matching optical
flow algorithm for dynamic vision sensors,” in BMVC, 2018.

[52] J. H. Jung and C. G. Park, “Constrained filtering-based fusion of images,
events, and inertial measurements for pose estimation,” ICRA, pp. 644–
650, 2020.

Vincent Brebion was born in Blendecques, France,
in 1997. He received the engineering degree in
computer science and the master’s degree in complex
systems engineering from the Université de tech-
nologie de Compiègne (UTC), France, in 2020. He
is currently pursuing the Ph.D. degree in computer
vision at the Heudiasyc Lab., UTC, France, and
is currently a member of the UTC/CNRS/Renault
SIVALab joint laboratory. His research interests in-
clude event-based cameras, multi-sensor fusion, and
computer vision for autonomous vehicles.

Julien Moreau received the Ph.D. degree in com-
puter vision from the Université de Technologie
de Belfort-Montbéliard (UTBM), France, in 2016.
He accomplished postdoctoral positions in The
French Institute of Science and Technology for
Transport Development and Networks (IFSTTAR),
in Lille, France, and in the Institute of Informa-
tion and Communication Technologies Electronics
and Applied Mathematics (ICTEAM), at Université
Catholique de Louvain, Louvain-la-Neuve, Belgium.
Since 2019, he is an associate professor in the

Computer Science department of Université de technologie de Compiègne
(UTC), France, and is carrying out his research in Heudiasyc UMR 7253,
a joint UTC-CNRS research laboratory. From that, he is also a member of
SIVALab, a joint laboratory between Renault, UTC and CNRS. His research
interests cover stereovision, unconventional cameras, calibration and machine
learning applied to perception and localization for mobile robotics.

Franck Davoine received his Ph.D. in 1995 from
Grenoble INP - Université Grenoble Alpes in
France. He was appointed at Université de technolo-
gie de Compiègne (UTC), Heudiasyc Lab., France,
in 1997 as an Associate professor and in 2002 as a
Researcher at CNRS. From 2007 to 2014, he was
on leave at LIAMA Sino-European Lab. in Beijing,
P.R. China, as PI of a project with CNRS and
Peking University on Multi-sensor based perception
and reasoning for intelligent vehicles. In 2015, he
was back in Compiegne, PI of a challenge-team

within the Laboratory of Excellence of UTC focusing on Collaborative
vehicle perception and urban scene understanding for autonomous driving, and
member of the CNRS/UTC/Renault SIVALab joint laboratory specializing in
localization and perception systems for autonomous vehicles.


	Introduction
	Related Work
	Optical Flow for Vehicular Perception
	Frame-Based Optical Flow
	Event-Based Optical Flow (EBOF)
	Our Orientation: Densifying Events

	A Flexible Architecture
	Accumulation for Edge Images
	Denoising and Filling
	The Inverse Exponential Distance Surface
	Selected Frame-Based Optical Flow

	Evaluation
	Setup
	Datasets
	Evaluation Metrics
	Ablation Studies
	Evaluation on the MVSEC Dataset
	Evaluation on the 1 Mp Automotive Detection Dataset
	Complementary Evaluation on a 20-minute-long High-Resolution Driving Sequence
	Evaluation on our High-Speed High-Definition Event-Based Indoor Dataset
	Sensitivity Analysis
	Real-Time Compliance

	Conclusion
	References
	Biographies
	Vincent Brebion
	Julien Moreau
	Franck Davoine


