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ABSTRACT
In the last decade Knowledge Graphs have undergone an impressive
expansion, mainly due to their extensive use in AI-related appli-
cations, such as query answering or recommender systems. This
growth has been powered by the expanding landscape of Graph
Embedding techniques, which facilitate the manipulation of the
vast and sparse information described by Knowledge Graphs. Graph
Embedding algorithms create a low-dimensional vector representa-
tion of the elements in the graph, i.e. nodes and edges, suitable as
input for Machine Learning tasks. Although their effectiveness has
been proved on many occasions and for many contexts, the inter-
pretability of such vector representations remains an open issue.
In this work, we aim to tackle this issue by providing a systematic
approach to decode and make sense of the knowledge captured by
Graph Embeddings. We propose a technique for verifying whether
Graph Embeddings are able to encode certain properties of the
graph elements and we present a categorization for such properties.
We test our approach by evaluating the embeddings computed from
the same Knowledge Graph through several embedding techniques.
We analyze the results on the level of encoding of each property
by all the benchmarked algorithms with the final goal of providing
insights into the choice of the most suitable technique for each
context and encouraging a more conscious use of such approaches.

CCS CONCEPTS
• Information systems→ Semanticweb description languages;
• Computing methodologies → Knowledge representation
and reasoning; Machine learning algorithms.

KEYWORDS
Knowledge Graphs, Graph Embeddings, Probing tasks, Explainable
AI

1 INTRODUCTION
In recent years we have witnessed an impressive growth and ex-
pansion in the use of Knowledge Graphs (KGs). More and more
projects rely on this kind of representation to store their data with-
out compromising the semantics they bear and, as a result, many
large-scale Knowledge Graphs, such as Freebase [6], YAGO [30],
Wikidata [32], and DBpedia [3] have been published. The success of

this graph representation is mainly due to its usefulness in many AI-
related tasks, such as question answering [4, 34], recommendation
systems [33], and search [29]; as well as in domain-specific appli-
cations, for example in the fields of education [12], medicine [28]
and finance [22].

KGs have gained even more visibility since the development of
the concept of Knowledge Graph Embedding (KGE), which allows
dealing with large-scale KGs more easily. One of the main draw-
backs of KGs is the complexity of manipulating the large and sparse
information they represent. To tackle this issue, KGE techniques
create a fixed-length vector representation of the entities and re-
lations present in the graph. These vectors can then be used for
several kinds of tasks within the scope of the KG itself, such as Link
prediction [20], Triple Classification [14] and Entity Resolution [21],
or in separate downstream applications [9, 13].

One of the main issues related to the usage of Graph Embeddings
(GEs) is the difficulty of interpreting them. Indeed, understanding
the relationship between the representation in the vector space and
the role of the corresponding node (or edge) in the graph is not
straightforward. Some work is moving towards more explainable
GEs by proposing interpretable embedding methods [18], study-
ing the impact of graph modifications on link prediction [26] or
offering explainer approaches for specific embedding models [36].
Nevertheless, a methodology to effectively explain the predictions
enabled by KGEs is still missing [24]. Even though several evalu-
ations of the performance of different GE techniques have been
conducted with respect to their effectiveness in terms of quality
of link prediction [10, 27], to the best of our knowledge no work
has been made to systematically analyze the meaningfulness of the
information they encode. A first step towards explaining the results
of the application of GEs (in any task) lies in understanding the
link between the element in the graph (node or edge) and its vector
representation. In other words, what is the knowledge present in
the graph that can actually be captured and represented through
embeddings?

A similar challenge has been addressed in the context of text
embeddings, for which the final goal is to understand which charac-
teristics of the language are actually encoded in the embeddings of
words and sentences. A first attempt of investigating this research
question is based on the use of "probing tasks", presented in [1]. A
probing task is an auxiliary classification task that, taking as input
the embedding of an element, i.e word, sentence, or node in our case,
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is trained to predict the value of a given property for this element.
The general idea behind this approach is that, if some information
about a given element is encoded through the embedding process
in its vector representation, it should be possible to recover such
information from the embedding alone.

Inspired by [1], we propose to make use of such auxiliary tasks to
verify the hypothesis according to which GEs encode certain proper-
ties. We provide a methodology independent from the type, context
and final use of the GEs, that allows to systematically analyze the
information captured from the KG. We do so by establishing a cata-
log of probing tasks that can be easily generalized and reused. We
focus specifically on RDF knowledge graphs, however the presented
approach can be applied to other kinds of graphs, such as property
graphs, by defining different probing tasks. We rely on this catalog
to evaluate the information encoded by several GE algorithms from
a domain-specific KG in e-education describing relations between
learning resources. We compare the results achieved by all the al-
gorithms on each task to determine what information is mainly
captured by every one of them.

The remainder of this paper is organized as follows. In section
2 we review existing related works. In section 3 we categorize
the information that can be encoded by GEs and we propose a
corollary organization of probing tasks. In section 4 we compare
and discuss the results of state-of-the-art GE algorithms on the
identified probing tasks. Finally, conclusions and future works are
presented in section 5.

2 RELATEDWORK
Lately, several efforts have been made to investigate the inter-
pretability of GE techniques. Ying et al. [36] presented GNNEx-
plainer, a tool to provide possible explanations for the results of
link prediction through GEs. GNNExplainer is able to identify the
subgraph and the node features that are the most relevant for any
link prediction made by GNN models. Other approaches towards
explainable link prediction have been proposed in [5, 17]. Also,
the work proposed in [26] focuses on the interpretability (and ro-
bustness) of link prediction by trying to identify the fact whose
addition or removal from the KG causes changes in the predic-
tion for a targeted fact. While these works aim for the explanation
of link predictions through embeddings, few attempts have been
made to understand the content of the embedded representation
independently of the downstream application.

Jain et al. [15] raised doubts on the effective capacity of KGEs
of capturing the semantics borne by the KG. The authors define a
classification and clustering task to predict entity type and compare
several well-known KGE algorithms on these tasks, i.e. TransE[7],
RESCAL[23], ComplEx[31], DistMult[35] andConvE[11]. Thiswork
concludes that none of these approaches is able to properly en-
code semantic information, as they can only identify macro classes
and not fine-grain ones, e.g. they can distinguish a person from
a body_of_water but not a scientist from an artist. This approach
presents some similarities with the technique used to decode in-
formation captured by text embedding introduced by Adi et al. [1],
which defines some "probing tasks" to evaluate the information
captured by word and sentence embeddings. They provide a set of
structural, low-level information properties that can be encoded

by the vector representation, i.e. sentence length, word content,
and word order. For each one of these properties, they define a
classification task that takes as input the word (or sentence) embed-
ding and outputs the value of the property. Through this approach,
they evaluate the information encoded by LSTM auto-encoder and
CBOW techniques. They also study the changes in the encoded
information with the variation of the embeddings’ size. In [8], the
authors improve the approach proposed by Adi et al. [1], providing
a proper classification of 10 probing tasks for the properties possibly
encoded by text embeddings, hierarchically organized into surface,
syntactic and semantic tasks. Moreover, they redefine the probing
tasks to be more general, interpretable, and easily re-usable. To
this end, they use as input a single sentence embedding, while Adi
et al. [1] used multiple embeddings of both words and sentences.
Finally, they benchmark a much wider selection of text embedding
algorithms. The categorization defined by Conneau et al. [8] has
also been used to uncover the information encoded by BERT, with
the specific goal of understanding to which extent this model can
capture the structure of the language [16].

Relying on the idea of probing tasks introduced by [1], we present
a methodology that allows testing the capacity of KGEs to encode
not only entities’ types like in [15] but also a vast range of prop-
erties and characteristics of graph elements that could possibly be
encoded in their vector representations. More precisely, we provide
a categorization that hierarchically organizes the various types of
knowledge possibly captured by GEs and introduces several prob-
ing tasks to assess to which level this knowledge is captured. While
the work presented in [5, 17, 26, 36] focuses uniquely on link predic-
tion, the approach we propose can be used to evaluate the meaning
of GEs independently of the downstream application. Moreover, we
evaluate several GE algorithms, both general-purpose (node2vec)
and specifically designed for KGs (TransE, ComplEx, etc.), on this
aspect. Additionally, we conduct this evaluation on a real-world
KG which allows us to avoid the bias introduced by inverse triples,
data redundancy, and cartesian product relationships, normally
present in the benchmarking datasets frequently used to evaluate
GE algorithms, i.e. FB15k and WN18 [2].

3 ANALYSING THE INFORMATION ENCODED
BY GRAPH EMBEDDINGS

Following the footsteps of the previously presented works, we in-
troduce a list of auxiliary tasks that could be used to decode the
information captured by GEs. An auxiliary task, or probing task,
is a simple classification task that takes as input the embedding
of an element and outputs the value of a given property for that
same element. If it is possible to train a classifier to solve such a
task, we can conclude that the set of input features, i.e. the embed-
dings of the elements, encode the initial property or characteristic.
Throughout this process, one would be able to determine whether
GEs capture a given characteristic of the elements in the KG, e.g.
entities’ types or predicates’ constraints. Although this is not a
direct translation process from the embeddings to the set of encoded
properties, it would nevertheless represent a first important step
towards GEs explainability if we could define a reasonable set of
common properties against which to evaluate our GEs.
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To do so, we need to identify which kind of information is more
commonly contained in a KG and could possibly be captured by
the vector representation. Keeping in mind that GE techniques can
create a vector for each element in the graph, we need to determine
which are the properties of nodes or edges that could be transposed
into the vector space. To keep our approach and properties’ cate-
gories as general as possible and, therefore, adaptable to the large
variety of embedding algorithms, our analysis will be limited to
the properties of nodes, i.e. Classes and Individuals in the case of
RDF graphs, and we will not take into consideration Predicates and
Literals. Nevertheless, we are aware that the vector representation
of a node is computed based on the interactions between such
node and all the others. Therefore, we will also introduce some
properties that define these interactions and that can be captured
by GEs, e.g. presence of a direct link, distance in number of hops,
and type of link between two nodes. To evaluate the ability of GE
models to catch such information, we will define probing tasks
that use as input the embeddings of two nodes, instead of one. We
describe hereafter the list of probing tasks, defined on three levels
of increasing abstraction, as depicted in Figure 1.

Structural properties. With the awareness that a KnowledgeGraph
is, first of all, a data structure that organizes facts in the form of
a graph, we define a first, lowest and most general level of our
probing tasks’ pyramid: the structural layer. We argue that the
simplest and most straightforward information that GEs can learn
from the graph is its structure. This is a direct consequence of the
fact that embedding techniques rely on the presence of direct re-
lations between nodes and, for the approaches based on random
walks, on the paths built through those relations. The properties in
this category are the ones that every node has, independently of its
type or role, and whose definition does not require any additional
information other than the list of edges. Examples of properties in
this category are in-degree (i.e. number of incoming edges) and out-
degree (number of outgoing edges) for each node. These properties
are inherently independent of the context and can be reapplied to
any graph.

Semantic properties. At a higher level of abstraction, we find
properties whose definition makes use of additional information
other than the graph structure itself as they require capturing the
heterogeneity of the content of the graph. Probing tasks in this
class will allow us to test the capacity of GEs to encode semantic
information, such as type of nodes and edges. Here again, these
properties are inherently independent of the KG and can be reap-
plied to any KG. Techniques specifically designed for computing
GEs from Knowledge Graphs, such as TransE, ComplEx, DistMult,
etc. claim to be able to encapsulate this kind of information.

Context-specific properties. This group includes properties that
present the highest level of abstraction as they disregard any in-
formation about the structure and organization of the data and are
uniquely based on the human understanding of the context.
In other words, those are the characteristics of the elements de-
scribed in the graph that any individual would intuitively consider
relevant for a given task and that would be meaningful for the final
use of the embedded representation. For example, let us suppose
that we want to rely on GEs to develop a recommender system

to suggest restaurants to users based on their tastes. In this case,
we would imagine the embeddings of restaurants’ nodes to encode
the information about the "cuisine" prepared by each restaurant
(e.g. Italian, French, etc.), since based on our personal experience
this is relevant information when choosing where to eat. While the
two previous categories of tasks are generic and easily reusable to
analyze GEs over KGs in different contexts, the properties in this
last class need to be defined for each specific use-case, based on
the knowledge represented in the graph and on the final goal to be
achieved through the use of embeddings.

Figure 1: Categories of probing tasks.

4 EVALUATING GRAPH EMBEDDING
ALGORITHMSWITH PROBING TASKS

In this section, we present the results of the application of probing
tasks to the OntoSIDES KG [25]. We rely on the presented probing
tasks’ categories to evaluate the information captured from the
graph by several GEmodels. We compare them and suggest possible
explanations for their behavior with the final goal of gathering
meaningful insights to help a more informed use of such techniques
in different contexts.

4.1 OntoSIDES Knowledge Graph
OntoSIDES is a KG that supports the French higher education sys-
tem for medical studies. In France, medical schools and institutions
rely on a common web platform that allows sharing educational
content, evaluation resources, students’ training traces, and test
results. All these data are represented in an RDF graph relying on
an OWL ontology. The main knowledge available in the graph is
the description of questions, annotated with the related medical
specialty and treated subjects, and the description of students in-
cluding information about their university and their interactions
with learning material. Figure 2 depicts the RDF graph representing
these elements.

The OntoSIDES graph currently includes the description of
569,762,878 answers to 1,797,180 questions related to 31 medical
specialties and given by 173,533 students. In total, the KG contains
more than 9.2 billion triples.

In the following experiments, we aim to assess what portion
of this knowledge is actually captured and summarized by GEs.
Therefore, we rely on the defined probing tasks to analyze the GEs
computed on OntoSIDES. More precisely, we evaluate the GEs on
the following probing tasks:



Antonia Ettorre, Anna Bobasheva, Catherine Faron, and Franck Michel

Figure 2: RDF graph describing the main elements in Onto-
SIDES. Blue bubbles are owl:Classes and white bubbles are
instances.

• Structural properties: in-degree and out-degree for each
node and presence of direct link between two nodes;

• Semantic properties: type (rdf:type) of each entity and
relation linking two entities;

• Context-specific properties: for each student’s node the
university the student attends and for each question’s node
the topic (predicate learning_objective) related to that ques-
tion.

The dimension of the OntoSIDES KG is prohibitive for the com-
putation of GEs. Furthermore, the graph is unevenly distributed
w.r.t. the number of answers per students and questions. Therefore,
we decided to limit our experiments to a subgraph related to the
pediatrics medical specialty. We picked this specialty because it is
the one presenting the largest number of attempts by students to an-
swer questions. This choice allows us to obtain a dataset large and
heterogeneous enough to train and test all the needed classifiers.
Indeed, the size and distribution of the training set are essential to
building a high-quality classifier. For example, to be able to asso-
ciate students to their university, we need a reasonable number of
students approximately uniformly distributed among the different
universities. Similar considerations hold for all the properties to be
probed. Keeping in mind these limitations, we finally extracted a
subgraph containing 568.792 entities, and 16 types of relations.

4.2 Classification Model
If our hypothesis is valid and the information we aim to retrieve is
indeed available in the input features, even a very simple classifier
will likely be able to decode it. For this reason, we decided to rely
on Logistic Regression as a classification model. Hence, we trained a
logistic regression model for each one of the probing tasks to be
tested.

One of the main issues encountered during the training of such
classifiers is the presence of strongly unbalanced classes. As de-
scribed in Section 4.1, extracting a subset of data that would be
balanced w.r.t. all the properties to be tested is not straightforward.
Therefore we had to consider, for each property, only the subset of
its possible values having a number of occurrences above a thresh-
old. At the same time, we needed to undersample the most frequent
classes to avoid a highly skewed distribution.

All the classifiers have been trainedwith a 5-folds cross-validation
on 80% of the data and tested on the remaining 20%.

4.3 Graph Embeddings Models
We tested and compared some of the most widely used GE algo-
rithms to analyze the differences in their capacity of capturing

information from the graph. We evaluated one of the first GE al-
gorithms conceived for generic graphs, i.e. node2vec; and several
algorithms specifically designed for KGs: TransE, ComplEx, Dist-
Mult, RESCAL, and RotatE. For the computation of the node2vec
embeddings we used the implementation provided by the SNAP
framework1 [19], while for the other KGEs, we relied on the AWS
DGL-KGE library2 [37]. For all the models the dimension of the
computed vectors was 100.

4.4 Results and discussion
Table 1 reports the results in terms of weighted F1-score obtained
for the GEs computed from OntoSIDES on all the probed properties
described in Section 4.1. The GE models with the highest F1-score
are highlighted in bold.

Structural properties: Table 1 shows that no GE model is able
to capture the information about the number of incoming and
outgoing links for each node. Indeed, all the tested algorithms
present comparable but very poor F1-scores, with the best model
(node2vec) achieving an F1-score of 0.22 for the prediction of the in-
degree and 0.51 for the out-degree. The better results obtained for
the out-degree can be explained by the smaller number of classes
considered in this case: the maximum possible number of outgoing
links in the chosen OntoSIDES subgraph is 13, while the largest
in-degree is 35. By taking a closer look at the confusion matrices
obtained on these tasks by each algorithm, we notice that all the
GE models expose a common behavior for the two prediction tasks:
they are very good in identifying leaves and roots nodes, i.e.
nodes with, respectively, in-degree and out-degree equal 0.

Regarding the prediction of the existence of a direct link be-
tween two nodes, Table 1 shows that all the tested models are
fairly good in encoding this kind of information, with the
worst model (RotatE) achieving a F1-score of 0.67 and the best one
(node2vec) getting close to 0.9. Being able to train a classifier for
such property confirms that embeddings of linked nodes present
some common patterns that permit to determine the existence of a
connection between the two nodes.

Semantic properties: The F1-scores reported in Table 1 reveal
the ability of GEs to encode semantic information. These results
show that all the models are capable of identifying the cor-
rect type for the majority of nodes in the graph, with the
worst model (RESCAL) achieving a F1-score of 0.87; while the
identification of correct type of relation existing between
two nodes is almost perfect for all the models. This result
does not come unexpectedly for models specifically designed for
Knowledge Graph Embeddings. In fact, KGE models can partially
take into account the semantics of the KG by considering different
types of relations and computing a vector representation for every
one of them. Surprisingly enough, although it does not rely on
any semantic information, node2vec obtained the best results in
these tasks: F1 = 0.98 for entity type and F1 = 1.00 for relation
type. A possible explanation for this behavior could lie in the fact
that entities and relations of the same type possibly present the
same connectivity patterns (similar links, common nodes, etc.) that

1http://snap.stanford.edu/index.html
2https://aws-dglke.readthedocs.io/en/latest/index.html
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Table 1: Weighted F1-scores on the different probing tasks for KGE computed on OntoSIDES.

GE algorithm Structural properties Semantic properties Context-specific properties
in-degree out-degree direct link entity type relation student’s university question’s topic

node2vec 0.22 0.51 0.87 0.98 1.00 1.00 0.69
ComplEx 0.11 0.37 0.74 0.90 0.99 0.51 0.18
TransE 0.13 0.41 0.80 0.96 1.00 0.05 0.03
DistMult 0.12 0.41 0.83 0.94 1.00 0.34 0.10
RESCAL 0.13 0.37 0.83 0.87 0.99 0.08 0.06
RotatE 0.11 0.37 0.67 0.95 1.00 0.57 0.37

can be captured by the node2vec algorithm and transposed into
the vector representation of the corresponding nodes. For exam-
ple, several nodes representing answers will always be connected
to the class sides:answer and to a node representing the student
that will be linked to the class sides:student. Therefore, an instance
of an answer can be identified by the direct link to sides:answer
and the 2-hops path to sides:student. At the same time, the space
of possible relations existing between nodes will be limited. For
example, a sides:answer and a sides:student might be linked with a
single predicate, i.e. sides:done_by.

The extremely high values of F1-score obtained for the properties
in this category are very likely due to the very low heterogeneity of
the knowledge represented in this graph, i.e. the number of different
classes and predicates is very limited.

Context-specific properties. On the one hand, Table 1 shows that
context-specific properties are on average hardly captured by GE
methods specifically designed for KGs. While for a human being it
is straightforward to understand that the attended university is a
relevant concept when summarising information about students,
it is much more difficult for the GEs to grasp such a correlation
uniquely from the graph. If no additional information (e.g. edge
weights) is provided, it is not possible to recognize that, for a stu-
dent node, the link towards the university is more meaningful than
the connection with a given answer. The poor results in terms of
F1-score shown by most of the models in Table 1 confirm that this
kind of knowledge presents a much higher level of abstrac-
tion (complexity) compared to other previously discussed
properties and, therefore, cannot be easily interpreted by
such techniques. Possibly considering longer embeddings could
facilitate the incorporation of this kind of knowledge.

On the other hand, we can observe that node2vec achieves good
performance also in this task. This could be motivated by the fact
that this algorithm strongly relies on the structure of the graph
by creating fixed-length paths starting at each node, hence it can
recognize the more important role of universities’ nodes under a
structural point of view. Universities nodes behave as hubs for stu-
dents, i.e. several students are directly linked to a single university,
therefore all the embeddings of students attending the same univer-
sity will share similar patterns as they are connected in the graph
through the university node. The same considerations hold for
questions and their corresponding topics, with the difference that
encoding topics information is a more challenging task as questions
can be linked to several topics and the number of different topics is
much larger than the number of universities (more than 500 topics

vs. 33 universities). This result highlights the crucial role of the
graph structure for the meaningfulness of the final GEs and sug-
gests that careful ontology modeling choices are of the uttermost
importance. It is interesting to point out that RotatE and ComplEx
perform much better on this task when compared to the other KGE
methods. This could be related to their ability to represent entities
through Complex numbers, but further experiments are needed to
confirm this intuition.

5 CONCLUSION AND FUTUREWORK
In this work, we presented a methodology based on probing tasks
to verify whether GEs are able to encode certain properties of
the graph elements and we introduced a categorization of such
properties. To test our approach we proposed a first set of properties
that could be encoded by GEs and we relied on them to analyze
the knowledge captured by GEs on a real-world Knowledge Graph.
We found out that, in our use-cases, GEs can encode information
about characteristics of graph elements at any level of abstraction:
structural, semantic, and context-specific. We have shown that,
even with some differences, all the tested GE models are able to
capture the type of a given node, the presence of a direct link,
and the type of relationship between two nodes. Moreover, we
discovered that all the models are very good at identifying roots and
leaves nodes. Finally, we observed that context-specific properties
are better captured by node2vec embeddings. We hypothesized
that this is because, in many cases, properties that are considered
relevant from a human perspective are represented in the graph by
nodes with a central structural role. This conclusion highlights the
importance of the graph structure and ontology design.

As a future work, our first step will be to extend the presented
categorization with additional properties, e.g. range and domain for
any rdf:Property or the Class or Individual nature for any node.
We also aim to test more complex models as probing task classifiers
to unveil possible non-linear dependencies between the computed
embeddings and the characteristics of graph elements. We also
want to analyze the possible changes in the encoded knowledge
with respect to the model hyper-parameters, e.g. vector dimension,
random walks length, etc. Moreover, we will study how modifica-
tions to the ontology and, therefore, to the graph structure affect
the information borne by GEs. The goal of this research is to dis-
cover and provide insights into both ontology modeling choices
and selection of the best GE model for the context and the final
goal to be achieved through the use of KGEs. In the first stage, we
will apply these insights to several tasks related to the OntoSIDES
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case study, such as predicting students’ outcomes to questions or
associating learning objectives to the right educational resources.
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