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Let F ∈ C[x, y] be a polynomial, γ(z) ∈ π 1 (F -1 (z)) a non-trivial cycle in a generic fiber of F and let ω be a polynomial 1-form, thus defining a polynomial deformation dF + ϵω = 0 of the integrable foliation given by F .

We study different invariants: the orbit depth k, the nilpotence class n, the derivative length d associated with the couple (F, γ). These invariants bound the length ℓ of the first nonzero Melnikov function of the deformation dF + ϵω along γ. We analyze the variation of the aforementioned invariants in a simple but informative example, in which the polynomial F is defined by a product of four lines. We study as well the relation of this behavior with the length of the corresponding Godbillon-Vey sequence. We formulate a conjecture motivated by the study of this example.

Introduction, Main Results and Conjectures

This work is motivated by the 16-th Hilbert's problem or rather its infinitesimal version. As it is known, the second part of Hilbert's 16-th problem asks for an upper bound in terms of the degree for the number of real limit cycles, i.e. isolated periodic orbits of polynomial vector fields in the plane. The problem is far from been solved and the existence of such a number is open even for quadratic vector fields.

Arnold formulated the infinitesimal Hilbert's problem, which asks for a bound on the number of (real) limit cycles that can arise under polynomial deformations from an integrable polynomial differential equation in the plane. This bound must be uniform in the sense that it must depend exclusively on the degree of the integrable 1-form defining the corresponding foliation, and the degree of the polynomial that realizes the perturbation.

In one of its forms Arnold's infinitesimal Hilbert problem [START_REF] Arnold | Arnold's problems. Translated and revised edition of the 2000 Russian original[END_REF] studies the following situation.

Let F (x, y) ∈ R[x, y] be a square-free polynomial, z a regular value of F and γ(z) ⊂ F -1 (z) a continuous family of real cycles of F -1 (z). We will consider the complexification of the polynomial F which, for the sake of simplicity, we will denote again by F . The polynomial F defines a singular fibration and hence a singular foliation given by the integrable one-form dF = 0 .

(1.1)

Consider the polynomial deformations depending on the parameter ϵ dF + ϵω = 0 .

(1.2)

As usual, one defines the displacement function (holonomy map minus identity)

∆ ϵ of the deformation (1.2) along γ(z). The isolated zeros of the displacement map ∆ ϵ are in correspondence with the limit cycles of (1.2). The Taylor series expansion with respect to ϵ at 0 of ∆ ϵ is given by

∆ ϵ (z) = ∑ i=µ ϵ i M i (z). (1.3) 
The functions M i are called Melnikov functions. We assume M µ ≡ 0 and call it the first non-zero Melnikov function. By the implicit function theorem, for regular values of z, it carries the main information on the number of limit cycles that can arise under the deformation. This motivates the study of this function M µ , the subject of the infinitesimal Hilbert 16th problem.

It is known that M µ is an iterated integral [START_REF] Gavrilov | Higher order Poincaré-Pontryagin functions and iterated path integrals[END_REF]. Let ℓ denote its iterated integral length, or shorter, simply length. It measures the complexity of M µ . Bounding this length, would be a key step towards the bound of the limit cycles arising under perturbation. In [START_REF] Gavrilov | The displacement map associated to polynomial unfoldings of planar Hamiltonian vector fields[END_REF], Gavrilov and Iliev gave a condition which guarantees that M µ is an abelian integral (iterated integral of length 1). We showed the necessity of this condition in [START_REF] Mardešić | Bounding the length of iterated integrals of the first non-zero Melnikov function[END_REF].

Let z be a generic value of F . Consider the fundamental group π 1 of F -1 (z), and let L j be its lower central sequence;

L j = [L j-1 , π 1 ], where L 1 = π 1 .
(

Using the fibration given by F , we define the monodromy group, which is a subgroup of the group of automorphisms of π 1 . Then denote by O = O γ the normal subgroup of π 1 generated by the orbit of γ under the action by the monodromy group (see [START_REF] Mardešić | Bounding the length of iterated integrals of the first non-zero Melnikov function[END_REF]).

In [START_REF] Mardešić | Bounding the length of iterated integrals of the first non-zero Melnikov function[END_REF], we defined the orbit depth k of the cycle γ of F by

k = sup{j ≥ 1|O ∩ L j ⊂ [O, π 1 ]} = min{j ≥ 1|O ∩ L j+1 ⊂ [O, π 1 ]}, (1.5) 
and showed that the orbit depth k bounds the length of the iterated integral M µ , for the displacement map ∆ ϵ of any polynomial deformation (1.2), i.e. that ℓ ≤ k.

(1.6)

In [START_REF] Mardešić | Infinite orbit depth and length of Melnikov functions[END_REF], we gave an example of a system having unbounded depth and formulated the following conjectures: Conjecture 1.1.

(i) For any polynomial F and any non-trivial cycle γ of F , either the depth is unbounded, or it is 1, or 2. (ii) For any F and its cycle γ, either there exist deformations ω, whose first non-zero Melnikov function M µ is of arbitrary high length, or for any deformation ω, the length of M ω is 1 or 2.

This conjecture is similar in spirit to the result of Casale [START_REF] Casale | Suites de Godbillon-Vey et intégrales premières. (French) [Godbillon-Vey sequences and first integrals[END_REF] , concerning the first integral and the length of the corresponding Godbillon-Vey sequence of a system or the Tits alternative [START_REF] Tits | Free subgroups in linear groups[END_REF].

One of the central components in the study is the orbit complement abelianization group or O-abelianization

π O-ab 1 := π 1 O ∩ L 2 . (1.7)
Note that it is associated to the couple (F, γ) and does not depend on the deformation form ω.

In order to give some steps towards the proof of the above conjecture, we consider some other, more classical invariants associated to the group π O-ab 1 : its nilpotence class n and its derivative length d, which we relate to the orbit depth k and length ℓ of the first nonzero Melnikov function (see section 2 for definitions). Proposition 1.2. Let F ∈ R[x, y] be a polynomial, γ ∈ π 1 (F -1 (z)) be a real cycle and ω a polynomial 1-form as above, and let π O-ab 1 be the group defined in (1. 

ℓ ≤ k ≤ n + 1, d ≤ n.
(1.8)

Remark 1.3. Although d ≤ n, there is no evident relationship between d and k.

General approach 1.4. The Poincaré (holonomy) map of a deformation (1.2) induces a homomorphism

P ω : π 1 → C[ϵ] ⊗ Diff (C, 0) , P ω (δ) = { z → z + ϵ ∫ δ ω + O(ϵ 2 ) } , (1.9) 
where P ω (δ) is the Poincaré map with respect to the foliation (1.2) along the cycle δ.

Assume that the deformation (1.2) preserves the continuous families of cycles corresponding to elements of O ∩ L 2 . This means that P ω (O ∩ L 2 ) = {Id} and the map (1.9) descends to the homomorphism

P ω : π O-ab 1 → C[ϵ] ⊗ Diff(C, 0). (1.10) 
Moreover, if one defines a deformation form ω in such a way that the obtained subgroup of diffeomorphisms is parabolic, then the group π O-ab 1 inherits properties of subgroups of parabolic diffeomorphisms. Using these properties, one could conclude that either π O-ab 1 is abelian, and so the orbit depth is less or equal to 2, or it is non-solvable.

However, the difficulty here lies in finding a one-form ω such that, for a cycle σ ∈ [π 1 , π 1 ] \ O ∩ L 2 , P ω (σ) = id, but it is the identity along any commutator in the orbit.

Here, we realize the above approach in the case of a Hamiltonian F given as a product of four real lines

F (x, y) = f 1 (x, y)f 2 (x, y)f 3 (x, y)f 4 (x, y), f i = a i x + b i y + c i , (a i , b i ) = (0, 0), (a i , b i ) = (a j , b j ), for i = j.
(1.11)

Recall that, as studied in [START_REF] Mardešić | Infinite orbit depth and length of Melnikov functions[END_REF], in the above case, if f i , i = 1, . . . , 4, consist of two pairs of parallel lines, the orbit depth k is infinite. Any Hamiltonian given by a product of four different lines is of one of the following three types:

(1) The four lines are in generic position (no parallel lines among f i , i = 1, . . . , 4, for different indices).

(2) One of the bounded domains bounded by these lines is a quadrilateral with exactly one pair of parallel opposite sides (we call it a trapezoid).

(3) One of the bounded domains bounded by these lines is a parallelogram (we call it a parallelogram).

Theorem 1.5. Let F be the product of four real lines (1.11), and γ ∈ π 1 (F -1 (z)) a continuous family of real cycles of F .

(1) In the case that the four lines are in generic position, then π O-ab 1 is abelian, so its nilpotence class n and derived length d are equal to 1. Hence the orbit depth k ≤ 2, and the length of the first non-zero Melnikov function is ℓ ≤ 2.

(2) In the trapezoid case π O-ab

1 is non-solvable d = n = ∞, but the orbit depth is k ≤ 2.
Hence, the length of the first non-zero Melnikov function of any deformation is bounded by 2, ℓ ≤ 2.

(3) In the parallelogram case π O-ab

1 is non-solvable d = n = ∞ and the orbit depth is infinite k = ∞.
Remark 1.6. We stress that the realization of the length is required in order to prove the conjecture in [START_REF] Mardešić | Bounding the length of iterated integrals of the first non-zero Melnikov function[END_REF] that states that the orbit depth is an optimal bound for the length of Melnikov functions. In [START_REF] Mardešić | Infinite orbit depth and length of Melnikov functions[END_REF] we provide a deformation of the parallelogram that has a first non-zero Melnikov function of length 3, which already distinguishes this case from the trapezoid, in terms of the length, where the length is less than or equal to 2.

The case of four lines in generic position has been studied in [START_REF] Uribe | Principal Poincaré-Pontryagin function associated to polynomial perturbations of a product of (d + 1) straight lines[END_REF][START_REF] Mardešić | Bounding the length of iterated integrals of the first non-zero Melnikov function[END_REF]. We recall it here for completeness. In this work, our aim is to focus on more degenerated situations, the trapezoid and parallelogram cases.

Since the nilpotence class n of π O-ab 1 provides an upper bound for the orbit depth k, we also want to understand conditions under which π O-ab 1 is non-nilpotent (or non-solvable). From the definition of the homomorphism in (1.10) we see that the nilpotence class of π O-ab 1 is greater than the nilpotence class of its image under P ω . In this sense, the class of nilpotence of π O-ab 1 is related with the type of deformations preserving centers in O ∩ L 2 , and therefore, with the type of integrability of these deformations.

Theorem 1.7.

(1) In the parallelogram and the trapezoid cases, there exist polynomial 1-forms ω such that the deformations (1.2) preserve the pairs of parallel lines and have a first integral of Riccati type.

(2) Moreover, there are deformations, preserving the pairs of parallel lines, having Godbillon-Vey sequences of any finite length.

Remark 1.8. In [START_REF] Cerveau | Complex Codimension one singular foliations and Godbillon-Vey sequences[END_REF] the authors define the length of a foliation as the minimal length among all Godbillon-Vey sequences for the foliation. They mention that they do not know any example of finite length greater than 4. Deformations in the second part of Theorem 1.7 could provide such examples if one can prove that its Godbillon-Vey sequence has optimal length. Conjecture 1.9.

( Here by parallel curves, we mean two level curves f -1 (c 1 ) and f -1 (c 2 ), of the same function f , for c 1 = c 2 . Parallel curves interesect only at the line at infinity. (i) Given a group G, let G i be its lower central sequence:

G = G 1 ⊃ G 2 ⊃ • • • , G j+1 = [G j , G].
If there exists j ∈ N such that G j = {e}, we say that the group is nilpotent and define its nilpotence class n = n(G) as

n = min{j ≥ 1|G j+1 = {e}}, (2.1) 
where e is the identity element in G.

(ii) Similarly, the upper central sequence G j is G = G 0 ⊃ G 1 ⊃ • • • , G j+1 = [G j , G j ].
If there exists j such that G j = {e}, we say that the group is solvable and define its derived length d as

d = min{j ≥ 1|G j = {e}}. (2.2)
Note that

G j+1 ⊃ G j . (2.3) 
This gives d ≤ n and in particular any nilpotent group is solvable.

We apply these two notions to the orbit complement abelianization group π O-ab

1
given in (1.7).

Proof of Propostion 1.2. In order to prove that k ≤ n + 1, it suffices to prove that

(π O-ab 1 ) j = {ē} implies O ∩ L j+1 ⊂ [O, π 1 ]
, for any j. We claim first that the assumption (π O-ab 1

) j = {ē}, implies L j ⊂ O.
(2.4) Hence,

Indeed, let σ = [[• • • [γ 1 , γ 2 ], • • • , γ j-1 ], γ j ]
L j+1 = [L j , π 1 ] ⊂ [O, π 1 ], showing that O ∩ L j+1 ⊂ [O, π 1 ].
The relation d ≤ n comes from expression (2.3). On the other hand, it is known from [START_REF] Mardešić | Bounding the length of iterated integrals of the first non-zero Melnikov function[END_REF] that the length ℓ of the first non-zero Melnikov function is bounded by the orbit depth k. Therefore, ℓ ≤ k ≤ n + 1. □

Germs of diffeomorphisms

Given a germ of diffeomorphism f ∈ Diff(C, 0), we say that it is parabolic if it is of the form f (z) = z + o(z). If f is not the identity, then f = z + az p+1 + o(z p+1 ), with a = 0. We call p the level of f . Let Diff 1 (C, 0) ⊂ Diff(C, 0) denote the subgroup of parabolic germs.

The general approach given in 1.4 is based on the following well-known facts about the solvability of the group of parabolic germs Diff 1 (C, 0). Lemma 3.1. (Proposition 6.11, [START_REF] Ilyashenko | Lectures on analytic differential equations[END_REF])

Let f = z+az p+1 +• • • and g = z+bz q+1 +• • • . Then [f, g](z) = z + ab(p -q)z p+q+1 + o(z p+q+1 ).
Proposition 3.2. (Lemma 6.13 [START_REF] Ilyashenko | Lectures on analytic differential equations[END_REF]) Let G be a finitely generated subgroup of parabolic germs Diff 1 (C, 0). Then (i) or (ii) holds (i) G is abelian, i.e. of nilpotence class n(G) ≤ 1.

(ii) G is not solvable (hence not nilpotent).

Lemma 3.3. [START_REF] Ilyashenko | Lectures on analytic differential equations[END_REF] Let G be a finitely generated subgroup of parabolic germs Diff 1 (C, 0). Then G is solvable if and only if it is abelian. Moreover, one of the following statements holds:

(i) G is not abelian and there exist two diffeomorphisms f and g in G of different levels. (ii) G is abelian and all diffeomorphisms in G are of the same level.

Proof. Suppose G = {id}. We now consider two cases: either there exist two germs f = z + az p+1 + o(z p+1 ) and g = z + bz q+1 + o(z q+1 ) in G of different level q = p, or all germs are of the same level.

In the first case, by Lemma 3.

1, h = [f, g](z) = z +ab(p-q)z p+q+1 +o(z p+q+1 ) = z. Therefore, G 1 = [G, G] = {id}.
Applying inductively the same reasoning on h and g, one can show that G ℓ = {id} and G ℓ = {id}, for all ℓ. Thus, G is not nilpotent, nor solvable. Now, suppose that all the elements of G have the same level p. Then, by Lemma 3.1, given f = z + az p+1 + o(z p+1 ) and g = z + bz p+1 + o(z p+1 ), the element [f, g] is either of a level strictly greater than p or the identity. The first option is impossible by the assumption, so it follows that G 2 = G 1 = {id}. Thus G is abelian. □ 4. Proof of Theorem 1.5

Proof. In the case (1), of product of lines in generic position, it has been proved in [START_REF] Uribe | Principal Poincaré-Pontryagin function associated to polynomial perturbations of a product of (d + 1) straight lines[END_REF] that

[π 1 , π 1 ] ⊆ O. Therefore, π O-ab 1
is abelian, and k ≤ 2. Hence, the orbit depth of the real cycle, as well as the length of the first non-zero Melnikov function for any deformation, is bounded by 2, by [START_REF] Mardešić | Bounding the length of iterated integrals of the first non-zero Melnikov function[END_REF].

To prove that π O-ab 1 is non-solvable for cases (2) and (3) we follow the same strategy. In both cases, by an affine change of coordinates we can assume that the Hamiltonian is given by F = (x -1)(x + 1)f 3 f 4 , where f 3 and f 4 are linear factors (non-parallel in case (2) and parallel in case (3)). Now, consider the foliation F ω = {dF + ϵω = 0}, where ω = F 2 ( dx x-1 + F dx x+1 ), and the homomorphims defined by the holonomy with respect to F ω :

P ω : π O-ab 1 → C[ϵ] ⊗ Dif f 1 (C, 0).
We define the subgroup G := P ω (π O-ab 1 ) of the group of parabolic difeomorphims with coefficients depending on ϵ. Note that the morphism P ω is well defined. Namely, since F ω has a reflexion symmetry with respect to y-axis, then it preserves the center at the origin. Moreover, since

P ω [δ 1 , δ 2 ] = z+ϵ 2 W (z 2 , z 3 ) ∫ [δ1,δ2] dx x-1 dx x+1 + O(ϵ 3 ) = z,
where W is the Wronskian, then G is not Abelian, and therefore nonsolvable.

In [START_REF] Mardešić | Infinite orbit depth and length of Melnikov functions[END_REF] it is proved that the parallelogram has unbounded orbit depth. It remains to prove that for the trapezoid the orbit depth is k ≤ 2. By an affine change of coordinates we may assume that F is defined by

F = (x -1)(x + 1)f 3 f 4 , (4.1) 
and has the configuration given in Figure 1. The zero level F -1 (0) consists of four lines, enclosing a quadrilateral and a triangle. Let γ be the real cycle in F -1 (z ′ ), z ′ > 0, close to zero and enclosed by the quadrilateral, and let γ 1 be the real cycle in F -1 (z ′′ ), z ′′ < 0, close to zero and enclosed by the triangle, both with positive orientation. Let p i be the vertices of the quadrilateral oriented positively with p 2 and p 3 the commun vertices with the triangle and let p 5 be the last vertex of the triangle. Let δ i , be the vanishing cycles at the vertices p i , i = 1, . . . , 5 taken so that the intersection numbers verify (γ, δ i ) = 1, i = 1, . . . , 4 and (γ 1 , δ 5 ) = 1.
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Figure 1. The real loops γ(z) and γ 1 (z) and the complex vanishing loops δ i (z) as elements of π 1 ( F -1 (z), p 0 ) .

Using the Gauss-Manin connection, we continue analytically γ, γ 1 , δ i to a nonsingular curve

F -1 (z), 0 < |z| 1, along segments [z ′ , z] and [z ′′ , z].
Recall that, by [START_REF] A'campo | Le groupe de monodromie du déploiement des singularités isolées de courbes planes. I[END_REF], the intersection numbers verify:

(γ, γ 1 ) = 1 (4.2)
and

(γ 1 , δ 2 ) = (γ 1 , δ 3 ) = 1. (4.3)
Remark 4.1. Theorem 1.5 is also true in the complex case if conditions (4.2) and (4.3) are fulfilled.

In [START_REF] Mardešić | Bounding the length of iterated integrals of the first non-zero Melnikov function[END_REF], we obtained the orbit of the real cycle for a first integral of triangle type, that is

O γ1 =< γ 1 , δ 2 δ 3 δ , [δ 2 , δ 3 ] > mod [O γ1 , π 1 ],
and in [START_REF] Mardešić | Infinite orbit depth and length of Melnikov functions[END_REF], for the quadrilateral type. The quadrilateral case in a neighborhood of the quadrilateral is the same as in the parallelogram case. Now, due to (4.2), in our case (4.1), the orbit of γ is generated by the union of the orbits in these two cases. This gives:

O γ [O γ , π 1 ] = =< {γ, δ 1 δ 2 δ 3 δ 4 , [δ 1 δ 2 , δ 2 δ 3 ], [δ 1 δ 2 , [δ 2 , δ 2 δ 3 ]], . . . , [δ 1 δ 2 , [δ 2 , . . . [δ 2 , δ 2 δ 3 ]], . . .} ∪ O γ1 > .
We know that [δ 2 , δ 3 ] belongs to the orbit of γ 1 and hence to O γ . Hence,

[δ 2 , δ 2 δ 3 ] = δ 2 [δ 2 , δ 3 ]δ -1 2
belongs to the orbit as well. This gives that in the above expression for the orbit

O γ the commutator [δ 1 δ 2 , [δ 2 , δ 2 δ 3 ]] belongs to [O, π 1 ].
The same is therefore true for all terms which contain it (all the terms following it in the above braces). We know [START_REF] Mardešić | Bounding the length of iterated integrals of the first non-zero Melnikov function[END_REF] that the depth of O γ1 is two. All the terms following the term

[δ 1 δ 2 , δ 2 δ 3 ] are in [O, π 1 ],
showing that the depth k verifies k ≤ 2 and hence by [START_REF] Mardešić | Bounding the length of iterated integrals of the first non-zero Melnikov function[END_REF] the length of the first non-zero function M µ of any deformation ω is ℓ ≤ 2. □

Types of integrability of the deformations

We will study the Godbillon-Vey sequence for the foliation

dF + ϵω = 0, (5.1) 
with

F = f 1 f 2 f 3 f 4 and ω = p 1 (F ) df1 f1 + p 2 (F ) df2 f2 , where f 1 = x -1, f 2 = x + 1, p 1 , p 2 are
polynomials in F , and f 3 , f 4 are linear factors different from f 1 and f 2 . For the parallelogram, f 3 and f 4 define parallel lines, while for the trapezoid they do not. By explicit computation of Godbillon-Vey sequences we will show that the foliation dF + ϵ (

df1 f1 + F df2 f2 ) = 0 is Liouville integrable, while dF + ϵ ( F df1 f1 + F 2 df2 f2 ) = 0 is Riccati integrable. Moreover, for ω = p 1 (F ) df1 f1 + p 2 (F ) df2
f2 , with n = deg{deg p 1 , deg p 2 }, foliation (5.1) admits a Godbillon-Vey sequence of length ≤ n, which increases complexity of the first integral for those cases. Therefore, for n ≥ 3 the foliation (5.1) could have a first integral which is not of Riccati type, with infinite dimensional pseudo-group of holonomy.

We recall that a Gobdillon-Vey sequence for a meromophic 1-form η 0 is a sequence {η 0 , η 1 , ...}, such that

dη 0 = η 0 ∧ η 1 dη 1 = η 0 ∧ η 2 dη 2 = η 0 ∧ η 3 + η 1 ∧ η 2 dη 3 = η 0 ∧ η 4 + 2η 1 ∧ η 3 . . . dη n = η 0 ∧ η n+1 + n ∑ k=1 ( n k ) η k ∧ η n-k+1 (5.2) 
It is of length ℓ if η j = 0 for all j ≥ ℓ.

It is known that η 0 has a first integral of Liouville type (respectively of Riccati type), if and only if, it admits a Godbillon-Vey sequence of length 2 (respectively of length 3).

5.1. Degree on F equals 1. Let us start by analyzing the case ω = F df1 f1 . We denote η 0 := dF + ϵF df1 f1 . Then

dη 0 = ϵdF ∧ df 1 f 1 .
Thus, we can take

η 1 := ϵ df1 f1 = df ϵ 1 f ϵ 1 .
Then, dη 1 = 0, which means η 2 = 0. Hence, η 0 admits a Godbillon-Vey sequence of length 2, and therefore (5.1) is Liouville integrable. Moreover, Casale's article [START_REF] Casale | Suites de Godbillon-Vey et intégrales premières. (French) [Godbillon-Vey sequences and first integrals[END_REF] provides a way to compute from this sequence the first integral. This is given by dH = Gη 0 , where η 1 = dG G . In this case, we have G = f ϵ 1 . Therefore the first integral H is given by ) , which will give us a way to proceed for higher degree. By substituting f 1 = x-1, f 2 = x+1, we obtain

f ϵ 1 η 0 = f ϵ 1 (dF + F df ϵ 1 f ϵ 1 ) = f ϵ 1 dF + F df ϵ 1 = d(f ϵ 1 F ); thus, H = f ϵ 1 F ,
η 0 = dF + ϵ ( 1 x-1 + F x+1 ) dx. Denote φ(x, F ) = 1 x-1 + F x+1 .
Then η 0 = dF + ϵφdx, and dη 0 = ϵdφ ∧ dx.

(5.3)

Note that dφ = φ F dF + φ x dx, where φ F = ∂φ ∂F (x, F ) = 1 x+1 , and

φ x = ∂φ ∂x (x, F ) = -1 (x-1) 2 -F (x+1) 2 .
Then, (5.3) is equal to dη 0 = ϵφ F dF ∧ dx.

(5.4)

Define η 1 := ϵφ F dx. It satisfies the equation dη 0 = η 0 ∧η 1 = (dF +ϵφdx)∧ϵφ F dx. On the other hand, dη 1 = ϵdφ F ∧ dx, where dφ F = φ F F dF + φ F x dx. That is, dη 1 = ϵφ F F dF ∧ dx, which is zero because φ F F = 0. Then, we can take η 2 = 0. Thus, η 0 admits a Godbillon-Vey sequence of length 2, and therefore is Liouville integrable. To compute the first integral H, we have to solve the equations dH = Gη 0 , and η 1 = dG G . For this purpose, we note that

η 1 = ϵ dx x+1 = df ϵ 2 f ϵ 2 . Then, dH = f ϵ 2 η 0 = f ϵ 2 ( dF + ϵ ( df1 f1 + F df2 f2 
)) , which corresponds to

f ϵ 2 ( dF + df ϵ 1 f ϵ 1 + F df ϵ 2 f ϵ 2 ) = f ϵ 2 dF + f ϵ 2 df ϵ 1 f ϵ 1 + F df ϵ 2 = d ( f ϵ 2 F + ∫ f ϵ 2 df ϵ 1 f ϵ 1
) .

Therefore,

H = f ϵ 2 F + ∫ f ϵ 2 df ϵ 1 f ϵ 1 . By substituting the expressions of f 1 , f 2 , we get ∫ f ϵ 2 df ϵ 1 f ϵ 1 = ∫ ϵ(x + 1) ϵ dx
x-1 . We stress that the construction above is analogous for f 1 and f 2 defining two arbitrary parallel lines.

Proof of Theorem 1.7

Proof. We consider the deformation dF + ϵ(F df1 f1 + F 2 df2 f2 ), where f 1 = x -1, f 2 = x + 1, and define

η 0 := dF + ϵ ( F x -1 + F 2 x + 1 ) dx. (6.1) Denote φ(x, F ) = F x-1 + F 2 x+1
. Then η 0 = dF + ϵφdx, and since dφ = φ F dF + φ x dx, where φ F is the partial derivative of φ with respect to F : φ F = 1

x-1 + 2F x+1 , we have

dη 0 = ϵφ F dF ∧ dx. (6.2) 
Thus, we define η 1 := ϵφ F dx. It satisfies the equation dη 0 = η 0 ∧ η 1 . Now we consider dη 1 = ϵdφ F ∧ dx. Then, again, writing dφ F = φ F F dF + φ F x dx, we have dη 1 = ϵφ F F dF ∧ dx. So, we can take η 2 := ϵφ F F dx. It satisfies the equation dη 1 = η 0 ∧ η 2 . Continuing with the Godbillon-Vey sequence we consider dη 2 = ϵdφ F F ∧ dx. But, since the degree of φ in F is 2, φ F F depends only on x, therefore dφ F F ∧ dx = 0. Now, for the equation dη 2 = η 0 ∧ η 3 + η 1 ∧ η 2 , since η 1 ∧ η 2 = 0, we can take η 3 = 0. Hence, η 0 admits a Godbillon-Vey sequence of length 3, and therefore it has a first integral of Riccati type. According to Casale's method [START_REF] Casale | Suites de Godbillon-Vey et intégrales premières. (French) [Godbillon-Vey sequences and first integrals[END_REF] we can compute the first integral by solving the following equations:

dH = G 1 η 0 dG 1 = G 1 ( η 1 + 2 G 2 η 0 ) dG 2 = - G 2 2 2 η 2 -G 2 η 1 -η 0 , (6.3) 
with

η 0 = dF + ϵ ( F x-1 + F 2 x+1 ) dx, η 1 = ϵ ( 1 x-1 + 2F x+1 ) dx, and η 2 = ϵ ( 2 x+1 
) dx.

One can check that H = -1

F f ϵ 1 + ∫ df ϵ 2 f ϵ 1 f ϵ 2 , G 1 = 1 F 2 f ϵ 1 
and G 2 = -F satisfy equations (6. 3). Now, we analyze what happens when we increase the degree in F for the foliation (5.1). Let

η 0 := dF + ϵ ( F 2 df 1 f 1 + F 3 df 2 f 2 ) . (6.4) Substituting f 1 = x -1, f 2 = x + 1, we obtain η 0 = dF + ϵ ( F 2 x-1 + F 3 x+1
) dx. Following the same process as before, we write η 0 = dF + ϵφdx, where φ(x, F ) = F 2

x-1 + F 3 x+1 . Since dφ = φ F dF + φ x dx, we have dη 0 = ϵφ F dF ∧ dx, (

where φ F = 2F

x-1 + 3F 2 x+1 . Thus, we define η 1 := ϵφ F dx, note that deg F φ F = 2. It satisfies the equation dη 0 = η 0 ∧ η 1 . Now we consider dη 1 = ϵdφ F ∧ dx. Writing dη 1 = φ F F dF + φ F x dx, we have dη 1 = ϵφ F F dF ∧ dx. So, we can take again η 2 := ϵφ F F dx, where now deg F φ F F = 1. It satisfies the equation dη 1 = η 0 ∧ η 2 . Then dη 2 = ϵdφ F F ∧ dx = ϵφ F F F dF ∧ dx. We want η 3 to be such that dη 2 = η 0 ∧ η 3 + η 1 ∧ η 2 . Since η 1 ∧ η 2 = 0, we can take η 3 = ϵφ F F F dx. Consider dη 3 = ϵdφ F F F ∧ dx. This is zero, since φ F F F depends only on x. We want now η 4 verifying the equation dη 3 = η 0 ∧ η 4 + 2η 2 ∧ η 3 . But, since η 2 ∧ η 3 = 0, we can take η 4 = 0. Moreover, from this construction η k ∧ η ℓ = 0 for all k, ℓ ≥ 1, hence this Godbillon-Vey sequence has length 4. Therefore, η 0 could have a first integral which is not of Riccati type. With the same procedure we can obtain a deformation with a Godbillon-Vey sequence of any finite length n, by taking the degree in F of the deformation equal to n -1.

We stress that the above computations do not depend on the factors f 3 and f 4 , therefore they are valid for the parallelogram, as well as for the trapezoid. □ Remark 6.1. From these cases one can observe that the length of the Godbillon-Vey sequence for the foliation (5.1) increases with the degree in F of the function φ(x, F ). So, increasing the degree in F for the deformation, we can have a first integral of more complicated type.

In particular, for n = deg F φ > 4 one should obtain a Godbillon-Vey sequence of finite length n higher than 4. In the paper [START_REF] Cerveau | Complex Codimension one singular foliations and Godbillon-Vey sequences[END_REF] (p. 25) the authors say they do not know any example of finite length greater than 4. However, the length is defined as the minimal length among all the Godbillon-Vey sequences that the foliation can admit. So, in order to prove that these examples for n > 4 have Godbillon-Vey length higher than 4, one should prove that the constructed Godbillon-Vey is optimal. That is that there does not exist some other Godbillon-Vey sequence of smaller length.
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 11 7). Let n be the nilpotence class of π O-ab d the derivative length of π O-ab k the orbit depth and ℓ the length of the first nonzero Melnikov function of the deformation (1.2) along γ. Then the following inequalities hold

)

  The non-solvability of the group π O-ab 1 is characterized by the presence of a pair of parallel curves in the Hamiltonian foliation. (2) The non-bounded orbit depth is characterized by the presence of two pairs of parallel curves in the Hamiltonian foliation. (3) The type of singularity given by a pair of parallel curves at the line at infinity characterizes the non-solvability of π O-ab 1 .

2 .

 2 Nilpotence class and derivative length Definition 2.1.

1 ). Then σ ∈ ( π O-ab 1 )

 11 be a generator of L j and let σ ∈ π O-ab 1 be the class of this σ i in (π O-ab j = {e}, i.e. σ ∈ O ∩ L 2 . We thus have(2.4).

  which lies in a Liouvillian extension.Now we analyze the following case η0 := dF + ϵ ( df1 f1 + F df2 f2
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