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Abstract

We consider variational problems with regular Holderian weight or
with weight and boundary singularity and, Dirichlet condition. We prove
the boundedness of the volume of the solutions to these equations on the
annulus.

Keywords: Regular Holderian weight, boundary singularity, a priori estimate, an-
nulus, Lipschitz condition.
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1 Introduction and Main Results

We set A = 911 + a2 on the annulus = C(1,1/2,0) of R? of radii 1 and 1/2
centered at the origin.

We consider the following equation:

(P) —Au=(1+ |z —20/**)Ve* inQcCR?
u=0 in 09Q.

Here: C(1) the unit circle and C(1/2) the circle of radius 1/2 centered at
the origin.

B€(0,1/2), zo € C(1/2),

and,

u € Wol’l(Q)v e c LM(Q)and 0 <a <V <b.

This is an equation with regular Holderian weight not Lipschitz in xy but
have a weak derivative.

We have in [10] a nice formulation of this problem (P) in the sense of the
distributions. This Problem arises in various geometrical and physical situa-
tions, see for example [1, 5, 23, 27]. The above equation was studied by many
authors, with and without boundary conditions, also for Riemannian surfaces,
see [1-27], where one can find some existence and compactness results. In [9] we
have the following important Theorem,
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Theorem A (Brezis-Merle [9]).For v and V two functions relative to (P)
with,
0<a<V<<b< 4+

then it holds, for all compact set K of §:

supu < ¢,
K

with ¢ depending on a,b, 5, x9, K and 2.

We deduce from Theorem A and from the elliptic estimates that, u is uni-
formly bounded in C? ().

In this paper we try to prove that we have on all {2 the boundedness of the
volume of the solutions of (P) if we add the assumption that V' is uniformly
Lipschitz with particular Lispchitz number.

Here we have:

Theorem 1.1 Assume that u is a solution of (P) relative to V with the
following conditions:

xg € C(1/2) C 09, B €(0,1/2),

and,
a

0 <V<b Vijoo < A= ——
<a< > a||v ||L = 2(1+22ﬁ)’

we have,
/ e S C(aa ba 6) Zo, Q)
Q

A consequence of this theorem is a compactness result of the solutions to
this Liouville type equation, see [4].

We have the same result if we consider Liouville equation with boundary
singularity on the annulus Q = C(1,1/2,0) for particular Lipschitz number of
the potential V:

We consider the following equation in the sense of distributions:

—Au = |z —z0[*’Ve* inQcCR?
(Ps) _ .
u=0 in 09).
Here: C(1) the unit circle and C'(1/2) the circle of radius 1/2 centered at
the origin.
B € (=1/2,400), o € C(1/2),

and,

u €< Wol’l(Q% |z — z0|?Pe” € LY(Q) and 0 < a <V < b.

This is an equation with boundary singularity and Dirichlet condition on the
annulus.
Here we have:



Theorem 1.2 Assume that u is a solution of (Pg) relative to V with the
following conditions:

xg € C(1/2) C 09, B € (—1/2,400),

and,

1
0<a<V <), ||VV||Loo§A:(B+T)a,

we have,

/ |.’L' — $0|2ﬂeu < C(a;baﬁaxO)Q)‘
Q

For the previous theorem, the condition 8 > —1/2 is in relation with the
regularity of the solutions to apply the Pohozaev identity.

A consequence of the previous theorem is a compactness result for the so-
lutions to a Liouville type equation with boundary singularity on the annulus,
see [3].

2 Proof of the Theorems:

Proof of the theorems:

By corollary 1 of the paper of Brezis-Merle, we have: e ¢ L'(Q) for
all £ > 2 and the elliptic estimates and the Sobolev embedding imply that:
u € W2F(Q) N C¢(Q),e > 0. By the maximum principle u > 0.

Step 1: By using the first eigenvalue and the first eigenfunction, with Dirich-
let boundary condition, the volume is locally uniformly bounded, and thus the
solutions are locally uniformly bounded by Brezis-Merle result. The solutions
u > 0 are locally uniformly bounded in C1:¢(Q) for € small.

Step 2: Let’s consider C; = C(1,3/4,0) and Cy = C(3/4,1/2,0) the two
annulus wich are the neighborhood of the two components of the boundary.

We multiply the equation by (x—xz¢)-Vu on C; and Cs and use the Pohozaev
identity. We use the fact that u is uniformly bounded around the circle C(3/4).
We obtain:

1) We have on Ci:

/ (Aw)[(z — 20) - Vuldz = / L1+ | — w0 2P)V (z — mo) - V(e")da,
Cy C

Thus,

/ [(z —x0) - Vu](Vu-v) — %[(x —x0) - V]| Vul]? =

a0,

= / (2+2(8+ 1|z — zo|?)Vetdr + / (14 |z — 20]*) (@ — o) - VV e dx+
Cl Cl

*/ (14 |z — 0*)[(z — x0) - v]Ve'do
ac,



We can write, (v =0 on C(1)):

/C(1> %[(x — x0) - v](Byu)*do + O(1) =

:/ (2—}—2(6—}—1)|x—x0|2'6)Ve“d:E+/ (1+|z—x0)??) (2 —120)-VVe'dz+0(1) =
Cy

=C dyudo + O(1),
c(1)

with C' > 0 not depends on u.
Be cause v = z, ||z|| = 1,]||zo|| = 1/2 and then by Cauchy-Schwarz, (z —
x0) -z = ||z]|? — 1o - z > 1/2, we obtain:

/ (Oyu)?do < 4C dyudo + O(1),
() )

and, by the Cauchy-Schwarz inequality applied to the integral of the right
hand side we obtain:

/ (0,u)*do = O(1), and / (Opu)do = O(1).
c() o)

2) We have on Cy, we use again, the uniform boundedness of v in C' norm
around C(3/4):

/ (Auw)[(z — zg) - Vu]dz = / —[(1+ |z — z0|2ﬁ)V(x —xp) - V(e")]dx,
Cy Ca

Thus,

/ [(z —x0) - Vu](Vu-v) — %[(x —x0) - V]| Vul]? =
0C

= / (2 +2(8+ )|z — z0|**)Ve'ds —|—/ (14 |x — 20]*)(x — o) - VV e dx+
Ca

2

_/ (14 |z — 20|*)[(x — x0) - v]Ve'do
aC,

We can write,(u = 0 on C(1/2)):

/c<1/2> %[(x — o) - V](Qyu)do + O(1) =

:/ (2+2(ﬂ+1)|z—z0|2ﬁ)Ve“d:c+/ (14 |z —x0|*P)(x—20)-VV e dr+0O(1),
Cs Co

But here, v = =2z and (z — z¢) - v = —(z — z0) - © < 0 and thus:



Ca

/ (24 28+ 1)|z — 20|*’)Ve'dr + / (14 |z — x0|*?)(x — 20) - VVe"da+
C2

1 o
' /0(1/2) 5[_(96 —x0) - V](Oyu)*do = O(1),

If we choose:

Q 1+ |x — 20|28 ’

‘We obtain:

2

/ (24 2(8+ 1|z — 20**)Ve'dr + / (1 + |z — z0|*) (@ — o) - VVe'dx >
C2

1
> 5/ (2+2(8+ 1|z — z0/*)Velde > 0
Co

thus,
/ (2+2(8+1)|z — zo|*)Ve'dax = O(1),
Ca
(This condition is true for the second theorem for x € €2, we have: w <
1 2(8 + 1)|x — x[?° !
Linfeq 2B D=2 _ 5y s true if A < MJ
5 |z — 20|28 2
and thus,
/ dyudo = O(1),
Cc(1/2)
- diam(@)]|VV] | : | e
Tl f: 2 < f2A <
s, i a =17 [diam(Q)]2P =1 = 2(1 + [diam(Q)]28)’

we obtain a uniform bound for fC(1/2) Oyudo. But diam(Q) = diameter(Q) = 2,

because it is the annulus.

If we use 1) and 2), we obtain: if A < for the first theorem, then:

e
2(1 + 226)

/ (Oyu)do = O(1), and / dyudo = O(1),
C(1) C(1/2)

and, thus:

/ (1+ |z — z0|*)Vetde = dyudo = O(1).
Q o0

a(ﬂ+1)-

We have the same conclusion for the second theorem if A = 7
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