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A Neural Network and a Genetic Algorithm for Multiobjective Scheduling of Semiconductor Manufacturing Plants

Scheduling of semiconductor wafer fabrication system is identified as a complex problem, involving multiple objectives to be satisfied simultaneously (maximization of workstation utilization and minimization of waiting time and storage, for instance). In this study, we propose a methodology based on an artificial neural network technique, for computing the various objective functions, embedded into a multiobjective genetic algorithm for multi-decision scheduling problems in a semiconductor wafer fabrication environment. A discrete event simulator, developed and validated in our previous works, serves here to feed the neural network. Six criteria related to both equipment (facility average utilization) and products (average cycle time (ACT), standard deviation of ACT, average waiting time, Work In Process and total storage) are chosen as significant performance indexes of the workshop. The optimization variables are the time between campaigns and the release time of batches into the plant. An industrial size example is taken as a test bench to validate the approach.

Introduction

Scheduling of semiconductor wafer fabrication system is identified as a difficult task, mainly because of the typical features of the process scheme, such as complex product flow, high uncertainties in operations, rapidly changing products and technologies. Scheduling problems involved during wafer manufacturing are very similar to those found in batch chemical processing, although more stages are needed. Wafer manufacturing involves a long sequence of processing steps as well as many equipment units. Products move through the fab in lots, often of a constant size based on standard containers used to transport wafers. More precisely, the production of semiconductors is achieved in a multistep process involving a variety of complex chemical processes which can be divided into unit operations, i.e. deposition, photolithography, etching, ion implantation, photoresist strip. 1 Various modelling approaches have been used to tackle scheduling of semiconductor manufacturing plants; Reviews can be found in. 2,3 The main emphasis of much of the work on scheduling has been on static systems with a single objective. Wafer fabrication is complex, dynamic and highly stochastic. In that context, discrete event simulation (DES) has for long been a popular technique for studying industrial processes; it is also used widely for planning and sheduling in order to evaluation production alternatives. This solution was adopted in our previous works. [4][5][6][7] The combined used of a DES and an optimization procedure based on a genetic algorithm was an efficient solution to short-term job-shop scheduling problems. In spite of its acknowledged benefits, this kind of approach often reaches its limits in the industrial practice because of the highly combinatorial nature of the problems. In addition, the main emphasis of much of the work on scheduling has been on the development of predictive methodologies with a single objective to optimize. In industrial practice, wafer fabrication is a complex, dynamic and stochastic task in which satisfying multiple objectives might be more realistic than only optimally meeting a single criterion. Actually, production managers have to cope with various objectives, which contributes to scheduling complexity: meeting due dates is an important goal in low-volume and high variety production circumstances within competitive market environments. Another major objective in scheduling of semiconductor wafer fabrication is reducing waiting time for work in process (WIP) inventory to improve responsiveness to customers. In addition, the shorter the period that wafers are exposed to contaminants while waiting for process, the smaller the yield loss. Increasing the throughput is also an important stake, since the investment in fabrication equipment is capital intensive. However, embedding the simulator into a multiobjective genetic algorithm (MUGA) for computing various performance criteria may be cumbersome in terms of computational times, due to the huge number of simulations required within the optimization search.

In this study, this difficulty is overcome by implementing an approach based on an artificial neural network (ANN) technique coupled with the MUGA. Indeed, instead of using directly a classical DES procedure for modelling the manufacturing system, an ANN is preferred for response time reasons. Yet, the MELISSA discrete event simulator, validated in our previous works, serves here to feed the neural network. Furthermore, the multiobjective optimization problem arising for the multi-decision scheduling problem is tackled with a genetic algorithm, insofar as this type of procedure is particularly well-fitted to simultaneously handle several competitive objectives. It must be emphasized that in recent years, artificial neural networks (ANN) have been intensively used as an alternative way to model complex nonlinear problems in various fields. The major reason for the rapid growth and diverse applications of neural networks is their ability to approximate any function in a stable and efficient way. Yet, the time and effort required for network design are dependend on the designer's experience. For this purpose, several authors have tried to use the potential of Genetic Algorithms to find the optimum structure of the network. 8,9 GA assisted by ANN can be also an effective tool for predicting and optimizing any complex process parameters. In that sense, some applications of genetic algorithms and neural networks involve process optimization, [10][11][START_REF] Dames | X. 5th World Congress on Emulsions[END_REF] food processing (determining the drying kinetics of carrot, [START_REF] Erenturk | [END_REF] dynamic optimization of a heat treatment for minimizing water losses in tomatoes during storage 14 and modelling and optimization of variable retort temperature thermal processing for conduction-this perspective.

Section 2 is devoted to the typical features of MELISSA discrete event simulator with special emphasis on input data and criteria selection. Section 3 presents the guidelines of ANN modelling. Section 4 is relative to multiobjective optimization performed by a genetic algorithm. Typical results from monocriterion, bi-and tricriteria are the core of Section 5. Finally, conclusions and perspectives are highlighted in Section 6. 

Typical features of MELISSA discrete event simulator

Principles Plant modelling and simulation have for long been considered for granted to accurately assess the capacity of a facility. Such an approach 17 has been widely used in the semiconductor industry for a wide range of strategic objectives such as fab design, equipment selection, capacity and cycle time planning, etc... Its use in the tactical area has been relatively limited, including short-interval scheduling, dispatching of individual batches, equipment scheduling, short-term sheduling of labor resources, [START_REF] Pfund | Handbook of Production Scheduling[END_REF] etc... To model a wafer fab in a high degree of detail, Discrete Event Simulation (DES) techniques constitute a classical way, adopted in our previous works and leading to the development of the MELISSA software tool in cooperation with the Motorola Company in Toulouse, France. [START_REF] Floquet | [END_REF]20 Process planning simulations evaluate assignments of jobs to machines and routings for those jobs through the shop. Scheduling simulations propose solutions to daily issues including on-time order completion, priority changes, and unexpected changes in resource availability.

Typical events taken into account and managed in the simulation core have been widely presented in, 4,[START_REF] Bérard | European Symposium of the Working Party on Computer Aided Process Engineering[END_REF] and will not be recalled here. The software tool was widely used and validated in previous works and reflects the behaviour of the plant. The different runs performed with MELISSA allow identifying the more sensitive variables on some performance criteria, such as facility utilisation, cycle time, limitation of WIP and so on...

Example presentation

To have a global overview of the production system, let us present the typical features of the industrial example, which will serve as a test bench and a guideline of the methododology proposed in this work ( Figure 2). The studied manufacturing process starts from monocrystalline silicon substrates to manufacture several types of complex electronic components. Classically, the wafers follow different routes through the so-called "wafer fab" according to their recipes. The manufacture of a product requires here 70 operating processing steps. The workshop involves a collection of 40 equipment units for the production of 50 batches per week. Some equipment units may be arranged in parallel, others are common items, meaning that some batches visit them repeatedly, thus creating the so-called reentrant flow, which is typical of such production schemes. A batch can be merged or split if required, depending of the unit capacity. From a physicochemical point of view, the involved processes consist of deposition, diffusion, metallization and control.

The products are divided into 6 different classes, leading to different electronic components (MOS transistor, diode ...) The workshop runs 24 hours a day and 7 days a week. Storage buffers are involved through the process: since the batches involve generally stacks of 50 wafers, storage constraints are not necessary to be taken into account. Of course, modern wafer fabrication plants are highly automated factories, with advanced material handling systems and factory-wide computer control. There are conspicuous queuing phenomena, creating "bubble effects" at the critical equipment units. Depending on the mix of products, the bottleneck machines shift with time and work-in-process batches can be regarded as moving through a network of queues. In addition to these operations, many loading/unloading, cleaning, measurement, inspection operations are performed throughout the fab by operators, who are generally polyvalent, i.e. neither affected to a particular equipment unit nor to a specified zone. Finally, the workshop behaviour may be affected by sporadic equipment breakdown or maintenance and personnel shift : 313 tasks performed by the operators are considered in the studied wafer-fab. 
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Input data

The input data for the simulation that are the decision variables for the optimization phase, are the following ones:

• Maximum number of recipes (MNR) : 6 (they refer to class 1, 2, 3, 4, 5, 6);

• Percentage of each family (PEC): 28 % class 1, 16% class 2, 20% class 3, 16% class 4, 16% class 5, 4% class 6;

• Total production (TP): 174 batches (50 wafers per batch)

• Number of sequencing lots (NSL) : 8

• Time between campaigns (TBC) in min: 10080, 11080; 12080, 13080, 14080, 15080, 16080, 17080;

• Time between batches (TBB): continuous value between 0 and TBC.

Criteria selection

Six criteria related to equipment units and products were selected in this study: These criteria are computed according to the following relations:

UT j (%) = NUE j T BC × 100 (1) 
NUE j corresponds to the net utilization time for equipment j and T BC is the campaign duration, i.e., the time between two consecutive campaigns.

FAU(%) = ∑ E i=1 UT j E × 100 (2) 
E corresponds to the total number of equipment items.

ACT = ∑ NEL i=1 ED j -ID j NEL (3) 
ID j is the input date of batch j, ED j represents the exit date of batch j and NEL is the number of exit batches.

SD =   1 NEL × NEL ∑ j=1 ACT j 2 -ACT   0.5 (4) 
ACT j corresponds to the average cycle time of batch j.

AW T (%) = ∑ T S j=1 W T j T S (5) 
W T j corresponds to the waiting time for each stored batch.

The criteria NB and TS are directly given by the simulator. All the computations are presented in detail in. [START_REF] Baez-Senties | [END_REF] 

ANN Modelling ANN building

As it was mentioned above, the running of the DES simulation model may require a lot of time which makes it impractical for handling the problem of multi-decision scheduling of semiconductor manufacturing processes. For this reason, an artificial neural network (ANN) technique [START_REF] Dreyfus | Réseaux de neurones -Méthodologies et applications[END_REF] has been implemented to model the semiconductor plant, since its efficiency has been successfully demonstrated in semiconductor processing by many researchers. 17,[START_REF] Sung | [END_REF] The neural network stores the information via neuron interconnection, i.e., so-called weights. This leads to the learning phase, in which the DES simulator is used. On the one hand, the multi-layer perceptron (MLP) neural network with one hidden layer is the most popular ( Figure 3) network. On the other hand, the most successful learning algorithm used to train multi-layer networks is the back propagation (BP) scheme. In Figure 3, the input layer is made up by the decision variables (in section 2.2), the intermediate layer is the hidden layer, and the performance criteria listed in section 2.3 are the outputs of the network. The terms B1 and B2 refer to biases of the network.

For the ANN, several types of activation functions can classically be used, some are linear, exponential, with threshold, Gaussian, but one of the most used activation function is the hyperbolic tangent:

y = tanh B i + p ∑ i=1 w i x i (6) 
where B i is the bias (i = 1 or 2), p is the number of neurons of the input layer or the hidden layer, x i are the variables and w i are the weights. The classical implementation of a neural network always begins with the design of a data base and the choice of the samples. According to, [START_REF] Miller | Probability and Statistics for Engineers[END_REF] the size n of the data base can be approximated by the relation:

In B 1 1 2 L B2 B 1 1 2 L B2 B 1
n = Z 2 pq d 2 (7)
where Z is the normalized gaussian variable corresponding to a probability of 95% (Z = 1.96), p = q = 0.5, and d is the target (d = 2%). The value of n is rounded in this study at 2400. In a classical way, the data base is partitioned into two classes. The 2/3 of the simulation results (that is to say n Tr = 1600) is used for the training phase, while the remaining 1/3 (that is to say n Te = 800) serves in the test phase.

During the training phase, the network adapts its structure (i.e. weights of connections) in order to obtain the desired values on its exit neurons. The data base for performing the training is built up by using the DES simulator. In the supervised training phase implemented here, after initialization of the weights of the network (in general with random values), couples of input (decision variables) and output (performance criteria) are extracted from the data base, and a correction of the weights is performed according to the following mean square error function to be minimized by using the Levenberg-Marquart algorithm: The training and the test sets are randomly selected.

RMSE Tr = 1 n Tr n Tr ∑ i=1 (y(k) -g(k)) 2 0.5 (8) 
where g(k) represents the k th output value computed with MELISSA, and y(k) is the k th output computed by the ANN. The process of RMSE Tr minimization does not guarantee that the training of the network is complete. An over-training may occur when the network is trained excessively and/or the network architecture comprises a number of hidden neurons (NHN) more important than necessary (over-parameterization). There are various procedures to define an adequate network architecture, 26 the following two-phase procedure is used in this study. [START_REF] Baez-Senties | [END_REF] • Phase 1: Determination of the number of neurons for the hidden layer.

-Fix an iteration count (50, for example).

-Discretize the set of the possible values for the number of hidden neurons (for example, between 10 and 100 with a step of 5).

-Determine the value of the neuron number of the hidden layer from the minimum value of the error of training RMSETr.

-Improve this value by discretizing again more accurately around the value previously found and repeating the procedure.

• Phase 2: Determination of the optimum number of iterations by using the number of hidden neurons obtained at phase 1.

-Use the same type of iterative procedure by discretizing the set of the possible values of the iteration count (for example, between 50 and 1000).

Once the network is determined (weights, number of hidden neurons and number of iterations), the last step is the test phase. The data not taken into account in the training phase, namely those constituting the data base of test, are then used to quantify the capacity of the network to extrapolate.

DES results

To feed the neural network, the number of samples used to build was given by using the abovementioned relation, i.e., 2400 for the experimental design. Let us note that the average utilization is relative to all the units during the simulation horizon time. It can be observed that the utilization rates are rather low, which can be attributed to low values of the operating times of some steps, that all the products must visit and which penalize the performance of this criterion. Of course, it could be more justified to take into account a cost criterion, related to equipment depreciation. Yet, the remaining of this paper will consider the FAU criterion.

Concerning the number of batches in the WIP, it has been observed that this indicator decreases when the campaign duration increases. It can take relatively high values for the lowest campaign durations, which is a serious disadvantage. Since the average residence time is computed from the manufactured products, the numerical value of the average residence time has little interest for the low values of the campaign durations. Multiobjective optimization will thus be all the more justified in that way. The results relative to the number of stored products exhibit a similar behaviour: this number decreases when the campaign duration increases.

The average tendencies for all the considered performance indicators are reported in Table 2. 

ANN results and validation

Concerning the ANN architecture, the two previous procedures give the results reported in Table 3 and Table 4. NHH refers to the number of hidden neurons and the subscript Te is related to the test phase. 

Multiobjective genetic algorithm (MUGA)

When dealing with multiobjective optimization, the major advantage of genetic algorithms over other methods, particularly over other stochastic procedures such as Simulated Annealing or more classical deterministic methods, is that a GA manipulates not only a single individual but a population of individuals. [START_REF] Collette | Multiobjective Optimization Principles and Case Studies[END_REF][START_REF] Deb | [END_REF][29] In this section, the treatment of multiobjective optimization problems is based on multiobjective genetic algorithms (MUGA) combined with the previously presented ANN, used to compute the objective functions according to the various performance criteria to be optimized. Several classical variants of a GA have been developed for multiobjective purpose, they are widely presented in [START_REF] Collette | Multiobjective Optimization Principles and Case Studies[END_REF] and will not be recalled here. In order to obtain a problem with a reasonable combinatorial aspect, the decision variables selected for optimizing the various objectives are the time between campaigns (TBC) and the time between batches (T BB i , where i refers to the i th batch of the campaign). The range of variation of these two variables is reported in Table 5. The The MUGA is implemented for optimizing the decision variables and dealing with the set of compromise solutions for the studied criteria, thus giving the so-called Pareto optimal zone solutions. [START_REF] Baez Senties | 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering[END_REF] Of course, we are aware that the procedure used to say that the solution is a Pareto optimal is not, mathematically speacking, proven. For concision purpose, this term will wrongly be used in what follows.

A quite general guideline was recently proposed 6,7 for implementing a MUGA, and this approach has been adopted in this work, with use of the C++ language.

In genetic algorithm-based optimization, [START_REF] Goldberg | Genetic algorithms in search, optimization, and machine learning[END_REF] the initial population constitutes a basic point of the search, insofar as the later efficiency of the algorithm is closely related to the quality of the first generation of individuals. The strategy chosen here is the random generation of the chromosomes. This method has the advantage of proposing a varied population, ensuring a good mapping of the search space.

In addition to the generation of the initial population, the size of populations (the initial one and the following populations, kept constant during the search) is an important feature for the success of a genetic algorithm. The size of populations was fixed at 100 individuals, which is a classical trade-off between an efficient searching process and the avoidance of premature convergence.

A genetic algorithm operates on numerical chromosomes, in order to compute the fitness for performing genetic operators. Coding procedures aims at representing chromosomes in the form of chains of bits containing all the necessary information. The determination of the coded variables for the MUGA procedure was carried out by using the following relation for converting each chromosome k: 22

x k = x min,k + x max,k -x min,k 2 Nbit -1 × S k (9)
where x k is the real value of the variable TBB or TBC, x min,k and x max,k and the lower and upper bounds (see Table 4), S k the binary string representing the variable and Nbits the number of bits used for the binary code. To obtain the desired degree of accuracy (see below), the value of Nbit was fixed at 8. For example, the binary string S k = [0; 1; 0; 0; 1; 1; 0; 0] represents a value of TBC equals to:

T BC = x k = 10080 + (17080 -10080) 255 × S k (10) 
T BC = 10080 + (17080 -10080) 255 × 76 = 12166.27min (11) 
For the TBB variable, S k codes the values: 

T BB = x k = 0 + (T BC -0) 255 × S k (12) 
For TBC, the accuracy of coding is given by:

A T BC = (17080 -10080) 255 = 27.45min (14) 
Similarly, the lower and upper accuracies for TBB are the following ones:

A LT BB = 10080 255 = 39.53min (15) 
4. Elitism. The elitism is used to avoid the loss of the best current solution during the jump to a generation to the following one. The best solution of the current generation systematically replaces the worst solution in the following generation.

The abovementioned steps are repeated cyclically and the algorithm is stopped when a fixed number of generations is reached. This number must be sufficient to allow a correct scanning of the search space, but not too large not to induce too high computing times. When the search is stopped, a procedure of sorting (Pareto's sort) is used for all the individuals evaluated during the search in order to identify all the individuals giving the set of Pareto optimal solutions. These sets are known as Pareto's fronts. A solution is called Pareto optimal if the value of any corresponding objective function cannot be improved without degrading at least one of the other associated objective functions. The differentiation between several Pareto optimal solutions goes beyond the limits of this study and is appreciated by the decision maker himself. The general flowchart of the MUGA is presented in Figure 10.

Step 1: Initial random population generation Maximum generation number reached?

Step 7: Use of a Pareto sort procedure over all the individuals for all the generations.

Step 6: The new population becomes the current one

Step 5: Mutation procedure applied to a fixed number of randomly chosen individuals

Step 4: Intermediate population completion with individuals generated by the cross-over procedure

Step 3: Selection of an equal number of individuals for each criterion using the biased Goldberg's roulette

Step 2: Elitism procedure The values of the main parameters of the MUGA are reported in Table 6. More details concerning the MUGA implementation can be found in. 6,[START_REF] Baez-Senties | [END_REF] In this work, the generation number was fixed as 2.5 times the population size. The global survival rate is relatively low as compared to standard values for optimization of test mathematical functions. [START_REF] Dedieu | [END_REF] Moreover, a high mutation rate was set. Although a systematic study was not carried out to find these values, they were chosen from several preliminary tests and agree with previous works [START_REF] Dedieu | [END_REF] where similar problems were treated. The elitism was used in order to avoid losing the best solution for each criterion. A thorough analysis for GA parameter setting was performed by (Bernal-Haro et al., 2002) via a design of experiments analysis and showed the same trend. 33 

Results edition

Results

In order to avoid an exhaustive presentation, the results concerning the monocriterion optimization will not be presented extensively. Only a typical result relative to minimization of the average cycle time is analyzed briefly (see Figure 11). Classical trends are observed: a decrease in the average and best solution fitnesses is observed in the first generations, followed by a stabilization.

The average value tends to the best one, which is a sign of "convergence" of the best solutiion.

Bicriteria optimization

The purpose of the present study is the simultaneous optimization of the criteria taken by pairs, with the aim to highlight their antagonistic behaviour. The results presented correspond to those obtained after the final Pareto sort, applied to the whole set of the solutions scanned during the search. Three runs of the MUGA were implemented for each combination of pairs of the considered objective functions. 

6, 2 6,4 6,6 6,8 7 7,2 7,4 

Facility average utilization (FAU) -Average cycle time (ACT)

The reduction of the average cycle time (ACT) contributes to a product manufacturing within the shortest processing time. Nevertheless, the maximization of the facility average utilization (FAU) constitutes an important contradictory force. Figure 12 shows the set of Pareto solutions (100), presenting an important variation in the average cycle time (several days).

In addition to the antagonistic effect of these criteria, it must be highlighted that the higher the duration of campaigns, the less the facility average utilization is. This operating mode prevents from bottlenecking, which induces a lower value for the average cycle time. In addition, about 60% of the solutions correspond to a TBB value lower than 14 000 minutes.

Facility average utilization (FAU) -Standard deviation of the average cycle time (SD)

The consideration of these two criteria is justified by their antagonistic behaviour. The results are presented in Figure 13, where it can be observed that it is impossible to increase FAU while decreasing SD. The total number of compromise solutions is found equal to 61. As it can be expected, Figure 14 highlights an existing contradictory behaviour between the two considered criteria, that are of the highest importance to prevent the silicon wafers from contamination during their manufacturing process. An inflection point is observed which is explained in fact by the existence of a plateau for the average utilization ratio. Indeed, when the FAU ranges between 28 and 30, the corresponding AWT passes from 180 to 220 minutes, that is to say an increase in almost 20%. The three zones of the Pareto front show three different behaviours according to the values of the campaign duration TBB. The number of Pareto solutions is 56.

Facility average utilization (FAU) -Number of batches in the WIP (NB)

Figure 15 shows the values obtained when considering the criteria FAU and NB, which leads to a rather regular distribution of the non dominated solutions according to the durations of campaigns.

The number of Pareto solutions is 64. The last combination of pairs of objectives is related to the criteria facility average utilizationnumber of stored batches. Figure 16 display the 123 Pareto optimal solutions.

Tricriteria optimization

The tricriteria optimization presented in this section allows a more complete interaction of the various compromises to be carried out for the considered industrial workshop, in order to provide promising solutions among which the decision maker will be able to carry out a final selection. As in the previous case, three runs of the MUGA were carried out for each tricriteria study.

Facility average utilization (FAU) -Standard deviation of the average cycle time (SD) -Average waiting time (AWT)

The conflict between the minimization of criteria AWT and SD and the maximization of the use of the equipment FAU, can be observed in Figure 17. The trends highlighted in the bicriteria optimization section can be transposed here. Indeed, the influence of the campaign duration causing For this objective function combination, no inflection point was observed for the Pareto front as in the bicriteria optimization FAU-AWT, thus, the spiral shape does not appear here. The number of Pareto solutions reported in Figure 18 is 709.

Facility average utilization (FAU) -Average cycle time ACT -Number of batches in the WIP (NB)

The conclusions from the combination of the three precedent criteria are also applicable in this case (see Figure 19). The number of Pareto solutions is 495 Finally, it can be concluded from the tricriteria optimization study that, even if some minor differences appear due to local inflection points from the bicriteria Pareto fronts, the general trends Figure 15: Pareto optimal solutions for FAU-NB criteria are very similar. The antagonism of the five criteria (ACT, SD, AWT, NB and TS) versus FAU let suggest that the optimizations performed provide enough Pareto optimal solutions and do not involve additional studies with more criteria to be taken into account, since it will induce an extension of the Pareto domain, from which the production manager has to cope with. It must be added that it will be good to span the ANN validity: this can be easily performed by using the DES model. Other examples [START_REF] Baez-Senties | [END_REF] were treated with a lower combinatorial aspect so that all the possible configurations are taken into account in the design of the ANN. The results were then compared with those obtained with the proposed 2 step-supervised training procedure. They highlight that no accuracy loss in model precision, neither in mono-or multiobjective optimization cases is significantly observed.

Conclusions and Perspectives

Semiconductor manufacturing is a very competitive environment where the demands of the market place a huge importance on achieving maximum performance from a cutting edge, highly flexible manufacturing system. In this environment, simulation is an essential tool as semiconductor fac-Total number of stored batches Figure 16: Pareto optimal solutions for FAU-TS criteria tories are too large, too complex, too dynamic and too costly to optimize and refine by any other means. Semiconductor wafer fabrication involves an important number of decision problems. The objective of this paper was to propose an optimization strategy in order to assign appropriate decision variables. More precisely, a scheduler for selection of decision variables in order to obtain desired performance measures at the end of a certain production interval was developed. In the proposed methodology, a three-level strategy based on the combined use of a simulation technique, a neural network and a multiobjective genetic algorithm is suggested. The results indicate that this methodology is an efficient method considering the complexity of semiconductor wafer fabrication systems, as a time-saving way to achieve a prompt response in a dynamically changing environment. The computational time for reaching the Pareto solutions is about 2000 seconds (without including the computational time for ANN design), which is much faster than the process real-time (several days). If the DES model is used instead of the ANN the time is multiplied by 100, and the computational time increases significantly, tending to the same order of magnitude than the real time. Our approach integrates a discrete-event simulation and a competitive neural network. This provides a basis for a multiobjective scheduler that controls the behaviour of part flows to accomplish multiple objectives by generating the appropriate decision rules on the entire number An update will be recommended if a retrofit of the plant is implemented. But within the production range related to parameters considered in this study, it is not necessary to carry out systematically an ANN feeding. It must be yet argued that it can be performed in parallel without penalizing the global time in order to increase the model validity. It is important to note that optimization was performed without any preference information, which means that the Pareto optimal set consists of all solutions according to any rational decision-maker. Here the search for an optimal set of solutions is separated from the final decision. The decision-maker is presented with a set of solutions from which he has to choose, and the hypothesis is that when the trade off between the objectives is visible it would be easier to choose. However, this might not hold as the number of objectives increases and visualization becomes harder. This is an interesting field for further research: a decision making tool, taking into account various weights on criteria, reflecting the preferences of the decisionŠs maker, may be integrated to the current framework in order to rank 

Tables

• Table 1: Simulation results obtained with MELISSA for the wafer fab

• Table 2: Results of the performance indicators obtained with MELISSA for the wafer fab

• Table 3: Optimal topology of the ANN for each criterion

• Table 4: Optimal number of iterations for each criterion

• Table 5: Ranges of the optimization variables

• Table 6: Genetic algorithm parameters

Fig- ure 1

 1 summarizes the proposed methodology, which will be presented in the following sections of the paper.
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 18 Figure 18: Pareto optimal solutions for FAU-AWT-NB criteria

  

Table 1

 1 shows the results obtained for the DES simulation of the wafer fab for the different performance indicators during the experimental design. The best values for each criterion for the whole set of the simulations performed within the experimental design phase are reported (underlined values). The corresponding values of the other performance indicators are also presented.

Table 1 :

 1 Simulation results obtained with MELISSA for the wafer fab

		FAU% SD (days) ACT (days) WT (min) NB (batches) TS
	Max(FAU) 36.1	1.03	7.66	230.13	35	920
	Min(SD)	34.33 0.60	7.19	190.24	32	841
	Min(ACT ) 26.81 0.90	6.29	148.58	13	716
	Min(AW T ) 29.8	0.75	6.34	134.36	19	759
	Min(NB)	25.8	1.15	7.34	226.59	6	812
	Min(T S)	27.66 0.94	6.47	183.68	19.00	677

Table 2 :

 2 Results of the performance indicators obtained with MELISSA for the wafer fab

	Performance indicator	Average value Superior bound Inferior bound
	FAU%	30.23	24.97	36.10
	SD (days)	0.97	0.60	1.67
	ACT (days)	6.94	6.29	8.26
	AWT (min)	192.66	134.36	298.17
	NB (number of batches)	23	6	42
	TS (number of times of stored batches) 802	678	921

Table 3 :

 3 Optimal topology of the ANN for each criterion

	Criterion NHN RMSE Tr RMSE Te
	FAU	15	0.00916 0.00936
	SD	20	0.07002 0.05041
	ACT	15	0.03284 0.03330
	AW T	15	0.04098 0.03525
	NB	15	0.02705 0.02926
	T S	18	0.03156 0.02300

Table 4 :

 4 Optimal number of iterations for each criterion

	Criterion Iterations RMSETr RMSETe
	FAU	750	0.00904 0.00935
	SD	850	0.06908 0.05031
	ACT	650	0.03272 0.03325
	AW T	500	0.04076 0.03504
	NB	600	0.02685 0.02906
	T S	700	0.03143 0.02281

Figure 4 compares the computed values by the ANN and the measured ones by MELISSA, for the FAU criterion.

FAU [%] FAU [%]

Table 5 :

 5 Ranges of the optimization variables

	Variable MinValue MaxValue
	T BC	10080	17080
	T BB	0	T BC

Table 6 :

 6 Genetic algorithm parameters

	Population size	100
	Number of generations 250
	Selection probability	0.5
	Mutation probability	0.1

A UT BB = 17080 255 = 66.98min (16) The evaluation phase proceeds in calculating the function of adaptation of each individual of the population. The genetic algorithm maximizes this function during the successive populations to lead to a well-adapted population. In this study, the classical formulation of the fitness was chosen:

where C(x) represents an objective function (the so-called fitness) (i.e. FAU, ACT, SD, AWT, NB, TS computed by using the corresponding ANN). C max is selected so that the value of the fitness always remains positive. It is chosen as the greatest actual value of C(x) in the current population.

Let us note that the worst individual of the current generation has a null fitness in this case.

Four typical genetic operators were used to alter the composition of the offspring in the next generation, based on the preset probability values reported in Table 5. These operators are the following ones:

1. Selection operator. Based on the ranked fitness values for each criterion, the selection of surviving individuals in the new population is performed by using the classical biased Golberg's wheel method. [START_REF] Goldberg | Genetic algorithms in search, optimization, and machine learning[END_REF] For each criterion, a particular Goldberg's wheel is used for carrying out the selection phase.

2. Crossover operator. Recombination of individuals is achieved to complete the new population. The crossover is a classical 1-point crossover.

3. Mutation operator. This genetic operation is performed by replacing a randomly selected bit by its complementary binary value.
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