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Abstract

COVID-19 remains a major threat to the world since its emergence in December 2019,
especially the lack of identification of a specific treatment, as scientific researchers continue
to seek a better understanding of the epidemiological cycle and dynamics of the virus. In
this work, we propose a dynamic mathematical model framework governed by a system of
differential equations that integrates COVID-19 outbreaks, which is an extension of the stan-
dard SEAIR model. An optimal control problem is formulated with the aim of minimizing
the number of infected individuals while considering intervention costs and the constraints
of the total and maximum daily vaccine administration. We use the penalty method to
approximate this constrained optimization problem and derive an optimality system that
characterizes the optimal control. Finally, we carry out some numerical simulations.

Keywords: Covid-19 Epidemic, SEAIR, ordinary differential equations, Optimal control
problem, penality method.
MSC Classification: 34H05, 49J15.

1 Introduction

Appearing in 2019 in Wuhan, COVID-19 very quickly turned out to be a serious health problem
around the world, with catastrophic consequences for the evolution of humankind. Our modern
world has never faced a disease of this magnitude. All statistics data about coronavirus COVID-
19 comes from the World Health Organization, Johns Hopkins CSSE, and Worldometers. Charts
include the number of infected, deaths, and recovered people.

There is now no medicine or specific treatment for COVID-19, and most countries have been
relying on non-pharmaceutical interventions, such as wearing face masks, washing hands taking
care of personal hygiene, physical distancing, rapid-test and even more partial or total lockdown
in order to curtail the spread of the disease. Therefore the study of the novel coronavirus has
relatively attracted some importance in mathematical epidemiology due to it seriousness and the
way its spreads worldwide.

For instance, several models have been proposed to provide insight into the effect that inoculation
of a certain portion of the population will have on the dynamics of the COVID-19 pandemic.

The authors in [15] apply optimal control theory to determine optimal strategies for the imple-
mentation of non-pharmaceutical interventions to control COVID-19. The studied model was
calibrated to data from the USA and focused the analysis on optimal controls from May 2020
through December 2021.
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The importance of the isolation strategy was emphasized in [3] to reduce the infection of COVID-
19. The authors prove the existence and uniqueness of a global positive solution for a COVID-
19 stochastic model with an isolation strategy. Some numerical simulations are presented to
illustrate the theoretical results.

Many mathematical models conclude that lockdown is the best way to reduce the spread of
COVID-19 effectively among all the aforementioned control strategies [12]. However, partial
or total lockdown strategies are very risky for a country’s economic stability, therefore some
suggested mathematical models focused on analyzing the effect of COVID-19 rapid-test as an
alternative to suppress the spread of COVID-19 [1, 18].

However, these measures have been not an effective protection to mitigate the pandemic globally.
To bring this pandemic to an end, a large share of the world needs to be immune to the virus.
The safest way to achieve this is with a vaccine. Within less than 12 months after the beginning
of the COVID-19 pandemic, several research teams rose to the challenge and developed vaccines
that protect from SARS-CoV-2.

Among others [5] the optimal control theory is applied to suggest the most effective mitigation
strategy to minimize the number of individuals who become infected in the course of an infection
while efficiently balancing vaccination and treatment applied to the models. The SIR model
analysis is presented here including the proof of uniqueness and existence of the optimal control
solutions.

The motivation of this study is derived from the work [4], who adopt a more modelling approach
based on optimal control theory to determine the best strategy to implement until vaccine de-
ployment. Therefore, in the present study, we incorporate the vaccination component to the
model in [4], to derive an extended SEAIR model to examine the effectiveness of the COVID-19
jabs which are currently being deployed to many countries to help combat the raging pandemic
situation. In the same area, the authors in [14] propose and analyze an extended SEIARD model
with vaccination to examine the effectiveness of the COVID-19 jabs which are currently being
deployed to many countries to help combat the raging pandemic situation. Some numerical sim-
ulations are achieved using reported data on COVID-19 infections and vaccination in Mexico.

This paper is composed of four sections. We first present in Section 2, the structure of our epi-
demiological model, precisely we present the equations and assumptions of the extended SEAIR
model with vaccination. In Section 3 we introduce the objective function and a reformulation
of the optimal control problem to minimize the incidence satisfying the constraints of the total
and maximum daily vaccine administration and we derive the optimality condition. We use the
penalty method to approximate this constrained optimization problem and derive an optimality
system that characterizes the optimal control. In Section 4, we carry out numerical simulations
using reported data on COVID-19 infections and vaccination in France, and conclude with a
summary.

2 Model formulation

The model describes the epidemic dynamics of COVID-19 in a population after vaccine deploy-
ment and is an extension of the standard SEAIR model incorporating a temporary protection
vaccine compartment to the model [4], regardless of the disease severity whether mild or severe
infections. To derive the mathematical model, first, we subdivide our population into two sub-
populations, the unvaccinated population and the vaccinated population (individuals who have
received one, two, or three doses of the vaccine). The model classifies individuals into principle
key compartments of:

• Susceptible (S).

• Latent (E): infected but asymptomatic and not infectious.

• Asymptomatic infectious (A).
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• Symptomatic infectious (I).

• Immune (R) or Death (D).

• Temporary protection vaccine (V).

Now, we introduce the model 1 and describe its parameters. Figure 1 illustrates the different
compartments for the extended SEAIR model with vaccination.

Figure 1: flow diagram for the SEAIR model with vaccination compartments

We will denote by N(t) the total population size at time t which is given by

N(t) = S(t) + E(t) +A(t) + I(t) +R(t) + V S(t) + V E(t) + V A(t) + V I(t) + V R(t)

= S(t) + E(t) +A(t) + I(t) +R(t) + V (t)

We denote by c1 the control effort which represents the percentage of reduction in transmission
due to public health measures at time t, and βA, βI are asymptomatic and symptomatic transmis-
sion rates respectively. Susceptible individuals become exposed by contact with asymptomatic
infectious individuals at a rate βA and by contact with symptomatic infectious individuals at a
rate βI . The force of infection is defined by λ = (1 − c1(t))(βAA + βII) [4]. A proportion p of
exposed individuals (λS) move to the asymptomatic infection class at a rate ϵ. We assume that
asymptomatic infectious individuals become symptomatic infectious at rate σ.

Infective individuals leave the compartment at the rate (1−α[I]) with the fraction f recovering
from disease, whereas the rest dying of infection, we assume the disease-induced mortality rate
α to be a step function as follows:

α[I] =

{
αmin if I < I∗

αmax if I ≥ I∗

and I∗ is the total number of infected hosts in the healthcare system, or simply the healthcare
capacity and α bound disease-induced mortality rate.

Since an antibody test is not required or recommended before getting the COVID-19 vaccination,
we assume the time-dependent control function c2(t) measures the rate at which Susceptible,
Latent, Asymptomatic infectious and recovered individuals are vaccinated with vaccine efficacy
ψ. As the vaccine does not completely remove the infection, we also assume that a proportion b,
b≪ p, of exposed vaccine individuals (λV S) move to asymptomatic infection at the same rate ϵ.
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A proportion δ of vaccine asymptomatic infectious individuals become recovered at the rate σ,
while the remainder (1− δ) move to vaccine Symptomatic infection class at the same rate σ and
recovered at rate δ(1− α′[I]) with α′ ≪ α, denotes the disease-induced mortality for vaccinated
individuals, whereas the rest dying of infection.

For the whole population level, we assume also that natural mortality increases because of
hospital saturation. We capture this using the following step function for the mortality rate µ,

µ[I] =

{
0 if I < I∗

µ if I ≥ I∗

with µ the natural mortality rate with hospital saturation.

The principal parameters used throughout this paper and their interpretation are as follows:

• µ : natural mortality rate with hospital saturation.

• α, α′ : bounds disease induced mortality rate with α′ ≪ α.

• c1 ∈ [0, 1] control effort: the percentage of reduction in transmission due to public health
measure at time t.

• c2 ∈ [0, 1] control effort. The time-dependent control function c2(t) measures the rate at
which susceptible individuals are vaccinated.

• force infection: λ = (1−c1(t))(βAA+βII) where
{
βI = symptotic transmission rate
βA = asymptotic transmission rate

• ψ : susceptible, latent, asymptomatic, and recovered individuals are vaccinated with vaccine
efficacy ψ.

• p : proportion of infections unvaccinated individuals.

• b : proportion of infections vaccinated individuals (It can be considered too as the loss of
vaccine protection).

• ϵ : waiting rate to viral shedding.

• σ : waiting rate to symptom onset.

• f : recovery rate from infections unvaccinated individuals.

• γ : recovery rate from infections vaccinated individuals.

• δ : proportion of recovered among vaccine asymptomatic infectious individuals.

Hence, our model 1 is described by the following system of ODEs:

S′(t) = −λpS(t)− µ[I]S(t)− ψc2(t)S(t)(1)
E′(t) = λpS(t)− (ϵ+ µ[I])E(t)− ψc2(t)E(t)(2)
A′(t) = ϵE(t)− (σ + µ[I])A(t)− ψc2(t)A(t)(3)
I ′(t) = σA(t)− (f + µ[I])I(t)(4)
R′(t) = (1− α[I])fI(t)− µ[I]R(t)− ψc2(t)R(t)(5)

V S′(t) = ψc2(t)S(t)− (λb+ µ[I])V S(t)(6)
V E′(t) = ψc2(t)E(t) + λbV S(t)− (ϵ+ µ[I])V E(t)(7)
V A′(t) = ψc2(t)A(t) + ϵV E(t)− (σ + µ[I])V A(t)(8)
V I ′(t) = (1− δ)σV A(t)− (γ + µ[I])V I(t)(9)
V R′(t) = ψc2(t)R(t) + δσV A(t) + (1− α′[I])γV I(t)− µ[I]V R(t)(10)
D′(t) = α[I]fI(t) + α′[I]γV I(t) + µ[I]N(11)
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with the following initial conditions

S(0) = S0 = N0 − (I0 + E0 +A0 +D0) ≥ 0

E(0) = E0 ≥ 0, A(0) = A0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0

V S(0) ≥ 0, V E(0) ≥ 0, V A(0) ≥ 0, V I(0) ≥ 0, V R(0) ≥ 0(12)
D(0) = D0 ≥ 0.

Remark 2.1 We should mention that the previous equations (6), (7), (8), (9), and (10) can be
replaced by the following global equation:

(13) V ′(t) = ψc2(t)(S(t) + E(t) +A(t) +R(t))− µ[I]V (t).

In summary, using the global equation (13) the previous nonlinear system of ODEs describing
the COVID-19 dynamics under the initial conditions (12) can be written as follows :

(14)



S′(t) = −λpS(t)− µ[I]S(t)− ψc2(t)S(t)
E′(t) = λpS(t)− (ϵ+ µ[I])E(t)− ψc2(t)E(t)
A′(t) = ϵE(t)− (σ + µ[I])A(t)− ψc2(t)A(t)
I ′(t) = σA(t)− (f + µ[I])I(t)
R′(t) = (1− α[I])fI(t)− µ[I]R(t)− ψc2(t)R(t)
V ′(t) = ψc2(t)(S(t) + E(t) +A(t) +R(t))− µ[I]V (t)
D′(t) = α[I]fI(t) + α′[I]γV I(t) + µ[I]N.

with the initial conditions :

S(0) = S0 = N0 − (I0 + E0 +A0 +D0) ≥ 0

E(0) = E0, A(0) = A0, I(0) = I0, R(0) = R0, V (0) = V0 ≥ 0(15)
D0 = D0 ≥ 0.

3 Optimal control problem

In the present section, the optimal control theory is applied to suggest the most effective mitiga-
tion strategy to minimize the number of the infectious people, while also minimizing the effort
of vaccinating the population and the effort of the public health measures during a fixed time
period.

We recall that the control variable c1(t) is used for the reduction in transmission due to public
health measures at time t and to analyze vaccine efficacy enhancement, time-dependent control
c2(t) is introduced. The purpose of introducing these time-dependent controls is to analyze the
effect of its variations with time on the dynamic of COVID-19.

3.1 Objective function

Let us first define the objective function and then derive the necessary optimality condition. Our
goal is to minimize the number of people who become infected, and thus the number of people
who die due to the COVID-19 infection at a minimal efforts. Thus, we seek to minimize the
following objective functional :

(16) J(c) =

∫ T

0
I(t) + B1c

2
1(t) +B2c

2
2(t) dt,

where the control effort pair c = (c1, c2). We define the set of admissible controls to be

U = {(c1, c2) are Lebesgue measurable functions: (c1(t), c2(t)) ∈ [0, 1]2, ∀t ∈ [0, T ]}.

B1, B2 are constants that can be chosen to balance the relative costs of the public health
restriction and vaccination. Quadratic terms c21 and c22 are introduced to account for nonlinear

5



costs potentially arising at high intervention levels and since implementation of any public health
intervention and the expense of vaccination does not have a linear cost, see, for example [9].

The first term in the objective function (I(t)) corresponds to the total number of infected indi-
viduals by the COVID-19 epidemic. The second term (B1c

2
1(t) + B2c

2
2(t)) represents the total

cost associated with the implementation of the control measures. It’s a quadratic expression to
find a known solution (for more details see [11]).
The main goal of our observations is to search for optimal control variables c∗i , for i = 1, 2 as-
sociated with public health restrictions and efficacy of vaccination respectively, mainly to find a
function c∗ = (c∗1, c

∗
2) such that

J(c∗) = J(c∗1, c
∗
2) = min

U
J(c).

To find the optimal control pair c∗(t), that minimizes J(c), we follow standard results from
optimal control theory applied to systems of ordinary differential equations.

In general, when the world has faced its most dangerous pandemic, the vaccination coverage
(proportion of vaccinated people in a population at a given time) and the maximum daily vaccine
administration are limited. Therefore, we assume there are practical limitations in our optimal
control problem.

Realistic restrictions

We define positive constants cmax as the maximum daily vaccination and ctotal as the vaccine cov-
erage, and our optimal control problem integrates these realistic constraints using state variable
inequality constraints, or stated mathematically

(17)


c2(t)(S(t) + E(t) +A(t) +R(t)) ≤ cmax∫ T

0
c2(t)(S(t) + E(t) +A(t) +R(t))dt ≤ ctotal

The problem we are now facing is to minimize the number of infected individuals using a limited
total vaccination. This can be stated

(18) minimize J(c) subject to (14) and (17).

Pontryagin’s Maximum Principle cannot be used to deal with this problem as stated due to the
constraint on vaccination coverage, though we can use a simple trick to convert this problem to
a more familiar form. We introduce a new state variable, we denote z(t) and set

z(t) =

∫ t

0
c2(s)(S(s) + E(s) +A(s) +R(s))ds.

Then, it follows

(19)

 z
′
(t) = c2(t)(S(t) + E(t) +A(t) +R(t))

z(0) = 0
z(T ) ≤ ctotal

Thus, the constrained minimization problem (18) is transformed into:

minimize J(c) subject to (14)
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and to

(20)


z
′
(t) = c2(t)(S(t) + E(t) +A(t) +R(t))

z(0) = 0
z(T ) ≤ ctotal

0 ≤ c1(t) ≤ 1, and 0 ≤ c2(t) ≤ 1
c2(t)(S(t) + E(t) +A(t) +R(t)) ≤ cmax

are constraints that are required to be satisfied.

Using the monotonically increasing property of z(t), we get

z(T ) ≤ ctotal is equivalent to z(t) ≤ ctotal, for all 0 ≤ t ≤ T.

Finally, our transformed constrained minimization problem takes the following form

(21) minimize J(c) =

∫ T

0
I(t)dt+

∫ T

0

(
B1c

2
1(t) +B2c

2
2(t)

)
dt,

subject to

(22)

S′(t) = −λpS(t)− µ[I]S(t)− ψc2(t)S(t)
E′(t) = λpS(t)− (ϵ+ µ[I])E(t)− ψc2(t)E(t)
A′(t) = ϵE(t)− (σ + µ[I])A(t)− ψc2(t)A(t)
I ′(t) = σA(t)− (f + µ[I])I(t)
R′(t) = (1− α[I])fI(t)− µ[I]R(t)− ψc2(t)R(t)
V ′(t) = ψc2(t)(S(t) + E(t) +A(t) +R(t))− µ[I]V (t)
D′(t) = α[I]fI(t) + α′[I]γV I(t) + µ[I]N
z′(t) = c2(t)(S(t) + E(t) +A(t) +R(t)),

and S(0) = S0 = N0 − (I0 + E0 +A0 +D0), E0, A0, R0, V0, D0 ≥ 0,
z(0) = 0, z(T ) ≤ ctotal,

0 ≤ c1(t) ≤ 1, 0 ≤ c2(t) ≤ 1, c2(t)(S(t) + E(t) +A(t) +R(t)) ≤ cmax.

Our main goal is to approximate the solution of this constrained optimization problem.

3.2 Existence of an optimal control pair

Now, we focus on establishing a criterion for the existence of optimal solutions to the constrained
minimization problem (21) subject to (22). We begin by examining the conditions of the Filippov-
Cesari existence theorem [2]. Here we first establish the following theorem on the existence of
optimal control.

Theorem 3.1 There exists an optimal control pair c∗1(t), c
∗
2(t), such that the objective functional

J(c) subject to (22) is minimized over U .

For this purpose, let us recall the Filippov-Cesari existence theorem [2].

Theorem 3.2 Let x(t) = (x1(t), ..., xn(t)) ∈ Rn be a state vector and u(t) = (u1(t), ..., ur(t)) ∈
Rr be a control vector associated to the following optimal control problem

(23) min
x,u

∫ t1

t0

F (t, x(t), u(t))dt,

with

(24) .
x = g1(t, x(t), u(t)), x(t0) = x0,
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with the terminal conditions

xi(t1) ≥ x1i , i = 1, . . . ,m− 1

xi(t1) free , i = m, . . . , n, it is meant that the value of xi(t1) is unrestricted,(25)

and for u(t) ∈ U, with U is a fixed set in Rr we have the following constraints

(26) g2(t, x(t), u(t)) ≥ 0,

where the function F : R × Rn × Rr → R, g1 : R × Rn × Rr → Rn and g2 : R × Rn ×
Rr → Rr are continuously differentiable in all variables. Assume that there exists an admissible
pair (x(t), u(t)), namely if u(t) is any piecewise continuous control and x(t) is a continuously
differentiable function such that (24) and (26) are satisfied, and

1. U is closed.

2. N(t, x) = {ỹ ≡ (y, yn+1) : y = g1(t, x, u), yn+1 ≥ F (t, x, u), g2(t, x, u) ≥ 0, u ∈ U} is
convex for all (t, x) ∈ [t0, t1]× Rn.

3. There exists a number θ1 > 0 such that ||x(t)|| < θ1 for all admissible pairs (x(t), u(t)),
and all t ∈ [t0, t1].

4. There exists an open ball B(0, θ2) ⊂ Rr which contains the set Ω(t, x) = {u ∈ U :
g2(t, x, u) ≥ 0} for all x ∈ B(0, θ1).

Then there exists an optimal pair (x⋆(t), u⋆(t)) to the problem (24),(25),(26) with u⋆(t) measur-
able.

Proof of Theorem 3.1.

The previous nontrivial requirements from Filippov-Cesari’s theorem are verified below in
order to establish the existence of a solution to the optimal control problem.

We therefore introduce the state variable
x(t) = (S(t), E(t), A(t), I(t), R(t), V (t), D(t), z(t))T , and control vector u(t) = (c1(t), c2(t)) ∈

U and F (t, x(t), u(t)) = x4(t) +B1c
2
1(t) +B2c

2
2(t), the dynamics of the system is of the form,

(27) g1(t, x(t), u(t)) =



−λpS(t)− µ[I]S(t)− ψc2(t)S(t)
λpS(t)− (ϵ+ µ[I])E(t)− ψc2(t)E(t)
ϵE(t)− (σ + µ[I])A(t)− ψc2(t)A(t)

σA(t)− (f + µ[I])I(t)
(1− α[I])fI(t)− µ[I]R(t)− ψc2(t)R(t)

ψc2(t)(S(t) + E(t) +A(t) +R(t))− µ[I]V (t)
α[I]fI(t) + α′[I]γV I(t) + µ[I]N
c2(t)(S(t) + E(t) +A(t) +R(t))


and g2(t, x(t), u(t)) = cmax − c2(t)(x1(t) + x2(t) + x3(t) + x5(t)).

For ease of notation we omit the dependence on time of the variables. For the finite time interval,
the variables S, E, A, I, R and V remain nonnegative if the initial values are nonnegative,
(decrease only proportional to their present sizes, respectively). The variables z and D are also
nonnegative since the changes in these variables are nonnegative.

To derive the upper bounds for the solutions, we use the approach explained in [5] and [8] to
show that the total population size N is bounded above N(0). Since none of S, E, A, I, R and
V can be negative the upper bound of N is also an upper bound for S, E, A, I, R and V . The
boundedness of the auxiliary state variable z follows from the boundedness of the control c2, S,
E, A, R and V . Note that F, g1, and g2 are of class C1, and g1 is bounded. Thus, there exists a
solution for the system (22) which guarantees an admissible pair (x(t), u(t)).
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The control set U = [0, 1]2 is closed then the condition 1 is trivial, and as is also a compact set
then condition 4 holds.

Now, we verify the condition 2. We first note that the control set U is closed and convex, the
integrand of the objective functional F (t, x, .) and the constraint control function g2(t, x, .) are
convex on U . The function g1(t, x, .) in the system (27) can be written as linear function of the
control variable with coefficients depending on the state variables and time therefore

g1(t, x, u) = k(t, x) + l(t, x)u,

thus g1 is also a convex function on U . Let ỹ1, ỹ2 ∈ N , for ω ∈ [0, 1], we can prouve easily
that the affine combination ωỹ1 + (1− ω)ỹ2 belongs to N for all (t, x) ∈ [t0, t1]× R8 due to the
convexity of the functions F, g1 and g2, which shows that N is convex set.

Finally, condition 3 follows from the boundedness of solutions to the system (22) for a finite time
interval. Filippov-Cesari’s conditions theorem are verified.

3.3 Penalty Method

Several methods have been proposed for handling constrained optimal control problems. The
most common approach is to convert them into unconstrained optimization problems, often via
the use of a penalty method. Namely, the unconstrained problems are formed by adding a term,
called penalty function, to the objective function that consists of a penalty parameter multiplied
by a measure of violation of the constraints.

There are different ways to construct the penalty term, a widely used one is the quadratic penalty.
An appropriate quadratic penalty function associated with the minimization problem (20) is:

Jp(c) =

∫ T

0

[
I(t) +B1c

2
1(t) +B2c

2
2(t) + µ1max

(
0, h1(t)

)2
+ µ2max

(
0, h2(t)

)2]
dt

where B1, B2 are constants, µ1, µ2 are penalty coefficients that change the relative severity of
the constraints violation and h1, h2 are inequality constraints given by

h1(t) = c2(t)(S(t) + E(t) +A(t) +R(t))− cmax and h2(t) = z(t)− ctotal.

Thus, the penalty function Jp(c) can be written as follows

Jp(c) =

∫ T

0

[
I(t) +B1c

2
1(t) +B2c

2
2(t)

+ µ1(c2(t)(S(t) + E(t) +A(t) +R(t))− cmax)
2H1(c2(t)(S(t) + E(t) +A(t) +R(t))− cmax)

+ µ2(z(t)− ctotal)
2H2(z(t)− ctotal)

]
dt

where H1 and H2 denote the Heaviside step functions, given by :

H1(c2(t)(S(t)+E(t)+A(t)+R(t))−cmax) =

{
0 if c2(t)(S(t) + E(t) +A(t) +R(t)) ≤ cmax

1 if c2(t)(S(t) + E(t) +A(t) +R(t)) > cmax

H2(z(t)− ctotal) =

{
0 if z(t) ≤ ctotal
1 if z(t) > ctotal

Then, to minimize the solution of the constrained optimization problem (21), we should minimize
Jp(c), mainly to find the control c∗ so as to

(28) minimise Jp(c) subject to the nonlinear system of ODEs (22)
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z′(t) = c2(t)(S(t) + E(t) +A(t) +R(t)), z(0) = 0, 0 ≤ c1(t), c2(t) ≤ 1.

Pontryagin’s Maximum principle is used to derive the optimality system which provides the
necessary conditions of the optimal solutions of (28).

Introduce a piecewise differentiable vector-valued functions λ(t) = (λ1(t), λ2(t), . . . , λ8(t))
where each λi is the adjoint variable corresponding to xi, (with 8 states we will need 8 adjoints).
Setting ẋ(t) = dx/dt, we introduce the augmented Hamiltonian for the constraints control as
follows:

H(t, x, u, λ) = < λ(t), ẋ(t) > +I(t) +B1c
2
1(t) +B2c

2
2(t)

+ µ1(z
′(t)− cmax)

2H1(z
′(t)− cmax) + µ2(z(t)− ctotal)

2H2(z(t)− ctotal)

= λ1(t)
[
− p(1− c1(t))(βAA+ βII)S(t)− µ[I]S(t)− ψc2(t)S(t)

]
+ λ2(t)

[
p(1− c1(t))(βAA+ βII)S(t)− (ϵ− µ[I])E(t)− ψc2(t)E(t)

]
+ λ3(t)

[
ϵE(t)− (σ + µ[I])A(t)− ψc2(t)A(t)

]
+ λ4(t)

[
σA(t)− (f + µ[I])I(t)

]
+ λ5(t)

[
(1− α[I])fI(t)− µ[I]R(t)− ψc2(t)R(t)

]
+ λ6(t)

[
ψz′(t)− µ[I]V (t)

]
+ λ7(t)z

′(t) + λ8(t)
[
α[I]fI(t) + α

′
[I]γV (t) + µ[I]N

]
+ I(t) +B1c

2
1(t) +B2c

2
2(t) + µ1(z

′(t)− cmax)
2H1(z

′(t)− cmax)

+ µ2(z(t)− ctotal)
2H2(z(t)− ctotal)−

2∑
i=1

ωi1(t)ci(t)−
2∑

i=1

ωi2(t)(1− ci(t)),

where z′(t) = c2(t)(S(t)+E(t)+A(t)+R(t)) and ωij(t) ≥ 0 are the penalty multipliers satisfying

ωi1(t)ci(t) = ωi2(t)(1− ci(t)) = 0 at ci(t) = c∗i (t) for i = 1, 2

with c∗i (t) = (c∗1(t), c
∗
2(t)) is the optimal control pair should be found.

On differentiating the augmented Lagrangian H with respect to state variables and setting the
result to zero, we get the following adjoint system:

λ
′
1(t) = −∂H

∂S
= λ1(t)(−p(1− c1(t))(βAA+ βII) + µ[I]λ1(t) + ψc2(t)λ1(t)

− p(1− c1(t))(βAA+ βII)λ2(t)− ψc2(t)λ6(t)− c2(t)λ7(t)− µ[I]λ8(t)

− 2c2(t)µ1(z
′(t)− cmax)H1(z

′(t)− cmax)

= (λ1(t)− λ2(t))(p(1− c1(t))(βAA+ βII)) + (λ1(t)− λ8(t))µ[I] + (λ1(t)− λ6(t))ψc2(t)

− c2(t)λ7(t)− 2c2(t)µ1(z
′(t)− cmax)H1(z

′(t)− cmax).

λ
′
2(t) = −∂H

∂E
= (ϵ+ µ[I])λ2(t) + ψc2(t)λ2(t)− ϵλ3(t)− ψc2(t)λ6(t)− c2(t)λ7(t)− µ[I]λ8(t)

− 2c2(t)µ1(z
′(t)− cmax)H1(z

′(t)− cmax)

= ϵ(λ2(t)− λ3(t)) + (λ2(t)− λ8(t))µ[I] + (λ2(t)− λ6(t))ψc2(t)

− c2(t)λ7(t)− 2c2(t)µ1(z
′(t)− cmax)H1(z

′(t)− cmax).

λ
′
3(t) = −∂H

∂A
= βAλ1(t)(p(1− c1(t))S(t)− βAλ2(t)(p(1− c1(t))S(t) + (σ + µ[I])λ3(t) + ψc2(t)λ3(t)

− σλ4(t)− ψc2(t)λ6(t)− c2(t)λ7(t)− µ[I]λ8(t)− 2c2(t)µ1(z
′(t)− cmax)H1(z

′(t)− cmax)

= βA(p(1− c1(t))S(t)(λ1(t)− λ2(t)) + σ(λ3(t)− λ4(t)) + µ[I](λ3(t)− λ8(t))

+ ψc2(t)(λ3(t)− λ6(t))− c2(t)λ7(t)− 2c2(t)µ1(z
′(t)− cmax)H1(z

′(t)− cmax).

λ
′
4(t) = −∂H

∂I
= βI(p(1− c1(t))S(t)(λ1(t)− λ2(t)) + (f + µ[I])λ4(t)− (1− α[I])fλ5(t)

− ψc2(t)λ6(t)− c2(t)λ7(t)− α[I]fλ8(t)− µ[I]λ8(t)− 1

= βI(p(1− c1(t))S(t)(λ1(t)− λ2(t)) + f(λ4(t)− λ5(t)) + µ[I](λ4(t)− λ8(t))

+ α[I]f(λ5(t)− λ8(t))− ψc2(t)λ6(t)− c2(t)λ7(t)− 1.
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λ
′
5(t) = −∂H

∂R
= µ[I]λ5(t) + ψc2(t)λ5(t)− ψc2(t)λ6(t)− c2(t)λ7(t)− µ[I]λ8(t)

− c2(t)µ1(z
′(t)− cmax)H1(z

′(t)− cmax)

= µ[I](λ5(t)− λ8(t)) + ψc2(t)(λ5(t)− λ6(t))− c2(t)λ7(t)

− c2(t)µ1(z
′(t)− cmax)H1(z

′(t)− cmax).

λ
′
6(t) = −∂H

∂V
= µ[I]λ6(t)− α

′
[I]γλ8(t)− µ[I]λ8(t).

λ
′
7(t) = −∂H

∂z
= −2µ2(z(t)− ctotal)H2(z(t)− ctotal).

λ
′
8(t) = −∂H

∂D
= 0.

with the transversality conditions λi(T ) = 0, for i = {1, . . . , 8}. Now, we differentiate the
augmented Lagrangian H with respect to c = (c1, c2):

∂H

∂c1
= λ1(t)p(βAA+ βII)S(t)− λ2(t)p(βAA+ βII)S(t) + 2B1c1(t)− ω11(t) + ω12(t).

∂H

∂c2
= −ψS(t)λ1(t)− ψE(t)λ2(t)− ψA(t)λ3(t)− ψR(t)λ5(t) + ψ(S(t) + E(t) +A(t) +R(t))λ6(t)

+ (S(t) + E(t) +A(t) +R(t))λ7(t) + 2B2c2(t)

+ 2µ1(S(t) + E(t) +A(t) +R(t))(z′(t)− cmax)H1(z
′(t)− cmax)− ω21(t) + ω22(t).

Recall that z′(t) = c2(t)(S(t) + E(t) +A(t) +R(t)).

To sum up, we find the optimal control by solving the state system with initial conditions and
adjoint equations, we obtain c∗1, c∗2 defined as:

c∗1 =
−λ1(t)p(βAA+ βII)S(t) + λ2(t)p(βAA+ βII)S(t) + ω11(t)− ω12(t)

2B1

c∗2 =
ψ
(
S(t)λ1(t) + E(t)λ2(t) +A(t)λ3(t) +R(t)λ5(t)

)
2B2 + 2µ1(S(t) + E(t) +A(t) +R(t))2H1

+
−(S(t) + E(t) +A(t) +R(t))

(
ψλ6(t)− λ7(t) + 2µ1cmax)H1

)
+ ω21(t)− ω22(t)

2B2 + 2µ1(S(t) + E(t) +A(t) +R(t))2H1
.

To find an explicit expression for the optimal control without the penalty multipliers ωij , where
i, j = 1, 2, we start the discussion for the first component c∗1 with c1 ∈ [0, 1) to avoid the case
where the force infection λ = 0 (case where c1 = 1). For that, we consider the following cases:

Case 1: On the set {t|0 < c∗1(t) < 1}, we have ω11(t) = ω12(t) = 0. Hence the optimal control
c∗1 becomes

c∗1 =
−λ1(t)p(βAA+ βII)S(t) + λ2(t)p(βAA+ βII)S(t)

2B1
.

Case 2 : On the set {t|c∗1(t) = 0}, we have ω12(t) = 0 and ω11(t) ≥ 0. Hence

c∗1 =
−λ1(t)p(βAA+ βII)S(t) + λ2(t)p(βAA+ βII)S(t) + ω11(t)

2B1
,
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which implies that

c∗1 =
−λ1(t)p(βAA+ βII)S(t) + λ2(t)p(βAA+ βII)S(t)

2B1
≤ 0.

Combining these two cases, the optimal control c∗1 is characterized as

(29) c∗1 = min
[
1,max

{
0,

(λ2(t)− λ1(t))p(βAA+ βII)S(t)

2B1

}]
.

We proceed with the same reasoning to find c∗2, where c2 ∈ [0, 1] and we add the following third
case:

Case 3: On the set {t|c∗2(t) = 1}, we have ω21(t) = 0 and ω22(t) ≥ 0. Hence

1 = c∗2 =
ψ
(
S(t)λ1(t) + E(t)λ2(t) +A(t)λ3(t) +R(t)λ5(t)

)
2B2 + 2µ1(S(t) + E(t) +A(t) +R(t))2H1

+
−(S(t) + E(t) +A(t) +R(t))

(
ψλ6(t)− λ7(t) + 2µ1cmax)H1

)
− ω22(t)

2B2 + 2µ1(S(t) + E(t) +A(t) +R(t))2H1

which implies that

c∗2 =
ψ
(
S(t)λ1(t) + E(t)λ2(t) +A(t)λ3(t) +R(t)λ5(t)

)
2B2 + 2µ1(S(t) + E(t) +A(t) +R(t))2H1

+
−(S(t) + E(t) +A(t) +R(t))

(
ψλ6(t)− λ7(t) + 2µ1cmax)H1

)
2B2 + 2µ1(S(t) + E(t) +A(t) +R(t))2H1

≥ 1.

To conclude, we get

c∗2 = min
[
1,max

{
0,
ψ
(
S(t)λ1(t) + E(t)λ2(t) +A(t)λ3(t) +R(t)λ5(t)

)
2B2 + 2µ1(S(t) + E(t) +A(t) +R(t))2H1

+
−(S(t) + E(t) +A(t) +R(t))

(
ψλ6(t)− λ7(t) + 2µ1cmax)H1

)
2B2 + 2µ1(S(t) + E(t) +A(t) +R(t))2H1

}]
.

(30)

4 Numerical simulations and discussion

In this section, we perform numerical simulations for a previous model to estimate the evolution
of the COVID-19 outbreak in France. The simulations focus on solving a constrained optimal
control problem applied to vaccination.

The values of the model parameters are obtained from available local data and previous
studies.

The simulations consider the period before the vaccination program in France, as well as the
period after vaccination. Figures are presented to illustrate the simulation results, including the
number of infected individuals and the number of deaths. The impact of control measures and
vaccination on the spread of the infection and the reduction of deaths is analyzed.

Overall, the simulations provide insights into the effectiveness of vaccination and control measures
in managing the COVID-19 outbreak in France.
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4.1 Model state variables and parameters

Table 1 provides a summary of the model’s state variables and parameters. The state variables
include the densities of susceptible, vaccine susceptible, latent, vaccine latent, asymptomatic
infectious, vaccine asymptomatic infectious, symptomatic infectious, vaccine symptomatic in-
fectious, recovered individuals, vaccine recovered individuals and total deaths. The parameters
include the basic reproduction number, proportion of infections, proportion of infections vacci-
nated, proportion of recovery among vaccinated, transmission rates, reduced transmission factor
of infections, control effort, immigration rate, waiting rates to viral shedding and symptom onset,
recovery rates from infections, natural mortality rate, disease-induced mortality rates, health-
care capacity, cost weight, and initial conditions. The best-fit values of these parameters were
obtained from [4] and the available local data.

Variables Description
S, V S Density of susceptible and susceptible vaccinated individuals
E, V E Density of latent and latent vaccinated individuals
A, V A Density of asymptomatic and asymptomatic vaccinated infectious individuals
I, V I Density of symptomatic and symptomatic vaccinated infectious individuals
R, V R Density of recovered and recovered vaccinated individuals

D Total deaths
Parameters Description (unit) Value(range) [ref.]

p Proportion of infections 0.9(0.85− 0.95)[9]

βI Symptomatic transmission rate Calculated a

βA Asymptotic transmission rate Calculated a

b Proportion of infections vaccinated individuals 0.2 [assumed]
c1 Control public health effort (0, 1)

c2 Control effort due to the vaccination (0,1)
ε Waiting rate to viral shedding ( day −1

)
1/4.2(0.21− 0.27)[16]

σ Waiting rate to symptom onset ( day −1
)

1(0.9− 1.1)[7]

γ Recovery rate from infections ( day −1
)

1/17(0.025− 0.1)[27]

δ proportion of recovered among vaccine asymptomatic 0.8 [assumed]
µ Natural mortality rate with hospital saturation ( day −1 ) 10−5 [assumed]

αmin Lower bound disease-induced mortality rate ( day −1
)

Calculated a

αmax Higher bound induced mortality rate
(
day−1

)
2αmin [assumed]

I∗ Healthcare capacity 12000 [assumed]
B1, B2 Cost weight 800(0,∞) [assumed]

Initial conditions
N0 Total population 67× 106

I0 Size of infected population 0.01× I∗( variable )

S0 Size of susceptible population N0 − I0

The parameters αmin, βI , βA are calculated by Djidjou-Demasse et al., see [4].

Table 1: Model state variables and parameters

4.2 SEAIR model before vaccination

First, we consider the model (1) before the vaccine deployment, during the period from December
2020 through October 2021 in France. We assume that the vaccinated sub-populations, V S, V E,
V A, V I and V R are equal to zero. We use Runge Kutta scheme to solve the set of differential
equations.
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For simplicity and straightforward analysis of causality, we take initial conditions

I0 = 6458

E0 = 2 ∗ 6458
A0 = 1.5 ∗ 6458
S0 = N0 − (I0 + E0 +A0 +D0)

R0 = V S0 = V E0 = V A0 = V I0 = V P0 = V R0 = 0

D0 = 34

On the following Figure 2, each color corresponds to one of compartment of the model (Suscep-
tible, Latent, Asymptomatic, Infected, Recovered and Death).

Figure 2: The model simulation before the vaccination program in France

We can see that in the absence of any control the number of infected individuals grows expo-
nentially fast at the beginning of the epidemic (curve in black color) and the epidemic reaches
its peak, equilibrium point as the intersection of the curves for those still susceptible and those
immunized following recovery, 110 days after the beginning.

This is a natural behavior of an epidemic. However, waiting for a large part of the population to
become infected in order to mitigate the epidemic is certainly not the best strategy, especially
when the disease presents a high mortality due to the severity of the infection or to the saturation
of the healthcare system.

In the following section, we will simulate the solutions of the extended SEAIR model (1) to
estimate the impact of the vaccination program in France.

4.3 Vaccination effect in France

We will now simulate the solution to the model (1) to assess the impact of the vaccination
program to combat the infectious diseases caused by COVID-19. The first dose of COVID-19
vaccine in France was received for the first time on December 27, 2020. Since that, the number
of doses has multiplied rapidly to protect the population as quickly as possible.
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Vaccines used Efficiency rate Administered doses
Pfizer 95% 81 490 504

AstraZeneca/Oxford 70% 7 838 931
Moderna 50.38% 12 357 533

Johnson and Johnson 66% 1 074 197

Table 2: Distribution of vaccine in France

The table 2 provides an overview of the distribution of vaccines in France, highlighting their
efficacy rates.

In the numerical simulations, we compare the optimal intervention strategies under different
settings of a proportion of infections, waiting rate to viral shedding, symptom onset, and the
infection rate among vaccines. In France, these results are given for the period from February
15, 2021 to April 30, 2021 when the number of cases go past 50000 infected cases (Figure 3).
Vaccination is highly concentrated.

Figure 3: Comparaison infected people in France before and after vaccination

From Figure 3, we can observe that the number of infected individuals is influenced by the
control parameter of the measures taken to control the spread of diseases c1. In the absence
of control measures, the number of infected individuals exceeds 16 million (1.6e7). Under the
optimal vaccination, the spread of infection is significantly reduced in Scenario 1 when c1 and c2
range between 0 and 0.95, resulting in a lower rate of new infections.
Furthermore, they show a clear correlation between an increase in the maximum vaccination
threshold and a significant reduction in the peak of critical infections. This underlines the
importance of achieving high vaccination coverage rates to mitigate the spread of infectious
diseases and protect vulnerable populations
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Figure 4: Comparaison between death people in France before and after vaccination

In this optimal case, the improved control measures not only impact the number of infected
individuals but also have an influence on the number of deaths, illustrated in Figure 4. By
implementing the optimal control measures in scenario 1, the number of deaths is expected to
be reduced to 205 compared to the other scenarios.

Figure 5: Progression of the optimal Controls c∗1 and c∗2 over time.

Figure 5 shows the progression of optimal controls c∗1 and c∗2 over time. For all four scenarios,
we observe that control c∗1, defined by the percentage reduction in transmission due to a public
health measure or sanitary control at time t, always takes the maximum that is defined in
equation (29) this shows the necessity of sanitary restraint to the extinction of the epidemic.

Whereas for the c∗2 control, which measures the rate at which susceptible individuals are
vaccinated, we observe that the curves for the different scenarios are characterized by low and al-
most constant growth throughout the vaccination period (between 1.778e− 04 and 1.785e− 04),
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indicating that the optimal vaccination strategy is to vaccinate all individuals simultaneously
when total coverage is possible.

The following figures 6 describe the evolution of the λi, i ∈ {1, . . . , 8} weights of the Lagrangian
to control the relative importance of constraints compared to the objective function Jp during
the optimization problem-solving.

Figure 6: Adjoint Functions

5 Conclusion

In this work, a SEAIR mathematical model for the spread of infectious diseases such as COVID-
19 is developed. Then, an optimal control problem aiming at minimizing the number of infected
people with minimal effort is developed and studied.

The main goal of our studies is to search for optimal control variables c∗ = (c∗1, c
∗
2) associated

respectively with public health restrictions and vaccination effectiveness. We formulated an
optimal control problem and used the conditions of the Filippov-Cesari existence theorem to
characterize optimal control. Unconstrained problems are formed by adding to the objective
function a penalty function.

Then, we solved numerically the model for the COVID-19 pandemic in France using parame-
ters that have been developed in the literature. The optimal strategy was verified under different
scenarios: health restrictions limited to 20, 50, 75, and 100 percent.

In fact, the results suggest starting vaccination at the same time, whatever the current
constraints.

Our results show that higher maximum c∗1 restriction rates reduce the number of severely
infected people in all countries, but do not lead to a slight reduction in infection. We therefore
recommend the mandatory introduction of parallel vaccination for all populations, as the only
way to reduce mortality.

In conclusion, this study provides valuable information on the optimal vaccination control
strategy and public health measures. The results may help in making decisions aimed at reducing
the number of people infected and mortality caused by infectious diseases.
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