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Abstract. Differential fault attacks are powerful techniques to break a
cryptographic primitive, where the adversary disrupts the execution of a
calculation to find a secret key. Those attacks have been applied in Ellip-
tic Curve Cryptography under various types of faults, and there exists
several protection mechanisms to prevent them.

In this paper, we present a new differential fault attack on the Mont-
gomery ladder algorithm for scalar multiplication. We further present
that such attacks can be applied when specific point additions formulas
are used and when different scalar blinding techniques to randomize the
computation are present.

Keywords: Differential fault attack · Elliptic curve · Montgomery
ladder · Scalar blinding · Scalar splitting

1 Introduction

Differential Fault Analysis (DFA) was first introduced on block ciphers [4] and
RSA [7]. In these attacks, a fault is induced and modifies the behavior of the
execution resulting in an erroneous output. The effects of the fault on the output
are compared with the correct one to compromise the full secret key.

The efficiency of Elliptic Curve Cryptography (ECC) makes it popular for
embedded devices due mainly to the small parameter size for high-security level,
thus it is necessary to protect against physical attacks such as fault attacks. In
this paper, we are interested in several unexplored paths for DFA on the scalar
multiplication which is the main operation of ECC.

The first main contribution is a new attack on the Montgomery ladder algo-
rithm [22]. Its most sensitive part as implemented in cryptographic libraries is
a conditional swap, and we extend the analysis of DFA when a fault affects this
operation. In particular, we look at the use of specific point addition formulas
that do not use all point coordinates. Those are specific to the Montgomery
ladder algorithm and often used in libraries outside of the classical formulas.
Furthermore, we show that point validation or loop invariant verification are
not sound measures to protect against our attack.



2 A. Russon

Our second main contribution is to show that scalar blinding methods do not
prevent DFA if the randomizer is too small. Those are the first Coron counter-
measure [13] that adds a random multiple of the group order to blind the secret
scalar, and the others are methods that separate in several shares the scalar
with a multiplicative or Euclidean splitting [12,38]. We consider the attack in
the context of the ECDSA signature scheme, as it is well suited for DFA and
can be exploited for key recovery using lattice techniques [25]. Finally, our attack
was experimented on several simulations.

The paper is organized as follows. In Sect. 2 we introduce notations on elliptic
curves and ECDSA. Then, Sect. 3 describes our DFA attack on the Montgomery
ladder algorithm, followed in Sect. 4 on how the scalar blinding and scalar split-
ting methods can also be attacked. We give in Sect. 5 a practical evaluation of
the implementation of the ladder algorithm in cryptographic libraries, how the
attack can be achieved under the skip instruction fault model or with a random
fault in a register, and results from several simulations. Finally, we discuss in
Sect. 6 past proposed countermeasures to protect against DFA and the limita-
tions of some against our attack, and we conclude in Sect. 7. The construction
of the lattices adapted for each case considered in the paper is presented in
Appendix A.

1.1 Related Works

The first report of DFA with elliptic curves was presented in [3]. The target of
the fault injection is a point coordinate during a scalar multiplication resulting
in a point that does not belong to the original elliptic curve. The algorithm is run
backward with the correct and erroneous outputs by making guesses on the bits
of the secret scalar processed after the fault was made. The comparison with the
correct value is used to check which guess is the correct one. This attack makes
the points leave the curve, and a classical countermeasure is to validate them
using the curve equation before releasing an output.

Another DFA was proposed in [6], with the advantage that a point validation
does not detect the fault. Indeed this sign-change fault attack only modifies the
sign of a point, so it still satisfies the curve equation. An example is given to
realize such an effect with a fault during the calculation of the NAF represen-
tation of the secret scalar, and the paper claims that it could be adapted to the
Montgomery ladder algorithm in the case the y-coordinate is used.

In the same line of work, DFA where point validation cannot detect the fault
were presented in [32] and [33] on the Montgomery ladder algorithm. The faults
considered are a skip of one or several operations of the algorithm such that one
bit is not processed in the first paper, or with a skip of one multiplication or one
squaring when used with RSA in the second paper (but compatible with elliptic
curves if one replaces the operations with point doublings and point additions).
Then, it is possible to recover the bits of the scalar processed after or before the
fault occurred.

Our attack is akin to the previous DFA on the Montgomery ladder algorithm,
where the fault does not make the points leave the elliptic curve. But it shares
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similarities to the sign-change fault attack, as the goal is to change the sign of
the implicit loop invariant of the algorithm.

There are other recent fault attacks on ECC, but those are either a DFA
against a wNAF algorithm for scalar multiplication [11], or target specifically
deterministic signature scheme such as the determinist variant of ECDSA or
EdDSA [1,26,29,30] that cover well the subject.

2 Preliminaries

In this section, we introduce notations of elliptic curves, followed by a description
of ECDSA and why it is useful for a DFA attack.

2.1 Elliptic Curves over Prime Fields

An elliptic curve E defined over a field Fp with p a prime greater than 5 is the
set of points (x, y) ∈ (Fp)

2 that satisfy an equation of the form

y2 = x3 +Ax+B, A,B ∈ Fp, (1)

with∆ = 4A3+27B2 6= 0, and an additional pointO, alongside an operation that
makes the curve an abelian group. This operation is the point addition, where
the identity is O, and the inverse of a point P = (xP , yP ) is −P = (xP ,−yP ).

For an integer k, the operation called scalar multiplication is the repeated
addition of a point P that appears k times and is noted [k]P . For all points P ,
there exists a smallest positive integer k such that [k]P = O and is called the
order of the point.

Given Q a point in the subgroup of prime order q generated by P , then there
exists an integer k such that Q = [k]P and is called the discrete logarithm of Q
in base P . The security of ECC is based upon the hardness of finding the discrete
logarithm, and the best algorithms are Baby Step-Giant Steps (BSGS) [35] and
Pollard’s rho algorithms with complexity O(

√
q). In the case k is known to lie

in a relatively small interval [a, b], then it can be found in complexity O(
√
b− a)

with BSGS or Pollard’s kangaroo algorithm [27].

2.2 ECDSA

This is an elliptic curve-based signature scheme [24]. Its domain parameters are
an elliptic curve E and a base point P of prime order q that belongs to the curve.

Given a private key α in [1, q − 1] and a hashing function H, signing a mes-
sage M is done according to Algorithm 1, and the pair (r, s) forms the signature.

The verification process consists of computing the point

Q̃ = [H(M)s−1]P + [rs−1]Ppub (2)

where Ppub = [α]P is the public key of the signer, and the signature is valid if r

is equal to the x-coordinate of Q̃ (lifted as an integer, then reduced modulo q).
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Algorithm 1 ECDSA signature generation.

Require: message M , private key α, point P of order q on an elliptic curve
Ensure: signature (r, s) of the message M under the private key α

1: repeat
2: k ← random integer in [1, q − 1]
3: Q← [k]P
4: r ← xQ mod q
5: s← k−1(H(M) + αr) mod q
6: until r 6= 0 and s 6= 0
7: return (r, s)

Faulty Signature. The differential fault attack of this paper results in the pro-
duction of a faulty signature. If a fault is made during the scalar multiplication
such that the output is Q′, then the resulting signature (r′, s′) is{

r′ = xQ′ mod q
s′ = k−1(H(M) + αr′) mod q.

It is not possible to recover the full signature (r, s) from the faulty signature,
but the point Q from which r is derived can be reconstructed using the public
point of the signer from the relation that is used for signature verification:

[H(M)s′−1]P + [r′s′−1]Ppub = [k]P = Q.

The point Q′ can also be obtained by lifting the integer r′ as a point on the
elliptic curve. However, the value xQ′ has been reduced modulo the prime q. It
has been shown that outside of Q′ there are only a few possible points [2]. Since
the prime q is generally the curve cardinality and is very close to the field order,
there are likely only two possible points, Q′ and −Q′.

Therefore, an attacker can obtain both Q and Q′, which is a major part of a
DFA attack.

2.3 Hidden Number Problem

The attack presented in this paper allows an attacker to retrieve partial knowl-
edge of the nonce in an ECDSA signature. This can be turned into an instance
of the Hidden Number Problem, and solve it using lattices to recover the private
key [8,25].

By injecting the partial information of nonces in the linear equations of n
signatures, it can be rewritten as a linear system of n equations and (n + 1)
variables:

uiX + vi ≡ Yi, (mod q), 1 ≤ i ≤ n. (3)

The unknowns are X (the private key α) and Y1, . . . , Yn (the unknown parts of
the nonces). The Hidden Number Problem is finding X when the variables Yi
are known to belong in a relatively small interval.
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The simplest case is when the most significant bits (respectively least) of
the nonces are known, thus the variables Yi consist of their least significant bits
(respectively most). The number of signatures to collect depends on the leak
obtained on each nonce. We can get a rough idea with a rule of thumb: with a
t-bit curve and ` bits leaked per nonce, we can expect around t/` signatures for
the lattice attack to succeed. For instance, with 5 least significant bits leaked on
a 256-bit curve, an average of 54 signatures are generally sufficient. Therefore,
this step in the attack has a negligible cost from a few milliseconds up to a few
seconds.

Explanation and construction of lattices for each situation are detailed in
Appendix A.

3 DFA on Montgomery Ladder

In this section, we present the Montgomery ladder algorithm, then we describe
our attack.

3.1 The Montgomery Ladder Algorithm

One advantage of the Montgomery ladder algorithm for computing Q = [k]P is
that the same elliptic curve operations are executed for each bit processed: the
algorithm has a regular behavior.

This is done by using two variable points R0 and R1 that satisfy the invariant
R1 −R0 = P in each loop. Let k = (kn−1, . . . , k0)2 the binary representation of

the scalar k, and suppose the leading bits k̂ down to kj are already processed,

meaning that R0 = [k̂]P and R1 = [k̂+1]P . The state of the Montgomery ladder
algorithm is updated depending on the current bit kj−1 as follows:

(R0, R1) =

{
([2]R0, R0 +R1) if kj−1 = 0,

(R0 +R1, [2]R1) if kj−1 = 1.
(4)

As a consequence, at the end of the step, we have R0 = [2k̂ + kj−1]P , and the
relation R1 −R0 = P still holds. The process goes on until the last bit, and the
final state gives R0 = [k]P .

To avoid branch conditions, a conditional swap with bitwise masking tech-
niques is commonly used in implementations so the point doubling is executed
with the correct value, and a second time after the operations to restore R0 and
R1 (see Algorithm 2).

Remark 1. There is also a padding method to avoid a leak of the bit length of its
input given in [10], using the group order q of bit length t: the scalar k is replaced
with k+εq with ε ∈ {1, 2} that makes the new scalar exactly a (t+1)-bit integer.
Since q is the order of the base point, the final result of the scalar multiplication
is unchanged. We suppose in the following that this countermeasure is implicitly
used.
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Algorithm 2 Montgomery ladder

Require: k = (kn−1, . . . , k0)2, P , kn−1 = 1
Ensure: Q = [k]P

1: R0 ← P
2: R1 ← [2]P
3: for i = n− 2 down to 0 do
4: conditional swap(ki, R0, R1)
5: R1 ← R0 +R1

6: R0 ← [2]R0

7: conditional swap(ki, R0, R1)

8: return R0

3.2 New Attack: Invariant Sign-Change Fault

We consider a fault that inverts the state of the ladder algorithm after the
processing of the bit kj (see Sect. 5 for examples of how it can be achieved):{

R0 = [k̂]P

R1 = [k̂ + 1]P

E−−−−−−−−−−→
fault

{
R0 = [k̂ + 1]P

R1 = [k̂]P
(5)

The value R0 for processing the next bit is R′ = [k̂ + 1]P and the invariant
for the remainder of the algorithm is the point I = −P . Thus, the resulting
point of the scalar multiplication is

Q′ = [2j ]R′ + [k]I = [(k̂ + 1)2j − k]P, (6)

where k = (kj−1, . . . , k0)2 are the least significant bits following the bit processed
when the fault was made.

Then, the following difference is a point that depends only on the j least
significant bits of k:

Q−Q′ = [2k − 2j ]P. (7)

Those j bits can be found with an exhaustive search. An alternative is to calcu-
late the sum

Q+Q′ = [k̂2j+1 + 2j ]P, (8)

that depends only on the most significant bits of k.
While this type of fault is undetectable with a point validation, a check of

the invariant reveals that a wrong calculation occurred. This is true for classical
formulas such as affine point addition or their projective equivalent (including
the complete formulas of [28]). However, there are specific formulas that do not
use all point coordinates which has an impact on the previous description and
makes the fault undetectable by a check of the invariant, and it is covered below.

Remark 2. In the particular case of k = 2j−1 the points Q and Q′ are equal, so
it is impossible to distinguish with the cases where the fault has no impact on
the swap operation.
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x-only Formulas. The particularity of those formulas is that the y-coordinates
of the points are not used to compute either a point doubling or a point addi-
tion [9,18]. Let P1 = (x1, y1) and P2 = (x2, y2). Given x1 and x2, and the
auxiliary value xP the x-coordinate of P1 − P2, then those formulas compute
the x-coordinate of P1 + P2. No auxiliary data is needed for the point doubling
(outside of the elliptic curve parameters). Those formulas are well adapted for
the Montgomery ladder algorithm since the point addition occurs between two
points whose difference is invariant and equal to the input of the scalar multi-
plication.

The invariant is replaced by −P in our attack. Its x-coordinate is the same
as P , so the point additions in the following steps are correctly calculated, and
the differential analysis can be done.

The interesting side-effect happens for the reconstruction of the missing coor-
dinate y of the resulting faulty point, since it uses formulas involving the two
coordinates of the invariant (see Appendix B for the formula). In this case, the
invariant has changed from (xP , yP ) to (xP ,−yP ), and the code might use the
original invariant directly, stored in registers and not modified by the execution.
The sign difference only impacts the y-coordinate of the output Q′ which is the
same as in Eq. (6) with a sign change (so it passes a point validation test).
However, the attack on ECDSA needs to construct candidates for Q′ which also
includes −Q′ so it makes no difference in the analysis.

Furthermore, a check of the invariant would not detect the fault. Indeed,
the points R0 and R1 will be reconstructed as R′0 = −R0 and R′1 = −R1 as
explained above, so the difference

R′1 −R′0 = −(R1 −R0) = P

would yield the invariant P as if no fault occurred.

Co-Z Formulas. We look now at the co-Z formulas based on Jacobian projec-
tive representation of the points: a point (x, y) is represented by (X : Y : Z) with
x = X/Z2 and y = Y/Z3. The particularity of those formulas is the requirement
that the two points share the third projective coordinate Z. We consider the
variant that does not use this coordinate in the formulas [17].

Instead of a regular point doubling and point addition in a ladder step, it is
composed of two additions, XYcoZ-ADDC and XYcoZ-ADD, such that the two inputs
share the same Z-coordinate, and give two outputs with the same property:

XYcoZ-ADDC : (P1, P2) 7→ (P1 + P2, P1 − P2)
XYcoZ-ADD : (P1, P2) 7→ (P1 + P2, P1).

A formula for the recovery of the missing coordinate Z is necessary at the end
of the scalar multiplication during the processing of the last bit to get the affine
form.

The formulas are correct as long as the points share the Z-coordinate, and
this property is not impacted by the attack. What remains to observe is the
effect on the Z-coordinate recovery. The original invariant (xP , yP ) might be
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used instead of the new one (xP ,−yP ) following the fault for the same reason
as with the x-only formulas, and the consequence is the appearance of a factor
−1 in the reconstructed coordinate Z of the points R0 and R1 (see Appendix B
for details). But it only changes the sign of the affine coordinate y due to the
Jacobian coordinates. So the erroneous output Q′ is a valid point of the elliptic
curve.

Finally, as with the x-only formulas, a check of the invariant would not
detect the fault. Indeed, we have R1 −R0 = −P after the fault, and the points
are reconstructed as R′0 = −R0 and R′1 = −R1 so the difference R′1 −R′0 would
yield the correct invariant.

Remark 3. An alternative view for the x-only and co-Z formulas is that the in-
variant of the algorithm is not the full point P anymore, but only its x-coordinate
which stays intact during the attack.

Unknown Step. The differential points in Eq. (7) and (8) do not depend only
on the least or most significant bits of the secret scalar, but also on the step
where the fault was made. This could result in several candidates if several steps
j are considered during the analysis.

Conservative choices can be made to lift this indeterminacy, at the cost of
losing a few bits of the scalar. Suppose we retrieved the discrete logarithm d =
2k − 2j of the differential point of Eq. (7), but the step j is unknown. We can
compute d/2 mod 2i for an integer i that we expect to be smaller than j (say 5
for i against 10 for j), then the i least significant bits are retrieved.

The loss of precision is not impactful as the lattice attack on ECDSA can
still be successful from a few bits per nonce.

4 DFA with Scalar Randomization

In this section, we present how differential fault attacks might still be applicable
when the scalar is randomized with scalar blinding methods in the context of
ECDSA.

4.1 Scalar Blinding with Group Order

This is the most classical measure proposed in [13]. The secret scalar k is replaced
with

k? = k +mq,

where m is a random integer of λ bits. Since q is the order of the base point P ,
then we have

Q = [k?]P = [k]P + [mq]P = [k]P.

Write k? = k̂?2j+k
?

where k
?

are the j least significant bits, and k̂? the most
significant bits. Suppose that a DFA reveals k

?
(as in our attack on Montgomery
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ladder), then the unknown part satisfies the inequality

q − k?

2j
≤ k̂? < q + 2λq − k?

2j
, (9)

which is an interval of width q/2j−λ. Then, it is necessary to have j > λ for the
unknown to be in an interval of width less than q, a necessity for exploitation in
a lattice attack on ECDSA as described in Appendix A.

Cost. Suppose that we get a point whose discrete logarithm depends on the
j = λ + ε least significant bits of the blinded scalar for a nonnegative ε. An
exhaustive search on those bits is expensive in this case, so a discrete loga-
rithm algorithm such as BSGS and Pollard’s kangaroo might be used to find the
bits more efficiently in complexity O(2(λ+ε)/2). For example, if λ is 20 (as was
originally suggested in [13]), then a fault on the step j = 24 would make the
discrete logarithm easy to find, and a small ε is sufficient to attack ECDSA as
can be attested in our simulation tools. Therefore, the cost depends essentially
on λ which has to be chosen quite large to prevent the attack or to make it
impractical.

4.2 Euclidean Splitting

This method was proposed in [12] to protect against side-channel attacks as an
alternative for scalar blinding. The secret scalar k is rewritten as

k = am+ b,

where m is a random integer of λ bits with a = bk/mc and b = k mod m. Then,
the scalar multiplication Q = [k]P can be computed as Q = [m]([a]P ) + [b]P
using three individual scalar multiplications and a point addition.

We show here how to recover the random divisor (or one of its factors) and
the remainder of the Euclidean division of a secret scalar k from a single fault.
This can be used in ECDSA for a lattice attack, and on a fixed scalar with the
Chinese Remainder Theorem.

We start by giving the general principle. Let R = [a]P the scalar multiplica-
tion with the quotient, so the output is given by

Q = [m]R+ [b]P.

If the point R is known, then the BSGS algorithm can be applied to find m
and b. It consists of computing a first list of possible values for [b]P (the baby
steps), then a second list of possible points for Q− [m]R (the giant steps) until
a collision with the first list occurs, revealing the values m and b.

The first list depends only on the base point, so it can be computed once and
stored for reuse. Since both m and b are less than 2λ, both the time and space
complexities of the algorithm are O(2λ).
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The proposed target is the scalar multiplication [m]R with the random divi-
sor. We suppose a fault has been made such that the effective calculation is
[m′]R where the difference δ = m − m′ belongs to a set of size T . Then the
result of the whole scalar multiplication Q = [m]R + [b]P is altered in a point
Q′ = [m′]R+ [b]P , and their difference is

Q−Q′ = [δ]R.

A candidate for R is constructed from each candidate δ̃ for δ:

R̃ = [1/δ̃](Q−Q′).

The BSGS strategy is applied to get candidates (m̃, b̃) that satisfy the equality

Q− [m̃]R̃ = [b̃]P.

Cost. There are T possible values for δ and the BSGS algorithm runs in O(2λ)
steps, so the overall cost is O(2λT ). So it is practical only for a small parameter λ
(the only library implementing this technique that we found uses a parameter
λ of 32 bits so the time and memory constraints are low enough). In particular,
the memory constraints of BSGS should make the attack infeasible for λ = 64.

Several Candidates. Eventually, several candidates for (m, b) can be found,
but we can still salvage valuable information on the scalar k. Let (m̃, b̃) a can-
didate alongside the corresponding value δ̃. The correct values (m, b) and δ are
also amongst the candidates.

We start with the case b 6= b̃. Since (m̃, b̃) is a candidate, we have

[m̃]R̃+ [b̃]P = [m]R+ [b]P, (10)

from which we derive the relation

a ≡ δ̃(b̃− b)(mδ̃ − m̃δ)−1 (mod q). (11)

The quotient a is recovered, so the scalar k can be fully reconstructed and verified
with the relation Q = [k]P . This case seems unlikely to happen.

In the case the candidates are (m̃1, b), . . . , (m̃N , b), then we can pose d =
gcd(m̃1, . . . , m̃N ), and we get the relation k ≡ b (mod d).

Example with the Invariant Sign-Change Fault. We apply the attack of
Sect. 3.2 when no specific formulas are used. After a fault on the scalar multipli-
cation [m]R, then the result is [m′]R with m′ = (m̂ + 1)2j −m. The difference
with the correct output Q is

Q−Q′ = [2m− 2j ]R,

and the value δ = 2m − 2j depends only on the least significant bits of m.
Therefore, the BSGS part of the attack only needs to run an exhaustive search
on the most significant bits of m. If the baby steps are precomputed, then the
complexity is O(2λ).
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4.3 Multiplicative Splitting

This technique was proposed in [38]. A random value m of λ bits is randomly
generated, and γ is defined such that we have the relation

k ≡ mγ (mod q).

The scalar multiplication Q = [k]P is computed in two successive scalar multi-
plications as R = [m]P and Q = [γ]R.

The differential fault attack can be applied with a fault in the second scalar
multiplication. We suppose a fault has been made such that the effective calcu-
lation is [γ′]R where the difference δ = γ − γ′ belongs to a set of size T . Then
the result of the whole scalar multiplication Q = [γm]P is altered in a point
Q′ = [γ′m]P , and their difference is

Q−Q′ = [δm]P.

The value δm can be found by running through all possible values for δ, and
then computing the discrete logarithm of the point [m]P in base P with BSGS
or Pollard’s kangaroo algorithms.

Cost. Since m is a positive integer less than 2λ the overall cost is O(2λ/2T ).
The cost is similar to the attack on the blinding with the group order, so it is
tractable for small λ (such as 20 or 32).

Example with the Invariant Sign-Change Fault. In certain cases, a single
discrete logarithm is sufficient when δ represents a small value. For example, if
we consider the fault of Sect. 3.2 during the processing of the bit γj , then the
difference with the result of the whole scalar multiplication is

Q−Q′ = [(2γ − 2j)m]P.

We obtain a point whose discrete logarithm in base P is less than 2λ+j (in
absolute value), so the complexity to find it is O(2(λ+j)/2). Again, this is practical
when λ is relatively small (as was suggested in the paper that proposed this
method), then the discrete logarithm can be found in a matter of seconds or
minutes.

This discrete logarithm is useful for lattice attacks on ECDSA. Indeed, we
have the relation

k −mγ
m2j

≡ γ̂ (mod q), (12)

where γ̂ is a relatively small integer compared to the order q (at least j bits less).
When it is possible to distinguish m from 2γ − 2j in the discrete logarithm (if
m is prime for instance), then a lattice attack can be applied.
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Table 1. Overview of Montgomery ladder in several cryptographic libraries.

Library Init. Swap variant Formulas Remarks

Weierstrass curves

OpenSSL 1.1.1k (P, 2P ) Algorithm 3* x-only
LibreSSL 3.2.4 (P, 2P ) Algorithm 3* Jacobian
CoreCrypto (Apple) (P, 2P ) Algorithm 3 Co-Z Point valid., Eucl. split

Montgomery curves

SymCrypt (O, P ) Algorithm 3 x-only
Mbed TLS (O, P ) Algorithm 2 x-only
libsodium † (O, P ) Algorithm 3 x-only

*The source code is slightly different but the compiled code corresponds to
Algorithm 3.
†ref10 implementation of Curve25519 present in other libraries.

Algorithm 3 Processing of the bit ki in the Montgomery ladder variants with
merged swaps.

1: pbit← pbit⊕ ki
2: conditional swap(pbit, R0, R1)
3: R1 ← R0 +R1

4: R0 ← [2]R0

5: pbit← ki

5 Practical Evaluation

In this section, we consider the practicality of the attack and present evidence
on how it can be achieved on several cryptographic libraries, with simulated
experiments to validate our claims that are publicly available.1

5.1 Montgomery Ladder in Libraries

In most cryptographic libraries, the second swap in the loop is merged with the
first swap of the next step to avoid an unnecessary swap: the swap is effective
only if the scalar bit differs from the previous one. This variant is presented in
Algorithm 3.

We list in Table 1 the variant used for several libraries that implement the
Montgomery ladder algorithm for the elliptic curve scalar multiplication. Elliptic
curves in Montgomery form such as Curve25519 are also present in the table,
though those are not used for ECDSA, the attack might still be applicable in
situations where the attacker can obtain the correct and erroneous outputs.

It shall be noted that in some cases side-channel attacks could be sufficient,
but those are inherent to how the actual swap is implemented. There is the
binary masking technique, where the swap is made using a mask with its bits

1 https://github.com/orangecertcc/dfa-ladder.

https://github.com/orangecertcc/dfa-ladder
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all set to 0 or 1, and a template attack was applied where the leak comes from
the AND binary operator [23]. In the case of Mbed TLS, the multiplication by 0
or 1 is used to swap the values, and is also vulnerable to a template attack [21].
In both cases, a single trace could reveal the whole scalar.

Assuming that an implementation is protected against these attacks, then a
fault attack becomes relevant. In the following we present a strategy to perform
our attack with the variant of Algorithm 3.

5.2 Realization of the Fault Attack

Physical access to the device is necessary, and the attacker must be able to
disturb the calculation at a specific point in time and location.

Skip Instruction. The first model considered is the skip instruction that was
applied successfully in practice on RSA exponentiation with a spike injection on a
microcontroller to skip a squaring [31]. It was also recently applied in the elliptic
curve point decompression algorithm to make a point lie on weak curve [5,36].

The effects described in Sect. 3.2 can be achieved if line 1 of Algorithm 3 is
omitted during one iteration of the algorithm. Indeed, the variable pbit at the
beginning of the loop refers to the previous scalar bit, and keeps track of the
current state of the couple (R0, R1) such that the loop invariant is

R1−pbit −Rpbit = P.

So, if the line “pbit ← pbit ⊕ ki” is not executed and the bit ki is 1, then the
variable pbit is not updated:

– If pbit was 0, then we have R1−R0 = P , the points are not switched, so we
still have R1 −R0 = P ;

– If pbit was 1, then we have R0−R1 = P , the points are switched, so we have
now R1 −R0 = P .

In both cases, the variable pbit gets the value 1 at the end of the loop, so starting
from the next iteration we have

R1−pbit −Rpbit = R0 −R1 = −P,

and the sign of the loop invariant has changed for the remainder of the algorithm.
One alternative is to target the line “pbit ← ki”. If this line is skipped and

the bit ki differs from the value in the variable pbit, then it will not be consistent
with the current state or (R0, R1), but starting from the processing of the next
loop iteration.

Remark 4. Of course, in half of the cases, skipping one of these instructions will
not have an effect and result in a correct output (and it is discarded in our
attack).
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Algorithm 4 Constant-time conditional swap of two values with binary oper-
ators (comments: alternative version)

Require: (w0, w1), bit b
Ensure: (wb, w1−b)

mask← (b, . . . , b)2
tmp← mask ∧ (w0 ⊕ w1) . tmp← w0

w0 ← w0 ⊕ tmp . w0 ← (w0 ∧ ¬mask) ∨ (w1 ∧mask)
w1 ← w1 ⊕ tmp . w1 ← (w1 ∧ ¬mask) ∨ (tmp ∧mask)
return (w0, w1)

Fault in a Register. A common method for the conditional swap is to use
binary masks as presented in Algorithm 4. The interesting part is the construc-
tion of the binary mask. It is generally done using the binary representation of
−1 in a machine-word with all bits set to 1. So the value −b gives a null mask
if b is 0, and a binary mask with all bits set to 1 if b is 1.

However, there are other ways to construct such masks, where any nonzero b
ends up with a binary mask with bits set to 1. Let N the bit length of machine-
words, then the two equivalent following formulas give an example of such con-
struction (the first one is present in Mbed TLS and the second in OpenSSL)
where “>>” is the bitwise shift right operator:

−
(
(b ∨ (−b)) >> (N − 1)

)
or

(
(¬b ∧ (b− 1)) >> (N − 1)

)
− 1.

A fault that randomly modifies the register that contains the bit b will have the
desired effect and swaps the points if the original value of b is 0. This can be
achieved with a random fault on a register.

5.3 Simulations

Simulations were used to put in practice our attack and evaluate the other
different cases of the paper. The first one uses the GNU Debugger GDB to
simulate faults according to the fault models presented above in the OpenSSL
implementation of the Montgomery ladder algorithm. The second is based on
the Unicorn engine2 to test the effect of faults wrongly injected with the skip
instruction fault model. Finally, other cases with the randomization methods
were also simulated in Python and the lattice attack used the fpylll library [37].

GDB Simulation. We give in Listing 1.1 part of the assembly code related
to the loop of the Montgomery ladder algorithm in OpenSSL version 1.1.1k
(compiled on a Raspberry Pi device model 4B).

The instruction on address 0xdd208 corresponds to the line “pbit ← pbit ⊕
ki” that needs to be ignored in the skip instruction fault model. The second
fault model can be achieved with a modification of register r6 after this same

2 https://www.unicorn-engine.org/.

https://www.unicorn-engine.org/
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dd1e8: mov r1, r8
dd1ec: ldr r0, [sp , #8]
dd1f0: bl 8b440 <BN_is_bit_set > ; r0 <- current bit k_i
dd1f4: ldr r6, [sp , #12] ; r6 <- pbit
dd1f8: mov r3, r9
dd1fc: ldr r2, [fp , #8]
dd200: ldr r1, [r7 , #8]
dd204: sub r8, r8, #1
dd208: eor r6, r6, r0 ; r6 <- pbit XOR k_i
dd20c: mov sl, r0
dd210: mov r0, r6
dd214: bl 8b554 <BN_consttime_swap > ; swap X if r0 = 1
dd218: mov r0, r6
dd21c: mov r3, r9
dd220: ldr r2, [fp , #12]
dd224: ldr r1, [r7 , #12]
dd228: str sl, [sp , #12] ; pbit <- k_i
dd22c: bl 8b554 <BN_consttime_swap > ; swap Y if r0 = 1
dd230: mov r0, r6
dd234: mov r3, r9
dd238: ldr r2, [fp , #16]
dd23c: ldr r1, [r7 , #16]
dd240: bl 8b554 <BN_consttime_swap > ; swap Z if r0 = 1

Listing 1.1. Excerpt of assembly code of the function ec scalar mul ladder in
OpenSSL 1.1.1k.

instruction. Indeed, this variable is only used thereafter for the conditional swap
on each point coordinates.

It is easy to instrument these faults with GDB, and has been automatized
with two scripts. In both cases the analysis on the signatures followed by the
lattice attack resulted in a successful private key recovery.

Unicorn Simulation. Unicorn is CPU framework emulator and we used it
through the Rainbow tool3 that makes it easy to trace the execution of all
instructions of a binary. It can be stopped at any moment and the next instruc-
tion can be read. Then the skip instruction fault model can be instrumented as
follows: we read the next instruction, and it is skipped by resuming the execution
at the following instruction using the size of the skipped instruction.

The constant-time big integer modular arithmetic of the secp256r1 curve
written in assembly was chosen (taken from the OpenSSL project). It has no
external dependency which makes it easier to work with the emulator. Two
binaries were created to implement the Montgomery ladder variant of Algo-
rithm 3: the first with Jacobian projective coordinates, and the second with
co-Z formulas.

The instructions related to the lines “pbit ← pbit⊕ ki” and “pbit ← ki” are
present in the assembly code of both binaries. When one of those is skipped
during an iteration of the main loop, then the analysis of Sect. 3.2 is successful
and the least significant bits of the scalar are recovered.

3 https://github.com/Ledger-Donjon/rainbow.

https://github.com/Ledger-Donjon/rainbow
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However, we found a false positive situation with both binaries when the
fault skips one instruction in the function that extracts one bit of the scalar.
What happens is that the extracted bit is incorrect: the bit kj is replaced with
1 − kj , but the remaining of the scalar multiplication is done correctly. This is
equivalent to a bitflip of the scalar, and as a consequence we have

Q−Q′ =

{
[−2j ]P if kj = 0,

[2j ]P if kj = 1.

If we look at Eq. (7), this might wrongly reveal that the least significant bits of
the scalar are only composed of zero bits. Therefore, to avoid a wrong signature
in the lattice attack against ECDSA, it might be better to discard this case (say
j is 16, then there would be one out 65536 scalars on average where the 16 least
significant bit are indeed set to 0 so discarding a correct result would be rare).

Another false positive was observed with the Jacobian projective formulas:
after a specific instruction skip in the point addition function, one of the points is
not loaded correctly and the addition happens with the same point: the doubling
function is called instead, and the analysis catches a wrong value.

For the co-Z binary, we included the invariant check at the end of the scalar
multiplication as a countermeasure [39]. We adapted the XYcoZ-ADD function
such that it computes the difference of the inputs (the invariant) instead. Once
the missing Z-coordinate is recovered and the points are converted to their affine
representation, the calculated invariant I is XORed with P , the correct invariant,
and the output Q:

Q⊕ I ⊕ P.

If the calculated invariant is correct, it should be canceled by P . As was expected
from Sect. 3.2, I is indeed correctly calculated as P . The output is a valid point
and it does not prevent our attack.

6 Countermeasures

As with other works where the fault does not make the elliptic curve point leave
the curve, a point validation cannot detect the fault, even in the case of x-only
or co-Z formulas (for the former it was suggested in [15] to recover the missing
coordinate and perform the verification, but in the context of the attack of [16],
and would not be able to prevent our attack).

Verification of the Montgomery ladder invariant was proposed in [14,39]
against fault attacks. As we have seen in Sect. 3.2, it should work in general
because the invariant is changed, except in the cases of the x-only and co-Z
formulas (the reconstructed invariant would be the correct one) as was experi-
mented in Sect. 5.3.

There is another idea from [14] to prevent our attack with the x-only and
co-Z formulas. It is a variant of the point blinding countermeasure from [13]
adapted to Montgomery ladder: the algorithm is initialized as R0 = P +R and
R1 = [2]P + R for a random point R, and the invariant R1 − R0 is still the
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input P . At the end of the scalar multiplication we have R0 = [k]P +[2n−1]R, so
a subtraction by S = [2n−1]P is needed to get the correct output. In our attack,
the points R0 and R1 are inverted and the invariant becomes −P :{

R0 = [k′]P + [2n−1]R

R1 = R0 − P.

We have seen that it changes the sign of the reconstructed point after the recovery
of the missing coordinate. Therefore, subtracting the blinded point to get the
output would give

Q′ = −R0 − [2n−1]R = −[k′]P − [2n]R,

and without the knowledge of the point R, the output is useless for an attacker.
However, this is true as long as R is randomly selected at each new execution, and
it was originally proposed to update R by replacing it with the point [(−1β)2]R
with β ∈ {0, 1} chosen randomly. With faults successfully injected in consecutive
runs, it might be possible to deduce the point R, and then the differential analysis
could be done.

Classic countermeasures such as repeating the operations twice and check
consistency can be applied against our attack. To reduce the cost, it was proposed
in [6] to make the second computation on an elliptic curve Ep′ over a smaller
prime field Fp′ , and the first on an elliptic curve Epp′ over the integer ring
Z/pp′Z. On one hand, the reduction modulo p of the result gives the expected
calculation, and on the other hand, the reduction modulo p′ is checked with the
calculation on Ep′ .

A variant of the previous method was proposed in [19,32] where the second
computation is done on an auxiliary group glued together with the elliptic curve
operation. For instance, it can be done by adding an integer to point coordi-
nates which keeps track of the current discrete logarithm of the points using the
following rules:

(P1, `1) + (P2, `2) = (P1 + P2, `1 + `2), [2](P, `) = ([2]P, 2`).

If no fault occurred the resulting point should be ([k]P, k) with k the secret
scalar. This method should detect the fault in our attack since the auxiliary
value is consistent with the point, so a change in the point affects the value too.

Finally, in the case of an attack on ECDSA, it is always possible to verify
the signature at the end of the calculation.

7 Conclusion

In this paper, we presented a new differential fault attack on Elliptic Curve Cryp-
tography with the Montgomery ladder algorithm. We showed that an attacker
can switch two points with either a skip instruction or a random fault in a
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register. With this modification in the program flow, the least (or most) signifi-
cant bits of the secret scalar can be determined from the difference between the
correct and erroneous outputs.

Furthermore, this attack bypasses some of past countermeasures against fault
attacks on ECC. A consequence is that particular care is necessary to choose
the right measures to protect an implementation when protection against fault
attacks is part of the threat model.

Finally, we presented evidence that scalar randomization with common meth-
ods is not enough to thwart differential fault attacks. It requires that the ran-
domizer is small enough for the attack to be practical. However, it is generally
suggested in the papers that proposed such methods to choose them small to
reduce the extra cost.

Future work could explore further ways to achieve the effects of our attack
using other fault models or targeting other instructions, or investigate other
randomization methods.

A Lattice Attack

In this appendix, we present the lattice construction to solve the Hidden Number
Problem, then we give the values for the particular cases met in the paper.

A.1 Lattice Construction

First we introduce the notation | · |q defined as

|z|q = min
y∈Z
|z − yq|,

for any real z, which is a reduction modulo q in the range [−q/2, q/2] followed
by an absolute value.

Let uX + v ≡ Y mod q a linear equation in the variables X and Y , where an
approximation viewed as an integer of Y is known:

B1 ≤ Y < B2,

where B1 and B2 are two integers with (B2−B1) < q/L for a positive integer L.
The width of the interval can be reduced by centering around 0. Let C = (B1 +
B2)/2 be the center of the interval, and we get the bound

|Y − C| < q/(2L).

Therefore, noting v′ = C − v, we have |uX − v′|q = |Y − C|q = |Y − C|, since
we know that (Y −C) is in [−q/2, q/2]. Then, using the bound on it, we obtain
the inequality

|uX − v′|q < q/(2L), (13)

whose meaning is that when seen modulo q, the value v′ is close to a multiple of
the hidden number X.
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Given n inequalities of the form |uiX−v′i|q < q/(2Li) derived from equations
where X is a common variable, we construct the lattice generated by this integer
matrix: 

2L1q
2L2q

. . .

2Lnq
2L1u1 2L2u2 · · · 2Lnun 1 0
2L1v

′
1 2L2v

′
2 · · · 2Lnv

′
n 0 q


.

Denoting mi the i-th line of the matrix, and{
u = (2L1u1, . . . , 2Lnun, 1, 0)

v = (2L1v
′
1, . . . , 2Lnv

′
n, 0, q),

the vectors from the last two lines of the matrix, there exists integers λi such
that the vector Xu−v+

∑n
i=1 λimi is a short vector of the lattice according to

the inequalities, since each coordinate is bounded by q.
Applying a lattice basis reduction algorithm such as LLL [20] or BKZ [34],

there is a possibility that one of the vectors of the reduced basis is the one we are
looking for. By construction, this short vector has the hidden number X as its
penultimate coordinate. In the different settings, it corresponds with a private
key and can be easily checked with the public key.

A.2 Application to ECDSA

First, we recall that a signature (r, s) can be rewritten:

k ≡ αr/s+ H(M)/s (mod q).

The hidden number X is the private key α, while the unknown variable Y cor-
responds partially to the ephemeral value k in various ways depending on each
of the following cases.

Case 1. Let k = am+ b the Euclidean division of k by an integer m. This case
concerns the attack on the Euclidean splitting in Sect. 4.2, but also cases when
the ` least significant bits are known by setting m = 2`. If m and b are known,
then we have 

Y = a,

u = r/(sm) mod q,

v = H(M)/(sm)− b/m mod q.

With the padding method applied on k beforehand, we have 2t ≤ k < 2t + q so
the unknown a is bounded by

2t − b
m

≤ a < 2t + q − b
m

,

of width q/m. When the blinding method of Sect. 4.1 is used instead of a padding,
we have the inequality in Eq. (9) when the ` least significant bits are known.
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Case 2. Instead, if a and m are known in the Euclidean division of k by m,
then we have 

Y = b,

u = r/s mod q,

v = H(M)/s− am mod q.

The unknown b is a non-negative integer less than m. This case corresponds to
the most significant bits of k known. Suppose that we know the (` + 1) most
significant bits (including one from the padding), then m = 2t−` (which can be
approximated to q/2` when q is very close to 2t for some standardized elliptic
curves).

Case 3. This is the situation of Sect. 4.3 where k is randomized by an integer m
of at most λ bits, and is rewritten as k ≡ mγ mod q. If m and the ` least
significant bits γ of γ are known, we can write

k ≡ mγ̂2` +mγ (mod q),

where the unknown is γ̂ (the most significant bits of γ). We have
Y = γ̂,

u = r/(ms2`) mod q,

v = H(M)/(sm2`)− γ/2` mod q.

If no padding was applied on the scalar multiplication with γ, then the unknown
is bounded by 0 ≤ γ̂ < q/2`, and if a padding is applied then the bound on the
unknown is

2t − γ
2`

≤ γ̂ < 2t + q − γ
2`

,

both of them of width q/2`.

B Coordinates Recovery

In this appendix, we give more details on the recovery of the missing coordinates
for the x-only and co-Z formulas.

B.1 x-only Formulas

Those are based on the homogeneous projective coordinates: a point (x, y) is
represented as [X : Z] where x = X/Z for a nonzero Z.

The missing coordinate can be recovered in the case of the Montgomery
ladder algorithm. Let [X0 : Z0] and [X1 : Z1] the representations of two points
R0 and R1, and P = (xP , yP ) the point such that R1−R0 = P . The formula to
recover the affine y-coordinate of R0 is

y0 =
2BZ2

0Z1 + Z1(AZ0 + xPX0)(xPZ0 +X0)−X1(xPZ0 −X0)2

2yPZ2
0Z1

(14)
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Algorithm 5 Recovery of the missing coordinate with co-Z formulas in the last
step of the Montgomery ladder algorithm.

1: R1−k0 , Rk0 ← XYcoZ-ADDC(Rk0 , R1−k0)
2: Z ← (X(R1)−X(R0))xPY (Rk0)/yPX(Rk0)
3: Rk0 , R1−k0 ← XYcoZ-ADD(R1−k0 , Rk0)
4: Q = (X(R0)/Z2, Y (R0)/Z3)

If the invariant sign-change fault attack of Sect. 3.2 is successful, then we
have R1 − R0 = −P = (xP ,−yP ). A correct reconstruction of R0 should use
−yP instead of yP in Eq. (14). On the contrary, it will introduce a factor −1 in
the computation of y0, so the reconstructed point will be R′0 = −R0. A similar
formula can be derived for R1 and the reconstruction would give R′1 = −R1. So
the difference R′1 −R′0 would still be equal to the original invariant.

B.2 Co-Z Formulas

Those formulas are based on the Jacobian projective coordinates: a point (x, y)
is represented by (X : Y : Z) with x = X/Z2 and y = Y/Z3. The variant
considered does not use the third coordinate Z in calculation.

The missing coordinate is mandatory to get the affine representation. Let
P = (X : Y : Z) with the coordinate Z unknown, and (x, y) its known affine
representation, then we have

Z =
x · Y
y ·X

. (15)

On the last step of the Montgomery ladder algorithm, the XYcoZ-ADDC op-
eration computes the difference of the points R0 and R1, so the invariant P
appears in Jacobian projective form. The above formula allows the reconstruc-
tion of its missing Z-coordinate which is common to R0 and R1. This is given
in Algorithm 5 (another factor is present in line 2 to take into account the final
XYcoZ-ADD operation).

If the invariant sign-change fault attack of Sect. 3.2 is successful, then the
invariant becomes −P which introduces a factor −1 in Eq. (15) since the affine
coordinates of P will be used. As a consequence, the missing coordinate recon-
structed in line 2 of Algorithm 5 will be −Z. Let R0 = (X0 : Y0 : Z) and
R1 = (X1 : Y1 : Z) the two points at the end of the Montgomery ladder algo-
rithm. Then using −Z instead of Z to get the affine form will result in

R′i =

(
Xi

(−Z)2
,

Yi
(−Z)3

)
= (xi,−yi) = −Ri, i ∈ {0, 1}.

So the difference R′1 −R′0 would still be equal to the original invariant.
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