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On the linearization of Antoine’s law 

Short Note 

Pascal Floquet 
 

Abstract 
A multivariate linearized Antoine’s equation (MLAE) is presented in this short note. To our knowledge, it 
is the first time this multi-linear equation is proposed in the literature. Compared with initial null 
parameters or « Clapeyron » type initial parameters, that do not take into account the highly non-linear 
correlation between the parameters B and C, our procedure gives a very good initial guess for the non-
linear regression of vapor pressure versus temperature. Fortunately, the multi-linear expression of 
linearized Antoine’s law is obtained in a simple, non iterative manner. Examples relevant from thermo-
dynamical literature are used to show the quality of our MLAE parameters in order to converge to non-
linear regression solution of Antoine’s model and to compare our approach with the classical ones. 

Introduction 
Historically, many different formulas and graphical representations have been suggested for the vapor 
pressure-temperature relationship for a pure component [Wisniak, 2001]. Clapeyron’s formula proposed 
in 1834 and thermodynamically stated by Clausius in 1864 gave birth to the well-known Clausius-
Clapeyron differential relationship 
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Where Hv is the latent heat of vaporization, 
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  the compressibility factor, P°, v and T respectively 

the vapor pressure, the corresponding volume and the temperature. When 
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This assumption, or a stronger one of constant heat of vaporization, was soon found to be one of the main 
reasons why the Clausius-Clapeyron equation would only fit the experimental data in a limited 
temperature range. A common way to improve the fitting ability is to use the Antoine’s equation for the 
vapor pressure of a saturated liquid which introduces a third parameter C in the approximated Clausius-
Clapeyron equation 
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Classically, the three coefficients A, B and C have to be determined thanks to experimental data. 
From a numerical point of view, the equation (2) is clearly linear with the coefficients A and B, in terms 
of log P° and 1/T variables; thus, if a substance behaves according to the Clausius-Clapeyron model, a 
plot of log P° against 1/T should yield a straight line with slope –B. On the contrary, Antoine’s equation 
(3) is a non-linear equation with respect to parameters A, B and C and for the same variables log P° and 
1/T. This equation is a well-known non-linear model in the field of Chemical Engineering education and 
often used as an example for identification purpose of non-linear model [Corriou, 2004]. 
We propose, in this work, to promote a change of variables leading to a linearized Antoine’s equation. It 
is easy, with this model, to compute the above coefficients A, B and C via a classical linear regression 
method. Thus, these values of coefficients are good candidates for initial points of a non-linear regression 
of complete non-linear Antoine’s law. To prove the adequacy of a such initial guess, three examples have 



been chosen with experimental value (Texp , Pexp) of temperature and vapor pressure: carbon tetrachloride 
CCl4 [Hildebrand and Mc Donald in Boublik et al., 1973], di-isobutyl hexahydrophtalate (DIBE) [Liu et 
al., 2005] and 2,6,10,14-tetramethylpentadecane (Pristane) [Bourasseau et al., 2004]. 
 

Several Non-linear Regressions on Antoine’s Law 
The non-linear Antoine’s model (3) can be fitted with experimental data via a lot of distinct criteria to be 
minimized. Classical ones are the following: 
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All these criteria deal with least-square minimization problems that are not exactly equivalent in terms of 
parameter solutions or final criterion value. In this work, all the least-square fitting are performed with 
lsqnonlin program proceeding from Matlab® Optimization Toolbox, based on the Levenberg-Marquardt 
method with line search for medium-scale problem [Levenberg, 1944; Marquardt, 1963]. For comparison 
purpose, the tolerances associated with these problems (termination tolerance on the function value F  
and on variable change X

1) are set to 10-7. 

Interaction between C and D coefficients 
The difficulties of non-linear regression procedures (LAC, LRC, AC, RC, BC or other criteria) arise from 
the correlation between B and C coefficients and from the number of local minima of the optimization 
problem. As an example, it can be seen, for the carbon tetrachloride CCl4 [Boublik et al., 1973] example 
and for a fixed value of coefficient A (A = 15), the response surface (criterion AC) versus B and C values. 
It can be observed than the “minimum valley” is quite narrow and may explain the numerical difficulties 
encountered. 

                                                 
1 Three termination criteria have been applied: non evolution on variables (evolution less than X), non evolution of least-
square function (evolution less than F ) and first-order optimality conditions less than F. 
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Figure 1: Values of AC criterion versus coefficients B and C (A = 15) for the CCl4 example 

A good initial point of the regression procedure provides us a less difficult path tracing to the solution and 
a clear advantage in terms of global minimum localization. 

Several Initial Points for the Non-linear Regression 
All the non-linear regressions are performed with the following initial points: 

 “Null” initial point: all the initial coefficient values A. B and C are set to zero; 
 “Clapeyron” initial point: initial coefficient values A and B are set to the solution of  the linear 

Clausius-Clapeyron equation (2); the initial value of C is equal to zero; 
 “Linearized Antoine” initial point: all the initial coefficient values A, B and C are set to the 

solution of the linearized Antoine equation below. 
This new linear initial point we proposed is obtained by the following transformation of Antoine equation 
(3): 
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This equation (4) is linear with the coefficients A/C, -1/C and (A – B/C), in terms of transformed variables 
logP°, T and TlogP°. It is then possible to linearly identify these coefficients and, thus, the original ones 
A, B and C, by fitting logP°exp with Texp and TexplogP°exp. 

If we note X the following (nexp x 3) matrix
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Y  ,  then the multi-linear least-square regression gives the coefficient array 
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The adequation of the linearized model can be seen in the following figure that gives the response logP° 
with T and TlogP° for the Pristane example. Scatter points are experimental points and surface 
corresponds to the multi-linear model. 
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Figure 2: Values of response logP° with T and TlogP° for the Pristane example 

 
The table 1 shows the complete non-linear regression results for all the criteria and examples, in terms of 
coefficient initialization.  
It is easy to see that our MLAE initialization procedure gives in all cases better results compared with 
other initialization methods. The convergence of the non-linear regression to optimal solution with the 
different initializations is shown, for the DIBE example and the LAC criterion, in the following figure. 
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Figure 3: Convergence versus Initialization for the DIBE example and the RC criterion 

(Null Initialization: left Y axis, Clapeyron and MLAE Initializations: right Y axis) 
 

As foreseen, the proposed MLAE procedure is quite good for quickly converge to optimal solution. 
The table 2 shows the literature results and the criterion chosen. In all the case, the initialization proposed 
and the non-linear regression end to the same or better solution. 

Conclusion and Significance 
A new linearized Antoine equation is proposed to initialize the well-known Antoine’s regression problem. 
This equation is easy to compute and allows to obtain quickly good results to the non-linear regression of 
vapor pressure versus temperature of pure component. 

Notations 
P°      Vapor pressure  
A      First Antoine’s coefficient  
B      Second Antoine’s coefficient  
C      Third Antoine’s coefficient 
T      Temperature (K) 
X      Experiment matrix (nexp x 3) 
Y      Response array (nexp x 1) 
Acronym 
AC      Absolute Criterion  
BC      Boublik’s Criterion   
MLAE      Multivariate Linearized Antoine’s Equation 
DIBE      Di-IsoButyl hExahydrophtalate 
LAC      Logarithmic Absolute Criterion  
LRC      Logarithmic Relative Criterion 
RC      Relative Criterion 
Greek Letters 
      Parameter array (3 x 1) 
V      Volumechange  



H       Heat of vaporization 
X      termination tolerance on the variable change  

(least-square procedure) 
F      termination tolerance on the function value  

(least-square procedure) 
Subscript 
exp      experimental 
calc      calculated 
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Criterion Initialization CCl4 DIBE Pristane 

    A B C Norm 

Iterations 
(Function  

evaluations) A B C Norm 

Iterations 
(Function  

evaluations) A B C Norm 

Iterations 
(Function  

evaluations) 
MLAE   15.8502 2794.9 -46.64     11.4945 2658.0 -209.45     20.4388 4274.8 -116.09     

Zero 15.872 2807.1 -46.041 6.06 10-6 39 (298) 13.394 3817.6 -154.95 1.09 10-2 88 (684) 20.479 4296.8 -115.42 1.12 10-3 57 (440) 
Clapeyron 17.567 3824.4 -0.026 2.50 10-4 2 (12) 13.394 3817.6 -154.95 1.09 10-2 122 (943) 20.479 4296.8 -115.42 1.12 10-3 58 (445) LAC 
Antoine 
Linear 15.850 2794.9 -46.638 6.12 10-6 2 (12) 13.394 3817.6 -154.95 1.09 10-2 49 (377) 20.438 4274.8 -116.07 1.14 10-3 3 (19) 
Zero 13.393 1606.8 -112.460 4.14 10-5 85 (664) 9.606 1768.1 -256.00 1.32 10-2 88 (671) 20.360 4242.1 -116.79 1.80 10-4 578 (4304) 
Clapeyron 17.346 3678.2 -6.436 6.94 10-6 9 (65) 9.606 1768.1 -256.00 1.32 10-2 176 (1348) 20.360 4242.1 -116.79 1.80 10-4 418 (3147) LRC 
Antoine 
Linear 15.850 2794.9 -46.638 1.83 10-7 2 (12) 9.606 1768.1 -256.00 1.32 10-2 49 (371) 20.360 4242.1 -116.79 1.80 10-4 21 (154) 
Zero 16.020 2890.5 -41.925 0.939 234 (1770) 13.254 3681.1 -163.13 0.236 188 (1433) NON CONVERGENCE 
Clapeyron 16.020 2890.5 -41.925 0.939 108 (816) 13.254 3681.1 -163.13 0.236 248 (1897) 26.276 8647.3 13.91 28.424 1524 (6100) AC 
Antoine 
Linear 16.020 2890.5 -41.925 0.939 24 (197) 13.254 3681.1 -163.13 0.236 70 (522) 23.998 6726.6 -38.82 28.820 2466 (9868) 
Zero 16.000 2879.2 -42.488 0.024 220 (1681) 14.024 4251.5 -136.51 0.109 134 (1038) NON CONVERGENCE 
Clapeyron 16.000 2879.2 -42.488 0.024 95 (730) 14.024 4251.5 -136.51 0.109 131 (1004) 21.603 4938.5 -96.33 5.198 25000 (100004)* RC 
Antoine 
Linear 16.000 2879.2 -42.488 0.024 25 (202) 14.024 4251.5 -136.51 0.109 59 (446) 21.123 4657.6 -104.59 4.912 16534 (66140) 
Zero 15.883 2813.3 -45.739 0.472 224 (1699) 12.869 3475.2 -170.10 31.550 7949 (31800) 20.459 4285.5 -115.76 9.807 7295 (29184) 
Clapeyron 15.883 2813.3 -45.739 0.472 57 (441) 12.901 3495.4 -169.19 31.551 20878 (83512) 20.460 4286.3 -115.74 9.807 17647 (70592) BC 
Antoine 
Linear 15.883 2813.3 -45.739 0.472 11 (80) 12.878 3481.4 -169.82 31.550 16641 (66568) 20.458 4285.5 -115.76 9.807 393 (1576) 

 
Table 1: Comparison of initialization techniques on Antoine regression problem with several criteria 

(* maximal number of function calls) 
 

 CCl4 DIBE Pristane 
Criterion A B C A B C A B C 

  15.938 2844.1 -44.213 12,866 3471,6 -170,35 20,489 4301,7 -115,26
LAC 2.58 10-3 1.06 10-1 3.37 10-2 
LRC 4.79 10-4 1.80 10-1 2.97 10-1 
AC 0.9974 0.69629 41.129 
RC 0.1596 0.37515 5.5148 
BC 0.7093 31.56 9.8759 

 
Table2: Literature results (norm of the criterion) on Antoine regression problem with several criteria (in grey, the criterion chosen by the authors, if known) 


