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Abstract— Action recognition based on human pose has wit-
nessed increasing attention due to its robustness to changes in
appearances, environments, and view-points. Despite associated
progress, one remaining challenge has to do with occlusion
in real-world videos that hinders the visibility of all joints.
Such occlusion impedes representation of such scenes by models
that have been trained on full-body pose data, obtained in
laboratory conditions with specific sensors. To address this, as
a first contribution, we introduce OR-VPE, a novel video pose
embedding network that is streamlined to learn an occlusion-
robust representation for pose sequences in videos. In order to
enable our embedding network to handle partially visible joints,
we propose to incorporate a sub-graph data augmentation
mechanism during training, which simulates occlusions, into a
video pose encoder based on Graph Convolutional Networks
(GCNs). As a second contribution, we apply a contrastive
learning module to train the video pose representation in a self-
supervised manner without the necessity of action annotations.
This is achieved by minimizing the mutual information of the
same pose sequence pruned into different spatio-temporal sub-
graphs. Experimental analyses show that compared to training
the same encoder from scratch, our proposed OR-VPE, with
pre-training on a large-scale dataset, NTU-RGB+D 120, im-
proves the performance of the downstream action classification
on Toyota Smarthome, N-UCLA and Penn Action datasets.

I. INTRODUCTION

Recently, action recognition based on human pose in
videos (i.e. video pose) has shown promising classification
accuracy using high-quality human pose data obtained from
Kinect sensors [46]. Such approaches are able to filter
out noise caused by background clutter and changing light
conditions, while maintaining the focus on the performed
action [35], [33], [47], [41], [17], [2], [42], [18], [30], [21],
[44]. However, we note that in named works the sensor
pose data has generally been captured in lab environments,
and hence may not contain occlusions. Therefore, accuracy
of named approaches significantly decreases, when the pre-
trained models are tested with real-world videos where, pose
data encounters a number of occlusions and truncations
of the body. Models, generalizing onto real-world videos,
necessitate the ability to represent partially visible body
joints. At the same time, it is infeasible in practice to train
an individual embedding model for each possible occlusion
pattern, as there exists large occlusion diversity in natural
human poses.

Motivated by the above, in this paper, we propose to
pre-train a single occlusion-robust video pose embedding
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Fig. 1. Self-supervised Video Pose Embedding. The proposed approach
enforces the network to learn the high representational similarity between
the same instance (e.g., video pose g1) pruned into different sub-graphs
(e.g., sg1, sg′1). Meanwhile, it also follows the same mechanism as previous
instance discrimination task [40] which distinguishes individual instances
according to the visual cues.

model, namely OR-VPE, by simulating joint occlusions
during training. Specifically, we apply Graph Convolutional
Networks (GCNs) [30] as the embedding backbone that
models human joints, as well as their natural connections
(i.e. bones) in skeleton (i.e. pose) spatio-temporal graphs.
In each training epoch, a novel spatio-temporal sub-graph
data augmentation strategy, namely SubG-DA, is performed
by randomly selecting a sub-graph for the same instance
(e.g., lower-body, upper-body, etc.) that simulates different
occlusion patterns. This mechanism endows our model with
robustness to common patterns of missing joints in the
real-world. Nevertheless, learning a supervised video pose
embedding demands a huge number of annotations, which
in turn encourages researchers to investigate self-supervised
learning schemes to leverage the massive amount of unla-
beled videos [9], [39]. Hence in this paper, we additionally
propose a self-supervised learning module using sub-graph
contrast (see Fig. 1) to pre-train the embedding model.

Contributions: (i) We propose OR-VPE, a novel and
generic video pose embedding model that embeds different
pose visibility patterns with a GCN-based video pose encoder
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Fig. 2. Overview of OR-VPE. Our framework includes three main components: Given an input video pose gi represented by a spatio-temporal graph, the
(a) SubG-DA randomly prunes gi into a sub-graph sgi in both spatial and temporal dimensions, to make the input pose sequence have a large occlusion
diversity. Then the (b) AGCN-based encoder embeds sgi to ε(sgi) in a low-dimensional latent space by graph convolutions. Finally, to make the embedding
space occlusion-invariant, the (c) Contrastive Module builds different sub-graph embeddings ε(sg′i) with the same pose sequence (i.e. instance) in the
previous training epoch sharing high similarity in terms of their semantics while being dissimilar to other embeddings ε(sg′j). This is achieved by the
contrastive loss L. Note that all the embeddings in the previous epoch are stored in a memory bank B.

and a novel sub-graph data augmentation strategy to improve
the robustness of video pose representation to occlusions. (ii)
We apply a contrastive learning module to learn OR-VPE in
a self-supervised manner without using action labels. (iii) We
demonstrate that our embedding model pre-trained on NTU-
RGB+D 120 dataset generalizes well onto unseen real-world
videos with additional fine-tuning, and boosts the accuracy
compared to the same model specifically trained only on the
given dataset.

II. RELATED WORK

a) Self-supervised Human Pose Embedding: To explore
the embedding (i.e. representation) ability of human pose
for action recognition, a recent method named Pr-ViPE [32]
incorporated probabilistic embedding to address inherent
ambiguities in 2D pose due to 3D-to-2D projection based
on triplet loss [29]. The pre-training was performed on the
Human3.6M [14] dataset, which has multi-view poses from
a motion capture system. However, Pr-ViPE [32] is for single
2D pose embedding, it necessitates multi-view 2D poses
or 3D pose for training. In contrast, our work focuses on
occlusion diversity in real-world videos and proposed OR-
VPE can be beneficial in both, 2D and 3D pose embedding
in sequence level, in the absence of multi-view data.

b) Graph Convolutional Networks for Video Pose: ST-
GCN [42] involves spatial graph convolutions along with
interleaving temporal convolutions for pose-based action
recognition. In this context, fixed topology of the human
pose was considered, however ignored the important long-
range dependencies between unconnected joints. In con-
trast, recent approaches based on Adaptive Graph Con-
volutional Networks (AGCNs) [18], [30], [11], [31], [21]
have seen significant performance boost, by improving the
representation of topology of human poses to process long-
range dependencies between joints for action recognition.
In particular, 2s-AGCN [30] introduced an adaptive graph
convolutional network to adaptively learn the topology of
the graph with self-attention, which was shown beneficial
in action recognition and hierarchical structure of GCNs. In
addition, 2s-AGCN used a two-stream ensemble with pose
bone and joint features to boost performance. Previous GCN-
based work only focused on the performance in a given

dataset by a supervised training manner. In this work, we
are the first to train an AGCN-based embedding in a self-
supervised manner to analyze the transfer behavior of the
learned representation across datasets.

c) Contrastive Learning: Owing to their promising
performances, contrastive learning and its variants [40], [13],
[1], [34], [12], [6], [16] has established itself as an important
direction for self-supervised representation learning. Partic-
ularly, related work [16] is predominantly based on sub-
graph contrastive learning to learn graph representations by
utilizing the strong correlation between central nodes and
their pruned sub-graphs, in order to capture regional structure
information. In our work, we apply the graph representation
learning method on human pose sequence in videos for
real-world pose-based action recognition. With the proposed
data augmentation strategy, the graph convolutional networks
learn the graph representations through a contrastive loss
defined based on sub-graphs pruned from the original graph.

III. PROPOSED APPROACH

In this section, we introduce the proposed framework
including three main components (see Fig. 2): (a) Sub-graph
Data Augmentation (SubG-DA), (b) Video Pose Encoder and
(c) Contrastive Module. In the pre-training phase, given an
input video, we can obtain the human pose sequence through
the off-the-shelf pose estimators [27], [4], [10], [43], which
can be represented as a spatio-temporal graph [42]. The
graph is fed into SubG-DA to have a large occlusion diversity
by randomly pruning the spatio-temporal structure. Then
the encoder embeds the poses into a low-dimensional latent
space. Finally, a Contrastive Module is leveraged to render
the latent space occlusion-invariant through contrastive learn-
ing, minimizing the mutual information between positive
and negative samples. This pre-trained pose-based video
representation can be transferred to other real-world video
datasets containing occlusions to further improve the action
recognition performance.

A. Sub-graph Based Data Augmentation

a) Graph Modeling for Pose Sequence: For each video
v, we first estimate human 2D or 3D pose sequences
(i.e. video pose) as the input of the model. As shown



in Fig. 2, the input video pose is modeled by a spatio-
temporal graph [42], referred to as g, where the joints
are represented as vertices and their natural connections
in the human body are represented as spatial edges. For
the temporal dimension, the corresponding joints in two
consecutive frames are connected with temporal edges. T ,
V , and C represent the length of the video, the number of
joints of the pose in one frame, as well as the input channels,
respectively. The input video pose graph is represented by the
matrix g ∈ RC×T×V , and an adjacency matrix A ∈ RV×V ,
respectively. More specifically, A(p, q) = 1, if joint p and
joint q are connected and A(p, q) = 0, otherwise. The final
adjacency matrix Anorm ∈ RV×V is normalized using a
degree matrix Λ ∈ RV×V as:

Λ(p, q) =

V∑
r=1

A(p, r); Anorm = Λ−
1
2 AΛ

1
2 (1)

b) Spatio-temporal Sub-graph Pruning: In the spatial
dimension, we use a binary mask vector O to represent
the visibility of each joint for g, where each entry, the
embedding (i.e. OR-VPE) of g is 1, if its corresponding
joint is visible and 0 otherwise. This visibility indicator can
represent whether a joint is not visible due to occlusion.
Different joint masks can be used for simulating diverse
realistic occlusion patterns. We multiply the mask with
normalized pose, which then constitutes the model input.
In order to enable the model to be robust to masked pose
joints, we generate various patterns of occlusion during
training. It is ideal to train our model on various realistic
joint occlusion patterns. However, datasets in practice may
not contain diverse occlusion patterns, so we address this
by simulating occlusion patterns and using the simulated
patterns for training. In each training epoch, we randomly
select a segment of τ frames from the input video pose g as
a temporal sub-graph, and then we use different pre-defined
occlusion masks O to prune the body into multiple spatial
sub-graphs (e.g., upper-body, lower-body, left-body), and the
one fed into the video pose encoder (see III-B) is randomly
selected as the augmented input data.

B. Video Pose Encoder

a) Adaptive Graph Convolutional Networks: we adopt
AGCNs [30] as the backbone. ε(g) ∈ Reout , denotes the em-
bedding features where eout is the representation dimension.
The graph convolutional layers can be formulated as:

ε(g) = σ
(
E
(
(Anorm �M)g

))
, (2)

where M denotes a self-attention mask for the adaptive re-
weighting of the Anorm to different actions, and � denotes
the Hadamard product. The operation of

(
(Anorm �M)g

)
enforces the features of the body joints to be extracted
following the adaptive skeleton topology learned from A.
E denotes a 1× 1 convolutional layer to expand the feature
dimension and σ is a non-linear activation layer (e.g., ReLU).

C. Contrastive Module

a) Sub-graph Contrastive Learning: We apply con-
trastive learning to train our encoder ε. Specifically, in each
training iteration, given a set of video poses g = {g1, ..., gn},
the i-th instance is pruned into a spatio-temporal sub-graph
sgi = O� gi by a randomly selected occlusion mask O and
we denote its sub-graph in the previous iteration that sg′i =
O′ � gi. We can obtain their corresponding representations
E = {ε(sg1), ..., ε(sgn)} and E ′ = {ε(sg′1), ..., ε(sg′n)},
where we refer to ε(sgi) and ε(sg′i) as the sub-graph repre-
sentations of the i-th instance. Learning the embedding based
on the sub-graph contrast involves two mechanisms. For each
ε(sgi), we encourage the similarity between ε(sgi) and its
another sub-graph representation counterpart pruned from
the same instance ε(sg′i), while decreasing the similarities
between ε(sgi) and sub-graph representations from other
instances ε(sg′j) (i.e. negative samples). Subsequently, we
can obtain the contrastive loss function:

L = −
N∑
i=1

[
log

sim
(
ε(sgi), ε(sg

′
i)
)∑K

j=1 sim
(
ε(sgi), ε(sg′j)

)] , (3)

where N represents the number of the instances, K denotes
the number of the negative samples, and the similarity is
computed as:

sim(ε1, ε2) = exp
( φ(ε1) · φ(ε2)
‖φ(ε1)‖ · ‖φ(ε2)‖

· 1

Temp

)
, (4)

where Temp refers to the temperature hyper-parameter [40],
and φ is a learnable mapping. As suggested by Chen et
al. [6], applying a non-linear mapping function can substan-
tially improve the learned representations.

b) Memory Bank: As it is non-trivial to extract all video
pose features in a single batch at each iteration, we maintain
a memory bank B of size N×eout to reduce the computation
overhead as [40]. B stores the approximated representations
of video poses, which are accumulated over iterations as:

εbank = mεbank + (1−m)εcurrent, (5)

where ε can be any ε(sg) or ε(sg′) , and m ∈ [0, 1] is the
momentum coefficient to ensure smoothness and stability.
Based on B, the learning process thus comprises of taking a
mini-batch of video pose representations in current training
epoch ε(sg) as queries, computing the loss function L
based on their positive representations ε(sg′) and N other
representations stored in B. Note that one can further reduce
the computation overhead by sampling K representations
from each bank rather than using the entire bank, when
computing L, or adopting noise contrastive estimation as in
the works of Wu et al. [40].

IV. EXPERIMENTS AND ANALYSIS

A. Experimental Settings

We conduct experiments to evaluate the representation
ability of video pose embedding. Firstly, we train a single
OR-VPE on a large-scale dataset, NTU-RGB+D 120 [19]
(NTU-120) without using action labels, then we transfer the



TABLE I
RESULTS ON SMARTHOME, PENN ACTION AND N-UCLA WITH (TRANSFER LEARNING) AND WITHOUT EMBEDDING PRE-TRAINED ON NTU-120.

Methods Toyota Smarthome Penn Action N-UCLA
#Params CS(%) CV1(%) CV2(%) #Params Top-1 Accuracy (%) #Params CV (%)

Baseline (Linear classification w/o Embedding) 7.97K 23.1 15.8 19.3 3.85K 28.5 2.57K 35.6
Linear classification with Self-supervised Embedding (Ours) 7.97K 42.7 18.1 32.4 3.85K 78.5 2.57K 56.7
Baseline (AGCNs w/o Embedding) 3.45M 55.7 21.6 53.3 3.45M 77.2 3.45M 78.2
Fine-tuned with Self-supervised Embedding (Ours)

with temporal SubG-DA only 3.45M 55.8 22.1 54.4 3.45M 78.8 3.45M 78.9
with spatial-temporal SubG-DA 3.45M 56.3 24.6 59.0 3.45M 93.3 3.45M 84.5

Fine-tuned with Supervised Embedding 3.45M 58.2 27.3 58.5 3.45M 90.7 3.45M 87.6

pre-trained embedding onto three downstream action classifi-
cation datasets, namely Toyota Smarthome (Smarthome) [7],
Northwestern-UCLA [37] (N-UCLA) and Penn Action [45].
For the downstream action classification task, we incorpo-
rate additional linear classifiers for different datasets. We
demonstrate that the pre-trained Embedding can boost the
performance of the video pose encoder (AGCNs) compared
to training from scratch. See SM for more datasets details
and the implementation details.

B. Pre-training Dataset
a) NTU-RGB+D 120: NTU-120 [19] is a large-scale

multi-modality dataset, which consists of 114,480 sequences
of high-quality 2D and 3D poses with 25 joints, associated
with depth maps, RGB and IR frames captured by the
Microsoft Kinect v2 sensor. There are 120 action classes
performed in the laboratory. We only use sequences of 2D
and 3D poses in this work for pre-training two embeddings
for downstream tasks using 2D or 3D data.

C. Evaluation Datasets
a) Toyota Smarthome: Smarthome [7] is a real-world

daily living dataset for action classification, recorded in an
apartment, where 18 older subjects carry out tasks of daily
living during a day. The dataset contains 16,115 videos
of 31 action classes, and the videos are taken from 7
different camera viewpoints. All actions are performed in
a natural way without strong prior instructions. It provides
RGB videos and pose data, which is extracted from SSTA-
PRS [43] (i.e. skeleton-v2). In this work, we use the 2D pose
data only for all experiments and comparisons. We follow the
cross-subject (CS) and cross-view (CV1 and CV2) protocols.

b) Penn Action: Penn Action dataset [45] contains
2,326 real-world video sequences of 15 different actions
and human joint annotations for each sequence. Given that
annotated 2D poses have a large number of missing joints
due to occlusions and truncations. We report Top-1 accuracy
following the standard train-test split.

c) Northwestern-UCLA: N-UCLA [37] (N-UCLA) is a
multi-view activity 3D dataset acquired simultaneously by 3
Kinect v1 sensors. It consists of 1,194 video samples with 10
activity classes. The activities were performed by 10 subjects,
and recorded from three viewpoints. We perform experiments
on N-UCLA using the cross-view (CV) protocol: we train our
model on samples from camera view1 and view2, then test
on the samples from the remaining camera view3.

D. Implementation Details

a) Settings of SubG-DA: We pre-define 6 spatial sub-
graph patterns (i.e. masks O in III-A) to simulate the
different kinds of occlusions: (1) upper-body invisible, (2)
lower-body invisible, (3) right-body invisible, (4) left-body
invisible, (5) center-body invisible and (6) full-body visible.
In the temporal domain, we select τ = 150 (see III-A) for
NTU-120. Subsequently, we randomly prune a sub-graph for
each instance in different training epochs to have a data
augmentation.

b) Settings of AGCNs: At the end of the AGCNs, an
global average pooling layer and a fully connected layer
with L2-normalization [40] are placed to embed the features
into the lower dimension eout = 128 (see III-B). The
fully connected layer can be changed when transferred to
downstream tasks. Unless otherwise stated in the ablation
study, for all OR-VPE models, We use SGD for training
with momentum 0.9, an initial learning rate of 0.1 for
60, 50, 30, and 50 epochs with step LR decay with a factor
of 0.1 at epochs {30, 50}, {30, 40}, {10, 20}, and {30, 40}
for NTU-120, Smarthome, Penn Action, and N-UCLA, re-
spectively. Weight decay is set to 0.0001 for final models.
2D (e.g., Smarthome and Penn Action) and 3D (e.g., NTU-
120 and N-UCLA) inputs are pre-processed following [25]
and [30] respectively. Note that we convert the human
structures on different datasets into a unified graph with
unified joint number and order for model transferring.

c) Settings of Contrastive Module: For the Contrastive
module, we set K = 4096 and Temp = 0.07 for computing
the contrastive loss L and m = 0.5 for the memory bank
(see III-C).

E. Ablation Study

a) Impact of Video Pose Embedding: We conduct the
ablation study on all three evaluation datasets using joint data
only for the analysis of impact of the pre-trained Embedding.
We compare classification accuracy with the same video pose
encoder (AGCNs) with and without pre-training the repre-
sentation on NTU-120 dataset. Results in Tab. I demonstrate
the impact of the embedding (OR-VPE) in both (i) linear
classification (i.e. unsupervised domain adaptation) without
additional fine-tuning for the backbone encoder and (ii) fine-
tuning with additional re-training for the backbone encoder.
From the training curves (see Fig. 3), we deduce that at the
beginning of training steps, the embedding has a significant



Fig. 3. Validation accuracy with the training steps on Penn Action and
N-UCLA datasets without (Scratch) and with Embedding pre-trained on
NTU-120. It demonstrates that the learned video pose representation can
improve the downstream action classification on targeting benchmarks.

TABLE II
TOP-1 CLASSIFICATION ACCURACY COMPARISON WITH

STATE-OF-THE-ART METHODS ON THE PENN ACTION DATASET.

Methods Data Penn Action
Accuracy(%)

Nie et al. [24] RGB+Pose 85.5
Cao et al. [3] RGB+Pose 98.1
Liu et al. [20] RGB+Pose 91.4
Luvizon et al. [22] RGB+Pose 98.7
Late fusion: I3D [5]+OR-VPE (Ours) RGB+Pose 96.3
Iqbal et al. [15] Pose 79.0
MS-G3D Net [21] Pose 92.5
2s-AGCN [30] (Baseline) Pose 93.1*
OR-VPE (Ours) Pose 94.0

boost. This suggests that the video pose representation is well
pre-trained on NTU-120, providing a strong transfer ability.
See SM for comparison with supervised pre-training.

b) Impact of Sub-graph Data Augmentation: We pre-
train our video pose encoder with and without the SubG-DA,
the result in Tab. I shows its effectiveness particularly in the
spatial dimension, that can simulate the realistic occlusions
to make the pose embedding occlusion-robust.

F. Comparison with State-of-the-art

We compare our embedding model with pre-training to
other state-of-the-art methods, reporting results in Tab. IV
(Smarthome), Tab. II (Penn Action) and Tab. III (N-UCLA).
“*” indicates that without pre-training, we reduce the number
of blocks due to the paucity of training data to report the best
result we can achieve. Note that for fair comparison, we use
the same pose data (2D on Smarthome, Penn Action and 3D
on N-UCLA) and we also perform joint-bone 2-stream fusion
as 2s-AGCN [30]. We demonstrate that our model with pre-
training outperforms the Baseline model (i.e. 2s-AGCN [30]
without embedding) and other state-of-the-art models [23],
[42], [30], [31], [21], [15] in pose stream that use only pose
data and performs competitively compared to methods [7],

TABLE III
TOP-1 CLASSIFICATION ACCURACY COMPARISON WITH

STATE-OF-THE-ART METHODS ON THE N-UCLA DATASET.

Methods Data N-UCLA
CV(%)

NKTM [26] RGB 85.6
I3D [5] RGB 86.0
ST-GCN [42] Pose 75.8
2s-AGCN [30] (Baseline) Pose 80.2
OR-VPE (Ours) Pose 86.9

TABLE IV
MEAN PER-CLASS ACCURACY COMPARISON WITH STATE-OF-THE-ART

METHODS ON THE TOYOTA SMARTHOME DATASET.

Methods Data Toyota Smarthome
CS(%) CV1(%) CV2(%)

DT [36] RGB 41.9 20.9 23.7
I3D [5] RGB 53.4 34.9 45.1
I3D+NL [38] RGB 53.6 34.3 43.9
AssembleNet++ [28]
(+object) RGB 63.6 - -
Separable STA [7] RGB+Pose 54.2 35.2 50.3
VPN [8] RGB+Pose 60.8 43.8 53.5
LSTM [23] Pose 42.5 13.4 17.2
MS-AAGCN [31] Pose 60.4 - -
MS-G3D Net [21] Pose 61.1 17.5 59.4
2s-AGCN [30] (Baseline) Pose 60.9 22.5 53.5
OR-VPE (Ours) Pose 62.2 25.4 60.1

[8], [24], [3], [20], [22] also using RGB data. These results
suggest that OR-VPE pre-trained on sensor pose data is able
to significantly boost the accuracy not only on a similar
benchmark using sensor 3D pose data (e.g., +6.7% on N-
UCLA) but also on real-world benchmarks using estimated
2D poses (e.g., +6.6% on Smarthome CV2). Compared
to methods [7], [8], [24], [3], [20], [22] also using RGB
data, our proposed method performs competitively on smaller
benchmarks (e.g., , Smarthome CV1 and Penn Action). We
argue that, (i) with fewer training data, the RGB-based
methods can take advantages of pre-training on Kinetics [5]
that contains a larger number of real-world videos and action
diversity compared to NTU-RGB+D [19] dataset. (ii) The
RGB networks can better distinguish the fine-grained and
object-oriented activities which might me the failure cases
with our proposed methods (e.g., “Usetablet”: 0.16%, “Use-
laptop”: 0.10%, “Pour.Frombottle”: 0.09%, “Pour.Fromcan”:
0.14% on Smarthome CV1). To demonstrate that our pro-
posed method can also leverage RGB information, we simply
fuse the classification scores obtained from OR-VPE and
an RGB-based model, I3D [5] on Penn Action dataset. The
result is reported in Tab. II. One of the future directions to
further improve the accuracy could be the combination of
our method and RGB-based methods together by applying
careful multi-modal designs [7], [8], [22], [3].

G. Comparison with Supervised Embedding

In this section, we show the proposed self-supervised em-
bedding compared with supervised embedding. The results
in Tab I suggest that without manual action annotations,
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Fig. 4. Confusion matrices of action classification on Penn Action. Impact of OR-VPE with pre-trained Embedding (Ours-left) compared with AGCNs
(Baseline-right).

we can still achieve performance similar (even better) to
the supervised framework. So we can estimate pose for any
unlabeled videos to learn the video pose representation for
downstream action recognition tasks, which simplifies the
practical applications in the real-world.

H. Classification Visualization

We visualize the confusion matrices on Penn Action (see
Fig. 4) which contains the action classification accuracy for
each action class. It further demonstrates the impact of our
OR-VPE.

V. CONCLUSIONS

In this paper, we propose a self-supervised video pose
embedding framework that renders video pose representation
robust to occlusion, as well as is able to generalize onto
real-world action datasets. Our experimental analysis shows
that the proposed embedding networks (OR-VPE) pre-trained
on a single pose dataset from RGBD sensors can also
have a strong generalization ability across datasets with
real-world estimated poses containing occlusions. OR-VPE
allows us to extract poses in real-world videos and learn a
good representation, without need of action categories that
can boost the performance of downstream targeting action
recognition datasets. We plan to make OR-VPE publicly
available for the research community.
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