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Abstract

The model descibes the epidemic dynamics of Covid-19 in a population after vaccination.

Using the maximum principale, our goal is to prove the existence of an optimal strategy such

that it minimize the number of infected people after vaccination. Finally, some numerical

results are provided.
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1 Introduction

Appeared in December 2019 i Wuhan, mainland China, COVID-19 very quickly turned out to
be a serious health problem around the word, with catastrophic consequences for the evolution
of humankind. Our modern world has never been confronted. ith disease of such magnitude.
All statistics data about coronavirus COVID-19 comes from World Health Organization, Johns
Hopkins CSSE and worldometers. Charts includes number of infected, deaths and recovered.
until December 2021, estimate around 270 million people have been infected, of which there are
more than 5.32 million deaths.

There is now no medicine or speci�c treatment for the COVID-19, most countries had been
relying on non-pharmaceutical interventions, such as wearing of face masks, washing hands and
take care of personal hygiene, physical distancing and even more partial or total lockdown in order
to curtail the spread of the disease. However, these measures have been not an e�ective protection
to mitigate the pandemic globally. To bring this pandemic to an end, a large share of the world
needs to be immune to the virus. The safest way to achieve this is with a vaccine. Within less
than 12 months after the beginning of the COVID-19 pandemic, several research teams rose to
the challenge and developed vaccines that protect from SARS-CoV-2. Until December 2021, 8.45
billion doses have been administered globally, and 56% of the world population has received at
least one dose of a COVID-19 vaccine.

The study of the novel coronavirus has relatively attracted some importance in mathematical
epidemiology due to it seriousness and the way its spreads worldwide. For instance, several
models have been proposed to provide insight into the e�ect that inoculation of a certain portion
of the population will have on the dynamics of the COVID-19 pandemic. The motivation of
this study is derived from the work [2], who adopt a more modelling approach based on optimal
control theory to determine the best strategy to implement until vaccine deployment. Therefore,
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in the present study, we incorporate the vaccination component to the model in [2], to derive an
extended SEAIR model to examine the e�ectiveness of the COVID-19 jabs which are currently
being deployed to many countries to help combat the raging pandemic situation. We �rst present
in Section 2, the structure of our epidemiological model, precisely we present the equations
and assumptions of the extended SEAIR model with vaccination. In Section 3 we introduce
the objective function we optimise and derive the optimality condition. We use the penalty
method to approximate this constrained optimization problem and derive an optimality system
that characterizes the optimal control. In Section 5, we carry out numerical simulations using
reported data on COVID-19 infections and vaccination in France and in Tunisia, compare these
two countries in the face of the pandemic, and conclude with a summary.

2 The Model

The model descibes the epidemic dynamics of Covid-19 in a population after vaccination. The
model classifes individuals into pricipale key compartments of:

• Susceptible (S).

• Latent (E): infected but asymptomatic and not infectious.

• Asymptomatic infectious (A).

• Symptomatic infectious (I).

• Immune (R) or Death (D).

• Temporary protection vaccine (VP) which has two issues: Vaccine susceptible (VS) or
vaccine immune (VR).

Figure 1 illustrates the di�erent compartments for the model SEAIR with vaccination.

Figure 1: �ow diagram for the SEAIR model with vaccination
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The main objective of the paper is to minimize the number of people who become infected after
vaccination.
The total population size at a given time t is given by

N(t) = S(t) + E(t) +A(t) + I(t) +R(t) + V (t).

The principale parameters used throughout this paper are:

• I∗ : The total number of infected hosts the health care system.

• µ : Natural hospitality rate with hospital saturation.

• Mortality rate for all population µ[I] =

{
0 if I < I∗

µ if I ≥ I∗

• α : bound disease induced mortality rate.

• Mortality rate α[I] =

{
αmin if I < I∗

αmax if I ≥ I∗

• c ∈ (0, 1) : control e�ort. The time dependent control function c(t) measures the rate at
which susceptible individuals are vaccinated.

• Force infection: λ = (1− c)(βAA+ βII) where

{
βI = symptotic transmission rate
βA = asymptotic transmission rate

• p : proportion of infections.

• ε : waiting rate to viral shedding.

• σ : waiting rate to symptom onset.

• γ : recovery rate from infections.

• ψ : susceptible individuals are vaccinated with vaccine e�cacy ψ.

• f : recovery rate from infections.

• k : loss of vaccine protection.

• b : infection rate among vaccines.

The nonlinear system of ODEs desribing the covid-19 dynamic is given by:

(assume x′(t) =
dx(t)

dt
)

S′(t) = −λpS(t)− ψc(t)S(t)− µ[I]S(t)(1)

E′(t) = pλS(t)− (ε+ µ[I])E(t)(2)

A′(t) = εE(t)− σA(t)− µ[I]A(t)(3)

I ′(t) = σA(t)− (f + µ[I])I(t)(4)

R′(t) = fI(t)− µ[I]R(t) + ψc(t)S(t)(5)

V P ′(t) = ψS(t)− kλµ[I]V P (t)(6)

V S′(t) = ψS(t) + kλV P (t)− (bλ+ µ[I])V S(t)(7)

V E′(t) = bλV S(t)− (ε+ µ[I])V E(t)(8)

V A′(t) = εV E(t)− (σ + µ[I])V A(t)(9)

V I ′(t) = σV A(t)− (γ + µ[I])V I(t)(10)

V R′(t) = γV I(t)− µ[I]V R(t) + (1− k)λV P (t)(11)

D′(t) = α[I]I(t) + µ[I]N − γV R(t) + (1− γ)V I(t)(12)
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with the following initial conditions

S(0) = S0 = N0 − I0
E(0) = A(0) = R(0) = V S(0) = V E(0) = V A(0) = V I(0) = V P (0) = V R(0) = 0

D(0) = 0.

Figure 1 shows a �ow diagram for model (1) and points out the di�erent parameters used.

Remark 2.1 Equations (6), ( 7), (8), (9), (10), and (11) can be replaced by the following global
equation:

(13) V ′(t) = ψS(t)− kλV (t)− (1− f)I(t) + γV (t).

3 Objective function

The strategy consists to minimize the number of people infected after vaccination.
The control scheme is optimal if it minimizes the following objective function

(14) J(c) =

∫ T

0
[PI(t) +Bc2(t)]dt.

The �rst integral corresponds to the total number of infected individuals by the Covid-19 Epi-
demic. The second one represents the total cost associated with the implementation of the control
mesure. It's a quadratic expression to �nd a known solution (for more details see [5]).
B is a coe�cient allowing to weight the "cost" associated to the control implementation c.

The goal of this paper is to �nd a function c∗ such that

J(c∗) = min J(c).

To �nd the optimal control c∗(t), that minimizes J(c), we follow standard results from optimal
control theory applied to systems of ordinary di�erential equations. The main tool that can
be used is the Pontryagin's Maximum Principle which is helpfull to prove the existence of an
optimal solution of the constrained minimization problem.

Realistic restrictions associated with vaccination are incorporated using state variable in-
equality constraints. This can be stated as following:

(15)


0 ≤ c(t) ≤ 1

c(t)S(t) ≤ cmax∫ T
0 c(t)S(t)dt ≤ ctotal

where cmax is the maximum daily vaccination and ctotal is the vaccine coverage.

Our goal is to minimize the number of infected individuals using a limited total vaccination
which implies to minimize J(c).
Let us introduce the following auxiliary state variable

z(t) =

∫ t

0
c(s)S(s)ds.

Then, we get

(16)

 z
′
(t) = c(t)S(t)

z(0) = 0
z(T ) ≤ ctotal
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So the constrained minimization problem associated to (15) and (16) becoms:

(17)


z
′
(t) = c(t)S(t)

z(0) = 0
z(T ) ≤ ctotal

0 ≤ c(t) ≤ 1
c(t)S(t) ≤ cmax

Using the monotonically increasing proprety of z(t), we get

z(T ) ≤ ctotal is equivalent to z(t) ≤ ctotal.

Theorem 3.1 There exists an optimal solution to the problem (17).

The existence of an optimal solution of the constrained minimization problem (17) is proved
using the following Filippov-Cesari existence theorem ([1, 6]):

Theorem 3.2 [1] Let x(t) = (x1(t), ..., xn(t)) ∈ Rn be a state vector and u(t) = (u1(t), ..., ur(t)) ∈
Rr be a control vector associated to the following optimal control problem

(18) min

∫ t1

t0

F (x(t), u(t), t)dt.

with

(19)
.
x = f(x(t), u(t), t), x(t0) = x0,

with the terminal conditions

xi(t1) ≥ x1i , i = 1, . . . ,m

xi(t1)free , i = m, . . . , n.(20)

and for u(t) ∈ U, with U is a �xed set in Rr we have the following constraints

(21) g(x(t), u(t), t) ≥ 0.

Assume that there exists an admissible pair (x(t), u(t)) and

1. U is closed.

2. N(x, t) = {y = (y, yn+1) : y = f(x, u, t), yn+1 ≥ F (x, u, t), g(x, u, t) ≥ 0, u ∈ U} is convex
for all (x, t) ∈ Rn × [t0, t1].

3. There exists a number θ > 0 such that ||x(t)|| < θ for all admissible pairs (x(t), u(t)), and
all t ∈ [t0, t1].

4. There exists an open ball B(0, γ) ⊂ Rr which contains the set Ω(x, t) = {u ∈ U : g(x, u, t) ≥
0} for all x ∈ B(0, θ).

Then there exists an optimal pair (x?(t), u?(t) to the problem (19),(20),(21) with u?(t) measur-
able.

Proof of Theorem 3.1. Fist remember the nonlinear system of ODEs desribing the
covid-19 dynamic:

(22)



S′(t) = −λpS(t)− ψc(t)S(t)− µ[I]S(t)
E′(t) = pλS(t)− (ε+ µ[I])E(t)
A′(t) = εE(t)− σA(t)− µ[I]A(t)
I ′(t) = σA(t)− (f + µ[I])I(t)
R′(t) = fI(t)− µ[I]R(t) + ψc(t)S(t)
V ′(t) = ψS(t)− kλV (t)− (1− f)I(t) + γV (t).
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We assume that x(t) = (S(t), E(t), A(t), I(t), R(t), V (t), z(t))T , u(t) = c(t) and F (x(t), u(t), t) =
Px3(t) +Bu2(t). Then, we get

(23) f(x(t), u(t), t) =



−λpS(t)− ψc(t)S(t)− µ[I]S(t)
pλS(t)− (ε+ µ[I])E(t)
εE(t)− σA(t)− µ[I]A(t)
σA(t)− (f + µ[I])I(t)

fI(t)− µ[I]R(t) + ψc(t)S(t)
ψS(t)− kλV (t)− (1− f)I(t) + γV (t)

c(t)S(t)


and g(x(t), u(t), t) = cmax − u(t)x1(t). Note that F, f and g are of classe C1 and f is bounded.
Then, there exists a solution for the system (22) which garantees an admissible pair (x(t), u(t)).
By using that the control function c is veri�ying 0 < c(t) < 1, and for that the control set
U = [0, 1] is compact, conditions of Filippov-Cesari existence theorem are veri�ed.

The control set U is convex, so f(x, u, t) = α(x, t) + β(x, t)u, F (x, ., t) and g(x(t), ., t) are
convex on U .

The function f is expressed as a linear function of the control variable with coe�cients
dependent on the state variables and time in (23), and F and g are convex on U . Then N(x, t)
is convex, which is Condition 2 of Theorem 3.2.
Condition 3 follows from the boundedness of solutions to the system (22) for the �nite time
interval.

3.1 Penalty Method

A penalty function of the constrained minimization problem is

Jp(c) =

∫ T

0

[
PI(t) +Bc2(t) + µ1(c(t)S(t)− cmax)2H1(c(t)S(t)− cmax)

+ µ2(z(t)− ctotal)2H2(z(t)− ctotal)
]
dt

where P,Q are constants, µ1, µ2 are penalty parameters,H1(c(t)S(t)−cmax) =

{
0 if c(t)S(t) ≤ cmax

1 if c(t)S(t) > cmax

and H2(z(t)− ctotal) =

{
0 if c(t)S(t) ≤ ctotal
1 if c(t)S(t) > ctotal

Then, to minimize the solution of constrained optimization problem (17), we should minimize
Jp(c).

4 Numerical simulations

4.1 Stastical results

In this section we will simulate the solutions of the SEAIR model (1) to estimate the impact of the
vaccination program in Tunisia that started in March 2021 to combat the COVID-19 pandemic.
Tunisia has only acquired two-dose vaccines. It recently granted a Marketing Authorization
to Johnson and Johnson vaccine, which requires only one dose. The latter has not yet been
distributed in the country.

The table (1) below represent the cumulative number of administered and received doses for
each vaccines until the end of July.
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Vaccines used administered doses received doses E�ciency rate

P�zer 1555606 1718514 95%
AstraZeneca/Oxford 240193 580760 70%

Sputnik V 44753 119986 91.60%
CoronaVac 332219 699994 50.38%

Johnson and Johnson 0 0 66%

Table 1: DISTRIBUTION OF VACCINES IN TUNISIA

Figure 2: Daily number of Covid-19 vaccinations administered in France and Tunisia

First, we consider the model (1) before the vaccine deployment, that is ψ = 0, during the period
from December 2020 through October 2021 We assume that the vaccinated subpopulations V P ,
V S, V E and V I are equal to zero. The set of di�erential equations was solved using Matlab

4.2 SEAIR with vaccination model

In this part, we will interst to implement some numerical resutls for SEAIR model with vacci-
nation in both France and Tunisia.

Figure 3: the model solutions before the vaccination programm in France began

The allure of the SEAIR is the same like the France case but in two di�erent period. By vaccin
e�ect we can see that The Tunisian case is translated.
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Figure 4: SEAIR model for Tunisia case

4.3 Simulations of the model in France and vaccination e�ect

This results is given for the period from 15-febrauary 2021 to 50-April 2021 when the number of
case go past 5000 infected cases (Figure 2.1). (Figure 2.2) proves by the increasing of the person
vaccinated the amplitude of the infected person goes to 500. The deareasing of the number of
infected people in�uence to the number of death in the same period (Figure 3.1) and (Figure
3.2)

Figure 5: Comparaison infected people in France before and after vaccination

Figure 6: Comparaison infected people in France before and after vaccination
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4.4 Simulations of the model in Tunisia and vaccination e�ect

4.5 Simulations of the model SEAIR with vaccination

For the case of Tunisia, the strongest wave is in the period beteween 15 Mai 2021 and 15 julllet
2021 which returns to the "delta various" of Covid 19. The in�uence of that is the big number of
death 20000. the strategy of vaccination in Tunisia is so late if we campare with case of France
(We can see in the previous section)

Figure 7: Comparaison infected people in Tunisia before and after vaccination
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