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ANALYSIS OF STABILITY AND INSTABILITY FOR STANDING WAVES OF THE

DOUBLE POWER ONE DIMENSIONAL NONLINEAR SCHRÖDINGER EQUATION

PERLA KFOURY, STEFAN LE COZ, AND TAI-PENG TSAI

Abstract. For the double power one dimensional nonlinear Schrödinger equation, we establish a complete

classification of the stability or instability of standing waves with positive frequencies. In particular, we fill out
the gaps left open by previous studies. Stability or instability follows from the analysis of the slope criterion of

Grillakis, Shatah and Strauss. The main new ingredients in our approach are a reformulation of the slope and
the explicit calculation of the slope value in the zero-frequency case. Our theoretical results are complemented

with numerical experiments.

1. Introduction

Consider the one dimensional nonlinear Schrödinger equation with double power nonlinearity

i∂tu+ ∂2
xu+ ap|u|p−1u+ aq|u|q−1u = 0, (1)

where u : Rt×Rx → C, ap, aq ∈ R \ {0} and 1 < p < q <∞. When ap < 0, aq > 0, we say that the nonlinearity
is defocusing-focusing, with analogous definitions for other possible signs combinations.

Nonlinear Schrödinger equations appear in many areas of physics such as nonlinear optics (see e.g. [2]) or
Bose-Einstein condensation. The double power nonlinearity is an important example of the possible nonlin-
earities appearing in soliton theory (see e.g. [3]). Via gauge transformations, the double power nonlinearity
is also connected with the derivative nonlinear Schrödinger equation (see e.g. [23, 27, 33]). The double power
nonlinearity is also a typical example of a nonlinearity breaking the scaling invariance of the pure power case,
while still being relatively tractable, and it may be used to study phenomena in the absence of scaling symmetry
(see e.g. [26] for the construction of blowing-up solutions).

The Cauchy problem for (1) is well known (see [12] and the references therein) to be well-posed in the
energy space H1(R): for any u0 ∈ H1(R), there exists a unique maximal solution u ∈ C((−T∗, T ∗), H1(R)) ∩
C1((−T∗, T ∗), H−1(R)) of (1) such that u(t = 0) = u0. Moreover, the energy E and the mass M , defined by

E(u) =
1

2
‖ux‖2L2 − ap

p+ 1
‖u‖p+1

Lp+1 −
aq
q + 1

‖u‖q+1
Lq+1 , M(u) =

1

2
‖u‖2L2 ,

are conserved along the flow and the blow-up alternative holds (i.e. if T ∗ < ∞ (resp. T∗ < ∞), then
limt→T∗ (resp −T∗)‖u(t)‖H1 =∞).

A standing wave is a solution of (1) of the form u(t, x) = eiωtφ(x) for some ω ∈ R and a profile φ ∈ C2(R),
which then satisfies

− φ′′ + ωφ− ap|φ|p−1φ− aq|φ|q−1φ = 0. (2)

We only consider real-valued φ in this paper. Define ω∗ by

ω∗ = sup

{
ω > 0 : ∃s > 0 such that

ω

2
s2 − ap

p+ 1
sp+1 − aq

q + 1
sq+1 < 0

}
.

It is well known (see [9]) that existence of non-trivial solutions of (2) with lim|x|→∞ φ(x) = 0 holds if and
only if {

0 6 ω < ω∗ when ap < 0, aq > 0,

0 < ω < ω∗ otherwise.
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In that case, the solution is positive (up to phase shift), even (up to translation) and unique. We denote it by
φω, or simply φ when there is no ambiguity.

Solitary waves are the building blocks for the nonlinear dynamics of (1), as it is expected that, generically, a
solution of (1) will decompose into a dispersive linear part and a combination of nonlinear structures as solitary
waves. This vague statement is usually referred to as the Soliton Resolution Conjecture.

Therefore, understanding the dynamical properties of standing waves, in particular their stability, is a key
step in the analysis of the dynamics of (1). Several stability concepts are available for standing waves. The
most commonly used is orbital stability, which is defined as follows. The standing wave eiωtφ(x) solution of (1)
is said to be orbitally stable if the following holds. For any ε > 0 there exists δ > 0 such that if u0 ∈ H1(R)
verifies

‖u0 − φ‖H1 < δ,

then the associated solution u of (1) exists globally and verifies

sup
t∈R

inf
y∈R,θ∈R

∥∥u(t)− eiθφ(· − y)
∥∥
H1 < ε.

In the rest of this paper, when we talk about stability/instability, we always mean orbital stability/instability.
The groundwork for orbital stability studies was laid down by Berestycki and Cazenave [8], Cazenave and

Lions [13] and Weinstein [34, 35]. Two approaches lead to stability or instability results: the variational
approach of [8, 13], which exploits global variational characterizations combined with conservation laws or
the virial identity, and the spectral approach of [34, 35], which exploits spectral and coercivity properties of
linearized operators to construct a suitable Lyapunov functional. Later on, Grillakis, Shatah and Strauss [20, 21]
developed an abstract theory which, under certain assumptions, boils down the stability study of a branch of
standing waves ω → φω to the study of the sign of the quantity (usually called slope) ∂

∂ωM(φω). Note that the
theory of Grillakis, Shatah and Strauss has known recently a considerable revamping in the works of De Bièvre,
Genoud and Rota-Nodari [15, 16].

With the above mentioned techniques, the orbital stability of positive standing waves has been completely
determined in the single power case (i.e. aq = 0) in any dimension d > 1 in [8, 13, 34, 35]. If aq = 0, positive
standing waves exist if and only if ap > 0 and ω > 0. In this case, they are stable if 1 < p < 1+ 4

d (i.e. 1 < p < 5

in dimension d = 1), and they are unstable if 1 + 4
d 6 p < 1 + 4

(d−2)+
(i.e. 5 6 p < ∞ in dimension d = 1).

Scaling properties of the single power nonlinearity play an important role in the proof and ensure in particular
that stability and instability are independent of the value of the frequency ω. It turns out that there is no
scaling invariance for double power nonlinearities, which makes the stability study more delicate. As a matter
of fact, only very partial results are available so far in higher dimensions. In dimension 1, the situation is a bit
more favorable, as one might exploit the ODE structure of the profile equation (2) in the analysis.

Preliminary investigations for the stability of standing waves in dimension 1 were conducted by Iliev and
Kirchev [24] in the case of a generic nonlinearity. In particular, a formula for the slope condition was obtained
in [24]. The earliest work devoted to the stability of standing waves for nonlinear Schrödinger equations with
double power nonlinearity in dimension 1 is the work of Ohta [31]. In this work, using the integral expression
for the slope condition derived by Iliev and Kirchev [24], Ohta established the stability/instability of standing
waves in a number of cases. Later on, Maeda [30] further refined the approach of Ohta and established the
stability/instability in most of the situations not covered in [31]. However, the stability picture was still not
complete, as the following case was left partially open:

ap < 0, aq > 0, 1 < p < q < 5, p+ q 6 6 or p 6
7

3
.

In the above case, Ohta [31] established the stability of standing waves for ω large enough. The instability for
small ω was obtained by Ohta [31] for p + q > 6, a condition which was later improved to (p + 3)(q + 3) > 32
by Fukaya and Hayashi [17]. What happens in the intermediate range of ω when

(p+ 3)(q + 3) > 32 and

(
p+ q 6 6 or p 6

7

3

)
,

was not elucidated in [17, 30, 31], nor what happens for small ω when (p+3)(q+3) 6 32, (except for the notable
case p = 2, q = 3, where explicit calculations are possible and show that the wave is stable for any ω > 0).

For convenience, we adopt the following convention. When a standing wave is stable for any ω ∈ (0, ω∗), we
say that it is of type S. When there exists ω1 ∈ (0, ω∗) such that the standing wave is unstable for ω ∈ (0, ω1]
and stable for ω ∈ (ω1, ω

∗), we say that it is of type US. Other types are defined in a similar manner. Note that
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when instability holds the endpoint ω1 is included in the instability range (thanks to the criterion of Comech
and Pelinovsky [14], see (6)).

Our goal in this paper is to fill out the gaps left open by the previous works [17, 30, 31] and to provide a
complete stability picture for the standing waves of the Schrödinger equations with double power nonlinearity.
Our main result is the following.

Theorem 1.1. Let (φω)ω∈(0,ω∗) be the family of standing waves of (1). The following gives the stability type
of the family of standing waves.

(1) Assume that ap > 0 and aq > 0.
(a) If q 6 5, then it is of type S.
(b) If p > 5, then it is of type U .
(c) If p < 5 < q, then it is of type SU .

(2) Assume that ap > 0 and aq < 0.
(a) If p 6 5, then it is of type S.
(b) If p > 5, then it is of type US.

(3) Assume that ap < 0 and aq > 0.
(a) If q 6 7− 2p, then it is of type S.
(b) If 7− 2p < q < 5, then it is of type US.
(c) If q > 5, then it is of type U .

In particular, in the cases 1(c), 2(b) and 3(b) with stability change, the standing wave φωc at the critical frequency
ωc is unstable.

This theorem implies in particular that stability change occurs at most once, which is conjectured in [30,
p. 265], and is in contrast to NLS with triple power nonlinearity considered in [29].

In Theorem 1.1, cases (1), (2) and (3)(c) were already covered in [30, 31]. For the sake of completeness, and
as the proofs are not very long, we will also cover them in our work. Cases (3)(a) and (b) were only partially
solved. We provide a definitive result for these cases. Our approach relies on several ingredients. First of all,
we express the slope condition in a concise, while easily tractable integral, factoring out terms which are in any
case positive. Instead of working with the parameter ω, we manipulate the slope condition with the parameter
φ0 = φω(0) (which is in a bijective relation with ω). We are left with an integral expression F (φ0) (see (8)), of
which we need to determine the sign. A refactorisation allows us to introduce an auxiliary parameter γ, and
differentiation with respect to φ0 gives us an expression which we can prove to have sign, provided we have
suitably chosen the parameter γ. This gives the information that F (φ0) changes sign at most once. The sign for
large ω (or equivalently large φ0) had already been established in [31]. On the other hand, the sign for ω close
to 0 had not been computed before. Here, an astute rewriting of the slope in terms of Beta functions allows us
to determine the sign for ω close to 0.

Observe that our results are not covering the zero-frequency case ω = 0. Stability or instability of the
corresponding (algebraic) standing waves (when existing) can be conjectured to be the same as the one for
small ω > 0 (which is consistent with the results obtained by Fukaya and Hayashi [17]).

In the case ap < 0, aq > 0 and 1 < p < q < 5, we complement our theoretical results with numerical
experiments. We first represent the critical surface {ωc(p, q)} at which the stability change occurs and discuss
the different possible shapes of the surface depending on the ratio ap/aq. We then simulate the dynamics of (1)
around a standing wave with the Crank-Nicolson scheme with relaxation of Besse [10]. Three types of behaviors
are observed depending on the type of initial data : stability, growth followed by oscillations, and scattering.

To end this introduction, we point out that many works are devoted to standing waves of the double power
nonlinear Schrödinger in higher dimension (for which our approach does not apply), and just give a small
sample of the existing literature. The cubic quintic case in higher dimension was investigated in [11]. Stability
of standing waves in higher dimension for generic nonlinearities was considered in [18]. Strong instability was
studied in [32]. Stability results for algebraic standing waves were obtained in [17]. Uniqueness and non-
degeneracy was considered in [28]. Existence or non-existence of minimizers of the energy at fixed mass was
obtained in [7]. Let us also mention in dimension 1 the work [19], which is devoted to the stability of standing
waves for cubic-quintic nonlinearities in the presence of a δ potential (see [4, 5] for further developments).

This paper is organized as follows. We start by some preliminaries in Section 2, recalling in particular
the properties of the standing wave profiles and the stability criterion. In Section 3, we reformulate the slope
condition for stability, using the profile equation. In Section 4, we analyze the limit of the slope at the endpoints
of the interval of admissible frequencies ω and in particular determine the sign of the slope at the endpoints. The
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sign of the slope on the full interval of admissible frequencies is recovered in Section 5, which shows Theorem
1.1. Finally, numerical experiments are presented in Section 6.

After the first version of this paper was posted to arXiv, Professor Hayashi kindly informed us he had an
independent similar result and posted it as [22]. His Theorem 1.3 is similar to our Theorem 1.1 although it does
not include the case 1 < p < 9/5.

2. Preliminaries

2.1. The profile equation. We start by some analysis around the ordinary differential equation (2) and its
solutions (φω). Apart in a few specific cases (e.g. when q = 2p− 1, see e.g. [29]), there does not exist an explicit
formula for the full standing waves profile. Note that ω∗ = ∞ when aq > 0, 0 < ω∗ < ∞ when ap > 0 and
aq < 0, and ω∗ = −∞ (i.e. there is no solution of (2) in H1(R)) when ap, aq < 0. All along this paper, we
assume that 0 < ω < ω∗ (excluding in particular the possibility that ap, aq < 0). Under this assumption, there
exists φ0 > 0 (depending implicitly on ω) such that

φ0 = inf{φ > 0 :
ω

2
φ2 − ap

p+ 1
|φ|p+1 − aq

q + 1
|φ|q+1 = 0},

and we have

φω(0) = φ0.

Observe that ω may be expressed in terms of φ0 as follows

ω =
2ap
p+ 1

φp−1
0 +

2aq
q + 1

φq−1
0 . (3)

Moreover, as ω < ω∗, we have

ω − apφp−1
0 − aqφq−1

0 < 0.

This implies in particular φ0 is a C1-function of ω. Moreover, we always have

∂φ0

∂ω
=

(
2ap(p− 1)

p+ 1
φp−2

0 +
2aq(q − 1)

q + 1
φq−2

0

)−1

> 0. (4)

As a consequence, the following result holds.

Lemma 2.1. The function ω → φ0 is a strictly increasing bijection from (0, ω∗) to (φ∗, φ
∗) where

φ∗ =


(
−apaq

q+1
p+1

) 1
q−p

if ap < 0,

0 if ap > 0,
φ∗ =

∞ if aq > 0,(
−apaq

p−1
q−1

q+1
p+1

) 1
q−p

if aq < 0.
(5)

2.2. The stability criterion. As we already mentioned, stability criteria have been derived in the general
case in [20, 24]. For the double power nonlinearity, the stability of the standing wave is determined by a slope
condition (the spectral condition of [20] being always verified in this case when ω > 0). The standing wave
eiωtφω(x) will be stable if

∂

∂ω
M(φω) > 0,

and it will be unstable if
∂

∂ω
M(φω) < 0.

When ∂ωM(φω) = 0, the stability can be decided by looking at the second derivative, as was established by
Comech and Pelinovsky [14]: If ∂ωM(φω) = 0 and

∂2

∂ω2
M(φω) 6= 0, (6)

then the standing wave eiωtφω(x) is unstable.
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3. Reformulation of the slope

For notational convenience, we introduce the function J defined by

J(ω, p, q) =
∂

∂ω
M(φω).

Hence the sign of J determines the stability of the corresponding standing wave.
The main idea in this section is to express J in terms of φ0 instead of ω. Before doing that, we introduce

some convenient notation. Let Φp and Φq be defined by

Φp =
2ap
p+ 1

φp+1
0 (1− sp−1), Φq =

2aq
q + 1

φq+1
0 (1− sq−1), (7)

where ap, aq 6= 0, 1 < p < q <∞ and 0 < s < 1.

Lemma 3.1. The function J may be expressed in terms of φ0 as follows

J(ω, p, q) = C(φ0)F (φ0),

where

F (φ0) =

∫ 1

0

(5− p)Φp + (5− q)Φq
(Φp + Φq)

3
2

sds, (8)

and C(φ0) is positive and explicitly known (see (10)).

Proof. We multiply the equation (2) of the profile by φx and we integrate to obtain

−1

2
|φx|2 +

ω

2
|φ|2 − ap

p+ 1
|φ|p+1 − aq

q + 1
|φ|q+1 = c.

When x→∞, we know that φ(x)→ 0 and φ′(x)→ 0. Therefore c = 0, and

− 1

2
|φx|2 +

ω

2
|φ|2 − ap

p+ 1
|φ|p+1 − aq

q + 1
|φ|q+1 = 0. (9)

For x > 0, as φ is decreasing, from (9) we have

φx = −
√
ωφ2 − 2ap

p+ 1
φp+1 − 2aq

q + 1
φq+1.

Still for x > 0, let t = φ(x), then

dx =
dt

φx
= − dt√

ωφ2 − 2ap
p+1φ

p+1 − 2aq
q+1φ

q+1
.

Therefore we may perform the following change of variable:

M(φ) =
1

2

∫
R
|φ(x)|2dx =

∫ ∞
0

|φ(x)|2dx =

∫ φ0

0

t2√
ωt2 − 2ap

p+1 t
p+1 − 2aq

q+1 t
q+1

dt.

Changing again variable by setting t = φ0s, we have

M(φ) =

∫ 1

0

φ3
0s

2

s
√
ωφ2

0 − 2ap
p+1φ

p+1
0 sp−1 − 2aq

q+1φ
q+1
0 sq−1

ds.

Replacing ω by its value (3) in terms of φ0, we have

M(φ) =

∫ 1

0

φ3
0s√

2ap
p+1φ

p+1
0 +

2aq
q+1φ

q+1
0 − 2ap

p+1φ
p+1
0 sp−1 − 2aq

q+1φ
q+1
0 sq−1

ds,

which, using the notation (7) for Φp and Φq, gives

M(φ) =

∫ 1

0

φ3
0s√

Φp + Φq
ds.

Differentiating with respect to ω, we have

∂ωΦp = (p+ 1)Φpφ
−1
0 ∂ωφ0, ∂ωΦq = (q + 1)Φqφ

−1
0 ∂ωφ0.
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Therefore we obtain

J(ω, p, q) = ∂ωM(φ) =

∫ 1

0

3φ2
0∂ωφ0s(Φp + Φq)− 1

2φ
3
0s
(
(p+ 1)Φpφ

−1
0 + (q + 1)Φqφ

−1
0 )
)
∂ωφ0

(Φp + Φq)
3
2

ds,

=
∂ωφ0

2
φ2

0

∫ 1

0

6(Φp + Φq)− ((p+ 1)Φp + (q + 1)Φq))

(Φp + Φq)
3
2

sds,

=
∂ωφ0

2
φ2

0

∫ 1

0

(5− p)Φp + (5− q)Φq
(Φp + Φq)

3
2

sds,

= C(φ0)F (φ0),

where F (φ0) is defined in (8) and

C(φ0) =
∂ωφ0

2
φ2

0. (10)

This concludes the proof. �

We will now analyze the variations of J(ω, p, q) in terms of φ0. For future convenience (the reason for such
a choice will appear clearly later), we introduce an auxiliary parameter γ in the following way

J(ω, p, q) = C(φ0)φ−γ0 Fγ(φ0),

where

Fγ(φ0) =

∫ 1

0

φγ0

(
(5− p)Φp + (5− q)Φq

(Φp + Φq)
3
2

)
sds.

Denote the integrand of Fγ by

Iγ(φ0) = φγ0

(
(5− p)Φp + (5− q)Φq

(Φp + Φq)
3
2

)
. (11)

Observe that there is a implicit dependency in s. In the following lemma we differentiate Iγ(φ0) with respect
to φ0.

Lemma 3.2. For any 0 < s < 1, the following holds:

∂Iγ
∂φ0

=
1

2
φγ−1

0

(
((5− p)(2γ − (p+ 1))Φp + (5− q)(2γ − (q + 1))Φq) (Φp + Φq)− 3(q − p)2ΦpΦq

(Φp + Φq)
5
2

)
.

Proof. We start by differentiating the term in parenthesis in Iγ(φ0). We have

∂φ0
Φp = (p+ 1)Φpφ

−1
0 , ∂φ0

Φq = (q + 1)Φqφ
−1
0 .

Therefore, we have

∂φ0

(
(5− p)Φp + (5− q)Φq

(Φp + Φq)
3
2

)
,

= φ−1
0

(
((5− p)(p+ 1)Φp + (5− q)(q + 1)Φq) (Φp + Φq)− 3

2 ((5− p)Φp + (5− q)Φq) ((p+ 1)Φp + (q + 1)Φq)

(Φp + Φq)
5
2

)
,

=
1

2
φ−1

0

(
−(5− p)(p+ 1)Φ2

p − (5− q)(q + 1)Φ2
q + ((5− p)(2p− 3q − 1) + (5− q)(2q − 3p− 1))ΦpΦq

(Φp + Φq)
5
2

)
,

=
1

2
φ−1

0

(
− ((5− p)(p+ 1)Φp + (5− q)(q + 1)Φq) (Φp + Φq)− 3(q − p)2ΦpΦq

(Φp + Φq)
5
2

)
.

Before going on, observe that we may rewrite the term in parentheses in Iγ(φ0) as

(5− p)Φp + (5− q)Φq
(Φp + Φq)

3
2

=
2 ((5− p)Φp + (5− q)Φq) (Φp + Φq)

2 (Φp + Φq)
5
2

.
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Finally, the full derivative of Iγ(φ0) is given by

∂Iγ
∂φ0

= ∂φ0

(
φγ0

(
(5− p)Φp + (5− q)Φq

(Φp + Φq)
3
2

))
,

=
1

2
φγ−1

0

(
((5− p)(2γ − (p+ 1))Φp + (5− q)(2γ − (q + 1))Φq) (Φp + Φq)− 3(p− q)2ΦpΦq

(Φp + Φq)
5
2

)
.

This concludes the proof. �

For future reference, we establish here the following technical lemma which we will use at several occasions.

Lemma 3.3. The function s→ 1−sq−1

1−sp−1 is an increasing bijection from (0, 1) to (1, q−1
p−1 ).

Proof. Let h(s) = 1−sq−1

1−sp−1 . We have

h′(s) =
sp−2

(1− sp−1)2
l(s),

where
l(s) = (q − p)sq−1 + p− 1− (q − 1)sq−p.

Note that l(1) = 0 and for 0 < s < 1,

l′(s) = (q − p)(q − 1)(sq−2 − sq−p−1) < 0.

Hence l′(s) < 0 and l(s) > 0 for 0 < s < 1. We conclude that h′(s) > 0 for 0 < s < 1. As a consequence, h is
increasing on the interval (0, 1). Moreover, we have h(0) = 1 and, by L’Hospital’s rule,

lim
s→1

h(s) =
q − 1

p− 1
.

This concludes the proof. �

4. The slope at the endpoints

Our goal in this section is to investigate what happens for J(ω, p, q) when ω is close to 0 and ω∗.

4.1. The zero frequency case. In this section, we determine the limit of J(ω, p, q) when ω tends to zero. Let
J0 be defined by

J0(p, q) = lim
ω→0

J(ω, p, q).

We first consider the case where ap > 0.

Proposition 4.1. Let ap > 0. The following holds.

(1) If 1 < p < 7
3 , then J0(p, q) = 0+.

(2) If p = 7
3 , then 0 < J0(p, q) <∞.

(3) If 7
3 < p < 5, then J0(p, q) =∞.

(4) If p = 5, then three cases have to be distinguished.
(a) If q < 9, then J0(p, q) = − sign(aq)∞.
(b) If q = 9, then 0 < − sign(aq)J0(p, q) <∞.

(c) If q > 9, then J0(p, q) = 0− sign(aq).
(5) If 5 < p, then J0(p, q) = −∞.

Proof. When ap > 0, we have
lim
ω→0

φ0 = φ∗ = 0.

Recall that we have shown in Lemma 3.1 that J may be written as J(ω, p, q) = C(φ0)F (φ0). We have (recalling
the definition (10) of C and the expression (4) of ∂ωφ0)

C(φ0) =
1

2
∂ωφ0φ

2
0 =

1

4

(
ap(p− 1)

p+ 1
φp−4

0 +
aq(q − 1)

q + 1
φq−4

0

)−1

= φ4−p
0

1

4

(
ap(p− 1)

p+ 1
+
aq(q − 1)

q + 1
φq−p0

)−1

= φ4−p
0

(
p+ 1

4ap(p− 1)
+ o(1)

)
.
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The function F (defined in (8)) can be written, substituting Φp and Φq by their expressions (7), as

F (φ0) =

∫ 1

0

2ap(5−p)
p+1 (1− sp−1)φp+1

0 +
2aq(5−q)
q+1 (1− sq−1)φq+1

0(
2ap
p+1 (1− sp−1)φp+1

0 +
2aq
q+1 (1− sq−1)φq+1

0

) 3
2

sds.

As we are interested in the limit φ0 → 0, we factor out the terms in φp+1
0 to get

F (φ0) = φ
− p+1

2
0

∫ 1

0

2ap(5−p)
p+1 (1− sp−1) +

2aq(5−q)
q+1 (1− sq−1)φq−p0(

2ap
p+1 (1− sp−1) +

2aq
q+1 (1− sq−1)φq−p0

) 3
2

sds

= (5− p)φ−
p+1
2

0

(∫ 1

0

(
2ap
p+ 1

(1− sp−1)

)− 1
2

sds+ o(1)

)
.

In the particular case p = 5, we instead write

F (φ0) = aq(5− q)φq−8
0

∫ 1

0

2
q+1 (1− sq−1)(ap

3 (1− s4)
) 3

2

sds+ o(1)

 .

In summary, when φ0 → 0 (i.e. ω → 0), we have established that there exists C = C(p, q) > 0 such that when
p 6= 5 we have

J(ω, p, q) = (5− p)φ
7−3p

2
0 C(1 + o(1)),

and when p = 5 we have

J(ω, p, q) = (5− q)aqφq−9
0 C(1 + o(1)).

This gives the desired result. �

We now discuss the case ap < 0 and aq > 0.

Proposition 4.2. Let ap < 0 and aq > 0.

(1) Assume that p < 7
3 . Then J0(p, q) ∈ R and the following holds.

(a) If 2p+ q < 7, then J0(p, q) > 0.
(b) If 2p+ q = 7, then J0(p, q) = 0.
(c) If 2p+ q > 7, then J0(p, q) < 0.

(2) Assume that p > 7
3 . Then J0(p, q) = −∞.

We start with some preliminaries. To establish the first part of Proposition 4.2, we will calculate J0 in terms
of the Beta function. Recall that the Beta function, also called Euler integral of the first kind, is a special
function closely related to the Gamma function. It is defined for x > 0 and y > 0 by the integral

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt. (12)

The relation between the Beta function and the Gamma function is given by (see e.g [1])

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

We introduce the function H defined for x > 0 and y > 0 by

H(x, y) =

∫ 1

0

tx−1(1− ty)

(1− t) 3
2

dt. (13)

The relation between H and B is given in the following lemma.

Lemma 4.3. For x > 0 and y > 0, we have

H(x, y) = −(2x− 1)B

(
x,

1

2

)
+ (2x+ 2y − 1)B

(
x+ y,

1

2

)
. (14)
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Proof. Let

u(t) = tx−1(1− ty).

Rewrite
1

(1− t) 3
2

= v′(t)− 1

(1− t) 1
2

,

where

v(t) =
2

(1− t) 1
2

− 2(1− t) 1
2 =

2t

(1− t) 1
2

.

We have

H(x, y) =

∫ 1

0

u(t)

(
v′(t)− 1

(1− t) 1
2

)
dt,

=u(1−)v(1−)− u(0+)v(0+)−
∫ 1

0

u′(t)v(t)dt−
∫ 1

0

u(t)

(1− t) 1
2

dt,

=0−
∫ 1

0

2tu′(t) + u(t)

(1− t) 1
2

dt.

Above we have used u(1) = 0 of order 1 to cancel the singularity of v(1−) of order 1
2 , and v(0) = 0 with order

1 to cancel the singularity of u(0+) of order x− 1. Note that

2tu′(t) + u(t) = (2x− 1)tx−1 − (2x+ 2y − 1)tx+y−1.

Therefore, using the definition of B given in (12) with y = 1
2 , we have

H(x, y) = −(2x− 1)B

(
x,

1

2

)
+ (2x+ 2y − 1)B

(
x+ y,

1

2

)
.

This concludes the proof. �

The value J0(p, q) may be expressed using B as follows.

Lemma 4.4. Let ap < 0 and aq > 0. Assume that 1 < p < 7/3. Then

J0(p, q) = (7− 2p− q)C0B

(
7− 3p

2(q − p) ,
1

2

)
,

where C0 is a positive constant explicitly known (given by (16)).

The first part of Proposition 4.2 is a direct consequence of Lemma 4.4.

Proof of Lemma 4.4. Let 1 < p < 7/3. Recall that J(ω, p, q) = C(φ0)F (φ0), with C(φ0) > 0 and F given by
(8). Observe that, using the value of φ∗ given in (5), we may introduce the constant

C∗ =
2aq
q + 1

φq+1
∗ = − 2ap

(p+ 1)
φp+1
∗ .

Using the definition (10) of C(φ0) and the expression (4) of ∂ωφ0, we have

lim
φ0→φ∗

C(φ0) = C(φ∗) =
φ5
∗

2C∗(q − p)
> 0,

lim
φ0→φ∗

Φp =
2ap

(p+ 1)
φp+1
∗ (1− sp−1) = −C∗(1− sp−1),

lim
φ0→φ∗

Φq =
2aq

(q + 1)
φq+1
∗ (1− sq−1) = C∗(1− sq−1).

As a consequence, we get

lim
φ0→φ∗

(Φp + Φq) = C∗(s
p−1 − sq−1),

lim
φ0→φ∗

((5− p)Φp + (5− q)Φq) = C∗
(
−(5− p)(1− sp−1) + (5− q)(1− sq−1)

)
.
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As a consequence,

F (φ∗) = C
− 1

2
∗

∫ 1

0

−(5− p)(1− sp−1) + (5− q)(1− sq−1)

(sp−1 − sq−1)
3
2

sds

= C
− 1

2
∗

∫ 1

0

−(q − p)(1− sp−1) + (5− q)(sp−1 − sq−1)

(1− sq−p) 3
2

s
5−3p

2 ds

= C
− 1

2
∗

(
−(q − p)

∫ 1

0

(1− sp−1)s
5−3p

2

(1− sq−p) 3
2

ds+ (5− q)
∫ 1

0

s
3−p
2

(
1− sq−p

)− 1
2 ds

)
.

(15)

Changing variable t = sq−p, we obtain

F (φ∗) = C
− 1

2
∗

(
−
∫ 1

0

(1− t p−1
q−p )t

7−p−2q
2(q−p)

(1− t) 3
2

ds+
5− q
q − p

∫ 1

0

t
5+p−2q
2(q−p) (1− t)− 1

2 ds

)
.

We now use B and H to express the above quantity. Setting

(x1, y1) =

(
7− p− 2q

2(q − p) + 1,
p− 1

q − p

)
=

(
7− 3p

2(q − p) ,
p− 1

q − p

)
,

(x2, y2) =

(
5 + p− 2q

2(q − p) + 1,
1

2

)
=

(
5− p

2(q − p) ,
1

2

)
,

we get

F (φ∗) = C
− 1

2
∗

(
−H(x1, y1) +

5− q
q − pB(x2, y2)

)
.

Observe that we have assumed p < 7
3 , p < q, which ensures that x1, x2, y1, y2 are positive. This a posteriori

justifies the fact that J0(p, q) is finite. The formula (14) allows us to express H(x1, y1) in the following way
(using y2 = 1/2):

H(x1, y1) = −(2x1 − 1)B (x1, y2) + (2x1 + 2y1 − 1)B (x1 + y1, y2) .

It turns out that

−(2x1 − 1) = −7− 2p− q
q − p , (2x1 + 2y1 − 1) =

5− q
q − p , x1 + y1 =

5− p
2(q − p) = x2.

As a consequence, there is a simplification in the expression of F (φ∗), which becomes

F (φ∗) = C
− 1

2
∗

7− 2p− q
q − p B (x1, y2) .

Setting

C0 =
C
− 1

2
∗

q − pC(φ∗) > 0 (16)

gives the desired result. �

Lemma 4.5. Assume that ap < 0 and aq > 0. For p > 7/3 and 1 < p < q, we have

lim
ω→0

J(ω, p, q) = −∞.

The second part of Proposition 4.2 is a direct consequence of Lemma 4.5.

Proof. Coming back to the expression (15) of F (φ∗) in the proof of Lemma 4.4, we observe that if 5−3p
2 6 −1,

i.e. p > 7
3 , then F (φ∗) = −∞, and, since limφ0→φ∗ C(φ0) = C(φ∗) > 0, we also have J0(p, q) = −∞ when

p > 7
3 . �
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4.2. The large frequency case. In this section, we determine the limit of J(ω, p, q) when ω tends to ω∗. Let
J∗ be defined by

J∗(p, q) = lim
ω→ω∗

J(ω, p, q).

We first consider the case where aq > 0.

Proposition 4.6. Let aq > 0. The following holds.

(1) If 1 < q < 7
3 , then J∗(p, q) = 0+.

(2) If q = 7
3 , then 0 < J∗(p, q) <∞.

(3) If 7
3 < q < 5, then J∗(p, q) =∞.

(4) If q = 5, then J∗(p, q) = 0sign(ap).
(5) If 5 < q, then J∗(p, q) = −∞.

Proof. Since aq > 0, we have ω∗ = ∞ and therefore φ∗ = ∞. Following similar arguments as in the proof of
Proposition 4.1, as φ0 →∞, for q 6= 5, we have

C(φ0) = φ4−q
0

(
q + 1

4aq(q − 1)
+ o(1)

)
,

F (φ0) = (5− q)φ−
q+1
2

0

(∫ 1

0

(
2aq
q + 1

(1− sq−1)

)− 1
2

sds+ o(1)

)
.

As a consequence, for q 6= 5, when φ0 →∞ (i.e. ω →∞), there exists C = C(aq, q) > 0 such that

J(ω, p, q) = (5− q)φ
7−3q

2
0 C(1 + o(1)).

In the particular case q = 5, we instead write

F (φ0) = ap(5− p)φp−8
0

∫ 1

0

2
p+1 (1− sp−1)(aq

3 (1− s4)
) 3

2

sds+ o(1)

 .

and therefore we get

J(ω, p, q) = ap(5− p)φp−9
0 C(1 + o(1)).

The two estimates on J lead to the desired result. �

Then we consider the case where aq < 0 (and thus ap > 0 to ensure existence of standing waves).

Proposition 4.7. Let ap > 0, aq < 0 and 5 6 p. Then

J∗(p, q) =∞.

Proposition 4.7 does not cover the whole possible range of p and q. As it was not necessary in our analysis,
we did not try to cover the remaining cases.

Proof of Proposition 4.7. By construction, ω∗ = ω(φ∗) is the value of ω at which ∂φ0ω(φ∗) = 0. As a conse-
quence, we have

lim
φ0→φ∗

∂φ0

∂ω
=∞,

which, given the value (10) of C(φ0), readily implies

lim
φ0→φ∗

C(φ0) =∞.

Using the expressions of (7) of Φp and Φq and the expression (8) of F we have

F (φ∗) =

∫ s

0

2ap
(5−p)(φ∗)p+1(1−sp−1)

p+1 + 2aq
(5−q)(φ∗)q+1(1−sq−1)

q+1(
2ap

(φ∗)p+1(1−sp−1)
p+1 + 2aq

(φ∗)q+1(1−sq−1)
q+1

) 3
2

sds.
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If p = 5, then we have F (φ∗) > 0 and the conclusion follows. From now on, assume that p > 5. Recalling the
value of φ∗ given in (5), we infer that

2ap
(5− p)(φ∗)p+1(1− sp−1)

p+ 1
+ 2aq

(5− q)(φ∗)q+1(1− sq−1)

q + 1

= 2aq(φ
∗)p+1(1− sq−1)

(5− q)
q + 1

(
ap(5− p)(q + 1)

aq(5− q)(p+ 1)

(1− sp−1)

(1− sq−1)
+ (φ∗)q−p

)
= 2ap(φ

∗)p+1(1− sq−1)
(5− q)
q + 1

(
(5− p)(q + 1)

(5− q)(p+ 1)

(1− sp−1)

(1− sq−1)
− p− 1

q − 1

q + 1

p+ 1

)
= 2ap(φ

∗)p+1(1− sq−1)
(5− q)
p+ 1

(
(5− p)
(5− q)

(1− sp−1)

(1− sq−1)
− p− 1

q − 1

)
> 0,

where we have used in particular Lemma 3.3 for the last inequality. This implies that F (φ∗) > 0 which, since
J(ω, p, q) = C(φ0)F (φ0), finishes the proof. �

5. Determination of the sign of the slope

In this section, we determine for each possible values of ap, aq, p and q the sign of J(ω, p, q). Combined
with the stability criteria of Section 2.2, this will prove Theorem 1.1. The general strategy of our proofs is the
following. Recall from Lemma 3.1 that J(ω, p, q) = C(φ0)F (φ0), where

F (φ0) =

∫ 1

0

(5− p)Φp + (5− q)Φq
(Φp + Φq)

3
2

sds,

and C(φ0) > 0. Moreover, ω and φ0 are in an increasing one to one correspondence. Hence, to determine the sign
of J , it is sufficient to determine the sign of F (φ0). To do this, we have two ingredients at our disposal. First, it
is usually not difficult to establish that F has a constant sign on intervals of the type (φ∗, φ0,1) or (φ0,1, φ

∗). On
the other hand, the expression for ∂φ0

F (φ0) given in Lemma 3.2 allows us to show that ∂φ0
F (φ0) has a constant

sign on intervals of the type (φ∗, φ0,2) or (φ0,2, φ
∗). If the intervals of the two ingredients overlap and if the

signs are matching, the conclusion will follow. For example, if F (φ0) > 0 on (φ∗, φ0,1), and ∂φ0F (φ0) > 0 on
(φ0,2, φ

∗) and φ0,1 > φ0,2, then F (φ0) > 0 on (φ∗, φ
∗). The detail of each case is given in the following sections.

5.1. The focusing-focusing case. In this section, we consider the case ap > 0, aq > 0. In this case we have
Φp > 0 and Φq > 0.

Lemma 5.1. Let ap > 0, aq > 0 and q 6 5. Then for all ω ∈ (0,∞) we have

J(ω, p, q) > 0,

and the family of standing waves is of type S.

Proof. If q 6 5, then 5− p > 0 and 5− q > 0. Therefore for any φ0 ∈ (0,∞) we have

F (φ0) > 0,

which gives the desired conclusion. �

Lemma 5.2. Let ap > 0, aq > 0 and p > 5. Then for all ω ∈ (0,∞) we have

J(ω, p, q) < 0,

and the family of standing waves is of type U.

Proof. If p > 5, then 5− p 6 0 and 5− q < 0. Therefore for any φ0 ∈ (0,∞) we have

F (φ0) < 0,

which gives the desired conclusion. �

The remaining case p < 5 < q is a bit more involved to consider.

Lemma 5.3. Let ap > 0, aq > 0 and p < 5 < q. There exists φ0,1 (explicitly given in (17)) such that if

φq−p0 > φq−p0,1 then

F (φ0) < 0.
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Proof. Using the formula (8) of F (φ0) and replacing in the numerator of the integrand Φp and Φq by their
expressions (7), we obtain

F (φ0) =

∫ 1

0

(5− p) 2ap
p+1φ

p+1
0 (s− sp) + (5− q) 2aq

q+1φ
q+1
0 (s− sq)

(Φp + Φq)
3
2

ds.

Let

l(s) = (5− p) 2ap
p+ 1

φp+1
0 (s− sp) + (5− q) 2aq

q + 1
φq+1

0 (s− sq),
and

k(s) = (Φp + Φq)
3
2 .

We may reformulate l(s) in the following way:

l(s) =

(
(5− p) 2ap

p+ 1
φp+1

0 + (5− q) 2aq
q + 1

φq+1
0

1− sq−1

1− sp−1

)
(s− sp).

From Lemma 3.3, we know that the function s→ 1−sq−1

1−sp−1 is increasing from 1 to q−1
p−1 when s goes from 0 to 1.

Let φ0,0 be given by

φq−p0,0 = −ap(5− p)(q + 1)(p− 1)

aq(5− q)(p+ 1)(q − 1)
,

and assume from now on that φ0 > φ0,0. Then

lim
s→1

l(s)

s− sp < 0,

and there exists s∗ ∈ [0, 1) such that l(s) > 0 for s ∈ (0, s∗) and l(s) < 0 for s ∈ (s∗, 1).

Define k̃ by k̃(s) = k(s)
k(s∗) . Then k̃(s∗) = 1. As k and therefore k̃ is a positive decreasing function of s, for all

s ∈ (0, 1) we have
l(s)

k̃(s)
< l(s).

Integrating over (0, 1), we obtain

F (φ0) <
1

k(s∗)

∫ 1

0

l(s)ds,

and F (φ0) will be negative if the integral in the right member is. Define φ0,1 > φ0,0 by

φq−p0,1 = −ap(5− p)(p− 1)(q + 1)2

aq(5− q)(q − 1)(p+ 1)2
. (17)

If φ0 > φ0,1, then ∫ 1

0

l(s)ds = (5− p) ap
p+ 1

φp+1
0

(
p− 1

p+ 1

)
+ (5− q) aq

q + 1
φq+1

0

(
q − 1

q + 1

)
< 0.

Hence for any φ0 > φ0,1 we have F (φ0) < 0. This concludes the proof. �

Lemma 5.4. Let ap > 0, aq > 0 and p < 5 < q. Let γ = p+1
2 . There exists φ0,2 (explicitly given in (20)) such

that the integrand Iγ of Fγ defined in (11) verifies

∂Iγ
∂φ0

< 0

for all φ0 ∈ (0, φ0,2).

Proof. As γ = p+1
2 , from Lemma 3.2 we have

∂Iγ
∂φ0

=
1

2
φγ−1

0

(
((5− q)(p− q)Φq) (Φp + Φq)− 3(p− q)2ΦpΦq

(Φp + Φq)
5
2

)
,

=
1

2
φγ−1

0 Φq(p− q)
(

(5 + 2q − 3p)Φp + (5− q)Φq
(Φp + Φq)

5
2

)
.
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As a consequence ∂φ0
Iγ < 0 if

(5 + 2q − 3p)Φp + (5− q)Φq > 0.

Replacing Φp and Φq by their expressions (7), this is equivalent to

(5 + 2q − 3p)
ap
p+ 1

φp+1
0 (1− sp−1) + (5− q) aq

q + 1
φq+1

0 (1− sq−1) > 0. (18)

Since p < 5 < q, we have 5 + 2q − 3p > 0, and therefore (18) becomes

φq−p0 < −ap
aq

(5 + 2q − 3p)

(5− q)
(q + 1)

(p+ 1)

(1− sp−1)

(1− sq−1)
. (19)

We know from Lemma 3.3 that
p− 1

q − 1
<

1− sp−1

1− sq−1
.

Define

φq−p0,2 = −ap
aq

(5 + 2q − 3p)

(5− q)
(q + 1)

(p+ 1)

(p− 1)

(q − 1)
. (20)

If φ0 < φ0,2 then (19) is verified, which concludes the proof. �

Lemma 5.5. Let ap > 0, aq > 0 and p < 5 < q. The function Fγ(φ0) has at most one zero in (0,∞).

Proof. As p < q, we have

3(p− 1)(p− q) < 0,

hence

(5− p)(q + 1) < (p+ 1)(5 + 2q − 3p).

It implies

−ap
aq

(5− p)
(5− q)

(q + 1)2

(p+ 1)2

(p− 1)

(q − 1)
< −ap

aq

(5 + 2q − 3p)

(5− q)
(q + 1)

(p+ 1)

(p− 1)

(q − 1)
.

Therefore, we have

φq−p0,1 < φq−p0,2 .

We know from Lemma 5.3 that Fγ(φ0) < 0 if φ0 ∈ (φ0,1,∞), and from Lemma 5.4 that Fγ(φ0) is decreasing for
all φ0 ∈ (0, φ0,2). As φ0,1 < φ0,2, this implies that Fγ(φ0) has at most one zero. �

Lemma 5.6. Let ap > 0, aq > 0 and p < 5 < q. There exists ω1 ∈ (0,∞) such that

J(ω, p, q) > 0 for ω < ω1, J(ω1, p, q) = 0, J(ω, p, q) < 0 for ω > ω1,

and the family of standing waves is of type SU.

Proof. From Proposition 4.1, we know that J(ω, p, q) > 0 for ω close to 0. Combined with Lemmas 5.3 and 5.5,
this implies the desired result. �

5.2. The focusing-defocusing case. In this section, we consider the case ap > 0, aq < 0. In this case Φp > 0
and Φq < 0.

Lemma 5.7. Let ap > 0, aq < 0 and p 6 5 < q. For any ω ∈ (0, ω∗), we have

J(ω, p, q) > 0,

and the family of standing waves is of type S.

Proof. We have 5 − p > 0, and 5 − q < 0. Therefore F (φ0) > 0 for any φ0 ∈ (0, φ∗), which gives the desired
result. �

Lemma 5.8. Let ap > 0, aq < 0 and p < q 6 5. Let γ = p+1
2 . Then the integrand Iγ of Fγ defined in (11)

verifies
∂Iγ
∂φ0

> 0

for all φ0 ∈ (0, φ∗).
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Proof. From Lemma 3.2 with γ = p+1
2 , we have

∂Iγ
∂φ0

=
1

2
φγ−1

0

(
((5− q)(p− q)Φq) (Φp + Φq)− 3(p− q)2ΦpΦq

(Φp + Φq)
5
2

)
.

Since 5− q > 0, p− q < 0 and Φq < 0, we have
∂Iγ
∂φ0

> 0 for any φ0 ∈ (0, φ∗). �

Lemma 5.9. Let ap > 0, aq < 0 and 5 < p < q. Let γ = p− q+ 3. Then the integrand Iγ of Fγ defined in (11)
verifies

∂Iγ
∂φ0

> 0

for all φ0 ∈ (0, φ∗).

Proof. Let γ = p− q + 3.

∂Iγ
∂φ0

=
1

2
φγ−1

0

(
((5− p)(p− 2q + 5)Φp + (5− q)(2p− 3q + 5)Φq) (Φp + Φq)− 3(p− q)2ΦpΦq

(Φp + Φq)
5
2

)
.

The sign of
∂Iγ
∂φ0

is the same as the sign of the numerator of the fraction. Factoring out Φ2
p, the sign is the same

as the one of the second order polynomial in
Φq
Φp

given by

(5− q)(2p− 3q + 5)

(
Φq
Φp

)2

+ 2(5− p)(2p− 3q + 5)

(
Φq
Φp

)
+ (5− p)(p− 2q + 5).

As 2p− 3q + 5 < 0 and 5− q < 0, the coefficient of the term of order 2 is positive. Therefore to show that the
polynomial is positive, it is sufficient to show that the discriminant ∆, given by

∆ = 4(5− p)(2p− 3q + 5)((5− p)(2p− 3q + 5)− (5− q)(p− 2q + 5)),

= −8(5− p)(2p− 3q + 5)(p− q)2,

is negative. We have 2p− 3q + 5 < 0 and 5− p < 0, therefore ∆ < 0. This concludes the proof. �

Lemma 5.10. Let ap > 0, aq < 0.

• Let p < q 6 5. Then for any ω ∈ (0, ω∗), we have

J(ω, p, q) > 0,

and the family of standing waves is of type S.
• Let 5 < p < q. Then there exist ω1 ∈ (0,∞) such that

J(ω, p, q) < 0 for ω < ω1, J(ω1, p, q) = 0, J(ω, p, q) > 0 for ω > ω1,

and the family of standing waves is of type US.

Proof. In both cases, we infer from Lemmas 5.8 and 5.9 that for any ω ∈ (0, ω∗), the function ω → J(ω, p, q)
changes sign (from negative to positive) at most once on ω ∈ (0, ω∗).

To establish the desired conclusion, we consider the values of J close to the endpoints. As ω → 0, we have
established in Proposition 4.1 that for ω close to 0, we have

J(ω, p, q) > 0 for p 6 5, J(ω, p, q) < 0 for p > 5.

As J is increasing, this gives the conclusion for the first part of the Lemma.
For the second part of the Lemma, we look at the limit ω → ω∗ (i.e. φ0 → φ∗). From Proposition 4.7, for

5 < p < q and for ω close to ω∗ we have

J(ω, p, q) > 0,

which gives the second part of the Lemma. �
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5.3. The defocusing-focusing case. In this section, we consider the case ap < 0, aq > 0. In this case Φp < 0
and Φq > 0.

Lemma 5.11. Let ap < 0, aq > 0 and p < q < 5. Let γ = q+1
2 . If 3q > 2p + 5, then the integrand Iγ of Fγ

defined in (11) verifies
∂Iγ
∂φ0

> 0

for all φ0 ∈ (φ∗,∞).

Proof. As γ = q+1
2 , from Lemma 3.2 we have

∂Iγ
∂φ0

=
1

2
φγ−1

0

(
((5− p)(q − p)Φp) (Φp + Φq)− 3(p− q)2ΦpΦq

(Φp + Φq)
5
2

)
,

=
1

2
φγ−1

0 Φp(q − p)
(

(5− p)Φp + (5− p)Φq + 3(p− q)Φq
(Φp + Φq)

5
2

)
,

=
1

2
φγ−1

0 Φp(q − p)
(

(5− p)Φp + (5 + 2p− 3q)Φq

(Φp + Φq)
5
2

)
.

As 0 < 5− p and 2p+ 5− 3q 6 0 we have

(5− p)Φp + (5 + 2p− 3q)Φq < 0.

As a consequence
∂Iγ
φ0

> 0 for all φ0 ∈ (φ∗,∞) when 5 + 2p− 3q 6 0, which is the desired conclusion. �

Lemma 5.12. Let ap < 0, aq > 0 and p < q < 5. Let γ = p− q+ 3. If 3q < 2p+ 5 then the integrand Iγ of Fγ
defined in (11) verifies

∂Iγ
∂φ0

> 0

for all φ0 ∈ (φ∗,∞).

Proof. As γ = p− q + 3, from Lemma 3.2 we have

∂Iγ
∂φ0

=
1

2
φγ−1

0

(
((5− p)(p− 2q + 5)Φp + (5− q)(2p− 3q + 5)Φq) (Φp + Φq)− 3(p− q)2ΦpΦq

(Φp + Φq)
5
2

)
.

If the numerator of the fraction is positive then the derivative is positive. Factorizing out Φ2
p, the sign of the

numerator is the same as the one of the quadratic polynomial in
Φq
Φp

given by

(5− q)(2p− 3q + 5)

(
Φq
Φp

)2

+ 2(5− p)(2p− 3q + 5)

(
Φq
Φp

)
+ (5− p)(p− 2q + 5).

As 2p− 3q + 5 > 0 and 5− q > 0, the coefficient of the term of order 2 is positive. Therefore to show that the
polynomial is positive, it is sufficient to show that the discriminant ∆, given by

∆ = 4(5− p)(2p− 3q + 5)((5− p)(2p− 3q + 5)− (5− q)(p− 2q + 5)),

= −8(5− p)(2p− 3q + 5)(p− q)2,

is negative. We have 2p− 3q + 5 > 0 and 5− p > 0, therefore ∆ < 0. This concludes the proof. �

Lemma 5.13. Let ap < 0, aq > 0 and p < q < 5.

• If q 6 7− 2p, then for any ω ∈ (0,∞), we have

J(ω, p, q) > 0,

and the family of standing waves is of type S.
• If q > 7− 2p, then there exist ω1 ∈ (0,∞) such that

J(ω, p, q) < 0 for ω < ω1, J(ω1, p, q) = 0, J(ω, p, q) > 0 for ω > ω1,

and the family of standing waves is of type US.
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Proof. Lemmas 5.11 and 5.12 implies Fγ changes sign only once on (0, ω∗). From Proposition 4.2, we know that
as ω → 0, we have J(ω, p, q) > 0 when q 6 7 − 2p, which gives the conclusion for the first part of the Lemma.
When q > 7− 2p, from Proposition 4.2, we know that as ω → 0, we have J(ω, p, q) < 0. Since, from Proposition
4.6, we know that J(ω, p, q) > 0 for large ω, the conclusion follows for the second part of the Lemma. �

Lemma 5.14. Let ap < 0, aq > 0 and p < 5 6 q. For any ω ∈ (0,∞), we have

J(ω, p, q) < 0,

and the family of standing waves is of type U .

Proof. We have 5 − p > 0, 5 − q 6 0, Φp < 0 and Φq > 0. Therefore we directly see on the expression (8) of
F (φ0) that F (φ0) < 0, which gives the desired result. �

Lemma 5.15. Let ap < 0, aq > 0 and 5 6 p < q. For any ω ∈ (0,∞), we have

J(ω, p, q) < 0,

and the family of standing waves is of type U .

Proof. We know that φ∗ < φ0, therefore −apaq
q+1
p+1 < φq−p0 . As 5−p

5−q < 1, we have −apaq
q+1
p+1

5−p
5−q < φq−p0 . From

Lemma 3.3 we know that 1−sp−1

1−sq−1 < 1, hence

−ap
aq

(q + 1)

(p+ 1)

(5− p)
(5− q)

1− sp−1

1− sq−1
< φq−p0 ,

which is equivalent to
(5− p)
(5− q) < −

Φq
Φp

,

which implies

(5− p)Φp + (5− q)Φq < 0.

This implies that F (φ0) < 0 which gives the desired result. �

5.4. The critical frequency. Observe that, as a by-product of the analysis of the previous sections, we always
have instability at the critical frequency when there is a stability change. Indeed, we have

∂2
ωM(φω) = ∂ω

(
C(φ0)φ−γ0 Fγ(φ0)

)
= ∂ωφ0

(
∂φ0

(
C(φ0)φ−γ0

)
Fγ(φ0) + C(φ0)φ−γ0 ∂φ0

Fγ(φ0)
)
.

At the stability change, we have F (φ0) = 0. Therefore, at the stability change,

∂2
ωM(φω) = (∂ωφ0)C(φ0)φ−γ0 ∂φ0

Fγ(φ0).

As we have shown that in this case ∂φ0
Fγ(φ0) 6= 0, the criterion (6) holds.

6. Numerical experiments

To explore further the stability/instability of standing waves, we have performed a series of numerical exper-
iments in the case ap < 0, aq > 0, 1 < p < q < 5.

The Python language and the specific libraries Numpy, Scipy and Matplotlib have been used to perform the
experiments. The code is made available in [25].

6.1. The critical surface for stability/instability. We first analyzed the critical surface in (ω, p, q) separat-
ing instability from stability. To this aim, we first have implemented the calculation of J(ω, p, q). The function
integrate.quad has been used to perform the integration. While the results are overall satisfactory, in some
cases the function returned incorrect results, with problems increasing as ω was taken closer to 0.

To estimate the critical ω at given (p, q), we have used the classical bisection method, which has the advantage
of being very robust. The algorithm is divided into two parts.

First, we find an initial interval [ω0, ω1] in which we are sure that ω → J(ω, p, q) changes sign. A natural
choice for ω0 is 0. To find a suitable ω1, we simply start with ω1 = 1 and test if J(ω1, p, q) > 0. If not, we replace
ω1 by 2ω1 and repeat until J(ω1, p, q) > 0. To avoid running an infinite loop, we break it when ω1 > 1010 and
do not search for ωc in these cases. Second, we apply the bisection method to search for a root of J(ω, p, q)
inside [ω0, ω1]. As this approach, while being efficient, is also relatively slow, we took advantage of the computer
power of our department to run computations in parallel on the (p, q) ∈ [1, 5]× [1, 5] grid with dp = dq = 0.01.
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We have represented the critical surface
{(p, q, ωc(p, q))}

for ap = −1 and three different values of aq = 1/2, 1, 2 in Figure 1.
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Critical surface when ap = −1 and aq = 0.5
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Critical surface when ap = −1 and aq = 1
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Critical surface when ap = −1 and aq = 2

Figure 1. Critical surface {(p, q, ωc(p, q))} for ap = −1 and aq = 1/2, 1, 2. The white lines
represent q = 7− 2p and q = p, where the transition from ωc = 0 to ωc > 0 occurs.

Several observations can be made on the critical surface. As (p, q) approaches the line q = 5, we have
ωc(p, q)→∞, which is consistent with the fact that standing waves are all unstable on this line.

It can be observed that on the line q = 7− 2p the transition is continuous, no matter the value of aq. To the
contrary, the transition is continuous on the line p = q when aq > 1, whereas it becomes discontinuous when
aq < 1, in which case ωc(p, q)→∞ as q → p.

To investigate more the transition close to the lines q = 7− 2p and q = p, we plot slices of the critical surface
for a fixed value of q in Figure 2. We chose to present the results when q = 4, but similar results are obtained
with other values of q. On Figure 2, we observe that when aq = |ap| = 1, the transition between ωc(p, q) = 0
and ωc(p, q) > 0 at q = p and q = 7− 2p is Lipschitz. When aq = 2 > |ap| = 1, the transition seems smoother
(but closer observations will reveal otherwise) when q = p, whereas it remains Lipchitz when q = 7 − 2p. To
the contrary, when aq = 1/2 < |ap| = 1, the transition is discontinuous when q = p, whereas it seems smoother
at q = 7− 2p.

1 2 3 4 5
p

0

200

400

600

800

1000

when a1 = −1 and a2 = 0.5

ωc(p, q = 4.00)

1 2 3 4 5
p

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

when ap = −1 and aq = 1

ωc(p, q = 4.00)

1 2 3 4 5
p

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

when ap = −1 and aq = 2

ωc(p, q = 4.00)

Figure 2. Slices of the critical surface for fixed value of q = 4

To confirm our previous observations, we zoomed on the slices of Figure 2 and obtained the results presented
in Figure 3. Observing closer the transition from ωc > 0 to ωc = 0 on fixed q slices of Figure 3, we realize that
the transition on the left (q = 7−2p) seems to be always only Lipschitz, contrary to what could be inferred from
the previous observation. On the other hand, the previous observation when p = q is confirmed: the transition
seems smooth when aq = 2, Lipschitz when aq = 1, and discontinuous when aq = 1/2. This is reflecting the
fact that when p → q, the family of soliton profiles has a different behavior for different values of aq. When
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Figure 3. Zoom on slices of the critical surface for fixed value of q = 4

aq > |ap|, soliton profiles for p = q exist and are stable (hence ωc(p, q = p) = 0), whereas for aq = |ap| the two
nonlinearities exactly compensate and for |ap| > aq the defocusing nonlinearity becomes the dominant one (and
solitary waves do not even exist).

From the previous observations, we know that at fixed q the map p → ωc(p, q) has a unique maximum if
aq = 1 or aq = 2 (if aq = 1/2, we have seen that the map increases towards infinity as p approaches q). Denote
by pmax(q) the value realizing this maximum, i.e.

ωc(pmax(q), q) = max
1<p<5

ωc(p, q).

The line {(pmax(q), q), q > 7/3} is represented in Picture 4. When aq = 1, we observe that the line is tangent
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Figure 4. Curve of the argument of maxp ωc(p, q) in terms of q

to the line p = q when q is close to 7/3 or close to 5. On the other hand, when aq = 2, the line seems to be
tangent to the line p = 7/3 when q is close to 7/3. It approaches the point (5, 5) as q goes to 5, but does not
seem to be tangent to the line p = q (it was however not possible to obtain numerically a relevant picture closer
to q = 5, which leaves open the question of the behavior when q is close to 5).
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6.2. Evolution for initial data close to standing waves. We now turn to numerical experiments for the
stability/instability of solitary waves for the flow of (1). For the experiments, we have used the Crank-Nicolson
scheme with relaxation presented in [10] which has been proved to be efficient for the numerical simulation of
the Schrödinger flow (see e.g. [6] for the comparison of various schemes used for the dynamical simulations of
the nonlinear Schrödinger flow).

For a time discretization step δt (typically δt = 10−3), denote by un the approximation of u at time tn = nδt.
The semi-discrete (in time) relaxation scheme is then given byφn+1

2 +φn− 1
2

2 = ap|un|p + aq|un|q,
iu

n+1−un
δt

+ ∂xx

(
un+1+un

2

)
= −

(
un+1+un

2

)
φn+ 1

2 ,

with the understanding that u0 = u0 and φ−
1
2 = ap|u0|p + aq|u0|q. For the implementation, the scheme is

further discretized in space with second order finite differences for the second derivative operator, with Dirichlet
boundary conditions.

We have performed simulations for (p, q) on the line q = 2p − 1, as for this range of exponents explicit
formulas are available for solitary wave profiles (see e.g. [29]) and can be used easily to construct initial data.
Considering other ranges of (p, q) would have been possible, to the extend of additional computations to first
obtain numerically solitary waves. As we do not expect different behavior to occur for other values of (p, q), the
restriction to the line q = 2p− 1 is harmless.

The initial data that we construct are all based on a solitary wave profile φω. They are of the form

u0 = φω + εψ,

where 0 < ε� 1 is used to adjust the size of the perturbation and ψ is the direction of perturbation, which can
be for example

ψ = φω, ψ = φω cos, ψ = φω tanh, ψ = φω(· − 3).

As our numerical scheme uses Dirichlet conditions at the bounds of the space interval, we have chosen to work
with well-localized perturbation in order to avoid possible numerical reflections due to the boundary conditions.
Our experiments consisted in taking one of the previous possibility as initial data, running the simulation of the
nonlinear Schrödinger flow, and observe the pattern of the outcome. It turns out that after running numerous
simulations, we have observed only three possible types of behavior:

• Stability;
• Growth followed by slightly decreasing oscillations;
• Dispersion.

Observe that our numerical results are in part similar to the ones obtained and discussed in further details in
[11, Section 4] in the case of the 2d cubic-quintic (focusing-defocusing) nonlinear Schrödinger equation.

Stability means that the solution does not leave the neighborhood of φω (up to phase shift and translations).
We obviously expect to see this behavior in the cases where the values of the parameters p, q, and ω ensure that
the solitary wave will be stable. However, one thing which is not easily decided by the theory is the size of the
basin of stability of the solitary wave. In other words, finding a perturbation of the solitary wave sufficiently
large to be visible, but small enough so that the corresponding solution remains in the vicinity of the solitary
wave requires delicate adjustments.

An example of a stable behavior is provided in Figure 5. Observe that while on the global scale the solution
seems to be behave exactly as a solitary wave (left picture), when getting a closer look at the maximum value
(right picture) we observe small oscillations (with an amplitude of order 0.03).

The second behavior consists in a first phase of focusing growth of the profile, which is similar to what can
be observed when instability of solitons is by blow-up (e.g. for power-type supercritical nonlinearities. However,
after a certain time, the focusing phase stops and is followed by a phase in which the solution seems to oscillate
around another profile. The size of the oscillation is decaying, but at a slow pace, and we have not run the
simulation long enough to observe convergence toward a final state. An example of such a behavior is presented
in Figure 6.

Finally, the third behavior that we have observed could be characterized as scattering, as the profile of the
solution is simultaneously decreasing in height while spreading over the whole line. As before, the decay is
rather slow and we have not run the simulation long enough for the solution to converge to 0. An example of
such a behavior is presented in Figure 7. Observe that the domain of calculation is [−50, 50], but the solution is
represented only on [−20, 20], which explains the non-zero values observed at the boundaries on the left figure.
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Figure 5. Example of a stable numerical solution. The initial data is u0 = (1 + ε)φω, ε = 10−2.
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Figure 6. Example of a growing/oscillating numerical solution. The initial data is u0 =
(1 + ε)φω, ε = 10−2.
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Figure 7. Example of a scattering numerical solution. The initial data is u0 = (1− ε)φω, ε = 10−2.
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