On the linearization of Antoine's law
 Pascal Floquet

To cite this version:

Pascal Floquet. On the linearization of Antoine's law. Industrial and engineering chemistry research, 2009, 48 (5), pp.2734-2737. 10.1021/ie800892v . hal-03476773

HAL Id: hal-03476773

https://hal.science/hal-03476773

Submitted on 13 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID : 2153

To link to this article: DOI: 10.1021/ie800892v URL : http://dx.doi.org/10.1021/ie800892v

To cite this version Floquet, Pascal (2009) On the linearization of Antoine’s law. Industrial \& Engineering Chemistry Research, vol. 48 (n° 5). pp. 2734-2737. ISSN 0888-5885

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@inp-toulouse.fr

On the linearization of Antoine's law

Short Note

Pascal Floquet

Abstract

A multivariate linearized Antoine's equation (MLAE) is presented in this short note. To our knowledge, it is the first time this multi-linear equation is proposed in the literature. Compared with initial null parameters or «Clapeyron» type initial parameters, that do not take into account the highly non-linear correlation between the parameters B and C, our procedure gives a very good initial guess for the nonlinear regression of vapor pressure versus temperature. Fortunately, the multi-linear expression of linearized Antoine's law is obtained in a simple, non iterative manner. Examples relevant from thermodynamical literature are used to show the quality of our MLAE parameters in order to converge to nonlinear regression solution of Antoine's model and to compare our approach with the classical ones.

Introduction

Historically, many different formulas and graphical representations have been suggested for the vapor pressure-temperature relationship for a pure component [Wisniak, 2001]. Clapeyron's formula proposed in 1834 and thermodynamically stated by Clausius in 1864 gave birth to the well-known ClausiusClapeyron differential relationship

$$
\begin{equation*}
\frac{d \ln P^{\circ}}{d\left(\frac{1}{T}\right)}=\frac{-\Delta H^{v}}{R \Delta z} \tag{1}
\end{equation*}
$$

Where ΔH^{ν} is the latent heat of vaporization, $z=\frac{P^{\circ} v}{R T}$ the compressibility factor, P°, v and T respectively the vapor pressure, the corresponding volume and the temperature. When $\frac{\Delta H^{v}}{\Delta z}$ is assumed to be constant, it leads to

$$
\begin{equation*}
\log P^{\circ}=A-\frac{B}{T} \tag{2}
\end{equation*}
$$

This assumption, or a stronger one of constant heat of vaporization, was soon found to be one of the main reasons why the Clausius-Clapeyron equation would only fit the experimental data in a limited temperature range. A common way to improve the fitting ability is to use the Antoine's equation for the vapor pressure of a saturated liquid which introduces a third parameter C in the approximated ClausiusClapeyron equation

$$
\begin{equation*}
\log P^{\circ}=A-\frac{B}{T+C} \tag{3}
\end{equation*}
$$

Classically, the three coefficients A, B and C have to be determined thanks to experimental data.
From a numerical point of view, the equation (2) is clearly linear with the coefficients A and B, in terms of $\log P^{\circ}$ and $1 / T$ variables; thus, if a substance behaves according to the Clausius-Clapeyron model, a plot of $\log P^{\circ}$ against $1 / T$ should yield a straight line with slope $-B$. On the contrary, Antoine's equation (3) is a non-linear equation with respect to parameters A, B and C and for the same variables $\log P^{\circ}$ and $1 / T$. This equation is a well-known non-linear model in the field of Chemical Engineering education and often used as an example for identification purpose of non-linear model [Corriou, 2004].
We propose, in this work, to promote a change of variables leading to a linearized Antoine's equation. It is easy, with this model, to compute the above coefficients A, B and C via a classical linear regression method. Thus, these values of coefficients are good candidates for initial points of a non-linear regression of complete non-linear Antoine's law. To prove the adequacy of a such initial guess, three examples have
been chosen with experimental value ($T_{\text {exp }}, P_{\text {exp }}$) of temperature and vapor pressure: carbon tetrachloride CCl_{4} [Hildebrand and Mc Donald in Boublik et al., 1973], di-isobutyl hexahydrophtalate (DIBE) [Liu et al., 2005] and 2,6,10,14-tetramethylpentadecane (Pristane) [Bourasseau et al., 2004].

Several Non-linear Regressions on Antoine's Law

The non-linear Antoine's model (3) can be fitted with experimental data via a lot of distinct criteria to be minimized. Classical ones are the following:
Logarithmic Absolute criterion (LAC) $\sum_{i=1}^{n_{\text {exp }}}\left(\log P^{\circ}{ }_{\text {exp }}-\log P_{\text {calc }}^{\circ}\right)^{2}=\sum_{i=1}^{n_{\text {epp }}}\left(\log P_{\text {exp }}^{\circ}-\left(A-\frac{B}{T_{\exp }+C}\right)\right)^{2}$
Logarithmic Relative criterion (LRC) $\sum_{i=1}^{n_{\text {exp }}}\left(\frac{\log P^{\circ}{ }_{\text {exp }}-\log P_{\text {calc }}^{\circ}}{\log P_{\text {exp }}^{\circ}}\right)^{2}=\sum_{i=1}^{n_{\text {exp }}}\left(\frac{\log P_{\text {exp }}^{\circ}-\left(A-\frac{B}{T_{\text {exp }}+C}\right)}{\log P^{\circ}{ }_{\exp }}\right)^{2}$
Absolute criterion (AC) $\sum_{i=1}^{n_{\text {exp }}}\left(P_{\text {exp }}^{\circ}-P_{\text {calc }}^{\circ}\right)^{2}=\sum_{i=1}^{n_{\text {exp }}}\left(P^{\circ}{ }_{\text {exp }}-e^{A-\frac{B}{T_{\text {epp }}+C}}\right)^{2}$
Relative criterion (RC) $\sum_{i=1}^{n_{\text {exp }}}\left(\frac{P^{\circ}{ }_{\exp }-P^{\circ}{ }_{\text {calc }}}{P_{\text {exp }}^{\circ}}\right)^{2}=\sum_{i=1}^{n_{\text {exp }}}\left(\frac{P_{\text {exp }}^{\circ}-e^{A-\frac{B}{T_{\text {epp }}+C}}}{P_{\text {exp }}^{\circ}}\right)^{2}$
Boublik et al. criterion (BC) $\sum_{i=1}^{n_{\text {exp }}}\left(\left(\log P_{\text {exp }}^{\circ}-A\right)\left(T_{\text {exp }}+C\right)+B\right)^{2}$
All these criteria deal with least-square minimization problems that are not exactly equivalent in terms of parameter solutions or final criterion value. In this work, all the least-square fitting are performed with lsqnonlin program proceeding from Matlab ${ }^{\circledR}$ Optimization Toolbox, based on the Levenberg-Marquardt method with line search for medium-scale problem [Levenberg, 1944; Marquardt, 1963]. For comparison purpose, the tolerances associated with these problems (termination tolerance on the function value ε_{F} and on variable change ε_{X}^{1}) are set to 10^{-7}.

Interaction between C and D coefficients

The difficulties of non-linear regression procedures (LAC, LRC, AC, RC, BC or other criteria) arise from the correlation between B and C coefficients and from the number of local minima of the optimization problem. As an example, it can be seen, for the carbon tetrachloride CCl_{4} [Boublik et al., 1973] example and for a fixed value of coefficient $A(A=15)$, the response surface (criterion AC) versus B and C values. It can be observed than the "minimum valley" is quite narrow and may explain the numerical difficulties encountered.

[^0]

Figure 1: Values of AC criterion versus coefficients B and $C(A=15)$ for the $C C l_{4}$ example
A good initial point of the regression procedure provides us a less difficult path tracing to the solution and a clear advantage in terms of global minimum localization.

Several Initial Points for the Non-linear Regression

All the non-linear regressions are performed with the following initial points:

- "Null" initial point: all the initial coefficient values A. B and C are set to zero;
- "Clapeyron" initial point: initial coefficient values A and B are set to the solution of the linear Clausius-Clapeyron equation (2); the initial value of C is equal to zero;
- "Linearized Antoine" initial point: all the initial coefficient values A, B and C are set to the solution of the linearized Antoine equation below.
This new linear initial point we proposed is obtained by the following transformation of Antoine equation (3):

$$
\begin{gather*}
\log P^{\circ}=\frac{A T+A C-B}{T+C} \Rightarrow C \log P^{\circ}=A T-T \log P^{\circ}+(A C-B) \\
\Downarrow \\
\log P^{\circ}=\left(A-\frac{B}{C}\right)+\frac{A}{C} T-\frac{T \log P^{\circ}}{C} \tag{4}
\end{gather*}
$$

This equation (4) is linear with the coefficients $A / C,-1 / C$ and $(A-B / C)$, in terms of transformed variables $\log P^{\circ}, T$ and $T \log P^{\circ}$. It is then possible to linearly identify these coefficients and, thus, the original ones A, B and C, by fitting $\log P^{\circ}{ }_{\text {exp }}$ with $T_{\text {exp }}$ and $T_{\text {exp }} \log P^{\circ}{ }^{\circ}$ exp.
If we note X the following $\left(n_{\text {exp }} \times 3\right)$ matrix $X=\left(\begin{array}{ccc}1 & T_{\text {exp }}^{1} & T_{\text {exp }}^{1} \log P_{\text {exp }}^{\circ 1} \\ 1 & T_{\text {exp }}^{2} & T_{\text {exp }}^{2} \log P^{\circ}{ }_{\text {exp }}^{2} \\ \ldots & \ldots & \ldots \\ 1 & T_{\text {exp }}^{n_{\text {exp }}} & T_{\text {exp }}^{n_{\text {exp }}} \log P_{\text {exp }}^{\circ n_{\text {exp }}}\end{array}\right)$ and Y the following array
$Y=\left(\begin{array}{c}\log P_{\text {exp }}^{\circ 1} \\ \log P_{\text {exp }}^{\circ{ }^{\circ}} \\ \ldots \\ \log P_{\text {exp }}^{\circ^{n_{\text {exp }}}}\end{array}\right)$, then the multi-linear least-square regression gives the coefficient array $\beta=\left(\begin{array}{c}A-\frac{B}{C} \\ \frac{A}{C} \\ \frac{-1}{C}\end{array}\right)$
by

$$
\beta=\left(X^{T} X\right)^{-1} X^{T} Y
$$

Then

$$
\left\{\begin{array}{l}
A=-\frac{\beta_{2}}{\beta_{3}} \\
B=\frac{\beta_{2}}{\beta_{3}{ }^{2}}+\frac{\beta_{1}}{\beta_{3}} \\
C=-\frac{1}{\beta_{3}}
\end{array}\right.
$$

The adequation of the linearized model can be seen in the following figure that gives the response $\log P^{\circ}$ with T and $T \log P^{\circ}$ for the Pristane example. Scatter points are experimental points and surface corresponds to the multi-linear model.

Figure 2: Values of response $\log P^{\circ}$ with T and $T \log P^{\circ}$ for the Pristane example
The table 1 shows the complete non-linear regression results for all the criteria and examples, in terms of coefficient initialization.
It is easy to see that our MLAE initialization procedure gives in all cases better results compared with other initialization methods. The convergence of the non-linear regression to optimal solution with the different initializations is shown, for the DIBE example and the LAC criterion, in the following figure.

Figure 3: Convergence versus Initialization for the DIBE example and the RC criterion (Null Initialization: left Y axis, Clapeyron and MLAE Initializations: right Y axis)

As foreseen, the proposed MLAE procedure is quite good for quickly converge to optimal solution. The table 2 shows the literature results and the criterion chosen. In all the case, the initialization proposed and the non-linear regression end to the same or better solution.

Conclusion and Significance

A new linearized Antoine equation is proposed to initialize the well-known Antoine's regression problem. This equation is easy to compute and allows to obtain quickly good results to the non-linear regression of vapor pressure versus temperature of pure component.

Notations

P°	Vapor pressure
A	First Antoine's coefficient
B	Second Antoine's coefficient
C	Third Antoine's coefficient
T	Temperature (K)
X	Experiment matrix $\left(n_{\text {exp }} \times 3\right)$
Y	Response array $\left(n_{\text {exp }} \mathrm{X} 1\right)$
$\underline{\text { Acronym }}$	
AC	Absolute Criterion
BC	Boublik’s Criterion
$M L A E$	Multivariate Linearized Antoine's Equation
DIBE	Di-IsoButyl hExahydrophtalate
LAC	Logarithmic Absolute Criterion
LRC	Logarithmic Relative Criterion
RC	Relative Criterion
Greek Letters	
β	Parameter array (3×1)
ΔV	Volume change

Subscript
exp
calc

Heat of vaporization
termination tolerance on the variable change (least-square procedure)
termination tolerance on the function value
(least-square procedure)
experimental
calculated

References

T. Boublik, V. Fried and E. Hala, "The Vapour Pressures of Pure Substances", Elsevier, Amsterdam, 1973
E. Bourasseau, T. Sawaya, I. Mokbel, J. Jose and P. Ungerer, "Measurement and Prediction of Vapour Pressures of 2,6,10,14-tetramethylpentadecane (pristane)", Fluid Phase Equilibria, Vol. 225, pp. 49-57, 2004
J. P. Corriou, "Process Control. Theory and Application", Springer, London, 2004
K. Levenberg, "A Method for the Solution of Certain Problems in Least-Squares", Quarterly Applied Math., Vol. 2, pp. 164-168, 1944
Z. Liu, Z. Gao and R. Liu, "Isobaric Vapor-Liquid Equilibria of the Binary System Maleic Anhydride and Di-isobutyl Hexahydrophtalate at 2.67, 5.33 and 8.00 kPa ", Fluid Phase Equilibria, Vol. 233, pp. 23-27, 2005
D. Marquardt, "An Algorithm for Least-Squares Estimation of Nonlinear Parameters", SIAM Journal Applied Math., Vol. 11, pp. 431-441, 1963
J. Wisniak, "Historical Development of the Vapor Pressure Equation from Dalton to Antoine", Journal of Phase Equilibria, Vol. 22, No. 6, pp. 622-630, 2001

Criterion	Initialization	CCl4					DIBE					Pristane				
		A	B	C	Norm	Iterations (Function evaluations)	A	B	C	Norm	Iterations (Function evaluations)	A	B	C	Norm	Iterations (Function evaluations)
MLAE		15.8502	2794.9	-46.64			11.4945	2658.0	-209.45			20.4388	4274.8	-116.09		
LAC	Zero	15.872	2807.1	-46.041	6.0610^{-6}	39 (298)	13.394	3817.6	-154.95	1.0910^{-2}	88 (684)	20.479	4296.8	-115.42	1.1210^{-3}	57 (440)
	Clapeyron	17.567	3824.4	-0.026	2.5010^{-4}	2 (12)	13.394	3817.6	-154.95	1.0910^{-2}	122 (943)	20.479	4296.8	-115.42	1.1210^{-3}	58 (445)
	Antoine Linear	15.850	2794.9	-46.638	6.1210^{-6}	2 (12)	13.394	3817.6	-154.95	1.0910^{-2}	49 (377)	20.438	4274.8	-116.07	1.1410^{-3}	3 (19)
LRC	Zero	13.393	1606.8	-112.460	4.1410^{-5}	85 (664)	9.606	1768.1	-256.00	1.3210^{-2}	88 (671)	20.360	4242.1	-116.79	1.8010^{-4}	578 (4304)
	Clapeyron	17.346	3678.2	-6.436	6.9410^{-6}	9 (65)	9.606	1768.1	-256.00	1.3210^{-2}	176 (1348)	20.360	4242.1	-116.79	1.8010^{-4}	418 (3147)
	Antoine Linear	15.850	2794.9	-46.638	1.8310^{-7}	2 (12)	9.606	1768.1	-256.00	1.3210^{-2}	49 (371)	20.360	4242.1	-116.79	1.8010^{-4}	21 (154)
AC	Zero	16.020	2890.5	-41.925	0.939	234 (1770)	13.254	3681.1	-163.13	0.236	188 (1433)	NON CONVERGENCE				
	Clapeyron	16.020	2890.5	-41.925	0.939	108 (816)	13.254	3681.1	-163.13	0.236	248 (1897)	26.276	8647.3	13.91	28.424	1524 (6100)
	Antoine Linear	16.020	2890.5	-41.925	0.939	24 (197)	13.254	3681.1	-163.13	0.236	70 (522)	23.998	6726.6	-38.82	28.820	2466 (9868)
RC	Zero	16.000	2879.2	-42.488	0.024	220 (1681)	14.024	4251.5	-136.51	0.109	134 (1038)	NON CONVERGENCE				
	Clapeyron	16.000	2879.2	-42.488	0.024	95 (730)	14.024	4251.5	-136.51	0.109	131 (1004)	21.603	4938.5	-96.33	5.198	25000 (100004)*
	Antoine Linear	16.000	2879.2	-42.488	0.024	25 (202)	14.024	4251.5	-136.51	0.109	59 (446)	21.123	4657.6	-104.59	4.912	16534 (66140)
BC	Zero	15.883	2813.3	-45.739	0.472	224 (1699)	12.869	3475.2	-170.10	31.550	7949 (31800)	20.459	4285.5	-115.76	9.807	7295 (29184)
	Clapeyron	15.883	2813.3	-45.739	0.472	57 (441)	12.901	3495.4	-169.19	31.551	20878 (83512)	20.460	4286.3	-115.74	9.807	17647 (70592)
	Antoine Linear	15.883	2813.3	-45.739	0.472	11 (80)	12.878	3481.4	-169.82	31.550	16641 (66568)	20.458	4285.5	-115.76	9.807	393 (1576)

Table 1: Comparison of initialization techniques on Antoine regression problem with several criteria
(* maximal number of function calls)

	CCl 4			DIBE			Pristane		
Criterion	A	B	C	A	B	C	A	B	C
	15.938	2844.1	-44.213	12,866	3471,6	-170,35	20,489	4301,7	-115,26
LAC	2.5810^{-3}			1.0610^{-1}			3.3710^{-2}		
LRC	4.7910^{-4}			1.8010^{-1}			2.9710^{-1}		
AC	0.9974			0.69629			41.129		
RC	0.1596			0.37515			5.5148		
BC	0.7093			31.56			9.8759		

Table2: Literature results (norm of the criterion) on Antoine regression problem with several criteria (in grey, the criterion chosen by the authors, if known)

[^0]: ${ }^{1}$ Three termination criteria have been applied: non evolution on variables (evolution less than ε_{X}), non evolution of leastsquare function (evolution less than ε_{F}) and first-order optimality conditions less than ε_{F}.

