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Abstract

Action recognition based on skeleton data has recently witnessed increasing atten-
tion and progress. State-of-the-art approaches adopting Graph Convolutional networks
(GCNs) can effectively extract features on human skeletons relying on the pre-defined
human topology. Despite associated progress, GCN-based methods have difficulties to
generalize across domains, especially with different human topological structures. In
this context, we introduce UNIK, a novel topology-free skeleton-based action recogni-
tion method that is not only effective to learn spatio-temporal features on human skeleton
sequences but also able to generalize across datasets. This is achieved by learning an op-
timal dependency matrix from the uniform distribution based on a multi-head attention
mechanism. Subsequently, to study the cross-domain generalizability of skeleton-based
action recognition in real-world videos, we re-evaluate state-of-the-art approaches as
well as the proposed UNIK in light of a novel Posetics dataset. This dataset is cre-
ated from Kinetics-400 videos by estimating, refining and filtering poses. We provide
an analysis on how much performance improves on the smaller benchmark datasets af-
ter pre-training on Posetics for the action classification task. Experimental results show
that the proposed UNIK, with pre-training on Posetics, generalizes well and outperforms
state-of-the-art when transferred onto four target action classification datasets: Toyota
Smarthome, Penn Action, NTU-RGB+D 60 and NTU-RGB+D 120.

1 Introduction
As skeleton-based human action recognition methods rely on 2D or 3D positions of human
key joints only, they are able to filter out noise caused, for instance, by background clut-
ter, changing light conditions, and to focus on the action being performed [1, 10, 18, 21,
24, 27, 32, 33, 34, 36, 38, 40, 42, 43, 45, 47]. Recent approaches, namely Graph Convo-
lutional Networks (GCNs) [43], models human joints, as well as their natural connections
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Figure 1: Human joint labels of three datasets: Toyota Smarthome (left), NTU-RGB+D (middle)
and Kinetics-Skeleton (right). We note the different numbers, orders and locations of joints.

(i.e., bones) in skeleton spatio-temporal graphs to carry both, spatial and temporal infer-
ences. Consequently, several successors, namely Adaptive GCNs (AGCNs), with optimized
graph construction strategies to extract multi-scale structural features and long-range depen-
dencies have been proposed and shown encouraging results. Promising examples are graph
convolutions with learnable adjacency matrix [33], higher-order polynomials of adjacency
matrix [21] and separate multi-scale subsets of adjacency matrix [24]. All these adjacency
matrices are manually pre-defined to represent the relationships between joints according to
human topology. Nevertheless, compared with RGB-based methods such as spatio-temporal
Convolutional Neural Networks (CNNs) [3, 12] that are pre-trained on Kinetics [3] to boost
accuracy in downstream datasets and tasks, GCN-based models are limited because they
are always trained individually on the target dataset (often small) from scratch. Our insight
is that, the generalization abilities of these approaches are hindered by the need for differ-
ent adaptive adjacency matrices when different topological human structures are used (e.g.,
joints number, joints order, bones), as in the case of the three datasets of Fig. 1. However, we
note that such adaptive sparse adjacency matrices are transformed to fully dense matrices in
deeper layers in order to capture long-range dependencies between joints. This new structure
contradicts the initial and original topological skeleton structure.

Based on these considerations and as the human-intrinsic graph representation is deeply
modified during training, we hypothesize that there should be a more optimized and generic
initialization strategy that can replace the adjacency matrix. To validate this hypothesis, we
introduce UNIK, a novel unified framework for skeleton-based action recognition. In UNIK,
the adjacency matrix is initialized into a uniformly distributed dependency matrix where
each element represents the dependency weight between the corresponding pair of joints.
Subsequently, a multi-head aggregation is performed to learn and aggregate multiple depen-
dency matrices by different attention maps. This mechanism jointly leverages information
from several representation sub-spaces at different positions of the dependency matrix to ef-
fectively learn the spatio-temporal features on skeletons. The proposed UNIK does not rely
on any topology related to the human skeleton, makes it much easier to transfer onto other
skeleton datasets. This opens up a great design space to further improve the recognition
performance by transferring a model pre-trained on a sufficiently large dataset.

In addition, another reason for poor generalization abilities is that many skeleton datasets
have been captured in lab environments with RGBD sensors (e.g., NTU-RGB+D [23, 31]).
Then, the action recognition accuracy significantly decreases, when the pre-trained models
on the sensor data are transferred to the real-world videos, where skeleton data encounters a
number of occlusions and truncations of the body. To address this, we create Posetics dataset
by estimating and refining poses, as well as filtering, purifying and categorizing videos and
annotations based on the real-world Kinetics-400 [3] dataset. To this aim, we apply multi-
expert pose estimators [2, 6, 29] and a refinement algorithm [44]. Our experimental analysis
confirms: pre-training on Posetics improves state-of-the-art skeleton-based action recogni-
tion methods, when transferred and fine-tuned on all evaluated datasets [4, 23, 31, 46].

In summary, the contributions of this paper are: (i) we go beyond GCN-based architec-
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tures by proposing UNIK with a novel design strategy by adopting dependency matrices and
a multi-head attention mechanism for skeleton-based action recognition. (ii) We revisit real-
world skeleton-based action recognition focusing on cross-domain transfer learning. The
study is conducted on four target datasets with pre-training on Posetics, a novel and large-
scale action classification dataset that features higher quality skeleton detections based on
Kinetics-400. (iii) We demonstrate that pre-training UNIK on Posetics and fine-tuning it on
the target real-world datasets (e.g., Toyota Smarthome [4] and Penn Action [46]) can be a
generic and effective methodology for skeleton-based action classification.

2 Related Work
Human Action Recognition. Human action recognition approaches could be mainly cat-
egorized into three types. (i) 3D-CNNs [3, 7, 9, 11, 15, 30, 39] and their variants [19, 41]
have become the mainstream approach as the models can effectively extract spatio-temporal
features for RGB videos and can be pre-trained on a large-scale dataset Kinetics [3] to facil-
itate transfer learning. (ii) Two-stream CNNs [8, 16] use two inputs of RGB and optical flow
to separately model appearance and motion information in videos with a late fusion. Unlike
RGB-based methods, (iii) skeleton-based approaches [24, 33, 36, 43] can learn good video
representation with less amounts of parameters and are more robust to changes in appear-
ances, environments, and view-points. In this work, we specifically focus on improving the
skeleton-based action recognition performance and the model generalization ability.

Skeleton-Based Action Recognition. Early skeleton-based approaches using Recurrent
Neural Networks (RNNs) [35, 38, 42, 45, 47] or Temporal Convolutional Networks (TCNs)
[17] were proposed due to their high representation capacity. However, these approaches
ignore the spatial semantic connectivity of the human body. Subsequently, [1, 18, 45] pro-
posed to map the skeleton as a pseudo-image (i.e., in a 2D grid structure to represent the
spatial-temporal features) based on manually designed transformation rules and to lever-
age 2D CNNs to process the spatio-temporal local dependencies within the skeleton se-
quence by considering a partial human-intrinsic connectivity. ST-GCN [43] used spatial
graph convolutions along with interleaving temporal convolutions for skeleton-based action
recognition. This work considered the topology of the human skeleton, however ignored
the important long-range dependencies between the joints. In contrast, recent AGCN-based
approaches [10, 21, 24, 27, 32, 33, 34, 36] have seen significant performance boost, by the
advantage of improving the representation of human skeleton topology to process long-range
dependencies for action recognition. Specifically, 2s-AGCN [33] introduced an adaptive
graph convolutional network to adaptively learn the topology of the graph with self-attention,
which was shown beneficial in action recognition and hierarchical structure of GCNs. Asso-
ciated extension, MS-AAGCN [34] incorporated multi-stream adaptive graph convolutional
networks that used attention modules and 4-stream ensemble based on 2s-AGCN [33]. These
approaches primarily focused on spatial modeling. Consequently, MS-G3D Net [24] pre-
sented a unified approach for capturing complex joint correlations directly across space and
time. However, the accuracy depends on the scale of the temporal segments, which should
be carefully tuned for different datasets, preventing transfer learning. Thus, these previous
approaches [24, 33, 34] learn adaptive adjacency matrices from the sub-optimal initialized
human topology. In contrast, our work proposes an optimized and unified dependency matrix
that can be learned from a uniform distribution by a multi-head attention process without the
constraint of human topology and a limited number of attention maps in order to improve
performance, as well as generalization capacity for skeleton-based action recognition.

Model Generalization for Skeletons. Previous methods [24, 33, 34, 43] were only evalu-
ated on the target datasets, trained from scratch without taking advantages of fine-tuning on
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a pre-trained model. To explore the transfer ability for action recognition using human skele-
ton, recent research [20, 37] proposed view-invariant 2D or 3D pose embedding algorithms
with pre-training performed on lab datasets [14, 23] that do not correspond to real-world and
thus these techniques struggle to improve the action recognition performance on downstream
tasks with large-scale real-world videos [4, 22]. To the best of our knowledge, we are the first
to explore the skeleton-based pre-training and fine-tuning strategies for real-world videos.

3 Proposed Approach

3.1 Unified Architecture (UNIK)
In this section we present UNIK, a unified spatio-temporal dependencies learning network
for skeleton-based action recognition.

Skeleton Sequence Modeling. As shown in Fig. 3 (a), the sequence of the input skeletons
is modeled by a 3D spatio-temporal matrix, noted as fin. For each frame, the 2D or 3D body
joint coordinates are arranged in a vector within the spatial dimension in any order as long
as the order is consistent with other frames in the same video. For the temporal dimension,
the same body joints in two consecutive frames are connected. T , V , and Cin represent the
length of the video, the number of joints of the skeleton in one frame, as well as the input
channels (2D or 3D at the beginning and expanded within the building blocks), respectively.
The input fin and the output fout for each building block (see 3.1) are represented by a matrix
in RCin×T×V and a matrix in RCout×T×V , respectively.

S-LSU T-LSU Global Average Pooling

Bn
Fc + Softmax

K blocks

(64, 64, 64, 64, 128, 128, 
128, 256, 256, 256)

Out channels: 

Bn

Block-1 Block-2

ActionInput

Figure 2: Overall architecture. There are K blocks with a 1D Batch normalization layer at the
beginning, a global average pooling layer and a fully connected classifier at the end. Each block
contains a Spatial Long-short dependency Unit (S-LSU), a Temporal Long-short dependency Unit (T-
LSU) and two Batch normalization layers.

Overall Architecture. The overall architecture is composed of K building blocks (see
Fig. 2). Key components of each block constitute the Spatial Long-short Dependency learn-
ing Unit (S-LSU), as well as the Temporal Long-short Dependency learning Unit (T-LSU)
that extract both spatial and temporal multi-scale features on skeletons over a large receptive
field. The building block ST-LSblock is formulated as follows:

fout = ST-LSblock(fin) = T-LSU
(

S-LSU(fin)
)

(1)

S-LSU and T-LSU are followed by a 2D Batch normalization layer respectively. A 1D
Batch normalization layer is added in the beginning for normalizing the flattened input data.
Given a skeleton sequence, the modeled data is fed into the building blocks. After the last
block, global average pooling is performed to pool feature maps of different samples to
the same size. Finally, the fully connected classifier outputs the prediction of the human
action. The number of blocks K and the number of output channels should be adaptive
to the size of the training set, as a large network cannot be trained with a small dataset.
However, in this work, we do not need to adjust K, as we propose to pre-train the model
on a large, generic dataset (see 4). We set K = 10 with the number of output channels
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Cin × 𝑇 × 𝜏V

𝜏V × Ce 𝑇

Ce 𝑇 × 𝜏V (𝜏V	 × 𝜏V)

1
T

1
T

V

Cin

Wi

Ai

Conv2D
(1 × 1)

Relu
Conv2D
(t × 1)

Conv2D
(t × 1, dilation)

Relu

Softmax
(𝜏V		× 𝜏V)

Out

Input skeletons

Multi-head

Res (1 × 1)

Cin × 𝑇 × V

(a) Skeleton sequence modeling (b) Spatial Unit (S-LSU) (c) Temporal Unit (T-LSU)

Out
In

Conv2D
(1 × 1)

E𝜃i

E𝜙i

Ei

Figure 3: Unified Spatial-temporal Network. (a) The input skeleton sequence is modeled into a
matrix with Cin channels × T frames × V joints. (b) In each head of the S-LSU, the input data over
a temporal sliding window (τ) is multiplied by a dependency matrix which are obtained from the
unified, uniformly initialized Wi and the self-attention based Ai. Ei , Eθ i and Eφ i are for the channel
embedding from Cin to Cout /Ce respectively by (1×1) convolutions. The final output is the sum of the
outputs from all the heads. (c) The T-LSU is composed of convolutional layers with (t×1) kernels . d
denotes the dilation coefficient which can be different in each block.

64,64,64,64,128,128,128,256,256,256 (see Fig. 2). In order to stabilize the training and
ease the gradient propagation, a residual connection is added for each block.

Spatial Long-short Dependency Unit (S-LSU). To aggregate the information from a
larger spatial-temporal receptive field, a sliding temporal window of size τ is set over the
input matrix. At each step, the input fin across τ frames in the window becomes a matrix
in RCin×T×τV . For the purpose of spatial modeling, we use a multi-head and residual based
S-LSU (see Fig. 3 (b)) and formulated as follows:

fout = S-LSU(fin) =
N

∑
i=1

Ei ·
(
fin× (Wi +Ai)

)
, (2)

where N represents the number of heads. Ei ∈ RCout×Cin×1×1 denotes the 2D convolutional
weight matrix with 1×1 kernel size, which embeds the features from Cin to Cout by the dot
product. Wi ∈ RτV×τV is the “dependency matri” mentioned in Sec. 1 to process the depen-
dencies for every pair of spatial features. Inspired by [13], Wi is learnable and uniformly
initialized as random values within bounds (Eq. 3).

Wi = Uniform(−bound,bound), where bound =

√
6

(1+a2)V
, (3)

where a denotes a constant indicating the negative slope of the rectifier [13]. In this work,
we take a =

√
5 as the standard initialization strategy of the fully connected layers for Wi,

in order to efficiently reach the optimal dependencies.
Self-attention Mechanism. The matrix Ai in Eq. 2 represents the non-local self atten-

tion map that adapts the dependency matrix Wi dynamically to the target action. This adap-
tive attention map is learned end-to-end with the action label. In more details, given the input
feature map fin ∈RCin×T×τV , we first embed it into the space RCe×T×τV by two convolutional
layers with 1× 1 kernel size. The convolutional weights are denoted as Eθ i ∈ RCe×Cin×1×1

and Eφ i ∈ RCe×Cin×1×1, respectively. The two embedded feature maps are reshaped to
τV ×CeT and CeT × τV dimensions. They are then multiplied to obtain the attention
map Ai ∈ RτV×τV , whose elements represent the attention weights between each two joints
adapted to different actions. The value of the matrix is normalized to 0∼ 1 using a softmax
function. We can formulate Ai as:

Ai = Softmax
(
(ET

θ i · f
T
in)× (Eφ i · fin)

)
. (4)
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Temporal Long-short Dependency Unit (T-LSU). For the temporal dimension, the video
length is generally large. If we use the same method as spatial dimension, i.e., establishing
dependencies by T ×T weights for every pair of frames, it will consume too much calcu-
lation. Therefore, we leverage multiple 2D convolutional layers with kernels of different
dilation coefficient d and temporal size t on the Cout×T ×N feature maps to learn the multi-
scale long-short term dependencies (see Fig. 3 (c)). The T-LSU can be formulated as:

fout = T-LSU(fin) = Conv2D(t×1,d)(fin). (5)

Joint-bone Two-stream Fusion. Inspired by the two-stream methods [24, 32, 33], we use
a two-stream framework where a separate model with identical architecture is trained using
the bone features initialized as vector differences of adjacent joints directed away from the
body center. The softmax scores from the joint and bone models are summed to obtain final
prediction scores.

3.2 Design Strategy
In this section, we present our design strategy that goes beyond GCNs by using a generic
dependency matrix Wi (see Eq. 2) and the attention mechanism Ai to model the relations
between joints in our unified formulation.
Dependency Matrix. For many human actions, the natural connectivity between joints
are not the most appropriate to be used to extract features on skeletons (e.g., for “drinking”,
the connectivity between the head and the hand should be considered, but the original hu-
man topology does not include this connectivity). Hence, it is still an open question what
kind of adjacency matrix can represent the optimal dependencies between joints for effective
feature extraction. Recent works [21, 24, 33] aim at optimizing the adjacency matrices to in-
crease the receptive field of graph convolutions, by higher-order polynomials to make distant
neighbors reachable [21] or leveraging an attention mechanism to guide the learning process
of the adjacency matrix [24, 33]. Specifically, they decompose the adjacency matrix into
a certain number of subsets according to the distances between joints [24] or according to
the orientation of joints to the gravity (i.e., body center) [33], so that each subset is learned
individually by the self-attention. The learned feature maps are then aggregated together
for the action classification. However, the number of subsets is constrained by the body
structure. Moreover, we note that the manually pre-defined subsets of the adjacency matrix
with prior knowledge (i.e., pre-defined body topology) are all sparse. At the initial learning
stage, this spatial convolution relies on a graph-representation, while at the deeper stage, the
relations coded within the adjacency matrix are no more sparse and the joint connections
are represented by a complete-graph, which corresponds to a fully connected layer in the
narrow sense. Finally, the dependencies converge to a sparse representation again, which
is locally optimal but completely different from the original topological connectivity of the
human body (see Fig. 4). This motivates us, in this work, to revise the adjacency matrix by
a generic dependency matrix that is prospectively initialized with a fully dense and uniform
distribution (Eq. 3) to better reach the globally optimal representation.
Multi-head Aggregation. With our proposed initialization strategy, we can repeat the self-
attention mechanism by leveraging multiple dependency matrices and sum the outputs to
automatically aggregate the features focusing on different body joints (Eq. 2). As the number
of attention maps (i.e., heads) N is no longer limited by the human topology, we can use it
as a flexible hyper-parameter to improve the model. In the ablation study (see Fig. 4 and
Tab. 1), our insight has been verified. Overall, our design strategy makes the architecture
more flexible, effective and generic, which facilitates the study of cross-domain transfer
learning in this field for datasets using different joint distributions (see Fig. 1).
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4 Posetics Skeleton Dataset
In this section, we introduce Posetics, a novel large-scale pre-training dataset for skeleton-
based action recognition. The Posetics dataset is created to study the transfer learning on
skeleton-based action recognition. It contains 142,000 real-world video clips with the corre-
sponding 2D and 3D poses including 17 body joints. All video clips in Posetics dataset are
filtered from Kinetics-400 [3], to contain at least one human pose over 50% of frames.

Motivation and Data Collection. Recent skeleton-based action recognition methods on
NTU-RGB+D [23, 31] can perform similarly or better compared to RGB-based methods.
However, as laboratory indoor datasets may not contain occlusions, it is difficult to use
such datasets to pre-train a generic model that can be transferred onto real-world videos,
where skeleton data encounters a number of occlusions and truncations of the body. On the
other hand, the accuracy based on skeleton data on the most popular real-world pre-training
dataset, Kinetics [3], is still far below the accuracy on other datasets. The main problems are:
(i) the skeleton data is hard to obtain by pose estimators as Kinetics is not human-centric.
Human body may be missing or truncated by the image boundary in many frames. (ii)
Many action categories are highly related to objects rather than human motion (e.g., “mak-
ing cakes”, “making sushi” and “making pizza”). These make it difficult to effectively learn
the human skeleton representation for recognizing actions. Hence, recent datasets [23, 43]
are unable to significantly boost the action recognition performance when applied to differ-
ent datasets. In order to better study the generalizability of skeleton-based models in the
real-world, we extract the pose (i.e., skeleton) data on Kinetics-400 [3] videos. Specifically,
we compare the recent pose estimators and extract pose data from RGB videos through mul-
tiple pose estimation systems. Then we apply SSTA-PRS [44], a pose refinement system, for
obtaining higher quality pose data in real-world videos. This system aggregates the poses
of three off-the-shelf pose estimators [2, 6, 29], as pseudo ground-truth and retrain LCR-
Net++ [29] to improve the estimation performance. Moreover, for the problem (i), we filter
out the videos where no body detected, and for the problem (ii), we slightly and manually
modify the video category labels of Kinetics-400, and place emphasis on relating verbs to
poses. (e.g., For “making cakes”, “making sushi” and “making pizza”, we collectively chose
the label “making food”, whereas “washing clothes”, “washing feet”, and “washing hair”
remain with the original labels). All in one, we organize 320 action categories for Posetics
and this dataset can be more appropriately used for studying the real-world generalizability
of skeleton-based action recognition models across datasets by transfer learning.

5 Experiments and Analysis

5.1 Experimental Settings
Extensive experiments are conducted on 5 action classification datasets: Toyota Smarthome
(Smarthome) [4], Penn Action [46], NTU-RGB+D 60 (NTU-60) [31], NTU RGB+D 120
(NTU-120) [23] and the proposed Posetics. See the supplementary material (SM) for com-
plete datasets and implementation details pertaining to all experiments. Firstly, we perform
(i) exhaustive ablation study on Smarthome and NTU-60 without pre-training to verify the
effectiveness of our proposed dependency matrix and multi-head attention. Then we (ii) re-
evaluate state-of-the-art models [24, 33, 43], as well as our model on the proposed Posetics
dataset (baselines are shown in Tab. 3), proceed to provide an analysis on how much per-
formance improves on target datasets: Smarthome, Penn Action, NTU-60 and NTU-120,
after pre-training on Posetics in order to demonstrate that our model generalizes well and
benefits the most from pre-training. (iii) Final fine-tuned model is evaluated on all datasets
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Figure 4: (a) Adaptive Adjacency Matrix [33] (top) vs. Dependency Matrix (bottom) in different
blocks for action "Drink" of Smarthome (right). They have different initial distributions. During train-
ing, the dependencies will become optimized representations, that are salient and more sparse in the
deeper blocks, while our proposed matrix represents longer range dependencies (indicated by the red
circles and red lines). (b) Multi-head attention maps in Block-10. Similar to dependency matrices,
attention maps are salient and sparse in the deep block. The different heads automatically learn the
relationships between the different body joints (as shown in the boxes and lines with different colors)
to process long-range dependencies between joints instead of using pre-defined adjacency matrices.

to compare with the other state-of-the-art approaches for action recognition.
Evaluation Protocols. For Posetics, we split the dataset into 131,268 training clips and
10,669 test clips. We use Top-1 and Top-5 accuracy as evaluation metrics [43]. With respect
to real-word settings, 2D poses extracted from images and videos tend to be more accurate
than 3D poses, which are more prone to noise. Therefore, we only use 2D data for evaluation
and comparison of the models on Posetics. We note that for pre-training, both can be used,
2D and 3D data, in order to obtain different models that can be transferred to datasets with
different skeleton data. For the other datasets, we evaluate cross-subject (CS on Smarthome,
NTU-60 and 120), cross-view (CV1 and CV2 on Smarthome and CV on NTU-60), cross-
setup (CSet on NTU-120) protocols and the standard protocol (on Penn Action). Unless
otherwise stated, we use 17 (2D) joints on Smarthome and Penn Action, 25 (3D) joints on
NTU-60 and 120.

5.2 Ablation Study of UNIK
Impact of Dependency Matrix. Here we compare the dependency matrices with the adap-
tive adjacency matrices. In order to verify our analysis in Sec. 3.2, we visualize the adja-
cency matrices [33] before and after learning. As shown in Fig. 4 (a) (top), we find that
the previous learned graph [33] becomes a complete-graph, whose relationships are repre-
sented by weights that are well distributed over the feature maps. In contrast, our method is
able to explore longer range dependencies, while being based on a dependency matrix with
self-attention, which freely searches for dependencies of the skeleton from the beginning
without graph-representation (see Fig. 4 (a)-bottom). Quantitatively, results in Tab. 1 show
the effectiveness of the Dependency Matrix. Overall, we conclude that, both our method and
AGCN-based methods are fully connected layers with different initialization strategies and
attention mechanisms in the spatial dimension, both are better than using a fixed graph [43].
It becomes evident that for skeleton-based tasks, where the number of nodes (i.e., spatial
body joints) is not large, multi-head attention based dependency matrix learning along with
temporal convolutions can be a more generic and effective way to learn spatio-temporal de-
pendencies compared with graph convolution.
Impact of Multi-head Attention. In this section, we visualize the multi-head attention
maps and analyze the impact of the number of heads N for UNIK with N = 1,3,6,9,12,16.
As shown in Fig. 4, our multi-head aggregation mechanism can automatically learn the rela-
tionships between different positions of body joints by conducting the spatial processing (see
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Datasets (J)
Matrix #Heads-N TW-τ TD

(N = 3,τ = 1) (τ = 1) (N = 3) (N = 3,τ = 1)
FM AM DM 0 1 3 6 9 12 1 3 6 9 × X

SH(%) 50.4 55.7 58.5 56.8 58.1 58.5 57.9 56.3 58.1 58.5 56.6 56.2 55.5 58.5 58.9
NTU-60(%) 84.3 86.1 87.3 86.8 87.0 87.3 87.1 85.8 88.0 87.3 86.8 87.8 85.0 87.3 87.8

Table 1: Ablation study on Smarthome (SH) CS and NTU-60 CS using joint (J) data only. FM: Fixed
Adjacency Matrix (ST-GCN), AM: Adaptive Adjacency Matrix (AGCNs), DM: Dependency Matrix
(Ours). TW: Temporal window size. TD: Temporal dilation.

Methods Pre-training Smarthome (J) Penn Action (J) *NTU-60 (J+B) *NTU-120 (J+B)
CS (%) CV1 (%) CV2 (%) Top-1 Acc. (%) CS (%) CV (%) CS (%) CSet (%)

2s-AGCN [33] Scratch 55.7 21.6 53.3 89.5 84.2 93.0 78.2 82.9
MS-G3D [24] Scratch 55.9 17.4 56.7 88.5 86.0 94.1 80.2 86.1
UNIK (Ours) Scratch 58.9 21.9 58.7 90.1 85.1 93.6 79.1 83.5
2s-AGCN [33] Posetics 58.8 32.2 57.9 96.4 85.8 93.4 79.7 85.0
MS-G3D [24] Posetics 59.1 26.6 60.1 92.2 86.2 94.1 80.6 86.4
UNIK (Ours) Posetics 62.1 33.4 63.6 97.2 86.8 94.4 80.8 86.5

Table 2: Generalizability study of state-of-the-art by comparing the impact of transfer learning on
Smarthome, Penn Action, NTU-60 and 120 datasets. The blue values indicate the best generalizabilities
that can take the most advantage of pre-training on Posetics. “*” indicates that we only use 17 main
joints adapted to the pre-trained model on Posetics.

Eq. 3) using the unified dependency matrices with a uniform initialization. Quantitative re-
sults in Tab. 1 show that obtaining a correct number of heads N is instrumental in improving
the accuracy in a given dataset, but weakens the generalization ability across datasets with
different types of actions (e.g., the model benefits predominantly from N = 12 for NTU-60,
and N = 3 for Smarthome). Consequently, we set N = 3 as a unified setting for all exper-
iments and all datasets in order to balance the efficiency and performance of the model, as
well as the generalization ability.

Other Ablations. For further analysis, results in Tab. 1 also show that (i) similar to [24],
the size of the sliding window (see 3.1) τ can help to improve the performance, however
weakening the generalizability of the model as it is sensitive to the number of frames in the
video clip. (ii) Temporal dilated convolution contributes to minor boosts. See SM for more
ablation study about initialization of Dependency Matrix and multi-stream fusion.

5.3 Impact of Pre-training.
In this section, we pre-train [24, 33] and our proposed UNIK in a unified setting, (N = 3,K =
10,τ = 1). Note that for pre-training GCN-based models [24, 33], we need to manually
calibrate the different human topological structures in different datasets to keep the pre-
defined graphs unified. For evaluation, we report the classification results on all the four
datasets to demonstrate the impact of pre-training and compare the generalization capacities
i.e., benefits compared to training from scratch. Note that unless otherwise stated, we use the
consistent skeleton data (2D on Smarthome, Penn Action and 3D on NTU-60, 120), number
of joints (17 main joints) for fair comparison of all models. On NTU-60 and 120, we use
both joint (J) and bone (B) data to compare the full models with two-stream fusion.

Generalizability Study. The results suggest that pre-training consistently boosts all mod-
els, see Tab. 2, in particular, small benchmarks (e.g., Smarthome CV and Penn Action
with 5% ∼ 12% improvement), as we do not have sufficiently large training data. Previ-
ous work [24] has a weak transfer capacity, due to the dataset-specific model settings (e.g.,
the number of GCN scales and G3D scales) not always being able to adapt to the transferred
datasets. On NTU-60, we take the main 17 joints for fine-tuning as we estimate and re-
fine the main 17 joints on Posetics, and our pre-trained model outperforms state-of-the-art
model [24]. Therefore, we conclude that our pre-trained model is the most generic-applicable
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Methods RGB Pose Pre-training Posetics Smarthome Penn Action
Top-1(%) Top-5(%) CS(%) CV1(%) CV2(%) Accuracy(%)

I3D [3] X Kinetics-400 46.4 60.1 53.4 34.9 45.1 96.3
AssembleNet++ [30] X Kinetics-400 - - 63.6 - - -
NPL [28] X Kinetics-400 - - - 39.6 54.6 -
Separable STA [4] X X Kinetics-400 - - 54.2 35.2 50.3 -
VPN [5] X X Kinetics-400 - - 60.8 43.8 53.5 -
Multi-task [25] X X Scratch - - - - - 97.4
LSTM [26] X Scratch - - 42.5 13.4 17.2 -
ST-GCN [43] X Scratch 43.3 67.3 53.8 15.5 51.1 89.6
2s-AGCN [33] X Scratch 47.0 70.8 60.9 22.5 53.5 93.1
Res-GCN [36] X Scratch 46.7 70.6 61.5 - - 93.4
MS-G3D Net [24] X Scratch 47.1 70.0 61.1 17.5 59.4 92.7
UNIK (Ours) X Scratch 47.6 71.3 63.1 22.9 61.2 94.0
Pr-ViPE [37] X Human3.6M - - - - - 97.5
UNIK (Ours) X Posetics(Ours) - - 64.3 36.1 65.0 97.9

Table 3: Comparison with state-of-the-art methods on the Posetics, Toyota Smarthome and Penn
Action dataset. The best results using RGB data are marked in blue for reference.

especially for real-world scenarios. We provide further analysis in SM on (i) the pre-training
on Posetics using 25 joints including the additional 8 joints on fingers and feet derived from
linear interpolation for transferring on NTU-60 with full 25 joints and (ii) the evaluation of
pre-trained features by linear classification on smaller datasets with the fixed backbone.

5.4 Comparison with State-of-the-art

We compare our full model (i.e., Joint+Bone fusion) with and without pre-training to state-
of-the-art methods, reporting results in Tab. 3 (Posetics, Smarthome and Penn Action). Note
that for fair comparison, we use the same skeleton data (2D and 17 joints) for all mod-
els. For real-world benchmarks using estimated skeleton data (e.g., Posetics, Smarthome
and Penn Action), our model without pre-training outperforms all state-of-the-art meth-
ods [24, 26, 33, 36, 43] in skeleton (i.e., pose) stream and with pre-training, outperforms
the embedding-based method [37] that pre-trained on Human3.6M [14]. On NTU-60 and
120 (see Tab. 2), we compare the most impressive two-stream graph-based methods [24, 33]
and our model performs competitively without pre-training. We argue that, we simplify
our model as generically as possible without data-specific settings, which can improve the
performance but weaken the transfer behavior (e.g., the setting of N and τ). Subsequently,
we further compare RGB-based methods [3, 4, 5, 25, 28, 30] for reference, that can be pre-
trained on Kinetics-400 [3]. It suggests that previous skeleton-based methods [24, 26, 33, 43]
without leveraging the pre-training are limited by the poor generalizability and the paucity
of pre-training data. In contrast, our proposed framework, UNIK with pre-training on the
Posetics dataset, outperforms state-of-the-art using RGB and even both RGB and pose data
on the downstream tasks (e.g., Smarthome and Penn Action).

6 Conclusion
In this paper, we have proposed UNIK, a unified framework for real-world skeleton-based
action recognition. Our experimental analysis shows that UNIK is effective and has a strong
generalization ability to transfer across datasets. In addition, we have introduced Posetics, a
large-scale real-world skeleton-based action recognition dataset featuring high quality skele-
ton annotations. Our experimental results demonstrate that pre-training on Posetics improves
performance of the action recognition approaches. Future work involves an analysis of our
framework for additional tasks involving skeleton sequences (e.g., 2D-to-3D pose estima-
tion).
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