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NILPOTENCE OF ORBITS UNDER MONODROMY
AND

THE LENGTH OF MELNIKOV FUNCTIONS

PAVAO MARDEŠIĆ, DMITRY NOVIKOV, LAURA ORTIZ-BOBADILLA,
AND JESSIE PONTIGO-HERRERA

Abstract. Let F ∈ C[x, y] be a polynomial, γ(z) ∈ π1(F−1(z)) a non-trivial
cycle in a generic fiber of F and let ω be a polynomial 1-form, thus defining a
polynomial deformation dF + ϵω = 0 of the integrable foliation given by F .

We study different invariants: the orbit depth k, the nilpotence class n, the
derivative length d associated with the couple (F, γ). These invariants bound
the length ℓ of the first nonzero Melnikov function of the deformation dF + ϵω

along γ. We analyze the variation of the aforementioned invariants in a simple
but informative example, in which the polynomial F is defined by a product of
four lines. We study as well the relation of this behavior with the length of the
corresponding Godbillon-Vey sequence. We formulate a conjecture motivated
by the study of this example.

1. Introduction, Main Results and Conjectures

This work is motivated by the 16-th Hilbert’s problem or rather its infinitesimal
version. As it is known, the second part of Hilbert’s 16-th problem asks for an
upper bound in terms of the degree for the number of real limit cycles, i.e. isolated
periodic orbits of polynomial vector fields in the plane. The problem is far from
been solved and the existence of such a number is open even for quadratic vector
fields.

Arnold formulated the infinitesimal Hilbert’s problem, which asks for a bound on
the number of (real) limit cycles that can arise under polynomial deformations from
an integrable polynomial differential equation in the plane. This bound must be
uniform in the sense that it must depend exclusively on the degree of the integrable
1-form defining the corresponding foliation, and the degree of the polynomial that
realizes the perturbation.

In one of its forms Arnold’s infinitesimal Hilbert problem [2] studies the following
situation.

Let F (x, y) ∈ R[x, y] be a square-free polynomial, z a regular value of F and
γ(z) ⊂ F−1(z) a continuous family of real cycles of F−1(z). We will consider
the complexification of the polynomial F which, for the sake of simplicity, we will
denote again by F . The polynomial F defines a singular fibration and hence a
singular foliation given by the integrable one-form

dF = 0 . (1.1)
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Consider the polynomial deformations depending on the parameter ϵ

dF + ϵω = 0 . (1.2)
As usual, one defines the displacement function (holonomy map minus identity)

∆ϵ of the deformation (1.2) along γ(z). The isolated zeros of the displacement map
∆ϵ are in correspondence with the limit cycles of (1.2).

The Taylor series expansion with respect to ϵ at 0 of ∆ϵ is given by

∆ϵ(z) =
∑

i=µ

ϵiMi(z). (1.3)

The functions Mi are called Melnikov functions. We assume Mµ 6≡ 0 and call it
the first non-zero Melnikov function. By the implicit function theorem, for regular
values of z, it carries the main information on the number of limit cycles that can
arise under the deformation. This motivates the study of this function Mµ, the
subject of the infinitesimal Hilbert 16th problem.

It is known that Mµ is an iterated integral [6]. Let ℓ denote its iterated integral
length, or shorter, simply length. It measures the complexity of Mµ. Bounding this
length, would be a key step towards the bound of the limit cycles arising under
perturbation. In [7], Gavrilov and Iliev gave a condition which guarantees that Mµ

is an abelian integral (iterated integral of length 1). We showed the necessity of
this condition in [10].

Let z be a generic value of F . Consider the fundamental group π1 of F−1(z),
and let Lj be its lower central sequence;

Lj = [Lj−1, π1], where L1 = π1. (1.4)
Using the fibration given by F , we define the monodromy group, which is a subgroup
of the group of automorphisms of π1. Then denote by O = Oγ the normal subgroup
of π1 generated by the orbit of γ under the action by the monodromy group (see
[10]).

In [10], we defined the orbit depth k of the cycle γ of F by
k = sup{j ≥ 1|O ∩ Lj 6⊂ [O, π1]} = min{j ≥ 1|O ∩ Lj+1 ⊂ [O, π1]}, (1.5)

and showed that the orbit depth k bounds the length of the iterated integral Mµ,
for the displacement map ∆ϵ of any polynomial deformation (1.2), i.e. that

ℓ ≤ k. (1.6)
In [11], we gave an example of a system having unbounded depth and formulated

the following conjectures:

Conjecture 1.1.
(i) For any polynomial F and any non-trivial cycle γ of F , either the depth is

unbounded, or it is 1, or 2.
(ii) For any F and its cycle γ, either there exist deformations ω, whose first

non-zero Melnikov function Mµ is of arbitrary high length, or for any de-
formation ω, the length of Mω is 1 or 2.

This conjecture is similar in spirit to the result of Casale [3] , concerning the first
integral and the length of the corresponding Godbillon-Vey sequence of a system
or the Tits alternative [12].

One of the central components in the study is the orbit complement abelianization
group or O-abelianization

πO−ab
1 :=

π1

O ∩ L2
. (1.7)



Note that it is associated to the couple (F, γ) and does not depend on the de-
formation form ω.

In order to give some steps towards the proof of the above conjecture, we consider
some other, more classical invariants associated to the group πO−ab

1 : its nilpotence
class n and its derivative length d, which we relate to the orbit depth k and length
ℓ of the first nonzero Melnikov function (see section 2 for definitions).
Proposition 1.2. Let F ∈ R[x, y] be a polynomial, γ ∈ π1(F

−1(z)) be a real cycle
and ω a polynomial 1-form as above, and let πO−ab

1 be the group defined in (1.7).
Let n be the nilpotence class of πO−ab

1 , d the derivative length of πO−ab
1 , k the orbit

depth and ℓ the length of the first nonzero Melnikov function of the deformation
(1.2) along γ. Then the following inequalities hold

ℓ ≤ k ≤ n+ 1, d ≤ n. (1.8)
Remark 1.3. Although d ≤ n, there is no evident relationship between d and k.
General approach 1.4. The Poincaré (holonomy) map of a deformation (1.2)
induces a homomorphism

Pω : π1 → C[ϵ]⊗Diff (C, 0) , Pω(δ) =

{
z 7→ z + ϵ

∫

δ

ω +O(ϵ2)

}
, (1.9)

where Pω(δ) is the Poincaré map with respect to the foliation (1.2) along the cycle
δ.

Assume that the deformation (1.2) preserves the continuous families of cycles
corresponding to elements of O∩L2. This means that Pω(O∩L2) = {Id} and the
map (1.9) descends to the homomorphism

Pω : πO−ab
1 → C[ϵ]⊗Diff(C, 0). (1.10)

Moreover, if one defines a deformation form ω in such a way that the obtained
subgroup of diffeomorphisms is parabolic, then the group πO−ab

1 inherits properties
of subgroups of parabolic diffeomorphisms. Using these properties, one could con-
clude that either πO−ab

1 is abelian, and so the orbit depth is less or equal to 2, or
it is non-solvable.

However, the difficulty here lies in finding a one-form ω such that, for a cycle
σ ∈ [π1, π1] \ O ∩ L2, Pω(σ) 6= id, but it is the identity along any commutator in
the orbit.

Here, we realize the above approach in the case of a Hamiltonian F given as a
product of four real lines

F (x, y) = f1(x, y)f2(x, y)f3(x, y)f4(x, y),

fi = aix+ biy + ci, (ai, bi) 6= (0, 0), (ai, bi) 6= (aj , bj), for i 6= j.
(1.11)

Recall that, as studied in [11], in the above case, if fi, i = 1, . . . , 4, consist of two
pairs of parallel lines, the orbit depth k is infinite. Any Hamiltonian given by a
product of four different lines is of one of the following three types:

(1) The four lines are in generic position (no parallel lines among fi, i =
1, . . . , 4, for different indices).

(2) One of the bounded domains bounded by these lines is a quadrilateral with
exactly one pair of parallel opposite sides (we call it a trapezoid).

(3) One of the bounded domains bounded by these lines is a parallelogram (we
call it a parallelogram).



Theorem 1.5. Let F be the product of four real lines (1.11), and γ ∈ π1(F
−1(z))

a continuous family of real cycles of F .
(1) In the case that the four lines are in generic position, then πO−ab

1 is abelian,
so its nilpotence class n and derived length d are equal to 1. Hence the orbit
depth k ≤ 2, and the length of the first non-zero Melnikov function is ℓ ≤ 2.

(2) In the trapezoid case πO−ab
1 is non-solvable d = n = ∞, but the orbit depth

is k ≤ 2. Hence, the length of the first non-zero Melnikov function of any
deformation is bounded by 2, ℓ ≤ 2.

(3) In the parallelogram case πO−ab
1 is non-solvable d = n = ∞ and the orbit

depth is infinite k = ∞.

Remark 1.6. We stress that the realization of the length is required in order to prove
the conjecture in [10] that states that the orbit depth is an optimal bound for the
length of Melnikov functions. In [11] we provide a deformation of the parallelogram
that has a first non-zero Melnikov function of length 3, which already distinguishes
this case from the trapezoid, in terms of the length, where the length is less than
or equal to 2.

The case of four lines in generic position has been studied in [13, 10]. We recall
it here for completeness. In this work, our aim is to focus on more degenerated
situations, the trapezoid and parallelogram cases.

Since the nilpotence class n of πO−ab
1 provides an upper bound for the orbit depth

k, we also want to understand conditions under which πO−ab
1 is non-nilpotent (or

non-solvable). From the definition of the homomorphism in (1.10) we see that the
nilpotence class of πO−ab

1 is greater than the nilpotence class of its image under Pω.
In this sense, the class of nilpotence of πO−ab

1 is related with the type of deformations
preserving centers in O ∩ L2, and therefore, with the type of integrability of these
deformations.

Theorem 1.7.
(1) In the parallelogram and the trapezoid cases, there exist polynomial 1-forms

ω such that the deformations (1.2) preserve the pairs of parallel lines and
have a first integral of Riccati type.

(2) Moreover, there are deformations, preserving the pairs of parallel lines,
having Godbillon-Vey sequences of any finite length.

Remark 1.8. In [4] the authors define the length of a foliation as the minimal length
among all Godbillon-Vey sequences for the foliation. They mention that they do not
know any example of finite length greater than 4. Deformations in the second part
of Theorem 1.7 could provide such examples if one can prove that its Godbillon-Vey
sequence has optimal length.

Conjecture 1.9.
(1) The non-solvability of the group πO−ab

1 is characterized by the presence of
a pair of parallel curves in the Hamiltonian foliation.

(2) The non-bounded orbit depth is characterized by the presence of two pairs
of parallel curves in the Hamiltonian foliation.

(3) The type of singularity given by a pair of parallel curves at the line at in-
finity characterizes the non-solvability of πO−ab

1 .

Here by parallel curves, we mean two level curves f−1(c1) and f−1(c2), of the
same function f , for c1 6= c2. Parallel curves interesect only at the line at infinity.



2. Nilpotence class and derivative length

Definition 2.1.
(i) Given a group G, let Gi be its lower central sequence:

G = G1 ⊃ G2 ⊃ · · · , Gj+1 = [Gj , G].

If there exists j ∈ N such that Gj = {e}, we say that the group is nilpotent
and define its nilpotence class n = n(G) as

n = min{j ≥ 1|Gj+1 = {e}}, (2.1)
where e is the identity element in G.

(ii) Similarly, the upper central sequence Gj is

G = G0 ⊃ G1 ⊃ · · · , Gj+1 = [Gj , Gj ].

If there exists j such that Gj = {e}, we say that the group is solvable and
define its derived length d as

d = min{j ≥ 1|Gj = {e}}. (2.2)

Note that
Gj+1 ⊃ Gj . (2.3)

This gives d ≤ n and in particular any nilpotent group is solvable.
We apply these two notions to the orbit complement abelianization group πO−ab

1

given in (1.7).

Proof of Propostion 1.2. In order to prove that k ≤ n+ 1, it suffices to prove that
(πO−ab

1 )j = {ē} implies O ∩ Lj+1 ⊂ [O, π1], for any j.
We claim first that the assumption (πO−ab

1 )j = {ē}, implies
Lj ⊂ O. (2.4)

Indeed, let σ = [[· · · [γ1, γ2], · · · , γj−1], γj ] be a generator of Lj and let σ̂ ∈ πO−ab
1

be the class of this σi in (πO−ab
1 ). Then σ̂ ∈

(
πO−ab
1

)
j
= {e}, i.e. σ ∈ O ∩ L2. We

thus have (2.4).
Hence, Lj+1 = [Lj , π1] ⊂ [O, π1], showing that O ∩ Lj+1 ⊂ [O, π1].
The relation d ≤ n comes from expression (2.3). On the other hand, it is known

from [10] that the length ℓ of the first non-zero Melnikov function is bounded by
the orbit depth k. Therefore, ℓ ≤ k ≤ n+ 1. □

3. Germs of diffeomorphisms

Given a germ of diffeomorphism f ∈ Diff(C, 0), we say that it is parabolic if it is
of the form f(z) = z + o(z). If f is not the identity, then f = z + azp+1 + o(zp+1),
with a 6= 0. We call p the level of f . Let Diff1(C, 0) ⊂ Diff(C, 0) denote the
subgroup of parabolic germs.

The general approach given in 1.4 is based on the following well-known facts
about the solvability of the group of parabolic germs Diff1(C, 0).

Lemma 3.1. (Proposition 6.11, [8]) Let f = z+azp+1+· · · and g = z+bzq+1+· · · .
Then [f, g](z) = z + ab(p− q)zp+q+1 + o(zp+q+1).

Proposition 3.2. (Lemma 6.13 [8]) Let G be a finitely generated subgroup of par-
abolic germs Diff1(C, 0). Then (i) or (ii) holds

(i) G is abelian, i.e. of nilpotence class n(G) ≤ 1.
(ii) G is not solvable (hence not nilpotent).



Lemma 3.3. [8] Let G be a finitely generated subgroup of parabolic germs Diff1(C, 0).
Then G is solvable if and only if it is abelian. Moreover, one of the following state-
ments holds:

(i) G is not abelian and there exist two diffeomorphisms f and g in G of dif-
ferent levels.

(ii) G is abelian and all diffeomorphisms in G are of the same level.

Proof. Suppose G 6= {id}. We now consider two cases: either there exist two germs
f = z + azp+1 + o(zp+1) and g = z + bzq+1 + o(zq+1) in G of different level q 6= p,
or all germs are of the same level.

In the first case, by Lemma 3.1, h = [f, g](z) = z+ab(p−q)zp+q+1+o(zp+q+1) 6=
z. Therefore, G1 = [G,G] 6= {id}. Applying inductively the same reasoning on h
and g, one can show that Gℓ 6= {id} and Gℓ 6= {id}, for all ℓ. Thus, G is not
nilpotent, nor solvable.

Now, suppose that all the elements of G have the same level p. Then, by Lemma
3.1, given f = z+azp+1+o(zp+1) and g = z+ bzp+1+o(zp+1), the element [f, g] is
either of a level strictly greater than p or the identity. The first option is impossible
by the assumption, so it follows that G2 = G1 = {id}. Thus G is abelian. □

4. Proof of Theorem 1.5

Proof. In the case (1), of product of lines in generic position, it has been proved in
[13] that [π1, π1] ⊆ O. Therefore, πO−ab

1 is abelian, and k ≤ 2. Hence, the orbit
depth of the real cycle, as well as the length of the first non-zero Melnikov function
for any deformation, is bounded by 2, by [10].

To prove that πO−ab
1 is non-solvable for cases (2) and (3) we follow the same

strategy. In both cases, by an affine change of coordinates we can assume that the
Hamiltonian is given by F = (x− 1)(x+ 1)f3f4, where f3 and f4 are linear factors
(non-parallel in case (2) and parallel in case (3)).

Now, consider the foliation Fω = {dF + ϵω = 0}, where ω = F 2( dx
x−1 + F dx

x+1 ),
and the homomorphims defined by the holonomy with respect to Fω:

Pω : πO−ab
1 → C[ϵ]⊗Diff1(C, 0).

We define the subgroup G := Pω(π
O−ab
1 ) of the group of parabolic difeomor-

phims with coefficients depending on ϵ. Note that the morphism Pω is well defined.
Namely, since Fω has a reflexion symmetry with respect to y-axis, then it preserves
the center at the origin. Moreover, since Pω[δ1, δ2] = z+ϵ2W (z2, z3)

∫
[δ1,δ2]

dx
x−1

dx
x+1+

O(ϵ3) 6= z, where W is the Wronskian, then G is not Abelian, and therefore non-
solvable.

In [11] it is proved that the parallelogram has unbounded orbit depth.
It remains to prove that for the trapezoid the orbit depth is k ≤ 2. By an affine

change of coordinates we may assume that F is defined by

F = (x− 1)(x+ 1)f3f4 , (4.1)

and has the configuration given in Figure 1. The zero level F−1(0) consists of four
lines, enclosing a quadrilateral and a triangle. Let γ be the real cycle in F−1(z′),
z′ > 0, close to zero and enclosed by the quadrilateral, and let γ1 be the real cycle
in F−1(z′′), z′′ < 0, close to zero and enclosed by the triangle, both with positive
orientation. Let pi be the vertices of the quadrilateral oriented positively with p2
and p3 the commun vertices with the triangle and let p5 be the last vertex of the
triangle. Let δi, be the vanishing cycles at the vertices pi, i = 1, . . . , 5 taken so that
the intersection numbers verify (γ, δi) = 1, i = 1, . . . , 4 and (γ1, δ5) = 1.



4

5

.

Figure 1. The real loops γ(z) and γ1(z) and the complex vanish-
ing loops δi(z) as elements of π1

(
F−1(z), p0

)
.

Using the Gauss-Manin connection, we continue analytically γ, γ1, δi to a non-
singular curve F−1(z), 0 < |z| � 1, along segments [z′, z] and [z′′, z]. Recall that,
by [1], the intersection numbers verify:

(γ, γ1) = 1 (4.2)
and

(γ1, δ2) = (γ1, δ3) = 1. (4.3)
Remark 4.1. Theorem 1.5 is also true in the complex case if conditions (4.2) and
(4.3) are fulfilled.

In [10], we obtained the orbit of the real cycle for a first integral of triangle type,
that is

Oγ1
=< γ1, δ2δ3δ5, [δ2, δ3] > mod [Oγ1

, π1],

and in [11], for the quadrilateral type. The quadrilateral case in a neighborhood
of the quadrilateral is the same as in the parallelogram case. Now, due to (4.2), in
our case (4.1), the orbit of γ is generated by the union of the orbits in these two
cases. This gives:

Oγ

[Oγ , π1]
=

=< {γ, δ1δ2δ3δ4, [δ1δ2, δ2δ3], [δ1δ2, [δ2, δ2δ3]], . . . , [δ1δ2, [δ2, . . . [δ2, δ2δ3]], . . .} ∪ Oγ1
> .

We know that [δ2, δ3] belongs to the orbit of γ1 and hence to Oγ . Hence, [δ2, δ2δ3] =
δ2[δ2, δ3]δ

−1
2 belongs to the orbit as well. This gives that in the above expression

for the orbit Oγ the commutator [δ1δ2, [δ2, δ2δ3]] belongs to [O, π1]. The same is
therefore true for all terms which contain it (all the terms following it in the above
braces). We know [10] that the depth of Oγ1

is two. All the terms following the
term [δ1δ2, δ2δ3] are in [O, π1], showing that the depth k verifies k ≤ 2 and hence
by [10] the length of the first non-zero function Mµ of any deformation ω is ℓ ≤ 2.

□

5. Types of integrability of the deformations

We will study the Godbillon-Vey sequence for the foliation
dF + ϵω = 0, (5.1)

with F = f1f2f3f4 and ω = p1(F )df1f1
+ p2(F )df2f2

, where f1 = x − 1, f2 = x + 1,
p1, p2 are polynomials in F , and f3, f4 are linear factors different from f1 and



f2. For the parallelogram, f3 and f4 define parallel lines, while for the trape-
zoid they do not. By explicit computation of Godbillon-Vey sequences we will
show that the foliation dF + ϵ

(
df1
f1

+ F df2
f2

)
= 0 is Liouville integrable, while dF +

ϵ
(
F df1

f1
+ F 2 df2

f2

)
= 0 is Riccati integrable. Moreover, for ω = p1(F )df1f1

+p2(F )df2f2
,

with n = deg{deg p1,deg p2}, foliation (5.1) admits a Godbillon-Vey sequence of
length ≤ n, which increases complexity of the first integral for those cases. There-
fore, for n ≥ 3 the foliation (5.1) could have a first integral which is not of Riccati
type, with infinite dimensional pseudo-group of holonomy.

We recall that a Gobdillon-Vey sequence for a meromophic 1-form η0 is a se-
quence {η0, η1, ...}, such that

dη0 = η0 ∧ η1

dη1 = η0 ∧ η2

dη2 = η0 ∧ η3 + η1 ∧ η2

dη3 = η0 ∧ η4 + 2η1 ∧ η3

...

dηn = η0 ∧ ηn+1 +
n∑

k=1

(
n

k

)
ηk ∧ ηn−k+1

(5.2)

It is of length ℓ if ηj = 0 for all j ≥ ℓ.
It is known that η0 has a first integral of Liouville type (respectively of Riccati

type), if and only if, it admits a Godbillon-Vey sequence of length 2 (respectively
of length 3).

5.1. Degree on F equals 1. Let us start by analyzing the case ω = F df1
f1

. We
denote η0 := dF + ϵF df1

f1
. Then

dη0 = ϵdF ∧ df1
f1

.

Thus, we can take η1 := ϵdf1f1
=

dfϵ
1

fϵ
1

. Then, dη1 = 0, which means η2 = 0. Hence,
η0 admits a Godbillon-Vey sequence of length 2, and therefore (5.1) is Liouville
integrable. Moreover, Casale’s article [3] provides a way to compute from this
sequence the first integral. This is given by dH = Gη0, where η1 = dG

G . In this
case, we have G = f ϵ

1 . Therefore the first integral H is given by

f ϵ
1η0 = f ϵ

1(dF + F
df ϵ

1

f ϵ
1

) = f ϵ
1dF + Fdf ϵ

1 = d(f ϵ
1F );

thus, H = f ϵ
1F , which lies in a Liouvillian extension.

Now we analyze the following case η0 := dF + ϵ
(

df1
f1

+ F df2
f2

)
, which will give us

a way to proceed for higher degree. By substituting f1 = x−1, f2 = x+1, we obtain
η0 = dF + ϵ

(
1

x−1 + F
x+1

)
dx. Denote φ(x, F ) = 1

x−1 +
F

x+1 . Then η0 = dF + ϵφdx,
and

dη0 = ϵdφ ∧ dx. (5.3)
Note that dφ = φF dF +φxdx, where φF = ∂φ

∂F (x, F ) = 1
x+1 , and φx = ∂φ

∂x (x, F ) =
−1

(x−1)2 − F
(x+1)2 . Then, (5.3) is equal to

dη0 = ϵφF dF ∧ dx. (5.4)



Define η1 := ϵφF dx. It satisfies the equation dη0 = η0∧η1 = (dF+ϵφdx)∧ϵφF dx.
On the other hand, dη1 = ϵdφF ∧ dx, where dφF = φFF dF + φFxdx. That
is, dη1 = ϵφFF dF ∧ dx, which is zero because φFF = 0. Then, we can take
η2 = 0. Thus, η0 admits a Godbillon-Vey sequence of length 2, and therefore is
Liouville integrable. To compute the first integral H, we have to solve the equations
dH = Gη0, and η1 = dG

G . For this purpose, we note that η1 = ϵ dx
x+1 =

dfϵ
2

fϵ
2

. Then,

dH = f ϵ
2η0 = f ϵ

2

(
dF + ϵ

(
df1
f1

+ F df2
f2

))
, which corresponds to

f ϵ
2

(
dF +

df ϵ
1

f ϵ
1

+ F
df ϵ

2

f ϵ
2

)
= f ϵ

2dF + f ϵ
2

df ϵ
1

f ϵ
1

+ Fdf ϵ
2 = d

(
f ϵ
2F +

∫
f ϵ
2

df ϵ
1

f ϵ
1

)
.

Therefore, H = f ϵ
2F +

∫
f ϵ
2
dfϵ

1

fϵ
1

. By substituting the expressions of f1, f2, we get
∫
f ϵ
2
dfϵ

1

fϵ
1
=

∫
ϵ(x+ 1)ϵ dx

x−1 .
We stress that the construction above is analogous for f1 and f2 defining two

arbitrary parallel lines.

6. Proof of Theorem 1.7

Proof. We consider the deformation dF + ϵ(F df1
f1

+ F 2 df2
f2

), where f1 = x − 1,
f2 = x+ 1, and define

η0 := dF + ϵ

(
F

x− 1
+

F 2

x+ 1

)
dx. (6.1)

Denote φ(x, F ) = F
x−1 + F 2

x+1 . Then η0 = dF + ϵφdx, and since dφ = φF dF +

φxdx, where φF is the partial derivative of φ with respect to F : φF = 1
x−1 + 2F

x+1 ,
we have

dη0 = ϵφF dF ∧ dx. (6.2)
Thus, we define η1 := ϵφF dx. It satisfies the equation dη0 = η0 ∧ η1. Now we
consider dη1 = ϵdφF ∧ dx. Then, again, writing dφF = φFF dF + φFxdx, we have
dη1 = ϵφFF dF ∧ dx. So, we can take η2 := ϵφFF dx. It satisfies the equation
dη1 = η0 ∧ η2. Continuing with the Godbillon-Vey sequence we consider dη2 =
ϵdφFF ∧dx. But, since the degree of φ in F is 2, φFF depends only on x, therefore
dφFF ∧ dx = 0. Now, for the equation dη2 = η0 ∧ η3 + η1 ∧ η2, since η1 ∧ η2 = 0,
we can take η3 = 0. Hence, η0 admits a Godbillon-Vey sequence of length 3, and
therefore it has a first integral of Riccati type.

According to Casale’s method [3] we can compute the first integral by solving
the following equations:

dH = G1η0

dG1 = G1

(
η1 +

2

G2
η0

)

dG2 = −G2
2

2
η2 −G2η1 − η0,

(6.3)

with η0 = dF + ϵ
(

F
x−1 + F 2

x+1

)
dx, η1 = ϵ

(
1

x−1 + 2F
x+1

)
dx, and η2 = ϵ

(
2

x+1

)
dx.

One can check that H = −1
Ffϵ

1
+
∫ dfϵ

2

fϵ
1f

ϵ
2
, G1 = 1

F 2fϵ
1

and G2 = −F satisfy equations
(6.3).

Now, we analyze what happens when we increase the degree in F for the foliation
(5.1). Let

η0 := dF + ϵ

(
F 2 df1

f1
+ F 3 df2

f2

)
. (6.4)



Substituting f1 = x − 1, f2 = x + 1, we obtain η0 = dF + ϵ
(

F 2

x−1 + F 3

x+1

)
dx.

Following the same process as before, we write η0 = dF + ϵφdx, where φ(x, F ) =
F 2

x−1 + F 3

x+1 . Since dφ = φF dF + φxdx, we have

dη0 = ϵφF dF ∧ dx, (6.5)

where φF = 2F
x−1 + 3F 2

x+1 .
Thus, we define η1 := ϵφF dx, note that degF φF = 2. It satisfies the equation

dη0 = η0 ∧ η1. Now we consider dη1 = ϵdφF ∧ dx. Writing dη1 = φFF dF + φFxdx,
we have dη1 = ϵφFF dF ∧ dx. So, we can take again η2 := ϵφFF dx, where now
degF φFF = 1. It satisfies the equation dη1 = η0 ∧ η2. Then dη2 = ϵdφFF ∧ dx =
ϵφFFF dF ∧ dx. We want η3 to be such that dη2 = η0 ∧ η3 + η1 ∧ η2. Since
η1 ∧ η2 = 0, we can take η3 = ϵφFFF dx. Consider dη3 = ϵdφFFF ∧ dx. This
is zero, since φFFF depends only on x. We want now η4 verifying the equation
dη3 = η0∧η4+2η2∧η3. But, since η2∧η3 = 0, we can take η4 = 0. Moreover, from
this construction ηk ∧ηℓ = 0 for all k, ℓ ≥ 1, hence this Godbillon-Vey sequence has
length 4. Therefore, η0 could have a first integral which is not of Riccati type. With
the same procedure we can obtain a deformation with a Godbillon-Vey sequence of
any finite length n, by taking the degree in F of the deformation equal to n− 1.

We stress that the above computations do not depend on the factors f3 and f4,
therefore they are valid for the parallelogram, as well as for the trapezoid. □

Remark 6.1. From these cases one can observe that the length of the Godbillon-
Vey sequence for the foliation (5.1) increases with the degree in F of the function
φ(x, F ). So, increasing the degree in F for the deformation, we can have a first
integral of more complicated type.

In particular, for n = degF φ > 4 one should obtain a Godbillon-Vey sequence of
finite length n higher than 4. In the paper [4] (p. 25) the authors say they do not
know any example of finite length greater than 4. However, the length is defined
as the minimal length among all the Godbillon-Vey sequences that the foliation
can admit. So, in order to prove that these examples for n > 4 have Godbillon-
Vey length higher than 4, one should prove that the constructed Godbillon-Vey is
optimal. That is that there does not exist some other Godbillon-Vey sequence of
smaller length.
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