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Résumé

COVID-19 remains a major threat to the world since its emergence in December 2019,

especially the lack of identi�cation of a speci�c treatment, as scienti�c researchers continue

to seek a better understanding of the epidemiological cycle and dynamics of the virus. Ma-

thematical modeling of the COVID-19 disease can provide better insight into the complex

dynamics of the virus and de�ne preventive measures that can be used to contain the spread

of the disease. In this research article, we propose a model describes the epidemic dyna-

mics of Covid-19 in a population after vaccine deployment, is an extension of the standard

SEAIR model incorporating temporary protection vaccine compartment. An optimal control

problem is formulated with the aim of minimizing the number of infected individuals while

considering intervention costs and the constraints of the total and maximum daily vaccine

administration. We use the penalty method to approximate this constrained optimization

problem and derive an optimality system that characterizes the optimal control. Finally, we

carry out numerical simulations using reported data on COVID-19 infections and vaccination

in France and in Tunisia, compare these two countries in the face of the pandemic.

Keywords :Covid-19 Epidemic, Control constraints, Mathematical modeling of COVID-19,
Maximum Principle, Optimal control problem, Ordinary di�erential equations, Vaccination.
MSC Classi�cation : 34H05, 49J15.

1 Introduction

Appeared in December 2019 in Wuhan, mainland China, COVID-19 very quickly turned out to
be a serious health problem around the word, with catastrophic consequences for the evolution
of humankind. Our modern world has never been confronted. This disease of such magnitude.
All statistics data about coronavirus COVID-19 comes from World Health Organization, Johns
Hopkins CSSE and worldometers. Charts includes number of infected, deaths and recovered
people. Until December 2021, estimate around 270 million people have been infected, of which
there are more than 5.32 million deaths.

There is now no medicine or speci�c treatment for the COVID-19, most countries had been
relying on non-pharmaceutical interventions, such as wearing of face masks, washing hands and
take care of personal hygiene, physical distancing and even more partial or total lockdown in
order to curtail the spread of the disease. However, these measures have been not an e�ective
protection to mitigate the pandemic globally. To bring this pandemic to an end, a large share of
the world needs to be immune to the virus. The safest way to achieve this is with a vaccine. Within
less than 12 months after the beginning of the COVID-19 pandemic, several research teams rose
to the challenge and developed vaccines that protect from SARS-CoV-2. Until December 2021,
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8.45 billion doses have been administered globally, and 56% of the world population has received
at least one dose of a COVID-19 vaccine.

The study of the novel coronavirus has relatively attracted some importance in mathematical
epidemiology due to it seriousness and the way its spreads worldwide. For instance, several mo-
dels have been proposed to provide insight into the e�ect that inoculation of a certain portion
of the population will have on the dynamics of the COVID-19 pandemic. The motivation of this
study is derived from the work [3], who adopt a more modelling approach based on optimal
control theory to determine the best strategy to implement until vaccine deployment. Therefore,
in the present study, we incorporate the vaccination component to the model in [3], to derive an
extended SEAIR model to examine the e�ectiveness of the COVID-19 jabs which are currently
being deployed to many countries to help combat the raging pandemic situation.

Since the identi�cation of the novel virus SRAS-COV-2 and the spread of the global COVID-19
pandemic, several authors have been attracted by this area and have investigated the epide-
mic model of COVID-19, such as [5] which implemented some epidemic models for Cholera and
COVID-19 in Yemen through mathematical analysis. The authors propose a new dynamic ma-
thematical model framework governed by a system of di�erential equations that integrates both
COVID-19 and cholera outbreaks.

Another new study is that by [2, 13] which the authors use a stochastic approach to study
and simulate the COVID-19 model.

The importance of the isolation strategy was emphasized in [2] to reduce the infection of
COVID-19. The authors prove the existence and uniqueness of a global positive solution for a
COVID-19 stochastic model with isolation strategy. The white noise and the Levy jump pertur-
bations are incorporated in all compartments of the suggested model. Some numerical simulations
are presented to illustrate the theoretical results.

For a stochastic COVID-19 model with jump-di�usion, the authors prove in [13] the existence
and uniqueness of the global positive solution. they also investigate some conditions for the
extinction and persistence of the disease. The main contribution of this paper is to conclude that
the stochastic model is more realistic than the deterministic one.

The authors in [10] apply optimal control theory to determine optimal strategies for the
implementation of non-pharmaceutical interventions to control COVID-19. The studied model
was calibrated to data from the USA and focused the analysis on optimal controls from May
2020 through December 2021.

Other authors have focused on the problem of optimal control theory to study and extend
various epidemiological models. Among others [4] where the optimal control theory is applied to
suggest the most e�ective mitigation strategy to minimize the number of individuals who become
infected in the course of an infection while e�ciently balancing vaccination and treatment applied
to the models. The SIR model analysis is presented here including the proof of uniqueness and
existence of the optimal control solutions.

In the same area, the authors in [3] use optimal control theory to explore the best strategy to
implement while waiting for the vaccine. The main contribution of this paper is to �nd a solution
minimizing deaths and costs due to the implementation of the control strategy itself.

The authors in [9] propose and analyse an extended SEIARD model with vaccination to
examine the e�ectiveness of the COVID-19 jabs which are currently being deployed to many
countries to help combat the raging pandemic situation. Some numerical simulations are achie-
ved using reported data on COVID-19 infections and vaccination in Mexico.

This paper is composed of four sections. We �rst present in Section 2, the structure of our epi-
demiological model, precisely we present the equations and assumptions of the extended SEAIR
model with vaccination. In Section 3 we introduce the objective function and a reformulation
of the optimal control problem to minimize the incidence satisfying the constraints of the total
and maximum daily vaccine administration and we derive the optimality condition. We use the
penalty method to approximate this constrained optimization problem and derive an optimality
system that characterizes the optimal control. In Section 4, we carry out numerical simulations
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using reported data on COVID-19 infections and vaccination in France and in Tunisia, compare
these two countries in the face of the pandemic, and conclude with a summary.

2 The Model

The model describes the epidemic dynamics of Covid-19 in a population after vaccine deploy-
ment, is an extension of the standard SEAIR model incorporating temporary protection vaccine
compartment to the model [3], regardless of the disease severity whether mild or severe infections.
To derive the mathematical model, �rst we subdivide our population into two subpopulation,
the unvaccinated population and vaccinated population (individuals who have received one, two
or three doses of the vaccine). The model classi�es individuals into principle key compartments
of :

• Susceptible (S).
• Latent (E) : infected but asymptomatic and not infectious.
• Asymptomatic infectious (A).
• Symptomatic infectious (I).
• Immune (R) or Death (D).
• Temporary protection vaccine (VP) which has two issues : Vaccine susceptible (VS) or
vaccine immune (VR).

Figure 1 illustrates the di�erent compartments for the model SEAIR with vaccination.

Figure 1 � �ow diagram for the SEAIR model with vaccination

The total population size at a given time t is given by

N(t) = S(t) + E(t) +A(t) + I(t) +R(t) + V (t).

We denote by c the control e�ort, and βA , βI are asymptomatic and symptomatic trans-
mission rate respectively and for simplicity, we de�ne the force of infection without indicating
the time dependency by λ = (1 − c)(βAA + βII). A proportion p of exposed individuals (λS)
move to the asymptomatic infection class at a rate ε, while the remainder susceptible individuals
are vaccinated with vaccine e�cacy ψ, are temporary protected. A proportion k of temporary
protected individuals λV P move to vaccine susceptible while the remainder are vaccine immune
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(V R), and a proportion b of exposed vaccine individuals (λV S) move to the asymptotic infec-
tion at rate ε. In the both case asymptomatic infectious, unvaccinated individuals or vaccinated
individuals, become symptomatic at rate σ, and recover at rates f and γ respectively.

The principal parameters used throughout this paper and their interpretation are as follows :
• I∗ : the total number of infected hosts the health care system, or simply the healthcare
capacity.
• µ : natural hospitality rate with hospital saturation.

• mortality rate for all population µ[I] =

{
0 if I < I∗

µ if I ≥ I∗
• α : bound disease induced mortality rate.

• Mortality rate α[I] =

{
αmin if I < I∗

αmax if I ≥ I∗
• c ∈ (0, 1) : control e�ort. The time dependent control function c(t) measures the rate at
which susceptible individuals are vaccinated.

• force infection : λ = (1− c)(βAA+βII) where

{
βI = symptotic transmission rate
βA = asymptotic transmission rate

• ψ : susceptible individuals are vaccinated with vaccine e�cacy ψ.
• k : loss of vaccine protection.
• p : proportion of infections unvaccinated individuals.
• b : proportion of infections vaccinated individuals.
• ε : waiting rate to viral shedding.
• σ : waiting rate to symptom onset.
• f : recovery rate from infections unvaccinated individuals.
• γ : recovery rate from infections vaccinated individuals.
• (1− f) : death rate of infectious unvaccinated individuals
• (1− γ) : death rate of infectious vaccinated individuals with symptoms

Hence, our model is described by the following system of ODEs : (assume x′(t) =
dx(t)

dt
)

S′(t) = −λpS(t)− ψc(t)S(t)− µ[I]S(t)(1)

E′(t) = pλS(t)− (ε+ µ[I])E(t)(2)

A′(t) = εE(t)− σA(t)− µ[I]A(t)(3)

I ′(t) = σA(t)− (f + µ[I])I(t)(4)

R′(t) = fI(t)− µ[I]R(t) + ψc(t)S(t)(5)

V P ′(t) = ψS(t)− kλµ[I]V P (t)(6)

V S′(t) = ψS(t) + kλV P (t)− (bλ+ µ[I])V S(t)(7)

V E′(t) = bλV S(t)− (ε+ µ[I])V E(t)(8)

V A′(t) = εV E(t)− (σ + µ[I])V A(t)(9)

V I ′(t) = σV A(t)− (γ + µ[I])V I(t)(10)

V R′(t) = γV I(t)− µ[I]V R(t) + (1− k)λV P (t)(11)

D′(t) = α[I]I(t) + µ[I]N − γV R(t) + (1− γ)V I(t)(12)

with the following initial conditions

S(0) = S0 = N0 − I0
E(0) = A(0) = R(0) = V S(0) = V E(0) = V A(0) = V I(0) = V P (0) = V R(0) = 0(13)

D(0) = 0.

Figure 1 shows a �ow diagram for model (1) and points out the di�erent parameters used.

Remark 2.1 Equations (6), ( 7), (8), (9), (10), and (11) can be replaced by the following global
equation :

(14) V ′(t) = ψS(t)− kλV (t)− (1− f)I(t) + γV (t).
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In summury, the nonlinear system of ODEs describing the COVID-19 dynamics under the initial
conditions (26) can be written as follows :

(15)



S′(t) = −λpS(t)− ψc(t)S(t)− µ[I]S(t)
E′(t) = pλS(t)− (ε+ µ[I])E(t)
A′(t) = εE(t)− σA(t)− µ[I]A(t)
I ′(t) = σA(t)− (f + µ[I])I(t)
R′(t) = fI(t)− µ[I]R(t) + ψc(t)S(t)
V ′(t) = ψS(t)− kλV (t)− (1− f)I(t) + γV (t)
D′(t) = α[I]I(t) + µ[I]N − γV R(t) + (1− γ)V I(t).

3 Objective function

The strategy consists to minimize the number of people infected after vaccination.
The control scheme is optimal if it minimizes the following objective function

(16) J(c) =

∫ T

0
[PI(t) +Bc2(t)]dt.

The �rst integral corresponds to the total number of infected individuals by the Covid-19 Epide-
mic. The second one represents the total cost associated with the implementation of the control
mesure. It's a quadratic expression to �nd a known solution (for more details see [8]).
B is a coe�cient allowing to weight the "cost" associated to the control implementation c.

The goal of this paper is to �nd a function c∗ such that

J(c∗) = minJ(c).

To �nd the optimal control c∗(t), that minimizes J(c), we follow standard results from optimal
control theory applied to systems of ordinary di�erential equations. Usually, when the world has
faced its most dangerous pandemic, the vaccination coverage (proportion of vaccinated people in a
population at a given time) and the maximum daily vaccine administration are limited, therefore
our model integrates these realistic constraints using state variable inequality constraints. This
can be stated as follows :

(17)


0 ≤ c(t) ≤ 1

c(t)S(t) ≤ cmax∫ T
0 c(t)S(t)dt ≤ ctotal

where cmax is the maximum daily vaccination and ctotal is the vaccine coverage.

Our goal is to minimize the number of infected individuals using a limited total vaccination
which implies to minimize J(c).

The main tool that can be used is the Pontryagin's Maximum Principle which is helpful to
prove the existence of an optimal solution of the constrained minimization problem.

Let us introduce the following auxiliary state variable

z(t) =

∫ t

0
c(s)S(s)ds.

Then, we get

(18)

 z
′
(t) = c(t)S(t)

z(0) = 0
z(T ) ≤ ctotal
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So the constrained minimization problem associated to (17) and (18) becomes :

(19)


z
′
(t) = c(t)S(t)

z(0) = 0
z(T ) ≤ ctotal

0 ≤ c(t) ≤ 1
c(t)S(t) ≤ cmax

Using the monotonically increasing property of z(t), we get

z(T ) ≤ ctotal is equivalent to z(t) ≤ ctotal.

Theorem 3.1 There exists an optimal solution to the problem (19).

The existence of an optimal solution of the constrained minimization problem (19) is proved
using the following Filippov-Cesari existence theorem ([1, 11]) :

Theorem 3.2 [1] Let x(t) = (x1(t), ..., xn(t)) ∈ Rn be a state vector and u(t) = (u1(t), ..., ur(t)) ∈
Rr be a control vector associated to the following optimal control problem

(20) min

∫ t1

t0

F (x(t), u(t), t)dt.

with

(21)
.
x = f(x(t), u(t), t), x(t0) = x0,

with the terminal conditions

xi(t1) ≥ x1i , i = 1, . . . ,m

xi(t1) free , i = m, . . . , n.(22)

and for u(t) ∈ U, with U is a �xed set in Rr we have the following constraints

(23) g(x(t), u(t), t) ≥ 0.

Assume that there exists an admissible pair (x(t), u(t)) and

1. U is closed.

2. N(x, t) = {y = (y, yn+1) : y = f(x, u, t), yn+1 ≥ F (x, u, t), g(x, u, t) ≥ 0, u ∈ U} is convex
for all (x, t) ∈ Rn × [t0, t1].

3. There exists a number θ > 0 such that ||x(t)|| < θ for all admissible pairs (x(t), u(t)), and
all t ∈ [t0, t1].

4. There exists an open ball B(0, γ) ⊂ Rr which contains the set Ω(x, t) = {u ∈ U :
g(x, u, t) ≥ 0} for all x ∈ B(0, θ).

Then there exists an optimal pair (x?(t), u?(t) to the problem (21),(22),(23) with u?(t) measu-
rable.

Proof of Theorem 3.1. First remember the nonlinear system of ODEs (15) describing
the COVID-19 dynamic :

S′(t) = −λpS(t)− ψc(t)S(t)− µ[I]S(t)
E′(t) = pλS(t)− (ε+ µ[I])E(t)
A′(t) = εE(t)− σA(t)− µ[I]A(t)
I ′(t) = σA(t)− (f + µ[I])I(t)
R′(t) = fI(t)− µ[I]R(t) + ψc(t)S(t)
V ′(t) = ψS(t)− kλV (t)− (1− f)I(t) + γV (t).
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We assume that x(t) = (S(t), E(t), A(t), I(t), R(t), V (t), z(t))T , u(t) = c(t) and F (x(t), u(t), t) =
Px3(t) +Bu2(t). Then, we get

(24) f(x(t), u(t), t) =



−λpS(t)− ψc(t)S(t)− µ[I]S(t)
pλS(t)− (ε+ µ[I])E(t)
εE(t)− σA(t)− µ[I]A(t)
σA(t)− (f + µ[I])I(t)

fI(t)− µ[I]R(t) + ψc(t)S(t)
ψS(t)− kλV (t)− (1− f)I(t) + γV (t)

c(t)S(t)


and g(x(t), u(t), t) = cmax − u(t)x1(t). Note that F, f and g are of class C1 and f is bounded.
Then, there exists a solution for the system (15) which guarantees an admissible pair (x(t), u(t)).
By using that the control function c is verifying 0 < c(t) < 1, and for that the control set
U = [0, 1] is compact, conditions of Filippov-Cesari existence theorem are veri�ed.

The control set U is convex, so f(x, u, t) = α(x, t) + β(x, t)u, F (x, ., t) and g(x(t), ., t) are
convex on U .

The function f is expressed as a linear function of the control variable with coe�cients
dependent on the state variables and time in (24), and F and g are convex on U . Then N(x, t)
is convex, which is Condition 2 of Theorem 3.2.
Condition 3 follows from the boundedness of solutions to the system (15) for the �nite time
interval.

3.1 Penalty Method

A classic approach to handle the constrained optimal control problems is to use the penalty
function method, which reformulates the original constrained problem into an unconstrained
minimization problem that is solved by using a dynamic minimization algorithm. A penalty
function of the constrained minimization problem (19) is

Jp(c) =

∫ T

0

[
PI(t) +Bc2(t) + µ1(c(t)S(t)− cmax)2H1(c(t)S(t)− cmax)

+ µ2(z(t)− ctotal)2H2(z(t)− ctotal)
]
dt

where P,B are constants, µ1, µ2 are penalty parameters,H1(c(t)S(t)−cmax) =

{
0 if c(t)S(t) ≤ cmax

1 if c(t)S(t) > cmax

and H2(z(t)− ctotal) =

{
0 if c(t)S(t) ≤ ctotal
1 if c(t)S(t) > ctotal

Then, to minimize the solution of constrained optimization problem (19), we should minimize
Jp(c), mainly to �nd the control c∗ so as to minimise Jp(c) subject to the nonlinear system of
ODEs (15)

(25) z′(t) = c(t)S(t), z(0) = 0, 0 ≤ c(t) ≤ 1.

Pontryagin's Maximum Principle is used to derive the optimality system which provides
necessary conditions of the optimal solutions of (25).

In this case, we can write the augmented Hamiltonian for the constraints control as follow ,
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L(x, u, λ) = PI(t) +Bc2(t) + µ1(c(t)S(t)− cmax)2H1(c(t)S(t)− cmax)

+µ2(z(t)− ctotal)2H2(z(t)− ctotal) + λ1(t)(−λpS(t)− ψc(t)S(t)− µ[I]S(t))

+λ2(t)(pλS(t)− (ε+ µ[I])E(t)) + λ3(t)(εE(t)− (σ + µ[I])A(t))

+λ4(t)(σA(t)− (f + µ[I])I(t)) + λ5(t)(fI(t)− µ[I]R(t) + ψc(t)S(t))

+λ6(t)(ψS(t)− kλV (t)− (1− f)I(t) + γV (t)) + λ7(t)c(t)S(t)

−ω1(t)c(t)− ω2(t)(1− c(t)).

and we recall λ = (1 − c)(βAA + βII), here we use ω1 et ω2 as a penalty multipliers such that
ω1(t) and ω2(t) ≥ 0 and

ω1(t)c(t) = ω2(t)(1− c(t)) = 0, at c = c∗.

On di�erentiating the augmented Lagrangian L with respect to state variables and setting the
result to zero, we get the following adjoint system

λ′1 = −∂L
∂S

= −2µ1c(t)(c(t)S(t)− cmax)2H1(c(t)S(t)− cmax) + λp(λ1(t)− λ2(t)) + λ1(t)µ[I]

c(t)(ψλ1(t)− ψλ5(t)− λ7(t))− λ6(t)ψ

λ′2 = − ∂L
∂E

= ε(λ2(t)− λ3(t)) + λ2(t)µ[I])

λ′3 = −∂L
∂A

= p(1− c)βA(λ1(t)− λ2(t))S(t) + σ(λ3(t)− λ4(t))

+µ[I]λ3(t) + k(1− c)βAλ6(t)V (t)

λ′4 = −∂L
∂I

= P + p(1− c)βI(λ1(t)− λ2(t))S(t) + f(λ4(t)− λ5(t))

+µ[I]λ4(t) + λ6(t)(k(1− c)βIV (t) + (1− f))

λ′5 = −∂L
∂R

= λ5(t)µ[I]

λ′6 = − ∂L
∂V

= λ6(kλ− γ)

λ′7 = −∂L
∂z

= −2µ2(z(t)− ctotal)H2(z(t)− ctotal).

with the transversality conditions λi(T ) = 0, for i = {1, . . . , 7}. now, we di�erentiate the aug-
mented Lagrangian L with respect to c :

∂L

∂c
= 2Bc(t)+2µ1(c(t)S(t)−cmax)S(t)H1(c(t)S(t)−cmax)−(ψλ1(t)−ψλ5(t)−λ7(t))S(t)−ω1(t)+ω2(t) = 0.

To sum up, we �nd the optimal control by solving the state system with initial conditions and
adjoint equations, we obtain

c∗ = min

{
1,max

{
0,

2µ1cmaxS(t)H1(c(t)S(t)− cmax) + (ψλ1(t)− ψλ5(t)− λ7(t))S(t)− ω1(t)− ω2(t)

2(B + µ1S2(t)H1(c(t)S(t)− cmax))

}}
.

4 Numerical simulations and discussion

Based on the real data collected from two countries Tunisia and France (december 15, 2020
to July 31 2021), this section will illustrate the mathematical results presented above by di�erent
numerical simulations.

In this section, we will simulate the solutions of the SEAIR model (1) to estimate the impact of
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the vaccination program.
In Tunisia, massive vaccination started in March 2021 to combat the COVID-19 pandemic. Tuni-
sia has only acquired two-dose vaccines. It recently granted a Marketing Authorization to Johnson
and Johnson vaccine, which requires only one dose. The latter has not yet been distributed in
the country.

Table (2) below represent the cumulative number of administered and received doses for each
vaccines until the end of July.

Vaccines used administered doses received doses E�ciency rate

P�zer 1555606 1718514 95%
AstraZeneca/Oxford 240193 580760 70%

Sputnik V 44753 119986 91.60%
CoronaVac 332219 699994 50.38%

Johnson and Johnson 0 0 66%

Table 1 � DISTRIBUTION OF VACCINES IN TUNISIA

Vaccines used administered doses E�ciency rate

P�zer 81 490 504 95%
AstraZeneca/Oxford 7 838 931 70%

Moderna 12 357533 50.38%
Johnson and Johnson 1 074 197 66%

Table 2 � DISTRIBUTION OF VACCINES IN France

The �rst dose of COVID-19 vaccine in France was received for the �rst time in December 27,
2020. Since that, the number of doses has multiplied rapidly to protect the population as quickly
as possible. On the other side of the Mediterranean, Tunisia started vaccinating its population
in March 13, 2021. the vaccination campaign was slow given the country's economic situation.
the number of administrated doses increased in July, 2021. Figure 2 illustrate the daily number
of vaccinations administrated in Tunisia and France.

Figure 2 � Daily number of Covid-19 vaccinations administered in France and Tunisia

4.1 SEAIR model before vaccination

In this section, we perform some numerical simulations for the previous model to provide esti-
mates. for the evolution of the COVID-19 outbreak In France and Tunisia. We present simulation
results by solving the Constrained Optimal Control Problem Applied to Vaccination. In the nu-
merical simulations, we compare the optimal intervention strategies under di�erent settings of
proportion of infections, waiting rate to viral shedding, symptom onset and the infection rate
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among vaccines. The values of model parameters were obtained by the best available local data
and literature reviews of previous studies [8,14]. Table 1 provides a summary of the de�nitions
and values of the parameters.

For simplicity and straightforward analysis of causality, we take initial conditions

S0 = N0 − I0
E(0) = A(0) = R(0) = V S(0) = V E(0) = V A(0) = V I(0) = V P (0) = V R(0) = 0(26)

D(0) = 0.

First, we consider the model (1) before the vaccine deployment, that is ψ = 0, during the per-
iod from December, 2020 through October, 2021. We assume that the vaccinated subpopulations
V P , V S, V E and V I are equal to zero. The set of di�erential equations was solved using Matlab.

In this part, we focus on some numerical results for SEAIR model before vaccination in France
and Tunisia. Figure 3 presents the ODEs simulation of the SEAIR model (1) for France before
vaccination (the case ψ = 0).

Figure 3 � the model solutions before the vaccination programm in France

The allure of the SEAIR model in Tunisia is the same like France case but in two di�erent period.
By vaccine e�ect we can see that The Tunisian case is translated.

Figure 4 � SEAIR model for Tunisia case

4.2 Vaccination e�ect In Tunisia and France

In France, these results is given for the period from February 15, 2021 to April 30, 2021 when
the number of cases go past 50000 infected cases (Figure 5). Vaccination is highly concentrated.
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Figure 5 � Comparaison infected people in France before and after vaccination

Figure 6 � Comparaison between Susceptible people in Tunisia before and after vaccination

Figure 7 � Comparaison between Susceptible people in France before and after vaccination

From Figure 7, we can observe that the convergence of Susceptible people after vaccination
converge slowly which return to the increasing number of vaccinated people, barrier protection
and the number of infected people in the �rst wave. Under the optimal vaccination, Infected
people are gradually decreasing in time. The right part of Figure 5 proves by the increasing of
the person vaccinated the amplitude of the infected person goes to 500. The decreasing of the
number of infected people in�uence to the number of death in the same period (Figure 8).
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Figure 8 � Comparaison death people in France before and after vaccination

For the case of Tunisia, the strongest wave is in the period between May 15, 2021 and July
15, 2021 which returns to the "delta various" of COVID-19. The in�uence of that is the big
number of death which was 20000. the strategy of vaccination in Tunisia is so late if we compare
it with case of France.

Figure 9 � Comparaison infected people in Tunisia before and after vaccination

4.3 THIRD WAVE :OMICRON

we consider the model (1) before the vaccine deployment, that is ψ = 0, during the period
from December, 2021 through March, 2022.

Figure 10 � Comparaison infected people and death in Tunisia
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Figure 11 � Comparaison between infected people and death in France

From Figures 10 and 11, we can see that the number of Infected people increase very quickly with
exponential behavior (characteristic of Omicron various) but the number of death is to small,
if we compare with the two previous waves. We can remark that also by the histogram which
describe the di�erence between the maximum of death and infected people in this period.

5 Conclusion

Firstly, by using an optimal control theory, we show that, assuming a quadratic cost for the
control e�ort at a given time (c(t)), an optimal control strategy signi�cantly reduces the number
of deaths and is particularly sustainable at the population level.

Secondly, we performed a numerical simulation on our model using repository data on the
outbreak of COVID-19 in France and Tunisia to estimate the e�ect of the vaccination strategies.
By comparing the two countries, we remark that, in France, the vaccination is highly concentrated
in the early stage of epidemic for early possible strategy and the vaccinated proportion stays
constant. In Tunisia, the strategy of vaccination was started in August, that why the bene�t of
vaccination is signi�cantly reduced as the time of the start of vaccination from pandemic onset
is delayed.

Time-dependent vaccination is computed and analysed using SEAIR model. Vaccination is
among the most important control measures for reducing the spread of many infectious diseases.
Thus, it is great interest to develop an e�cient time schedule and prioritization of limited vaccine
supplies. This study uses a mathematical model of the transmission dynamics and employs
techniques from control theory to derive optimal intervention strategies.

Finally, accelerating the application of vaccines, combined with maintaining a low transmis-
sion rate by following preventive measures would result in an even better strategy for curtailing
the pandemic and reducing the number of deaths.
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