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A New Approach for the Young's Modulus-Porosity Correlation of Ceramic Materials

A new approach for determining the Young's modulus of porous ceramics is presented. The approach is based on a previous equation derived for twophase composites on the basis of a microstructural description that uses the contiguity and continuous volume as topological parameters. The derived equation shows very good agreement with experimental data drawn from the literature on porous glasses and ceramics for a wide range of porosity volume fractions. As a result of the limited geometrical and topological information on the porosity structure supplied in the original studies, however, the full potential of the model for Young's modulus prediction could not be demonstrated. For a rigorous verification of the equation, therefore, experimental data on materials with well-described porosity structures is required.

INTRODUCTION

There has been much research effort during the last 30 years dedicated to the understanding of the porosity dependence of the elastic constants of ceramic materials. Theoretical and experimental work has been conducted and numerous relation ships have been put forward.1-1 4 Most relation ships give the variation of the elastic constants, usually Young's modulus, bulk and shear modulus or Poisson's ratio, in terms of the porosity content or volume fraction of pores (P). In Table l the most commonly used equations for the dependence of the Young's modulus on porosity are presented. Examining the equations in Table 1, it becomes clear that the infl uence of the porosity structure and arrangement in the material, for example pore shape, orientation, distribution, homogeneity, etc., has been neglected in almost all approaches. In recent communications, however, the need for taking into account such parameters describing the porosity *P resent affiliation: Fachgebeit Werkstofftechnik, TU Ilmenau, D-98684 Ilmenau, Germany.

structure has been emphasized.15 •16 In addition, the equations that did consider porosity structure parameters such as the shape and orientation of the pores, for example the equations by Janowski and Rossi10 [eqn [START_REF] Boccaccini | On the effective Young's mod ulus of elasticity for porous materials: Microstructure modelling and comparison between calculated and experimental values[END_REF]] and by Boccaccini et al. 5 [eqn (6)], are based in a spheroidal model to describe the porosity shape and therefore they are strictly valid only at low volume fractions of porosity or for materials containing solely closed isolated pores.

For high volume fractions of the second phase in a two-phase microstructure not only geometrical but also topological parameters must be considered to characterize the microstructure, as pointed out recently by Fan and co-workers.17•18 One useful approach for the topological characterisation of such microstructures has been developed 17 based on the concept of contiguity, first proposed by Gurland, 1 9 which describes the degree of particle contact of one phase in a two-phase micro structure. It has been found that many physical and mechanical properties, such as electrical resis tivity, 18 fracture toughness,20 Vickers hardness21 and tensile properties22 can be related closely to this contiguity parameter. As far as the authors are aware, however, topological parameters based on the concept of contiguity and continuous volume have not been used specifically to determine the elastic constants of porous ceramics.

In the present study a recently derived equation for calculating the effective properties of multi phase composite materials, incorporating topolo gical parameters in the calculations, has been adapted to predict the Y oung's modulus of porous materials. The equation is verified by comparison with the predictions by other approaches and by comparing calculated values with experimental data on porous ceramics and glasses drawn from the literature.

MICROSTRUCTURAL CHARACTERIZATION

The quantitative characterization of a two-phase microstructure involves analysis of both geome trical and topological quantities. The geometrical characterisation is well established and involves the use of stereological parameters, such as particle (inclusion) size, particle axial ratio and orientation, volume fraction, particle spacing, etc., as reviewed by Underwood.23 The use of these parameters in microstructure-property correlations has been the subject of much research in the past.2 4 •25 How ever, a major limitation of using only geometrical parameters for microstructural description arises; 
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namely, the microstructure-property equations are valid only for matrix-type microstructures, i.e. microstructures in which the second phase is dis continually embedded in a continuous matrix. 25 For high concentrations of the second phase, or when both phases become continuous (at least partially), topological parameters are necessary for the proper characterisation of the microstructure, 17 the topological characterization of a two-phase microstructure being inherently more difficult than the geometrical characterization, as demonstrated recently.17 where fa. is the total volume fraction of the ex-phase.

As has been discussed in detail elsewhere, 17 microstructures A and B (see Fig. 1) are mechani cally equivalent along the aligned direction of microstructure B. Thus, the determination of the effective mechanical properties of a complicated two-phase microstructure, such as that shown in Fig. 1 (a), can be replaced by an analysis of the where Erx and Ep are the Young's moduli of the constituent phases. Equation ( 17) is applicable to a two-phase composite with any combination of volume fraction, particle size, shape and distribu tion of the second phase. It has been shown that the predictions by eqn [START_REF] Fan | Microstructural characterisation of two phase materials[END_REF] are in good agreement with experimental data for different composites.26 A porous material can be treated as a special case of a two-phase composite in which the Y oung's modulus of one phase (pore) is equal to zero, i.e. Ep = 0. Therefore, according to eqn [START_REF] Fan | Microstructural characterisation of two phase materials[END_REF], the effec tive Young's modulus of porous materials (Ep) will take the following form:

Ep = EM.fac (18) 
where EM represents the Young's modulus of the pore-free matrix. It is interesting to see from eqn (18) that the normalized Young's modulus of a porous material (Ep/EM) is simply equal to the continuous volume of the matrix ifrxc). By assuming that the pore phase has an equiaxed shape and random distribution inside the matrix phase, the continuous volume of the matrix phase can be calculated from eqn [START_REF] Brown | A strength-porosity relation involving different pore geometry and orientation[END_REF], if the particle size ratio R is known. Noting that fr::t can be written as fr::t=(l-P), andfp= P, with P: volume fraction of porosity, then eqn ( 12) can be rewritten for the porous case as: (1-P)2R lac = p + (I -P) R [START_REF] Gurland | The measurement of grain contiguity in two-phase alloys[END_REF] The utility of eqns ( 18) and ( 19) to be used for the prediction of the Y oung's modulus of porous materials is because only the parameter R, besides the pore volume fraction, which can be obtained by quantitative microstructural analysis, remains influencing the effective property. Thus, no fitting parameters are necessary and the equations become predictive having a great practical significance.

Alternatively, the power law given by eqn (15) can be used if measured topological parameters are not available. In such case the exponent v will act as a fitting parameter unless a direct correlation between v and the porosity structure can be found.26

EVALUATION OF THE MODEL

Comparison with other equations

Figure 2 shows the theoretical variation of the effective Y oung's modulus as a function of poros ity as predicted by eqns ( 18) and ( 19). R= 0.4 and R = 1.0 were used in the calculations. Also shown 0.9 0.8 en .2 0.7
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O-+,-,...,..,.. ,...,..,.. ,...,..,.. .......... i-r..-r"'T"T"',.,..,...,...,..,..,...,..,..,...,..,..,......,...,.,..,..,..,..,..,..,..,..,..,..,..,. .,...., Using R = 1 results in higher values for the Young's modulus and the calculated values are closer to those calculated for spherical porosity. 5 If alternatively one applies the power law [eqn [START_REF] Boccaccini | Comment on "Dependence of ceramic fracture properties on porosity[END_REF]] to obtain f etc, eqn (l 8) reduces to the equation pro posed in the literature independently by Phani and co-workers2.3 and by Wagh et a!. 6 [eqn (9) in Table I]. This power equation has also been suggested for the Young's modulus of foam-like materials.27

Comparison with experimental data on porous ceramics and glasses

Most work in the literature dealing with the elastic constants of porous ceramics and glasses report very little information about the porosity structure and even less studies can be found that report quantitative parameters characterising the porosity structure. Thus the present verifi cation of the model will have to be limited to a study of the fit ting capability of the equations to the available experimental data and no attempt will be made to quantitatively assess the effect of the porosity parameters on the Y oung's modulus-porosity relationship. Figure 3 shows, for example, the comparison between calculated and experimental values for a variety of porous ceramics with P'.5,0.5. 11• 28 -3 4 The curves were obtained assuming equiaxed pore morphology and random porosity distribution, i.e. using eqns [START_REF] Fan | A new approach to the electrical resistivity of two-phase composites[END_REF] and [START_REF] Gurland | The measurement of grain contiguity in two-phase alloys[END_REF] with dif ferent values of R. It seems that R =I over estimates the Young's modulus at low porosity content (P'.5,0.25). However, for intermediate por osity levels (0.255,P'.5,0.5) using R = I seems to better predict the experimental data than when lower values of R were used. On the contrary, for the low-porosity range, R values between 0. could be drawn, indicating that R should be deter mined in each case from metallographic measure ments. This highlights, moreover, the necessity of considering a structure-related parameter besides the porosity volume fraction for a proper descrip tion of the experimental trends, as noted in the introduction . In the present case, because of the limited geometrical and topological information on the porosity structure supplied in the original stu dies, the full potential of the present approach for Y oung's modulus prediction could not be demon strated with the available experimental data.

CONCLUSIONS

A new approach has been presented for determin ing the Young's modulus of porous materials. The approach is based on a previous equation derived for two-phase composites on the basis of a micro structural description using the contiguity and continuous volume as topological parameters. The derived equation shows very good agreement with experimental data on porous glasses and ceramics for a wide range of porosity volume fractions. For a rigorous verification of the equation, however, experimental data on materials with well-described porosity structures is required. As there is limited experimental data on such well-characterized por ous materials, the necessity of further experimental work on this subject must be emphasized.
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  • 18 A number of topological parameters, such as separation, separated volume, degree of contiguity and degree of separation, based on the topological characterization of contiguity and con tinuous volume in two-phase microstructures, have been proposed recently by Fan and co-work ers. 1 7•18 These topological parameters can be either measured experimentally or calculated theoreti cally under certain simplified assumptions about the real microstructure. 1 7 The combination of such topological parameters can offer an effective description of the phase distribution in any two phase microstructure.According to the proposed topological transfor mation, a two-phase microstructure (denoted as ex-P hereafter) with any grain size, grain shape and phase distribution, as illustrated schematically in Fig.I (a), can be transformed topologically into a body with three parallel aligned microstructural elements, as illustrated schematically in Fig.1 (b). Element I (El) consists of continuous ex-phase with a volume fraction of fa.c (the continuous volume of the ex-phase); Element II (Ell) consists of the con tinuous P-phase with a volume fraction he (the continuous volume of the P-phase); Element III (EIII) consists of the long-range ex-P chains. Therefore, there are only phase boundaries in EIII. The volume fraction of EIII is defined by the degree of separation, F5• The volume fractions of ex-phase and p-phase in EIII body, fa.m and f13m, respec tively, can be calculated by the following equations:
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 2 simpler but equivalent microstructure with three well-defined micro structural elements, Fig. 1 (b ). In relation to the proposed microstructural characterization the following aspects must be emphasized: 1. The topological parameters developed by Fan et al.17 were derived by means of statistics and probability theory, and hence they have to be treated in terms of average quantities. They reflect implicitly the change in size, shape, orientation and distribution of the second phase. In the general case, the topological parameters have to be measured experimentally by applying standard metallographic methods and stereological relationships, as described by Underwood.23 However, under the assumption of equiaxed particle shape and random distribution, they can also be calcu lated, for example by means of the following relationships:where R is the particulate size ratio defined as R = df3/ dr:i. . drx and df3 are the grain sizes of the phases rJ.. and �. respectively, and they can be determined by the mean intercept length of each phase. 17
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 3 In the cases were experimentally measured topological parameters are not available, the following power law can be used to approx imate the continuous volumes: 18For example, the experimentally measured continuous volume of the WC phase in Co WC composites21 can be adequately repre sented by w = 4.26 4. Topological parameters are directional.[START_REF] Fan | Microstructural characterisation of two phase materials[END_REF] The measurement of all the topological parameters of a given two-phase microstructure with spe cific microstructural features must be made along the direction of interest (e.g. field or stress direction).

  Fig. 1. Schematic illustration of the topological transformation from microstructure A to microstructure B after Fan et al.11 It should be emphasized that this graph is just a schematic illustration of the topological transformation and it does not represent any quantitative information such as volume fraction or particle size and shape.
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 2 Fig. 2. Young's modulus-porosity relationship as predicted by several theoretical approaches: (------) R.K. model [eqn (8)]7 for v0 = 0.25, (---.�) Boccaccini et al . .. model. [eqn (6) with S=; l]� for spherical porosity, (-•-•-•-) this model [eqns (18) and (19)] with R= 1.0, (--) this model [eqns (18) and (19)] with R=0.4.
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 3 Fig. 3. A comparison of the theoretically predicted normal ized effective Young's modulus as a function of porosity (Er/ EM) with experimental results from the literature for different porous ceramics: (e) Gd20 3 , 11 (T) CaTi0 3 , 2 9 ( �!<-) Al20 3 , 2 8 (0) Zr02, 3 4 (I) Dy20 3 , 33 (X) SiJN 4, 3 1 (0) Hf201, 3 4 (+) mullite, 3 0 (0) U02, 3 2 (A) Y203• 33 The thoertical curves were obtained from eqns (18) and (19), using the shown values for R.
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 4 Fig. 4. A comparison of the theoretically predicted normal ized effective Young's modulus as a function of porosity (Er/ EM) with experimental results from the literature for different porous glasses: (•) borosilicate glass, 2 9 (I) DURAN bor osilicate glass, 3 5 (0) P-311 glass, 4 (0) D-glass. 3 6 The theore tical curves were obtained from eqns (18) and (19), using the shown values for R.
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 5 Fig. 5. Comparison of the theoretically predicte� effective Young's modulus of porous Si 3 N 4 with the trend of experi mental data, 3 7 (000) experimental trend, 3 7 (--') theo retical curve obtained from eqns (18) and (19), using R= 1.0.

  Fig. 6. A comparison of the theoretically predicted normal ized effective Young's modulus as a function of porosity (Ep/ EM) with experimental results from the literature for different materials with very high porosity: (•) cellular alumina, 3 8 (0) gypsum,3 (.A.) silica gel, 3 9 (0) polymere foam.27 The theore tical curve was obtained from eqns (18) and (19), using R=0.4.