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On rationally integrable planar dual and projective billiards

A caustic of a strictly convex planar bounded billiard is a smooth curve whose tangent lines are reflected from the billiard boundary to its tangent lines. The famous Birkhoff Conjecture states that if the billiard boundary has an inner neighborhood foliated by closed caustics, then the billiard is an ellipse. It was studied by many mathematicians, including H.

Introduction 1.Main results: classification of rationally integrable dual planar billiards

The famous Birkhoff Conjecture deals with a billiard in a bounded planar domain Ω ⊂ R2 with smooth strictly convex boundary. Recall that its caustic is a curve S ⊂ R 2 such that each tangent line to S is reflected from the boundary ∂Ω to a line tangent to S. A billiard Ω is called Birkhoff causticintegrable, if a neighborhood of its boundary in Ω is foliated by closed caustics, and the boundary ∂Ω is a leaf of this foliation. It is well-known that each elliptic billiard is integrable: ellipses confocal to the boundary are caustics, see [44, section 4]. The Birkhoff Conjecture states the converse: the only Birkhoff caustic-integrable convex bounded planar billiards with smooth boundary are ellipses. 1 See its brief survey in Subsection 1.5. S.Tabachnikov suggested its generalization to projective billiards introduced by himself in 1997 in [START_REF] Tabachnikov | Introducing projective billiards[END_REF]. See the following definition and conjecture. Definition 1.1 [START_REF] Tabachnikov | Introducing projective billiards[END_REF] A projective billiard is a smooth planar curve C ⊂ R 2 equipped with a transversal line field N . For every Q ∈ C the projective billiard reflection involution at Q acts on the space of lines through Q as the affine involution R 2 → R 2 that fixes the points of the tangent line to C at Q, preserves the line N (Q) and acts on N (Q) as central symmetry with respect to the point 2 Q. In the case, when C is a strictly convex closed curve, the projective billiard map acts on the phase cylinder: the space of oriented lines intersecting C. It sends an oriented line to its image under the above reflection involution at its last point of intersection with C in the sense of orientation. See Fig. 1. Example 1.3 Each simply connected complete Riemannian surface of constant curvature is isometric (up to constant factor) to one of the twodimensional space forms: the Euclidean plane, the unit sphere, the hyperbolic plane. Any billiard in the hyperbolic plane (hemisphere) is isomorphic to a projective billiard. Namely, each space form is represented by a hypersurface Σ in the space R3 equipped with appropriate quadratic form

< Ax, x >, < x, x >:= x 2 1 + x 2 2 + x 2 3 ,
A is a symmetric 3x3-matrix called space form matrix :

Euclidean plane: A = diag(1, 1, 0), Σ = {x 3 = 1}. Sphere: A = Id, Σ = {< x, x >= 1} is the unit sphere. Hyperbolic plane: A = diag(1, 1, -1), Σ = {< Ax, x >= -1, x 3 > 0}. The metric of the surface Σ is induced by the quadratic form < Ax, x >. Its geodesics are the sections of the surface Σ by two-dimensional vector subspaces in R 3 . The billiard in a domain Ω ⊂ Σ + := Σ ∩ {x 3 > 0} is defined by reflection of geodesics from its boundary. The tautological projection π : R 3 \ {0} → RP 2 sends Ω diffeomorphically to a domain in the affine chart {x 3 = 1}. It sends billiard orbits in Ω to orbits of the projective billiard on C = π(∂Ω) with the transversal line field N on C being the image of the normal line field to ∂Ω under the differential dπ. The projective billiard on C is a space form billiard, see the next definition. Definition 1.4 Let A be a space form matrix. Let C be a curve in an affine chart in RP 2 . Let N be the transversal line field on C defined as follows.

a) Case, when A = diag(1, 1, 0). Then N is the normal line field to C in the affine chart {x 3 = 0}. b) Case, when det A = 0, i.e., A = diag(1, 1, ±1). Then for every Q ∈ C the two-dimensional subspaces in R 3 projected to the lines tangent to T Q C and N (Q) are orthogonal with respect to the scalar product < Ax, x >.

Then the projective billiard defined by N is called a space form billiard 3 .

The definitions of caustic and Birkhoff integrability for projective billiards repeat the above definitions given for classical billiards. Conjecture 1.5 (S. Tabachnikov) In every Birkhoff integrable projective billiard its boundary and closed caustics forming a foliation are ellipses whose projective-dual conics form a pencil.

Below we state the dual version of the Tabachnikov's Conjecture (2008, [START_REF] Tabachnikov | On algebraically integrable outer billiards[END_REF]) and present partial positive results. To do this, consider R 2

x 1 ,x 2 as the plane {x 3 = 1} ⊂ R 3

x 1 ,x 2 ,x 3 identified with the corresponding affine chart in RP 2 [x 1 :x 2 :x 3 ] . The orthogonal polarity sends a two-dimensional vector subspace W ⊂ R 2 to its Euclidean-orthogonal subspace W ⊥ . The corresponding projective duality (also called orthogonal polarity) is the map RP 2 * → RP 2 sending lines to points so that the tautological projection of each punctured two-dimensional subspace W \ {0} ⊂ R 3 (a line L) is sent to the projection of its punctured orthogonal complement W ⊥ \ {0} (called its dual point and denoted by L * ). The line dual to a point P will be denoted by P * . To each curve C ⊂ R 2 we associate the dual curve γ = C * ⊂ RP 2 consisting of those points that are dual to the tangent lines to C.

Let now a planar curve C be equipped with a projective billiard structure: a transversal line field N . For every point Q ∈ C let L Q denote the projective tangent line to C at Q in the ambient projective plane RP 2 ⊃ R 2 . The projective duality sends the space RP 1 Q of lines through Q to the projective line Q * dual to Q. The line Q * is tangent to γ at the point P = L * Q dual to L Q . The duality "line → point" conjugates the projective billiard involution acting on RP 1 Q with a non-trivial projective involution σ P : L P → L P fixing P and the point dual to N (Q). Thus, the duality transforms a projective billiard on C to a dual billiard on γ = C * , see the next definition. Definition 1.6 A dual billiard structure on a smooth curve γ ⊂ RP 2 is a family of non-trivial projective involutions σ P : L P → L P fixing P . Remark 1.7 Let a projective billiard on C have a strictly convex closed caustic S. Then its dual curve S * is also strictly convex and closed, and for every P ∈ γ = C * the dual billiard involution σ P : L P → L P permutes the two points of intersection L P ∩ S * . See Fig. 2. A curve S * satisfying the latter statement is called an invariant curve for the dual billiard. Definition 1.8 A dual billiard on a strictly convex closed curve γ is integrable, if there exists a C 0 -foliation by closed strictly convex invariant curves on a neighborhood of γ on its concave side, with γ being a leaf. See Fig. 3. Conjecture 1.9 (S.Tabachnikov [START_REF] Tabachnikov | On algebraically integrable outer billiards[END_REF]); dual to Conjecture 1.5). For every integrable dual billiard the underlying curve and the corresponding invariant curves forming foliation are conics forming a pencil.

Remark 1.10 A projective billiard on a strictly convex closed curve is integrable, if and only if so is its dual billiard. The outer dual billiard in R 2 , with σ P : L P → L P being the central symmetry with respect to the tangency point P , is dual to the centrally-projective billiard, whose transversal field consists of lines passing through the origin [START_REF] Tabachnikov | Introducing projective billiards[END_REF]. Thus, Conjecture 1.9 would imply the Birkhoff Conjecture and its versions on surfaces of constant curvature and for outer billiards (as observed in [START_REF] Tabachnikov | On algebraically integrable outer billiards[END_REF]), see Examples 1.2, 1.3.

One of the main results of the present paper is the following theorem.

Theorem 1.11 Let γ ⊂ RP 2 be a C 4 -smooth strictly convex closed planar curve equipped with an integrable dual billiard structure. Let the corresponding foliation by invariant curves admit a rational first integral. Then its leaves, including γ, are conics forming a pencil.

Below we state a more general result for γ being a germ. To do this, let us introduce the following definition. Definition 1.12 A dual billiard on a (germ of) curve γ ⊂ RP 2 given by involution family σ P : L P → L P is called rationally integrable, if there Figure 3: An integrable dual billiard structure exists a non-constant rational function R on RP 2 whose restriction to L P is σ P -invariant for every P ∈ γ: R • σ P = R on L P .

Example 1.13 Let a dual billiard on γ be polynomially integrable: the above integral R is polynomial in some affine chart R 2 . Then for every P ∈ γ ∩ R 2 the involution σ P fixes the intersection point of the line L P with the infinity line, and hence, is the central symmetry L P → L P with respect to the tangency point P . Thus, the dual billiard in question is a polynomially integrable outer billiard. It is known that in this case the underlying curve is a conic: stated as a conjecture and proved in [START_REF] Tabachnikov | On algebraically integrable outer billiards[END_REF] under some non-degeneracy assumption; proved in full generality in [START_REF] Glutsyuk | On polynomially integrable planar outer billiards and curves with symmetry property[END_REF].

Example 1.14 (S.Tabachnikov's observation). Let A, B be real symmetric 3 × 3-matrices, B be non-degenerate. Consider the pencil of conics C λ := {< (B -λA)x, x >= 0}; set γ := C 0 = {< Bx, x >= 0}. The set of those points in CP 2 that lie in complexifications of all C λ simultaneously will be called the basic set of the pencil and denoted by B(C). For every P ∈ γ o := γ \ B(C) the involution permuting the two complex points of intersection C λ ∩ L P for each λ is a well-defined real projective involution σ P : L P → L P . This yields a dual billiard on γ o , which will be called dual billiard of conical pencil type. It is known to be rationally integrable with a quadratic integral: the ratio of quadratic polynomials vanishing on some two given conics of the pencil. Definition 1.15 Two dual billiard structures on two (germs of) curves γ 1 , γ 2 in RP 2 are real-projective equivalent, if there exists a projective trans-formation RP 2 → RP 2 sending γ 1 to γ 2 and transforming one structure to the other one. (Projective equivalence preserves rational integrability.) Real-projective equivalence of projective billiards is defined analogously.

The main result of the paper is the next theorem stating that for every rationally integrable dual billiard the underlying curve is a conic, the dual billiard structure extends to the conic punctured in at most four points, and classifying rationally integrable dual billiards on punctured conic. Unexpectedly, there are infinitely many exotic, non-pencil rationally integrable dual billiards on punctured conic, with integrals of arbitrarily high degrees.

Theorem 1.16 Let γ ⊂ R 2 ⊂ RP 2 be a C 4 -smooth non-linear germ of curve equipped with a rationally integrable dual billiard structure. Then γ is a conic, and the dual billiard structure has one of the three following types (up to real-projective equivalence):

1) The dual billiard is of conical pencil type and has a quadratic integral.

2) There exists an affine chart R 2 z,w ⊂ RP 2 in which γ = {w = z 2 } and such that for every P = (z 0 , w 0 ) ∈ γ the involution σ P : L P → L P is given by one of the following formulas: a) In the coordinate

ζ := z z 0 σ P : ζ → η ρ (ζ) := (ρ -1)ζ -(ρ -2) ρζ -(ρ -1) , ρ = 2 - 2 2N + 1 , or ρ = 2 - 1 N + 1 for some N ∈ N. (1.1) b) In the coordinate u := z -z 0 σ P : u → - u 1 + f (z 0 )u , (1.2) 
f = f b1 (z) := 5z -3 2z(z -1) (type 2b1)), or f = f b2 (z) := 3z z 2 + 1 (type 2b2)).
(1.3) c) In the above coordinate u the involution σ P takes the form (1.2) with

f = f c1 (z) := 4z 2 z 3 -1 (type 2c1)), or f = f c2 (z) := 8z -4 3z(z -1)
(type 2c2)).

(1.4) d) In the above coordinate u the involution σ P takes the form (1.2) with

f = f d (z) = 4 3z + 1 z -1 = 7z -4 3z(z -1)
(type 2d).

(1.5)

Addendum to Theorem 1.16. Every dual billiard structure on γ of type 2a) has a rational first integral R(z, w) of the form

R(z, w) = (w -z 2 ) 2N +1 N j=1 (w -c j z 2 ) 2 , c j = - 4j(2N + 1 -j) (2N + 1 -2j) 2 , for ρ = 2 - 2 2N + 1 ; (1.6) R(z, w) = (w -z 2 ) N +1 z N j=1 (w -c j z 2 ) , c j = - j(2N + 2 -j) (N + 1 -j) 2 , for ρ = 2 - 1 N + 1
.

(1.7) The dual billiards of types 2b1) and 2b2) have respectively the integrals

R b1 (z, w) = (w -z 2 ) 2 (w + 3z 2 )(z -1)(z -w) , (1.8) 
R b2 (z, w) = (w -z 2 ) 2 (z 2 + w 2 + w + 1)(z 2 + 1)
.

(1.9)

The dual billiards of types 2c1), 2c2) have respectively the integrals

R c1 (z, w) = (w -z 2 ) 3 (1 + w 3 -2zw) 2 , (1.10) 
R c2 (z, w) = (w -z 2 ) 3 (8z 3 -8z 2 w -8z 2 -w 2 -w + 10zw) 2 .
(1.11)

The dual billiard of type 2d) has the integral

R d (z, w) = (w -z 2 ) 3 (w + 8z 2 )(z -1)(w + 8z 2 + 4w 2 + 5wz 2 -14zw -4z 3 )
.

(1.12)

We prove the following theorem, which is a unifying complex version of Theorems 1.11, 1.16. To state it, let us introduce the following definition. Definition 1.17 Consider a regular germ of holomorphic curve γ ⊂ CP 2 at a point O. A complex (holomorphic or not) dual billiard on γ is a germ of (holomorphic or not) family of complex projective involutions σ P : L P → L P , P ∈ γ, acting on complex projective tangent lines L P to γ at P and fixing P . A complex dual billiard on γ is said to be rationally integrable, if there exists a non-constant complex rational function R on CP 2 such that for every P ∈ γ the restriction R| L P is σ P -invariant: R • σ P = R on L P . The definition of complex-projective equivalent complex dual billiards repeats the definition of real-projective equivalent ones with change of real projective transformations RP 2 → RP 2 to complex ones acting on CP 2 . Theorem 1.18 Every regular germ of holomorphic curve in CP 2 (different from a straight line) equipped with a rationally integrable complex dual billiard structure is a conic. Up to complex-projective equivalence, the corresponding billiard structure has one of the types 1), 2a), 2b1), 2c1), 2d) listed in Theorem 1.16, with a rational integral as in its addendum. (Here the coordinates (z, w) as in the addendum are complex affine coordinates.)

Addendum to Theorem 1. [START_REF] Delshams | On Birkoff 's [Birkhoff 's] conjecture about convex billiards[END_REF] The billiards of types 2b1), 2b2), see (1.3), are complex-projectively equivalent, and so are the billiards of types 2c1) and 2c2). For every g = b, c there exists a complex projective equivalence between the billiards 2g1), 2g2) that sends the integral R g1 of the former, see (1.8), (1.10) (treated as a rational function on CP 2 [z:w:t] ⊃ C 2 z,w = {t = 1}), to the integral R g2 of the latter, see (1.9), (1.11), up to constant factor.

Classification of rationally 0-homogeneously integrable projective billiards with smooth connected boundary

Let Ω ⊂ R 2 x 1 ,x 2 be a domain with smooth boundary ∂Ω equipped with a projective billiard structure (transverse line field). The projective billiard flow (introduced in [START_REF] Tabachnikov | Introducing projective billiards[END_REF]) acts on T R 2 | Ω analogously to the classical case of Euclidean billiards. Given a point (Q [START_REF] Dragović | Integrable billiards and quadrics[END_REF] The flow in a Euclidean planar billiard always has a trivial first integral ||v|| 2 . But it is not a first integral in a generic projective billiard. It is a well-known folklore fact that Birkhoff integrability of a Euclidean planar billiard with strictly convex closed boundary is equivalent to the existence of a non-trivial first integral of the billiard flow independent with ||v|| 2 on a neighborhood of the unit tangent bundle to

, v) ∈ T R 2 , Q ∈ Ω, v = (v 1 , v 2 ) ∈ T Q R 2 ,
∂Ω in T R 2 | Ω .
Billiard flows in space forms of constant curvature and their integrability were studied by many mathematicians, including A.P.Veselov [START_REF] Veselov | Integrable systems with discrete time, and difference operators[END_REF][START_REF] Veselov | Confocal surfaces and integrable billiards on the sphere and in the Lobachevsky space[END_REF], S.V.Bolotin [START_REF] Bolotin | Integrable Birkhoff billiards[END_REF][START_REF] Bolotin | Integrable billiards on surfaces of constant curvature[END_REF] (both in any dimension), M.Bialy and A.E.Mironov [START_REF] Bialy | Angular billiard and algebraic Birkhoff conjecture[END_REF][START_REF] Bialy | Algebraic Birkhoff conjecture for billiards on Sphere and Hyperbolic plane[END_REF][START_REF] Bialy | On fourth-degree polynomial integrals of the Birkhoff billiard[END_REF][START_REF] Bialy | Algebraic non-integrability of magnetic billiards[END_REF][START_REF] Bialy | A survey on polynomial in momenta integrals for billiard problems[END_REF], the author [START_REF] Glutsyuk | On two-dimensional polynomially integrable billiards on surfaces of constant curvature[END_REF][START_REF] Glutsyuk | On polynomially integrable Birkhoff billiards on surfaces of constant curvature[END_REF] and others. A Euclidean planar billiard is called polynomially integrable, if its flow admits a first integral that is polynomial in the velocity v whose restriction to the unit velocity hypersurface {||v|| = 1} is non-constant [START_REF] Bolotin | Integrable Birkhoff billiards[END_REF][START_REF] Bolotin | Integrable billiards on surfaces of constant curvature[END_REF][START_REF] Kozlov | A genetic introduction to the dynamics of systems with impacts[END_REF][START_REF] Bialy | Angular billiard and algebraic Birkhoff conjecture[END_REF], [31, definition 1.1]. S.V.Bolotin suggested the polynomial version of Birkhoff Conjecture stating that if a billiard in a strictly convex bounded planar domain with C 2 -smooth boundary is polynomially integrable, then the billiard boundary is an ellipse, together with its versions on the sphere and on the hyperbolic plane. Now this is a theorem: a joint result of M.Bialy, A.E.Mironov and the author of the present paper [START_REF] Bialy | Angular billiard and algebraic Birkhoff conjecture[END_REF][START_REF] Bialy | Algebraic Birkhoff conjecture for billiards on Sphere and Hyperbolic plane[END_REF][START_REF] Glutsyuk | On two-dimensional polynomially integrable billiards on surfaces of constant curvature[END_REF][START_REF] Glutsyuk | On polynomially integrable Birkhoff billiards on surfaces of constant curvature[END_REF]. Here we present a version of this result for rationally integrable projective billiard flows, see the following definition.

All the results of this subsection will be proved in Section 9.

Definition 1.20 A planar projective billiard is rationally 0-homogeneously integrable, if its flow admits a non-constant first integral I that is a rational homogeneous function of the velocity with numerator and denominator having the same degrees (called a rational 0-homogeneous integral):

I(Q, v) = I 1,Q (v) I 2,Q (v) ; I 1,Q (v), I 2,Q (v) are homogeneous polynomials, deg I 1,Q = deg I 2,Q .
Here we consider that the degrees deg I j,Q (v) are uniformly bounded.

Example 1.21 It is known that for every polynomially integrable planar billiard the polynomial integral I Q (v) can be chosen homogeneous of even degree 2n, see [START_REF] Bolotin | Integrable Birkhoff billiards[END_REF], [15, p.118; proposition 2 and its proof on p.119], [37, chapter 5, section 3, proposition 5]. Then the rational function

Ψ(Q, v) := I Q (v) ||v|| 2n
is a rational 0-homogeneous integral of the billiard. Thus, every polynomially integrable Euclidean planar billiard is rationally 0-homogeneously integrable. This also holds for billiards on the sphere and the hyperbolic plane.

Theorem 1.22 Let a projective billiard in a strictly convex bounded domain Ω ⊂ R 2 with C 4 -smooth boundary be defined by a continuous transversal line field on ∂Ω and be rationally 0-homogeneously integrable. Then its boundary is a conic, and the projective billiard is a space form billiard (see Definition 1.4).

Theorem 1.26 stated below extends Theorem 1.22 to germs of planar projective billiards. Each of them is a germ of C 4 -smooth curve C equipped with a transversal line field N . Here C is not necessarily convex. We choose a side from the curve C and a simply connected domain U adjacent to C from the chosen side. Let Q ∈ U and v ∈ T Q R 2 be such that the ray issued from the point Q in the direction of the vector v intersects C, and the distance of the point Q to their first intersection point be equal to τ 0 ||v||, τ 0 > 0. Then for t 0 > τ 0 close enough to τ 0 the projective billiard flow maps in times τ ∈ (0, t 0 ) are well-defined on (Q, P ). As before, we say that a germ of projective billiard thus defined is rationally 0-homogeneously integrable, if it admits a first integral rational and 0-homogeneous in v on T R 2 | U for some U (small enough) whose degree is uniformly bounded in Q ∈ U .

Before the statement of Theorem 1.26 let us state two preparatory propositions: the first saying that integrability is independent on choice of side; the second reducing classification of germs of integrable projective billiards to classification of germs of integrable dual billiards given by Theorem 1.16. To do this, following S.V.Bolotin [START_REF] Bolotin | Integrable billiards on surfaces of constant curvature[END_REF], let us identify the ambient plane R 2 of a projective billiard with the plane {x 3 = 1} in the Euclidean space R 3

x 1 ,x 2 ,x 3 and represent a point x = (x 1 , x 2 ) ∈ R 2 and a vector v = (v 1 , v 2 ) ∈ T x R 2 by the vectors r = (x 1 , x 2 , 1), v = (v 1 , v 2 , 0) ∈ R 3 .
Proposition 1.23 1) Let a germ of projective billiard in R 2 x 1 ,x 2 with reflection from a C 2 -smooth germ of curve C (or a global planar projective billiard in a connected domain with C 2 -smooth boundary) be rationally 0homogeneously integrable. Then the rational 0-homogeneous integral can be chosen as a rational 0-homogeneous function of the moment vector M :

M = M (r, v) := [r, v] = (-v 2 , v 1 , ∆), ∆ = ∆(x, v) := x 1 v 2 -x 2 v 1 . (1.13)
2) The property of a projective billiard germ to be rationally 0-homogeneously integrable depends only on the germ of curve with transversal line field and does not depend on the choice of side. Proposition 1.24 A planar projective billiard with C 2 -smooth boundary is rationally 0-homogeneously integrable, if and only if its dual billiard is rationally integrable. If R is a rational integral of the dual billiard, written as a 0-homogeneous rational function in homogeneous coordinates on the ambient projective plane, then R([r, v]) is a 0-homogeneous rational integral of the projective billiard.

Remark 1.25 Versions of Propositions 1.23, 1.24 for polynomially integrable billiards on surfaces of constant curvature were earlier proved respectively in the paper [START_REF] Bolotin | Integrable billiards on surfaces of constant curvature[END_REF] by S.V.Bolotin (Proposition 1.23) and in two joint papers by M.Bialy and A.E.Mironov [START_REF] Bialy | Angular billiard and algebraic Birkhoff conjecture[END_REF][START_REF] Bialy | Algebraic Birkhoff conjecture for billiards on Sphere and Hyperbolic plane[END_REF] (Proposition 1.24, see also [31, theorem 2.8]).

Theorem 1.26 Let C ⊂ R 2 x 1 ,
x 2 be a non-linear C 4 -smooth germ of curve equipped with a transversal line field N . Let the corresponding germ of projective billiard be 0-homogeneously rationally integrable. Then C is a conic; the line field N extends to a global analytic transversal line field on the whole conic C punctured in at most four points; the corresponding projective billiard has one of the following types up to projective equivalence.

1) A space form billiard whose matrix can be chosen A = diag(1, 1, -1).

2)

C = {x 2 = x 2 1 } ⊂ R 2 x 1 ,
x 2 ⊂ RP 2 , and the line field N is directed by one of the following vector fields at points of the conic C:

2a) ( ẋ1 , ẋ2 ) = (ρ, 2(ρ -2)x 1 ), ρ = 2 - 2 2N + 1 (case 2a1), or ρ = 2 - 1 N + 1 (case 2a2), N ∈ N, the vector field 2a) has quadratic first integral Q ρ (x 1 , x 2 ) := ρx 2 -(ρ -2)x 2 1 . 2b1) ( ẋ1 , ẋ2 ) = (5x 1 + 3, 2(x 2 -x 1 )), 2b2) ( ẋ1 , ẋ2 ) = (3x 1 , 2x 2 -4), 2c1) ( ẋ1 , ẋ2 ) = (x 2 , x 1 x 2 -1), 2c2) ( ẋ1 , ẋ2 ) = (2x 1 + 1, x 2 -x 1 ). 2d) ( ẋ1 , ẋ2 ) = (7x 1 + 4, 2x 2 -4x 1 ).
Addendum to Theorem 1.26. The projective billiards from Theorem 1.26 have the following 0-homogeneous rational integrals:

Case 1): A ratio of two homogeneous quadratic polynomials in (v 1 , v 2 , ∆),

∆ := x 1 v 2 -x 2 v 1 . Case 2a1), ρ = 2 -2 2N +1 : Ψ 2a1 (x 1 , x 2 , v 1 , v 2 ) := (4v 1 ∆ -v 2 2 ) 2N +1 v 2 1 N j=1 (4v 1 ∆ -c j v 2 2 ) 2 . (1.14) Case 2a2), ρ = 2 -1 N +1 : Ψ 2a2 (x 1 , x 2 , v 1 , v 2 ) = (4v 1 ∆ -v 2 2 ) N +1 v 1 v 2 N j=1 (4v 1 ∆ -c j v 2 2 )
.

(1.15)

The c j in (1.14), (1.15) are the same, as in (1.6) and (1.7) respectively. Case 2b1):

Ψ 2b1 (x 1 , x 2 , v 1 , v 2 ) = (4v 1 ∆ -v 2 2 ) 2 (4v 1 ∆ + 3v 2 2 )(2v 1 + v 2 )(2∆ + v 2 )
.

(1.16)

Case 2b2):

Ψ 2b2 (x 1 , x 2 , v 1 , v 2 ) = (4v 1 ∆ -v 2 2 ) 2 (v 2 2 + 4∆ 2 + 4v 1 ∆ + 4v 2 1 )(v 2 2 + 4v 2 1 ) 
.

(1.17)

Case 2c1):

Ψ 2c1 (x 1 , x 2 , v 1 , v 2 ) = (4v 1 ∆ -v 2 2 ) 3 (v 3 1 + ∆ 3 + v 1 v 2 ∆) 2 .
(1.18)

Case 2c2):

Ψ 2c2 (x 1 , x 2 , v 1 , v 2 ) = (4v 1 ∆ -v 2 2 ) 3 (v 3 2 + 2v 2 2 v 1 + (v 2 1 + 2v 2 2 + 5v 1 v 2 )∆ + v 1 ∆ 2 ) 2 . (1.19) Case 2d): Ψ 2d (x 1 , x 2 , v 1 , v 2 ) = (4v 1 ∆ -v 2 2 ) 3 (v 1 ∆ + 2v 2 2 )(2v 1 + v 2 )(8v 1 v 2 2 + 2v 3 2 + (4v 2 1 + 5v 2 2 + 28v 1 v 2 )∆ + 16v 1 ∆ 2 )
.

(1.20) In Subsection 9.3 we prove the following characterization of space form billiards on conics as projective billiards on conics with conical caustics. Proposition 1.27 A transversal line field N on a punctured planar regular conic C defines a projective billiard that is projectively equivalent to a space form billiard, if and only if there exists a regular conic S = C such that for every Q ∈ C the complexified projective billiard reflection at Q permutes the complex lines through Q tangent to the complexified conic S.

Remark 1.28 The latter permutation condition determines N by S in a unique way. The corresponding projective billiard has a family of conical caustics whose dual conics form a pencil, see [START_REF] Chang | Elliptical billiard systems and the full Poncelet's theorem in n dimensions[END_REF] and [24, subsection 2.3].

Applications to billiards with complex algebraic caustics

Definition 1.29 Let C ⊂ R 2 ⊂ RP 2 be a planar curve equipped with a projective billiard structure. For every Q ∈ C consider the complexification of the billiard reflection involution acting on the space of complex lines through Q. Let S ⊂ CP 2 be an algebraic curve in the complexified ambient projective plane that contains no straight line. We say that S is a complex caustic of the real billiard on C, if for every Q ∈ C each complex projective line tangent to S and passing through Q is reflected by the complexified reflection at Q to a line tangent to S.

Remark 1.30 The usual Euclidean billiard on a strictly convex planar curve C has C as a real caustic: through each its point Q passes the unique tangent line to C, and it is fixed by the reflection. If C is a conic, then its complexification C C is a complex caustic for C for the same reason. But if C is a higher degree algebraic curve, then a priori its complexification C C is not necessarily a complex caustic. In this case through a generic point Q ∈ C passes at least one complex line tangent to C C that does not coincide with its tangent line at Q. To check, whether C C is a complex caustic, one has to check whether the collection of all the complex lines through Q tangent to C C is invariant under the reflection at Q. This is a non-trivial condition on the algebraic curve C.

Open problem. Consider Euclidean billiard on a strictly convex closed planar curve C. Let C be contained in an algebraic curve and have a real caustic contained in an algebraic curve. Is it true that C is a conic? A positive answer would imply the particular case of the Birkhoff Conjecture, when the billiard boundary is contained in an algebraic curve.

We prove the following theorem as an application of results of [START_REF] Glutsyuk | On polynomially integrable Birkhoff billiards on surfaces of constant curvature[END_REF].

Theorem 1.31 Let C ⊂ R 2 be a non-linear C 2 -smooth connected embedded (not necessarily closed, convex or algebraic) curve equipped with the structure of standard Euclidean billiard (with the usual reflection law). Let the latter billiard have a complex algebraic caustic. Then C is a conic.

The next theorem is its analogue for projective billiards. It will be deduced from main results of the present paper.

Theorem 1.32 Let C be a non-linear C 4 -smooth connected embedded planar curve. Let C be equipped with a projective billiard structure having at least two different complex algebraic caustics. Then C is a conic. Theorems 1.31 and 1.32 will be proved in Section 10.

1.4 Sketch of proof of Theorem 1.18 and plan of the paper First we prove algebraicity of a rationally integrable dual billiard. Definition 1.33 A singular holomorphic dual billiard on a holomorphic curve γ ⊂ CP 2 is a holomorphic dual billiard structure on the complement of the curve γ to a discrete subset of points where the corresponding family of involutions σ P : L P → L P does not extend holomorphically. Proposition 1.34 Let a regular non-linear germ of holomorphic curve γ ⊂ CP 2 carry a complex (not necessarily holomorphic) rationally integrable dual billiard structure with a rational integral R. Then 1) R| γ ≡ const, and thus, γ is contained in an irreducible algebraic curve, which will be also denoted by γ; 2) the involution family σ P extends to a singular holomorphic dual billiard structure on the algebraic curve γ with the same rational integral R. Proposition 1.35 Let γ ⊂ R 2 be a regular non-linear C 2 -smooth germ of curve equipped with a dual billiard structure having a rational integral R. Then 1) R| γ ≡ const, and thus, the complex Zariski closure of the curve γ is an algebraic curve in CP 2 ; 2) the dual billiard structure extends to a singular holomorphic dual billiard structure on each its non-linear irreducible component, with the same integral R.

Parts 1), 2) of these propositions will be proved in Subsections 2.1, 2.2. Recall that each (may be singular) germ of analytic curve in CP 2 is a finite union of its irreducible components, which are locally bijectively holomorphically parametrized germs called local branches. Definition 1.36 [31, definition 3.3] Let b be an irreducible (i.e., parametrized) non-linear germ of analytic curve at a point O ∈ CP 2 . An affine chart (z, w) centered at O such that the z-axis is tangent to b at O is called adapted to b. In an adapted chart the germ b can be holomorphically bijectively parametrized by a complex parameter t from a disk centered at 0 as follows: The main part of the proof of Theorem 1.18 is the proof of the following theorem on possible types of singularities and local branches of the curve γ.

t → (t q b , c b t p b (1 + o(1))), as t → 0; q b , p b ∈ N, 1 ≤ q b < p b , c b = 0, q b = 1, if
Theorem 1.37 Let an irreducible complex algebraic curve γ ⊂ CP 2 carry a structure of rationally integrable singular holomorphic dual billiard. Then the following statements hold:

(i) the curve γ has no inflection points, and at each its singular point (if any) all its local branches are quadratic;

(ii) there exists at most unique singular point of the curve γ where there exists at least one singular local branch. Theorem 1.38 Every complex irreducible projective planar algebraic curve satisfying the above statements (i) and (ii) is a conic.

The proof of Theorem 1.38 will be given in Section 6. It is based on E.Shustin's generalized Plucker formula [START_REF] Shustin | On invariants of singular points of algebraic curves[END_REF], dealing with intersection of an irreducible algebraic curve with its Hessian curve. It gives formula for the contributions of singular and inflection points to their intersection index.

Theorems 1.37, 1.38 together with Proposition 1.34 immediately imply that every germ of holomorphic curve γ carrying a rationally integrable complex dual billiard structure is a germ of a conic. Afterwards in Section 7 we classify the rationally integrable dual billiard structures on a conic. This will finish the proof of Theorem 1.18. Then in Section 8 we classify the real forms of the complex dual billiards from Theorem 1.18 and finish the proof of Theorems 1.16, 1.11.

The proof of Theorem 1.37 is based on studying the Hessian of appropriately normalized rational integral: the Hessian introduced by S.Tabachnikov, who used it to study polynomially integrable outer billiards [START_REF] Tabachnikov | On algebraically integrable outer billiards[END_REF]. This idea was further elaborated and used by M.Bialy and A.Mironov in a series of papers on Bolotin's Polynomial Birkhoff Conjecture and its analogues for magnetic billiards [START_REF] Bialy | Angular billiard and algebraic Birkhoff conjecture[END_REF][START_REF] Bialy | Algebraic Birkhoff conjecture for billiards on Sphere and Hyperbolic plane[END_REF][START_REF] Bialy | Algebraic non-integrability of magnetic billiards[END_REF]. It was also used in the previous paper by the author and E.Shustin on polynomially integrable outer billiards [START_REF] Glutsyuk | On polynomially integrable planar outer billiards and curves with symmetry property[END_REF] and in the author's recent paper on S.V.Bolotin's Polynomial Birkhoff Conjecture [START_REF] Glutsyuk | On polynomially integrable Birkhoff billiards on surfaces of constant curvature[END_REF]. The rational integral R being constant along the curve γ (Proposition 1.34), we normalize it to vanish identically on γ. Let f be the irreducible polynomial vanishing on γ in an affine chart

C 2 x 1 ,x 2 ⊂ CP 2 . Then R = f k g 1 , g 1 | γ ≡ 0.
Replacing R by its k-th root G := f g, g := g

1 k

1 , we consider its Hessian

H(G) := ∂ 2 G ∂x 2 1 ∂G ∂x 2 2 -2 ∂ 2 G ∂x 1 ∂x 2 ∂G ∂x 2 ∂G ∂x 1 + ∂ 2 G ∂x 2 2 ∂G ∂x 1 2 .
Its key property is that H(G)| γ = 0 outside singular and inflection points of the curve γ and zeros (poles) of the function g 1 | γ .

Plan of proof of Theorem 1.37.

Step 1 (Subsection 2.2): differential equation on H(G). Given a point P 0 ∈ γ, consider an affine chart (z, w) in which the tangent line L P 0 is not parallel to the w-axis. Then for every P ∈ γ close enough to P 0 the line L P is parametrized by affine coordinate z. The involution σ P : L P → L P is conjugated to the standard involution C θ → C θ , θ → -θ, via a mapping F P : θ → F P (θ) that sends θ to the point in the tangent line L P with z-coordinate z(P ) + θ 1+ψ(P )θ ; ψ(P ) ∈ C is uniquely determined by σ P . Invariance of the function R| L P under the involution σ P is equivalent to statement that the function R • F P (θ) is even. Writing the condition that its cubic Taylor coefficient vanishes (analogously to [START_REF] Tabachnikov | On algebraically integrable outer billiards[END_REF][START_REF] Bialy | Angular billiard and algebraic Birkhoff conjecture[END_REF][START_REF] Bialy | Algebraic Birkhoff conjecture for billiards on Sphere and Hyperbolic plane[END_REF]), we get the differential equation

dH(G)| γ dz (P ) = 6ψ(P )H(G). (1.21) 
We prove equation (1.21) in a more general situation, for an irreducible germ of analytic curve b at a point B equipped with a family of projective involutions σ P : L P → L P , P ∈ b\{B}, admitting a germ R of meromorphic (not necessarily rational) integral. Here f is a local defining function of the germ b, and G, H(G) are defined as above. Relation between meromorphic and rational integrability will be explained in Subsection 2.4.

Step 2 (Subsection 2.3): formula relating asymptotics of H(G) and σ P . We fix a potential singular (inflection) point B ∈ γ, a local branch b of the curve γ at B (whose quadraticity we have to prove) and affine coordinates (z, w) centered at B and adapted to b. The function H(G) being a linear combination of products of rational powers of holomorphic functions at B, we get that H(G)| b = αz d (1 + o(1)), as z → 0, for some d ∈ Q and α = 0. This together with equation (1.21) implies that

ψ| b\{B} = 1 z d 6 + o(1) = - 1 z ρ 2 + o(1) , as z → 0; ρ = - d 3 ∈ Q.
We then say that the involution family σ P is meromorphic with pole at B of order at most one with residue ρ. This means exactly that in the coordinate ζ := z z(P ) on L P the involution σ P converges to

η ρ (ζ) := (ρ -1)ζ -(ρ -2) ρz -(ρ -1)
, as P → B.

Thus, the above number ρ in the limit and H(G) are related by the formulas

H(G)| b = αz d (1 + o(1)), α = 0, ρ = - d 3 .
(1.22)

Step 3 (Section 3) Consider the projective Puiseux exponent r of the local branch b, and let us represent it as an irreducible fraction:

r = p q , p, q ∈ N, (p, q) = 1 : p b = ps b , q b = qs b , s b = G.C.D(p b , q b ). (1.23)
For given p, q as above and ρ ∈ C we introduce the (p, q; ρ)-billiard: the curve γ p,q := {w q = z p } ⊂ C 2 equipped with the dual billiard structure given by the family of involutions σ P : L P → L P , P ∈ γ p,q ; σ P : ζ → η ρ (ζ) in the coordinate ζ for all P.

We show (Theorem 3.3) that if a germ of family of involutions σ P : L P → L P defined on a punctured irreducible germ of holomorphic curve b with Puiseux exponent r = p q admits a meromorphic first integral, then the corresponding (p, q; ρ)-billiard (with ρ given by (1.22)) admits a (p, q)-quasihomogeneous rational first integral. To do this, we consider the lower (p, q)-quasihomogeneous parts in the numerator and the denominator of the meromorphic integral. We show that their ratio is an integral of the (p, q; ρ)-billiard. If it is nonconstant, then we get a non-trivial integral. The opposite case, when the latter lower (p, q)-quasihomogeneous parts are the same up to constant factor, will be reduced to the previous one by replacing the denominator by appropriate linear combination of the numerator and denominator.

Step 4 (Section 4). Classification of quasihomogeneously rationally integrable (p, q; ρ)-billiards (Theorem 4.1). Our first goal is to show that the underlying curve γ p,q is a conic: p = 2, q = 1. In Subsection 4.1 we treat the case of polynomial integral. To treat the case of non-polynomial rational integral, we first show (in Subsection 4.2) that one can normalize it to be a so-called η ρ -primitive quasihomogeneous rational function R = vanishing on γ p,q . In particular, this means that each P j is a product of prime factors w q -c j z p , c j = 0 (and may be z, w) in power 1, including the factor w q -z p . Then in Subsection 4.3 we prove two formulas (4.12), (4.14) expressing ρ via the powers m 1 , m 2 , the number of factors w q -c j z p and the powers of z, w in P j . The first formula (4.12) will be deduced from (1.22). The second formula (4.14) is obtained as follows. Restricting the polynomial P 1 from the numerator to the line L P , P = (1, 1), and dividing it by appropriate power (z -ρ-2 ρ ) d yields a η ρ -invariant rational function in the coordinate z with numerator divisible by (z -1) 2 . Existence of such a power d will follow from the fact that ρ-2 ρ is a fixed point of the involution η ρ . Afterwards we replace the numerator P 1 by the difference P 1 -λ(z -ρ-2 ρ ) d with small λ; we get a family of η ρ -invariant rational functions depending on the parameter λ, which has a pair of roots ζ ± (λ) converging to 1, as λ → 0. Comparing the asymptotics of the roots ζ ± (λ) and taking into account that they should be permuted by the involution η ρ , we get formula (4.14). The main miracle in the proof of Theorem 4.1 (Subsection 4.4) is that combining First and Second Formulas (4.12), (4.14) yields that p = 2, q = 1 and the curve γ p,q is the conic {w = z 2 }, and it also yields the constraints on ρ given by Theorem 4.1: the necessary condition for quasihomogeneous integrability. Then we prove its sufficience by constructing integrals (Subsection 4.5).

Steps 3 and 4 together imply Statement (i) of Theorem 1.37: each local branch of the curve γ is quadratic. They also yield a list of a priori possible values of the residue ρ.

Step 5. Proof of statement (ii) of Theorem 1.37: uniqueness of singular point of the curve γ with a singular local branch. To do this, we prove Theorem 5.1 stating that if a quadratic local branch b at a point O is singular, then the integral R is constant along its projective tangent line L O , and the punctured line L O \ {O} is a regular leaf of the foliation R = const. This implies that if γ had two distinct points with singular local branches, then the corresponding tangent lines would intersect, and we get a contradiction with regularity of foliation at the intersection point. The proof of Theorem 5.1 given in Subsection 5.2 is partly based on Theorem 5.6 (Subsection 5.1), which implies that if there exists a singular quadratic local branch, then its self-contact order is expressed via the corresponding residue ρ by an explicit formula (5.3) implying that ρ > r = 2. Once having inequality ρ > r, we deduce the statements of Theorem 5.1 analogously to [31, subsection 4.6, proof of theorem 4.24]. Step 5 finishes the proof of Theorem 1.37.

In Section 6 we prove Theorem 1.38. Theorems 1.37 and 1.38 together imply that γ is a conic. Afterwards in Section 7 we classify singular holomorphic rationally integrable dual billiards on a complex conic. The list of a priori possible residues ρ at singularities is given by Theorem 4.1, Step 4. In Subsection 7.1 we show that the sum of residues should be equal to four (a version of residue formula for singular holomorphic dual billiard structures).

Afterwards we consider all the a priori possible residue configurations given by these constraints and show that all of them are indeed realized by rationally integrable dual billiards. This will finish the proof of Theorem 1.18. Then Theorems 1.16, 1.11 are proved in Section 8 by describing different real forms of thus classified complex integrable dual billiards. Theorems 1.22 and 1.26 classifying integrable projective billiards (which are dual to the latter real forms) will be proved in Section 9. Theorems 1.31 and 1.32 on billiards with complex caustics will be proved in Section 10.

Historical remarks

In 1973 V.Lazutkin [START_REF] Lazutkin | The existence of caustics for a billiard problem in a convex domain[END_REF] proved that every strictly convex bounded planar billiard with sufficiently smooth boundary has an infinite number (continuum) of closed caustics. The Birkhoff Conjecture was studied by many mathematicians. In 1950 H.Poritsky [START_REF] Poritsky | The billiard ball problem on a table with a convex boundary -an illustrative dynamical problem[END_REF] (and later E.Amiran [START_REF] Amiran | Caustics and evolutes for convex planar domains[END_REF] in 1988) proved it under the additional assumption that the billiard in each closed caustic near the boundary has the same closed caustics, as the initial billiard. In 1993 M.Bialy [START_REF] Bialy | Convex billiards and a theorem by E. Hopf[END_REF] proved that if the phase cylinder of the billiard in a domain Ω is foliated by non-contractible continuous closed curves which are invariant under the billiard map, then the boundary ∂Ω is a circle. (Another proof of the same result was later obtained in [START_REF] Wojtkowski | Two applications of Jacobi fields to the billiard ball problem[END_REF].) In 2012 Bialy proved a similar result for billiards on the constant curvature surfaces [START_REF] Bialy | Hopf rigidity for convex billiards on the hemisphere and hyperbolic plane[END_REF] and also for magnetic billiards [START_REF] Bialy | On totally integrable magnetic billiards on constant curvature surface[END_REF]. In 1995 A.Delshams and R.Ramirez-Ros suggested an approach to prove splitting of separatrices for generic perturbation of ellipse [START_REF] Delshams | On Birkoff 's [Birkhoff 's] conjecture about convex billiards[END_REF]. D.V.Treschev [START_REF] Treschev | Billiard map and rigid rotation[END_REF] made a numerical experience indicating that there should exist analytic locally integrable billiards, with the billiard reflection map having a two-periodic point where the germ of its second iterate is analytically conjugated to a disk rotation. See also [START_REF] Treschev | On a Conjugacy Problem in Billiard Dynamics[END_REF] for more detail and [START_REF] Treschev | A locally integrable multi-dimensional billiard system[END_REF] for a multi-dimensional version. A similar effect for a ball rolling on a vertical cylinder under the gravitation force was discovered in [START_REF] Advis-Gaete | Golfer's dilemma[END_REF]. Recently V.Kaloshin and A.Sorrentino have proved a local version of the Birkhoff Conjecture [START_REF] Kaloshin | On local Birkhoff Conjecture for convex billiards[END_REF]: an integrable deformation of an ellipse is an ellipse. Very recently M.Bialy and A.E.Mironov [START_REF] Bialy | The Birkhoff-Poritsky conjecture for centrallysymmetric billiard tables[END_REF] proved the Birkhoff Conjecture for centrally-symmetric billiards having a family of closed caustics that extends up to a caustic tangent to four-periodic orbits. For a dynamical entropic version of the Birkhoff Conjecture and related results see [START_REF] Marco | Entropy of billiard maps and a dynamical version of the Birkhoff conjecture[END_REF]. For a survey on the Birkhoff Conjecture and results see [START_REF] Kaloshin | On local Birkhoff Conjecture for convex billiards[END_REF][START_REF] Kaloshin | On the integrability of Birkhoff billiards[END_REF][START_REF] Bialy | The Birkhoff-Poritsky conjecture for centrallysymmetric billiard tables[END_REF] and references therein.

Recently it was shown by the author [START_REF] Glusyuk | On infinitely many foliations by caustics in strictly convex non-closed billiards[END_REF] that every strictly convex C ∞smooth non-closed planar curve has an adjacent domain from the convex side that admits an infinite number (continuum) of distinct C ∞ -smooth foliations by non-closed caustics (with the boundary being a leaf).

A.P.Veselov proved a series of complete integrability results for billiards bounded by confocal quadrics in space forms of any dimension and described billiard orbits there in terms of a shift of the Jacobi variety corresponding to an appropriate hyperelliptic curve [START_REF] Veselov | Integrable systems with discrete time, and difference operators[END_REF][START_REF] Veselov | Confocal surfaces and integrable billiards on the sphere and in the Lobachevsky space[END_REF]. Dynamics in (not necessarily convex) billiards of this type was also studied in [START_REF] Dragović | Integrable billiards and quadrics[END_REF][START_REF] Dragović | Bicentennial of the great Poncelet theorem (1813-2013): current advances[END_REF][START_REF] Dragović | Pseudo-integrable billiards and arithmetic dynamics[END_REF][START_REF] Dragović | Periods of pseudo-integrable billiards[END_REF][START_REF] Dragović | Pseudo-integrable billiards and double reflection nets[END_REF].

The Polynomial Birkhoff Conjecture together with its generalization to surfaces of constant curvature was stated by S.V.Bolotin and partially studied by himself, see [START_REF] Bolotin | Integrable Birkhoff billiards[END_REF], [15, section 4], and by M.Bialy and A.E.Mironov [START_REF] Bialy | On fourth-degree polynomial integrals of the Birkhoff billiard[END_REF]. Its complete solution is a joint result of M.Bialy, A.E.Mironov and the author given in the series of papers [START_REF] Bialy | Angular billiard and algebraic Birkhoff conjecture[END_REF][START_REF] Bialy | Algebraic Birkhoff conjecture for billiards on Sphere and Hyperbolic plane[END_REF][START_REF] Glutsyuk | On two-dimensional polynomially integrable billiards on surfaces of constant curvature[END_REF][START_REF] Glutsyuk | On polynomially integrable Birkhoff billiards on surfaces of constant curvature[END_REF].

For a survey on the Polynomial Birkhoff Conjecture, its version for magnetic billiards and related results see the above-mentioned papers [START_REF] Bialy | Angular billiard and algebraic Birkhoff conjecture[END_REF][START_REF] Bialy | Algebraic Birkhoff conjecture for billiards on Sphere and Hyperbolic plane[END_REF] by M.Bialy and A.E.Mironov, [START_REF] Bialy | Algebraic non-integrability of magnetic billiards[END_REF][START_REF] Bialy | A survey on polynomial in momenta integrals for billiard problems[END_REF] and references therein.

The analogues of the Birkhoff Conjecture for outer and dual billiards was stated by S.Tabachnikov [START_REF] Tabachnikov | On algebraically integrable outer billiards[END_REF] in 2008. Its polynomial version for outer billiards was stated by Tabachnikov and proved by himself under genericity assumptions in the same paper [START_REF] Tabachnikov | On algebraically integrable outer billiards[END_REF], and solved completely in the joint work of the author of the present paper with E.I.Shustin [START_REF] Glutsyuk | On polynomially integrable planar outer billiards and curves with symmetry property[END_REF].

In 1995 M.Berger have shown that in Euclidean space R n with n ≥ 3 the only hypersurfaces admitting caustics are quadrics [START_REF] Berger | Seules les quadriques admettent des caustiques[END_REF]. In 2020 this result was extended to space forms of constant curvature of dimension greater than two by the author of the present paper [START_REF] Glutsyuk | On commuting billiards in higher-dimensional spaces of constant curvature[END_REF].

In 1997 S.Tabachnikov [START_REF] Tabachnikov | Introducing projective billiards[END_REF] introduced projective billiards and proved a criterium and a necessary condition for a planar projective billiard to preserve an area form. He had shown that if a projective billiard on circle preserves an area form that is smooth up to the boundary of the phase cylinder, then the billiard is integrable.

A series of results on projective billiards with open sets of n-periodic orbits (classification for n = 3 and new examples for higher n) were obtained by C.Fierobe [START_REF] Fierobe | On projective billiards with open subsets of triangular orbits[END_REF][START_REF] Fierobe | Examples of reflective projective billiards and outer ghost billiards[END_REF][START_REF] Fierobe | Projective and complex billiards, periodic orbits and Pfaffian systems[END_REF]. Let γ ⊂ CP 2 be a regular germ of holomorphic curve. For every P ∈ γ the restriction R| L P is invariant under an involution σ P fixing P . In appropriate affine coordinate θ on L P centered at P the latter involution takes the form θ → -θ. Therefore, the restriction R| L P has zero derivative at P , since an even function has zero derivative at the origin. Finally, the rational function R has zero derivative along any vector tangent to γ. Hence, it is constant on γ, and the germ of curve γ is algebraic. This proof remains valid in the case, when γ is a real germ. Parts 1) of Propositions 1.34 and 1.35 are proved.

Preliminaries

For completeness of presentation (to state some results in full generality), we will deal with the following notion of meromorphically integrable dual billiard structure and meromorphic version of Proposition 1.34.

Definition 2.1 Let b be a non-linear (may be singular) irreducible germ of analytic curve in C 2 at a point B, and let σ P : L P → L P be a family of projective involutions parametrized by P ∈ b \ {B}. The family σ P is called a meromorphically integrable (singular) dual billiard structure, if there exists a germ of meromorphic function R at B (defined on a neighborhood of the point B in C 2 ), R ≡ const, such that the restrictions R| L P are σ P -invariant: there exists a neighborhood U = U (B) ⊂ C 2 such that for every P ∈ b ∩ U , P = B, and every x, y ∈ L P ∩ U such that σ P (x) = y one has R(x) = R(y).

Proposition 2.2 In the conditions of the above definition 1) R|

b ≡ const; 2) the family σ P is holomorphic in P ∈ b \ {B} close enough to B.
The proof of the first part of Proposition 2.2 repeats that of Proposition 1.34, part 1). Its second part will be proved in the next subsection.

Later on, in Subsection 2.4 we will show that in many cases meromorphic integrability implies rational integrability.

The Hessian of integral and its differential equation. Singular holomorphic extension of dual billiard structure

Let b be an irreducible germ of holomorphic curve in C 2 x 1 ,x 2 at a point B. Let b \ {B} be equipped with a germ of dual billiard structure having a non-constant meromorphic integral R, see the above definition. Recall that R| b ≡ const, by Proposition 2.2. Without loss of generality we consider that

R| b ≡ 0, adding a constant to R (if R| b ≡ ∞), or replacing R by R -1 (if R| b ≡ ∞).
Let f be an irreducible germ of holomorphic function defining b:

b = {f = 0}.
One has

R = g 1 f k , g 1 is meromorphic, g 1 | b ≡ 0, k ∈ N.
From now on we will work with the k-th root

G = R 1 k = gf, g = g 1 k 1 . (2.1)
For every P ∈ b \ {B} close enough to B each holomorphic branch of the function G on L P is σ P -invariant, since any two its holomorphic branches are obtained one from the other by multiplication by a root of unity.

Recall that the skew gradient of the function G is the vector field

∇ skew G := ( ∂G ∂x 2 , - ∂G ∂x 1 ),
which is tangent to its level curves.

The involution σ P is conjugated to the standard involution

C τ → C τ , τ → -τ , via a transformation Φ P : τ → P + τ 1 + φ(P )τ ∇ skew G(P ), Φ P (0) = P. (2.2) 
The conjugacy is unique up to its pre-composition with a multiplication by constant τ → λτ ; we can normalize it to be of type (2.2) in unique way. The σ P -invariance of the function G is equivalent to the statement that the function ξ(τ

) := G(P + τ 1 + φ(P )τ ∇ skew G(P )) is even, (2.3) 
which holds if and only if the function ξ(τ ) has zero Taylor coefficients at odd powers. The first coefficient vanishes for trivial reason, being derivative of a function G along a vector tangent to its zero level curve.

Recall that the Hessian of the function G is the function

H(G) := ∂ 2 G ∂x 2 1 ∂G ∂x 2 2 -2 ∂ 2 G ∂x 1 ∂x 2 ∂G ∂x 2 ∂G ∂x 1 + ∂ 2 G ∂x 2 2 ∂G ∂x 1 2 . (2.4)
It coincides with the value of its Hessian quadratic form on its skew gradient and also with the second derivative ξ (0), see [START_REF] Tabachnikov | On algebraically integrable outer billiards[END_REF][START_REF] Bialy | Angular billiard and algebraic Birkhoff conjecture[END_REF][START_REF] Bialy | Algebraic Birkhoff conjecture for billiards on Sphere and Hyperbolic plane[END_REF].

Remark 2.3

The Hessian function H(G) was introduced by S.Tabachnikov [START_REF] Tabachnikov | On algebraically integrable outer billiards[END_REF] and used in [START_REF] Tabachnikov | On algebraically integrable outer billiards[END_REF][START_REF] Glutsyuk | On polynomially integrable planar outer billiards and curves with symmetry property[END_REF][START_REF] Bialy | Angular billiard and algebraic Birkhoff conjecture[END_REF][START_REF] Bialy | Algebraic Birkhoff conjecture for billiards on Sphere and Hyperbolic plane[END_REF][START_REF] Glutsyuk | On polynomially integrable Birkhoff billiards on surfaces of constant curvature[END_REF] to classify polynomially integrable Birkhoff and outer planar billiards; see results mentioned in Subsection 1.5. (2.5)

Remark 2.5 Theorems analogous to Theorem 2.4 were stated and proved in [START_REF] Tabachnikov | On algebraically integrable outer billiards[END_REF][START_REF] Bialy | Angular billiard and algebraic Birkhoff conjecture[END_REF][START_REF] Bialy | Algebraic Birkhoff conjecture for billiards on Sphere and Hyperbolic plane[END_REF], and the proofs from loc. cit. remain valid in our case. The proof of Theorem 2.4 given below follows similar arguments.

Proof of Theorem 2.4. The third derivative ξ (τ ) is equal to the third derivative in τ of the function

G(P +ω(τ )W ), W := ∇ skew G(P ), ω(τ ) := τ 1 + φ(P )τ = τ -φ(P )τ 2 +O(τ 3 ),
as τ → 0. The first derivative equals

ξ (τ ) = dG dW (P + ω(τ )W )(1 -2φ(P )τ + O(τ 2 )).
We extend the vector W to a constant vector function (field) by translations.

Here and in what follows the derivative of a function along W means its derivative along the latter constant vector field. For simplicity, in what follows we omit the argument P + ω(τ )W at the derivatives. One has

ξ (τ ) = (-2φ(P ) + O(τ )) dG dW + (1 -2φ(P )τ + O(τ 2 )) 2 d 2 G dW 2 , ξ (τ ) = O(1) dG dW -(2φ(P ) + O(τ ))(1 -2φ(P )τ + O(τ 2 )) d 2 G dW 2 -(4φ(P ) + O(τ )) d 2 G dW 2 + (1 -2φ(P )τ + O(τ 2 )) 3 d 3 G dW 3 .
The value of the third derivative at zero is thus equal to

ξ (0) = d 3 G dW 3 (P ) -6φ(P ) d 2 G dW 2 (P ), (2.6) 
since dG dW (P ) = 0. One has

d 2 G dW 2 (P ) = H(G)(P ), d 3 G dW 3 (P ) = dH(G) d∇ skew G (P ),
by [45, lemma 2, (i)] and since d 3 G dW 3 (P ) is the value at P of the expression

G x 1 x 1 x 1 G 3 x 2 -3G x 1 x 1 x 2 G 2 x 2 G x 1 + 3G x 1 x 2 x 2 G x 2 G 2 x 1 -G x 2 x 2 x 2 G 3 x 1 .
This together with (2.6) implies the statement of the theorem.

2

Let us consider affine coordinates (z, w) such that the tangent line T B b is not parallel to the w-axis. For every P ∈ b close to B the restriction to L P of the coordinate z is an affine coordinate on the projective line L P .

We will deal with the following normalizations of mapping (2.2) and equation (2.5) with respect to the coordinate z. Set

V (P ) = (1, β(P )) := the vector in T P b with unit z -component. (2.7)
The vectors V (P ) form a holomorphic vector field V on b \ {B}. One has

∇ skew G = hV, h : b \ {B} → C is a non-zero function;
(2.8) a priori the function h is multivalued holomorphic on b \ {B} (with a priori possible branching at B). Set θ := h(P )τ, ψ(P ) := φ(P )h -1 (P ).

Let Φ P (τ ) be the mapping from (2.2). Set

F P (θ) := Φ P (h -1 (P )θ) = P + h -1 (P )θ 1 + φ(P )h -1 (P )θ h(P )V (P ) = P + θ 1 + ψ(P )θ V (P ).
(2.9)

Proposition 2.6 The map F P (θ) conjugates the involution σ P with the standard symmetry θ → -θ, and its differential at 0 sends the unit vector ∂ ∂θ to V (P ). One has dH(G) dV (P ) = 6ψ(P )H(G)(P ).

(2.10)

Proof The statements on conjugacy and differential follow by construction. Equation (2.10) is obtained from (2.5) by multiplication by h -1 (P ). 2

We use the following formula for Hessian of product, see [10, theorem 6.1], [11, formulas (16) and [START_REF] Glusyuk | On infinitely many foliations by caustics in strictly convex non-closed billiards[END_REF]]: 

H(f g) = g 3 H(f ) on the set {f = 0}. ( 2 

Asymptotics of degenerating involutions

Here we deal with an irreducible germ b at a point B of analytic curve in C 2 equipped with a meromorphically integrable singular holomorphic dual billiard structure. We study asymptotics of involutions σ P , as P → B.

For every ρ ∈ C we denote by η ρ ∈ PSL 2 (C) the projective involution 

η ρ : C ζ → C ζ , η ρ (ζ) := (ρ -1)ζ -(ρ -2) ρζ -(ρ -1) . ( 2 
ζ := z z(P ) on L P converge in PSL 2 (C) to some involution C ζ → C ζ .
Then the limit involution is equal to η ρ for some ρ, by the above remark. The latter number ρ is called the residue of the billiard structure at B. In the case, when ρ = 0, we say that σ P has pole of order exacly one at B. Remark 2.9 For every meromorphic billiard structure of order at most one the above residue is independent on choice of adapted chart.

Example 2.10 1) In the case, when σ P limits to a well-defined projective involution L B → L B , as P → B (e.g., if σ P extends holomorphically to P = B), we say that the dual billiard structure is regular at B. In this case the involutions σ P written in the above coordinate ζ converge to the symmetry η 0 : ζ → 2 -ζ, and the billiard structure has residue ρ = 0 at B.

2) Consider now the case, when there exists a conic Γ passing through B such that each involution σ P permutes the points of intersection L P ∩ Γ. Let Γ be transversal to b at B. Then σ P converges to the unique involution

η 1 : ζ → 1
ζ fixing 1 and permuting the origin and the infinity: ρ = 1. One of the key statements used in the proof of main results is the following proposition. 

H(G)| b = αz d (1 + o(1)), α = 0.
Then the involution family σ P : L P → L P defining the dual billiard is meromorphic with pole B of order at most one, and its residue ρ is equal to 

ρ = - d 3 . ( 2 
ζ = 1 + θ z(P )(1 + ψ(P )θ)
.

Set ρ = -d 3 , see (2.13). One has

ψ(P ) = 1 z(P ) d 6 + o(1) = 1 z(P ) - ρ 2 + o(1) , as P → B,
by equation (2.10). Therefore,

ζ = 1 + 2θ 2z(P )(1 + o(1)) -ρθ = 2z(P )(1 + o(1)) -(ρ -2)θ 2z(P )(1 + o(1)) -ρθ . (2.14) 
In the coordinate θ the involution σ P is standard: θ → -θ. Therefore, its matrix in the coordinate ζ treated as an element in PSL 2 (C) is the conjugate of the matrix diag(1, -1) by the matrix of transformation (2.14). Up to a scalar factor, this is the matrix

2 -ρ 2z(P )(1 + o(1)) -ρ 2z(P )(1 + o(1)) 1 0 0 -1 2z(P )(1 + o(1)) -2z(P )(1 + o(1)) ρ 2 -ρ = -4z(P ) ρ -1 -(ρ -2) ρ -(ρ -1) + o(1) .
Hence, σ P → η ρ in the coordinate ζ. This proves the proposition. 2

The number ρ is called "residue" due to the following proposition.

Proposition 2.13 Let b be a regular germ at B equipped with a meromorphic dual billiard structure with pole of order at most one with residue ρ.

Then in the coordinate u := z -z(P ) the family of involutions σ P : L P → L P , P ∈ b \ {B}, takes the form

σ P : u → - u 1 + f (z(P ))u , (2.15) 
f (z) = ρ z + g(z), g(z) is a holomorphic function at 0.
Conversely, an involution family holomorphic in P ∈ b\{B} and having form (2.15) is meromorphic with pole of order at most one at B with residue ρ.

In particular, σ P is regular at B, if and only if it has zero residue at B.

Proof The family σ P is meromorphic of order at most one at B with residue ρ, if and only if in the coordinate

u := ζ -1
the involutions σ P take the form

σ P : u → - u 1 + (ρ + o(1)) u , as P → B, (2.16) 
by definition and since

η ρ sends u to -u 1+ρ u . Rescaling u to u = uz(P ) yields (2.15) with f (z) = ρ z + g(z), g(z) = o( 1 z ).
Conversely, rescaling u to u transforms (2.15) to (2.16). The family of involution σ P depends holomorphically on P ∈ b \ {B}, and hence, on z = z(P ), by regularity of the germ b. Therefore, if (2.16) holds, then the function zf (z), and hence, h(z) := zg(z) extends holomorphically to 0. One has h(0) = 0, since

g(z) = o( 1 z ). Hence, g(z) = h(z)
z is holomorphic at 0. Statement (2.15) is proved, and it immediately implies the last statement of the proposition. 2

Meromorphic integrability versus rational

Here we prove the following proposition. Proposition 2.14 Let b be a non-linear irreducible germ of holomorphic curve at O ∈ C 2 equipped with a meromorphically integrable singular dual billiard structure with integral R. Let ρ be its residue at O (see Proposition 2.11). If ρ = 0, then R is rational, and b lies in an algebraic curve.

Proof Let (z, w) be coordinates adapted to b. Let U = U z ×U w , U z = {|z| < ε}, U w = {|w| < δ}, be a polydisk such that the meromorphic integral R is well-defined on a bigger polydisk containing its closure. For every P ∈ b let P ρ denote the point in L P with the ζ-coordinate θ ρ := ρ-1 ρ = η ρ (∞); ζ = z z(P ) . The involution σ P : L P → L P sends the neighborhood of infinity

V P (ε) := L P ∩ {|z| > ε 2 } to a o(z(P ))-neighborhood of the point P ρ (thus, contained in U , if P is close enough to O), since σ P → η ρ in the coordinate ζ.
The pullback of the integral R under the map σ P | V P (ε) is a meromorphic function on V P (ε) whose restriction to the open subset L P ∩ { ε 2 < |z| < ε} ⊂ V P (ε) coincides with R, by σ P -invariance. This extends R to a meromorphic (and hence, rational) function on all of L P for every P ∈ b\{O} close enough to O. The domains

V P ( ε 2 ) ⊂ L P corresponding to P close enough to O foliate a neighborhood of the complement L O \ {|z| < ε 2 } in CP 2 .
The function R thus extended is meromorphic on the union of the latter neighborhood and the bidisk U , which covers a neighborhood of the line

L O in CP 2 .
Proposition 2.15 A function meromorphic on a neighborhood of a projective line in CP 2 is rational.

Proof Take an affine chart C 2 z,w on the complement of the projective line in question. We choose the center of coordinates close to the infinity line and the axes also close to the infinity line. The function in question is rational in z with fixed small w and vice versa. Each function rational in two separate variables is rational (Proposition 9.2). This proves Proposition 2.15.

2 Proposition 2.14 follows from Proposition 2.15 and the above discussion. 2

3 Reduction to quasihomogeneously integrable (p, q; ρ)billiards Definition 3.1 Let p, q ∈ N, 1 ≤ q < p, be coprime numbers. The curve

γ p,q := {w q = z p } ⊂ C 2 ⊂ CP 2
will be called the (p, q)-curve. (It is injectively holomorphically parametrized by C * via the mapping t → (t q , t p ).) Let ρ ∈ C. The (p, q; ρ)-billiard is the structure of singular holomorphic dual billiard on the (p, q)-curve γ p,q defined by the family of involutions σ P : L P → L P , P ∈ γ p,q \ {(0, 0)}, all of them acting as the involution η ρ in the coordinate ζ = z z(P ) on L P .

Definition 3.2 Recall that a polynomial P (z, w) is (p, q)-quasihomogeneous, if it contains only monomials z k w m with (k, m) lying on the same line parallel to the segment [(p, 0), (0, q)]. That is, a polynomial that becomes homogeneous after the substitution z = t q , w = t p , i.e., after restriction to the curve γ p,q . A ratio of two (p, q)-quasihomogeneous polynomials will be called a (p, q)-quasihomogeneous rational function. A (p, q; ρ)-billiard is said to be quasihomogeneously integrable, if it admits a non-constant (p, q)quasihomogeneous rational integral.

The main result of the present section is the following theorem.

Theorem 3.3 Let b be a non-linear irreducible germ of analytic curve at a point B ∈ C 2 . Let r = p q be its projective Puiseux exponent, (p, q) = 1, see (1.23). Let b admit a structure of meromorphically integrable singular dual billiard, ρ be its residue at B. Then the (p, q; ρ)-billiard is quasihomogeneously integrable.

Preparatory material. Newton diagrams

Let us recall the well-known notion of Newton diagram of a germ of holomorphic function f (z, w) at the origin. We consider that f (0, 0) = 0. To each monomial z m w n entering its Taylor series we put into correspondence the quadrant K m,n := (m, n) + (R ≥0 ) 2 . Let K(f ) denote the convex hull of the union of the quadrants K m,n through all the Taylor monomials of the function f ; it is an unbounded polygon with a finite number of sides. The Newton diagram N f is the union of those edges of the boundary ∂K(f ) that do not lie in the coordinate axes.

Fix a coprime pair of numbers p, q ∈ N, (p, q) = 1. For every monomial z k w m define its (p, q)-quasihomogeneous degree: deg p,q z k w m := kq + mp.

Let M p,q (f ) denote the minimal (p, q)-quasihomogeneous degree of a Taylor monomial of the function f . The sum of its monomials f km z k w m with deg p,q = M p,q (f ) is a (p, q)-quasihomogeneous polynomial called the lower (p, q)-quasihomogeneous part of the function f ; it will be denoted by f p,q (z.w).

Remark 3.4 In the case, when the Newton diagram N f contains an edge parallel to the segment [(p, 0), (0, q)], the collection of bidegrees of monomials entering the lower (p, q)-quasihomogeneous part f p,q lies in the latter edge and contains its vertices. In the opposite case f p,q is a monomial whose bidegree is the unique vertex V of the Newton diagram such that the line through V parallel to the above segment intersects K(f ) only at V . One has 

ε -Mp,q(f ) f (ε q z, ε p w) = f p,q (z, w) + o(1), as ε → 0, ( 3 
f p,q (z, w) = (w q -C b z p ) s b , C b = c q b , (3.3 
R p,q,Ca (ζ) := (1 -r + rζ) q -C a ζ p .
Proof Cases a) and b) correspond exactly to the cases, when the unique edge of the Newton diagram of the function f a is not parallel to the segment [(p, 0), (0, q)]; then the polynomial f a corresponds to one of its two vertices, and hence, is a power of either z, or w. In Case c) Statement 1) of the proposition follows from (3.3). Statement 2) follows from [27, p.268, Proposition 2.50] and can be proved directly as follows. Let P ∈ b \ {O}, z 0 := z(P ). Consider the variable change (z, w) = (z 0 ζ, z r 0 y) (for some chosen value of fractional power z r 0 ). As P → O, i.e., as z 0 → 0, the curve b written in the coordinates (ζ, y) tends to the curve γ p,q , (ζ(P ), y(P )) → (1, 1), and

L P → L. The function z -1
q Mp,q(fa) 0 f a (z 0 ζ, z r 0 y) tends to f a (ζ, y), by (3.1). This implies that each point of intersection a ∩ L P , whose ζ-coordinate converges to a finite limit after passing to a subsequence, does converge to a zero of the restriction f a | L , and each zero is realized as a limit. The ζ-coordinates of the other intersection points (if any) converge to infinity, by construction. The polynomial f a (ζ, y) is a power of the polynomial ζ, y, y q -C a ζ p respectively up to constant factor, by Statement 1). The restrictions of the latter polynomials to the line L are equal respectively to ζ, 1 -r + rζ and R p,q,Ca . This together with the above convergence implies Statement 2). 2

3.2 Proof of Theorem 3.3.

Let R(z, w) = f (z,w) g(z,w) be a non-constant meromorphic first integral of the dual billiard on b. Here f and g are coprime germs of holomorphic functions at B written in affine coordinates (z, w) adapted to b. Let r = r b = p q be the irreducible fraction representation of the projective Puiseux exponent r of the germ b. Without loss of generality we consider that the corresponding constant c b in (3.2) is equal to one, rescaling the coordinate w. Then the function f b (z, w) defining the curve b is equal to (w q -z p ) s b plus higher (p, q)quasihomogeneous terms, by (3.3). For a point P ∈ b \ {B} set z 0 = z(P ). In the above rescaled coordinates (ζ, y) = (z -1 0 z, z -r 0 w) one has P → (1, 1), L P → L (L = L (1,1) is the same, as Proposition 3.6), and the functions z

-1 q Mp,q(f ) 0 f (z 0 ζ, z r 0 y), z -1
q Mp,q(g) 0 g(z 0 ζ, z r 0 y) tends to f p,q (ζ, y) and g p,q (ζ, y) respectively, by (3.1). The restriction R| L P is σ P -invariant, and σ P → η ρ in the coordinate ζ on L P . Therefore, the restriction to the line L of the ratio

R(ζ, y) := f p,q (ζ, y) g p,q (ζ, y) is η ρ -invariant.
Consider the action of group C * on C 2 by rescalings (ζ, y) → (τ q ζ, τ p y). It preserves the curve γ p,q punctured at the origin and at infinity and acts transitively on it. These rescalings multiply the quasihomogeneous rational function R by constants. This together with η ρ -invariance of its restriction to the tangent line L implies invariance of its restriction to tangent line at any other point Q ∈ γ p,q under the involution η ρ acting in the coordinate ζ ζ(Q) . Therefore, R is a quasihomogeneous integral of the (p, q; ρ)-billiard. A priori it may be constant. This occurs exactly in the case, when g p,q ≡ λ f p,q , λ ∈ C. But then replacing g by g -λf cancels g p,q , and the lower (p, q)-quasihomogeneous part of the function g -λf is not constant-proportional to f p,q . The ratio f g-λf being a meromorphic integral of the billiard on b, the above construction applied to it yields a non-constant quasihomogeneous integral of the (p, q; ρ)-billiard. Theorem 3.3 is proved.

4 Classification of quasihomogeneously integrable (p, q; ρ)-billiards

The main result of the present section is the following theorem.

Theorem 4.1 A (p, q; ρ)-billiard is quasihomogeneously integrable, if and only if p = 2, q = 1 (i.e., the underlying curve γ p,q is a conic) and

ρ ∈ M := {0, 1, 2, 3, 4} ∪ k∈N ≥3 {2 ± 2 k }. (4.1)
Then the following quasihomogeneous functions R ρ (z, w) are integrals.

ρ = 0 ρ = 1 ρ = 2 ρ = 3 ρ = 4 R 0 = w -z 2 R 1 = w-z 2 z R 2 = w-z 2 w R 3 = w-z 2 zw R 4 = w-z 2 w 2 ρ = 2 -2 2N +1 R ρ (z, w) = (w-z 2 ) 2N +1 N j=1 (w-c j z 2 ) 2 , c j = -4j(2N +1-j) (2N +1-2j) 2 ρ = 2 + 2 2N +1 R ρ (z, w) = (w-z 2 ) 2N +1 w 2 N j=1 (w-c j z 2 ) 2 , c j = -4j(2N +1-j) (2N +1-2j) 2 ρ = 2 -1 N +1 R ρ (z, w) = (w-z 2 ) N +1 z N j=1 (w-c j z 2 ) , c j = -j(2N +2-j) (N +1-j) 2 ρ = 2 + 1 N +1 R ρ (z, w) = (w-z 2 ) N +1 zw N j=1 (w-c j z 2 ) , c j = -j(2N +2-j) (N +1-j) 2
Addendum to Theorem 4.1. The variable change ( z, w) = ( z w , 1 w ) transforms a (2, 1, ρ)-billiard to a (2, 1, 4-ρ)-billiard. It interchanges the integrals R ρ ( z, w) and R 4-ρ (z, w) given by the above formulas for every ρ ∈ M.

Everywhere below by L = L (1,1) we denote the projective tangent line to the curve γ p,q at the point (1, 1). Remark 4.2 A (p, q)-quasihomogeneous rational function is an integral of the (p, q; ρ)-billiard, if and only if its restriction to L written in the coordinate z is η ρ -invariant, see the above proof of Theorem 3.3.

Remark 4.3 It is well-known that each (p, q)-quasihomogeneous polynomial is a product of powers of prime quasihomogeneous polynomials z, w, w q -c j z p with c j ∈ C \ {0}.

The proof of Theorem 3.3 is based on the following formula for the Hessian (calculated in the coordinates (z, w)) of a product

G(z, w) = (w q -z p )z α w β M j=2 (w q -c j z p ) µ j , α, β, µ j ∈ R, c j = 0, 1. (4.2) Proposition 4.4 Let G be the same, as in (4.2), with c j ∈ C \ {0, 1}. Set N := 1 + M j=2 µ j , ρ 0 = 2 3 (r + 1), r = p q .
There exists a c ∈ C \ {0} such that

H(G)| γp,q = cz d ; d = 3(pN + α + βr -ρ 0 ). (4.3)
Formula (4.3) holds for c = qp(q -p)

p j=2 (1 -c j ) 3 .
Proof The Hessian of the defining polynomial w q -z p of the curve γ p,q calculated in the coordinates (z, w) is equal to

H(w q -z p ) = q(q -1)p 2 w q-2 z 2(p-1) -p(p -1)q 2 z p-2 w 2q-2 .
Its restriction to γ p,q is equal to the same expression with w replaced by z r , which yields qp(q -p)z 3p-2(r+1) . Each polynomial w q -c j z p being restricted to γ p,q is equal to (1 -c j )z p . This together with (2.11) implies (4.3). 2

4.1 Case of (p, q)-quasihomogeneous polynomial integral Proposition 4.5 Let a (p, q; ρ)-billiard admit a (p, q)-quasihomogeneous polynomial integral. Then ρ = 0, p = 2, q = 1, and the polynomial w -z 2 is an integral.

Proof The restriction to L of a (p, q)-quasihomogeneous polynomial integral P is η ρ -invariant and has one pole, at infinity. Hence, η ρ (∞) = ∞, thus, ρ = 0. Its restriction to γ p,q should be constant, see Proposition 1.34.

On the other hand, the latter restriction written in the coordinate z is a monomial cz φ . Therefore, c = 0 and P| γp,q ≡ 0. Hence,

P(z, w) = z α w β M j=1 (w q -c j z p ) n j , c j = 0, c 1 = 1, c j are distinct, α, β ∈ Z ≥0 , see Remark 4.3. Set k = n 1 , G(z, w) := P 1 k (z, w) = z α w β (w q -z p ) M j=2 (w q -c j z p ) µ j , µ j := n j k , α := α k , β := β k , N := 1 + M j=2 µ j .
The restriction to γ p,q of the Hessian H(G) is given by formula (4.3). Hence,

ρ = - d 3 = ρ 0 -(pN + α + βr) = 2 3 (r + 1) -qN r -(α + βr),
by (2.13). The latter right-hand side should vanish, since ρ = 0. Therefore, 2 3 (r + 1) ≥ qN r, hence r ≤ 2 3N q-2 . But r > 1, and N, q ≥ 1. Therefore, q = 1, and r ≤ 2. Hence, p = r = 2.

Let us now show that the polynomial w -z 2 is an integral of the (2, 1; 0)billiard. Indeed, its restriction to the tangent line L = L (1,1) is the polynomial -1 + 2z -z 2 = -(z -1) 2 ; here ζ = z. The latter polynomial is clearly invariant under the involution η 0 : z → 2 -z. Hence, w -z 2 is an integral, by Remark 4.2. Proposition 4.5 is proved. 2

Normalization of rational integral to primitive one

Here we consider a quasihomogeneously integrable (p, q; ρ)-billiard. We prove that its integral (if it cannot be reduced to a polynomial) can be normalized to a primitive integral, see definitions and Lemma 4.10 below.

The restriction of a (p, q)-quasihomogeneous polynomial P to the tangent line L = L (1,1) to the curve γ p,q at the point (1, 1) is a polynomial in the coordinate z on L. One has w| L = 1 -r + rz, (w q -cz p )| L = R p,q,c (z) := (1 -r + rz) q -cz p . (4.4) Definition 4.6 The roots of the restriction P| L of a (p, q)-quasihomogeneous polynomial P will be called its tangent line roots. The linear combination of points representing roots with coefficients equal to their multiplicities is a divisor on L C z . It will be called the root divisor of the polynomial P and denoted by χ(P). Sometimes we will deal with χ(P) as with a collection of roots, e.g., when we write inclusions that some points belongs to χ(P). Definition 4.7 Recall that the complement of a divisor χ to a point θ is the divisor χ with the term corresponding to the point θ deleted. Set

θ ρ := ρ -1 ρ = η ρ (∞). A (p, q)-quasihomogeneous polynomial P is called η ρ -quasi-invariant, if the complement χ(P) \ {θ ρ } is η ρ -invariant. A η ρ -quasi-invariant polynomial P is η ρ -primitive, if it is not a product of two η ρ -quasi-invariant polynomials.
Proposition 4.8 1) A primitive η ρ -quasi-invariant polynomial P is (up to constant factor) a product j Q j of some distinct prime (p, q)-quasihomogeneous polynomials Q j equal to w q -c j z p , z or w.

2) Any two prime factors Q k , Q are equivalent in the following sense: there exists a finite sequence k = j 1 , j 2 , . . . , j m = such that for every s = 1, . . . , m -1 there exist tangent line roots z s , z s+1 of the polynomials Q js and Q j s+1 respectively such that z s+1 = η ρ (z s ).

3) If ρ = r, then either P = cw, c ∈ C \ {0}, or P contains no w-factor. 4) For any two distinct primitive η ρ -quasi-invariant polynomials their tangent line root collections do not intersect.

5) Every η ρ -quasi-invariant polynomial is a product of powers of primitive ones.

The proposition follows from definition and the fact that the polynomial w| L = 1 -r + rz has one root r-1 r .

Definition 4.9 A (p, q)-quasihomogeneous rational integral of the (p, q; ρ)billiard is η ρ -primitive, if it is a ratio of nonzero powers of two non-trivial primitive η ρ -quasi-invariant (p, q)-quasihomogeneous polynomials.

Lemma 4.10 Let a (p, q; ρ)-billiard be quasihomogeneously integrable and admit no polynomial (p, q)-quasihomogeneous integral. Then it admits a η ρprimitive rational integral vanishing identically on γ p,q , and ρ = 0.

Proof Let R be a quasihomogeneous integral of the (p, q; ρ)-billiard represented as an irreducible ratio of two quasihomogeneous polynomials: numerator and denominator, both being non-constant (absence of polynomial integral). Its restriction to the curve γ p,q is constant, by Proposition 1.34.

If the latter constant is finite non-zero, then the numerator and the denominator have equal (p, q)-quasihomogeneous degrees. Therefore, replacing the numerator by its linear combination with denominator one can get another quasihomogeneous integral that vanishes identically on γ p,q . If the above constant is infinity, we replace R by R -1 and get an integral vanishing on γ p,q . Thus, we can and will consider that R ≡ 0 on γ p,q . Both numerator and denominator are η ρ -quasi-invariant, which follows from η ρ -invariance of the restriction of the integral to the tangent line L = L (1,1) . Therefore, they are products of powers of primitive η ρ -quasi-invariant polynomials. Among all the η ρ -quasi-invariant primitive factors in the numerator and the denominator there are at least two distinct ones, by irreducibility and nonpolynomiality of the ratio R. Take one of them P 1 , vanishing identically on γ p,q (hence, divisible by w q -z p ) and another one P 2 . For every i = 1, 2 one has

P i (z, w) = z α i w β i N i j=1 (w q -c ij z p ), c ij = 0; (4.5) α i , β i ∈ {0, 1}, α 1 α 2 = β 1 β 2 = 0, c 11 = 1, all c ij are distinct, by Proposition 4.8. Set now R(z, w) := P m 1 1 P m 2 2 , d i := deg P i = N i p + α i + β i . (4.6) 
Proposition 4.11 The ratio (4.6) of powers of two non-trivial primitive η ρ -quasi-invariant polynomials P 1 , P 2 is an integral of the (p, q; ρ)-billiard, if the following relation holds:

Case 1), θ ρ / ∈ χ(P 1 ) ∪ χ(P 2 ) :

d 1 m 1 = d 2 m 2 . (4.7)
Case 2), θ ρ ∈ χ(P 1 ) :

(d 1 + 1)m 1 = d 2 m 2 . (4.8)
Case 3), θ ρ ∈ χ(P 2 ) :

d 1 m 1 = (d 2 + 1)m 2 . (4.9)
As is shown below, Proposition 4.11 is implied by the following obvious Proposition 4.12 Let a rational function R(ζ) either do not vanish at 1, or have 1 as a root of even degree. Then it is η ρ -invariant, if and only if its zero locus and its pole locus are both η ρ -invariant.

Proof A rational function R is uniquely determined by its zero and pole loci up to constant factor. Therefore, if the latter loci are invariant under a conformal involution η ρ , then Then the infinity in L is not a pole of the restriction R| L . Therefore, its zeros (poles) are zeros of the polynomial P 1 | L (respectively, P 2 | L ). Their divisors are η ρ -invariant, by η ρquasi-invariance of the polynomials P i , and since the root collections of their restrictions to L do not contain θ ρ = η ρ (∞). Hence, R| L is η ρ -invariant.

Case 2): θ ρ ∈ χ(P 1 ) and m 1 (d

1 + 1) = m 2 d 2 .
Then the infinity in L is a zero of multiplicity m 1 of the restriction R| L . The point θ ρ is a simple root of the polynomial P 1 | L , by assumption and primitivity. This together with its η ρ -quasi-invariance implies that the zero divizor of the function R| L is η ρ -invariant. Its pole divisor, i.e., the zero divisor of the function P m 2 2 | L is also η ρ -invariant, as in the above discussion.

Case 3) is treated analogously to Case 2). 2

Proposition 4.11 immediately implies the statement of Lemma 4.10, except for the statement that ρ = 0. Suppose the contrary: ρ = 0. Then η ρ (∞) = ∞ / ∈ χ(P 1 ). Therefore, the restriction to L of the η ρ -quasiinvariant polynomial P 1 is η ρ -invariant (Proposition 4.12). Hence, P 1 is a polynomial integral of the (p, q; ρ)-billiard. The contradiction thus obtained proves that ρ = 0 and finishes the proof of Lemma 4.10. 2

Case of rational integral. Two formulas for ρ

Here we treat the case, when the (p, q; ρ)-billiard in question admits a rational quasihomogeous integral and does not admit a polynomial one: thus, ρ = 0 (Lemma 4.10). Everywhere below we consider that the integral R(z, w) is η ρ -primitive, vanishes on γ p,q (Lemma 4.10) and is given by for-mula (4.6) with m 1 , m 2 = 0 satisfying some of relations (4.7)-(4.9). Set G(z, w) := (R(z, w))

1 m 1 = P 1 P ν 2 , ν := m 2 m 1 . (4.10) 
We prove two different formulas for the residue ρ, deduced -on one hand, from formula (4.3) for the Hessian H(G) and formula (2.13) expressing ρ via the asymptotic exponent d;

-on the other hand, by applying a similar argument to a special η ρinvariant function on L P C z : the ratio of the numerator of the integral and a power of z -ρ-2 ρ . Combining the two formulas for ρ thus obtained, we will show in Subsection 4.4 that p = 2, q = 1 and ρ ∈ M.

In our case formulas (4.3) and (2.13) yield

H(G)| w q =z p = cz d , d = 3((N 1 -νN 2 )p+α 1 -να 2 +r(β 1 -νβ 2 )-ρ 0 ), (4.11) r = p q , ρ 0 = 2 3 (r + 1), ρ = - d 3 = ρ 0 -(d 1 -νd 2 ) -(r -1)(β 1 -νβ 2 ), d i = N i p + α i + β i . (4.12)
This is the First Formula for ρ. Substituting to (4.12) the relations between the degrees d 1 and d 2 given by Proposition 4.11 and taking into account that β j = 1 if and only if θ r := r-1 r ∈ χ(P j ), we get Proposition 4.13 Let d 1 , d 2 , G be as above. Then one has the following formulas for the residue ρ dependently on whether or not some of the numbers θ ρ = η ρ (∞) = ρ-1 ρ , θ r = r-1 r lie in some of χ(P 1,2 ):

θ ρ / ∈ χ(P 1 ) ∪ χ(P 2 ) θ ρ ∈ χ(P 1 ) θ ρ ∈ χ(P 2 ) θ r / ∈ χ(P 1 ) ∪ χ(P 2 ) ρ = ρ 0 ρ = ρ 0 + 1 ρ = ρ 0 -ν θ r ∈ χ(P 1 ) ρ = ρ 1 := ρ 0 + 1 -r ρ = ρ 1 + 1 ρ = ρ 1 -ν θ r ∈ χ(P 2 ) ρ = ρ 2 := ρ 0 -ν(1 -r) ρ = ρ 2 + 1 ρ = ρ 2 -ν
The Second Formula for the residue ρ is given by the next lemma.

Lemma 4.14 Let P(z, w) = z α w β N j=1 (w q -c j z p ) be a primitive η ρ -quasiinvariant (p, q)-quasihomogeneous polynomial vanishing on γ p,q : c 1 = 1. Set

d P := deg P = N p + α + β, dP := d P , if θ ρ / ∈ χ(P) d P + 1, if θ ρ ∈ χ(P). (4.13)
Then the residue ρ is expressed by the formula

ρ( dP -2) = 2(N p + α + βr -ρ 0 ); here ρ 0 = 2 3 (r + 1). (4.14)
Proof The restriction of the polynomial P to the tangent line L = C z is

H(z) := z α (1 -r + rz) β N i=1 ((1 -r + rz) q -c i z p ), deg H = d P = N p + α + β.
The roots of the latter polynomial are exactly points of χ(P). The involution η ρ : L → L has two fixed points: those with z-coordinates 1 and ρ-2 ρ . We consider the following auxiliary rational function

G(z) := H(z) (z -ρ-2 ρ ) dP . (4.15)
Claim 1. The rational function G is η ρ -invariant. Proof The zero divisor of the function G| L is η ρ -invariant. Indeed, the complement of the root divisor χ(P) of the polynomial H to θ ρ is η ρ -invariant (η ρ -quasi-invariance of the polynomial P). In the case, when H(θ ρ ) = 0, one has dP = deg H + 1, and hence, ∞ is a simple zero of the function G. The pole divisor of the function H is the fixed point ρ-2 ρ of the involution η ρ . This together with Proposition 4.12 implies that G is η ρ -invariant. We will deduce formula (4.14) by comparing asymptotics of the numbers ζ ± (λ) as roots of the polynomial H λ and writing the condition that they should be permuted by the involution η ρ with known Taylor series. To this end, we write the polynomials H λ and their roots in the new coordinate

u := z -1; u ± := u(ζ ± (λ)) = ζ ± (λ) -1.
Claim 2. There exists a constant A ∈ C * such that as u → 0, one has

H(z) = H(1 + u) = A(1 + (N p + α + βr -ρ 0 )u + O(u 2 ))u 2 .
(4.16)

Proof One has p = qr,

z α (1 -r + rz) β = (1 + u) α (1 + ru) β = 1 + (α + rβ)u + O(u 2 ), (4.17) 
(1 -r + rz) q -z p = (1 + ru) q -(1 + u) p = q(q -1)r 2 -p(p -1) 2 u 2 + q(q -1)(q -2)r 3 -p(p -1)(p -2) 6 u 3 + O(u 4 ) = p(1 -r) 2 u 2 + p 6 ((p -r)(p -2r) -(p -1)(p -2))u 3 + O(u 4 ) = p(1 -r) 2 u 2 (1 + (p -ρ 0 )u + O(u 2 )). ( 4 

.18)

For c i = 1 one has the equality

(1-r+rz) q -c i z p = ((1-r+rz) q -z p )+(1-c i )(1+u) p = (1-c i )(1+pu)+O(u 2 ).
Multiplying it with (4.17), (4.18) yields (4.16) with A = p(1-r)

2 i≥2 (1 -c i ). 2 
Corollary 4.16 One has u -= -u + (1 + o(1)), as λ → 0, and

A(1 + (N p + α + βr -ρ 0 )u ± + O(u 2 + ))u 2 ± = B(1 + dP ρ 2 u ± + O(u 2 ± )), (4.19) 
B = B(λ) = λ 2 ρ dP . Proof One has H(ζ ± ) = λ(ζ ± -ρ-2 ρ
) dP , by definition. Substituting (4.16) to the latter formula yields (4.19).

2

The involution η ρ (z) written in the coordinate u = z -1 takes the form

η ρ : u → - u 1 + ρu . (4.20) 
Therefore, u -= -u + + (ρ + O(u + ))u 2 + , since u ± converge to 0 and are permuted by η ρ . Dividing equations (4.19) for u + and for u -and substituting the latter asymptotic formula for u -yields

1 + (N p + α + βr -ρ 0 )u + + O(u 2 + ) (1 -(N p + α + βr -ρ 0 )u + + O(u 2 + ))(1 -ρu + ) 2 = 1 + dP ρu + + O(u 2 + ), 2(N p + α + βr -ρ 0 ) + 2ρ = dP ρ.
This proves (4.14). 2

Proof The implication 1) => 2) is given by Lemma 4.17.

Proof of the equivalence 2) <=> 3). The map T is identity, if and only if ρ = 2 ∈ M. Let us consider the case, when ρ = 2. Let us write the map η ρ : L → L, L = C z , in the chart

y := 1 z -1 ; y(1) = ∞, y(∞) = 0, y 1 2 = -2, y(0) = -1.
The involution η ρ fixes 1, ρ-2 ρ , and y( ρ-2 ρ ) = -ρ 2 . Therefore, in the chart y

η ρ : y → -y -ρ, T = η 2 • η ρ : y → y + ρ -2. (4.32)
The condition that ρ ∈ M \ {2} is equivalent to the condition saying that

ρ -2 ∈ { 2 m | m ∈ Z \ {0}}.
The latter in its turn is equivalent to the condition that in the chart y the point y(∞) = 0 is the T m -image of the point y( 12 ) = -2. This proves equivalence of Statements 2) and 3). 2

Proof of the implication 3) => 1). Case ρ = 0 was already treated in Subsection 4.1; in this case the polynomial R 0 (z, w) = w -z 2 is an integral. Case 1): ρ = 2. Then η ρ (z) = z 2z-1 fixes 1 and permutes ∞, z fixes 1 and permutes 0, ∞. The restriction to L of the function R 1 (z, w) = w-z 2 z is equal to (z-1) 2 z up to constant factor. It is η ρ -invariant, by Proposition 4.12 and invariance of its zero and pole divisors, and R 1 is an integral, as in the above case.

Case 3): ρ = 3. Then η ρ (z) = 2z-1 3z-2 fixes 1 and permutes 0, 1 2 . The restriction to L of the function R 3 (z, w) = w-z 2 zw has double zero 1 and simple poles 0, 1 2 . Hence, it is η ρ -invariant, and R 3 is an integral, as above. Case 4): ρ = 4. Then η ρ (z) = 3z-2 4z-3 fixes the points 1 and 1 2 . The latter points taken twice are respectively zero and pole divisors of the function R 4 | L . Hence, the latter function is invariant, and R 4 is an integral.

Case 5):

ρ -2 = 2 m , m ∈ Z \ {0}, |m| ≥ 3.
Note that the integer number m has the same sign, as the number ρ -2. Set 

ζ 0 = 1 2 , ζ j = T j (ζ 0 ), j = 0, . . . , m; ζ m = ∞, χ := {ζ 0 , . . . , ζ m-1 }, if ρ > 2, i.
(if ρ > 2) and zero (if m ∈ 2Z). The complement χ \ { 1 2 } is η 2 -invariant, by construction. One has m ≥ 0, if and only if ρ -2 ≥ 0. The map η ρ = η 2 • T sends each ζ j ∈ χ to ζ m-j-1 , since T (ζ j ) = ζ j+1 , by construction. The latter image ζ m-j-1 = η ρ (ζ j ) lies in χ, except for the case, when ρ < 2, m < 0, ζ m-j-1 = ζ m = ∞, j = -1, ζ -1 = η ρ (∞) = θ ρ ∈ χ.
Indeed, if ρ > 2, then ζ j ∈ χ exactly for j ∈ [0, m -1], and in this case m -1 -j lies there as well. If ρ < 2, then ζ j ∈ χ exactly for j ∈ [m + 1, -1], and in this case ζ m-1-j ∈ χ, unless j = -1. Thus, the complement χ \ {θ ρ } is η ρ -invariant. Any two points ζ j , ζ k ∈ χ can be obtained one from the other by the map T j-k = (η 2 • η ρ ) j-k so that the latter map considered as a composition of 2|j -k| involutions is well-defined at ζ k and T j-k (ζ k ) = ζ j . This follows from the above discussion. Thus, χ = χ(P) for some primitive η ρ -quasi-invariant (2, 1)-quasihomogeneous polynomial P that is the product of the polynomials w -c j z 2 and may be some of the monomials z, w. One has 1 / ∈ χ, since y(1) = ∞. Hence, P| γ ≡ 0. Claim 5 is proved. 2

Thus, if Statement 3) of the lemma holds, then there exist at least two distinct primitive quasihomogeneous η ρ -quasi-invariant polynomials: w -z 2 and the above polynomial P. Hence, the (2, 1; ρ)-billiard admits a quasihomogeneous rational first integral

R = (w -z 2 ) m 1 (P(z, w)) m 2 ,
by Proposition 4.11. Implication 3) => 1) is proved. 2 the latter formula follows from (4.32). Thus, the variable change in question transforms the (2, 1; ρ)-billiard to the (2, 1; 4 -ρ)-billiard.

In new coordinates one has R ρ (z, w) = R 4-ρ ( z, w). Indeed,

R 0 (z, w) = w -z 2 = 1 w 2 ( w -z 2 ) = R 4 ( z, w), R 1 (z, w) = 1 w z ( w -z 2 ) = R 3 ( z, w), R 2 (z, w) = R 2 ( z, w).
For the other integrals R ρ from the table in Theorem 4.1 the proof is analogous. The addendum is proved. 2

5 Local branches. Proof of Theorem 1.37

The main result of this section is the following theorem. Theorem 5.1 will be proved in Subsection 5.2. Theorem 1.37 will be deduced from it in Subsection 5.3. Quadraticity of germ in Theorem 5.1 follows from Theorems 3.3 and 4.1. The proof of Statement b) of Theorem 5.1 for a singular germ is based on Theorem 5.6 (stated and proved in Subsection 5.1), which yields a formula for residue of a meromorphically integrable singular dual billiard on a singular quadratic germ in terms of its self-contact order.

Meromorphically integrable dual billiard structure on singular germ: formula for residue

Recall that each non-linear irreducible germ b of analytic curve at O ∈ C 2 in adapted coordinates centered at O admits an injective holomorphic parametrization t → (t qs , φ(t)), φ(t) = ct ps (1 + O(t)), 1 ≤ q < p, s, q, p ∈ N, (5.1)

c ∈ C \ {0}; (q, p) = 1, r = p q
is the projective Puiseux exponent. Proof Let S, g a and g b be the same, as in (5.4). Fix a smaller sector S , S \ {0} ⊂ S. The graphs of the functions g a , g b over the sector S will be denoted by Γ a , Γ b respectively. Fix a z 0 ∈ S , set

P = (z 0 , g b (z 0 )) ∈ Γ b ⊂ b.
Let L P denote the line tangent to b at P . We introduce the coordinate

u := ζ -1 = z z 0 -1
on the tangent line L P . Let us find asymptotics of those u-coordinates of points of the intersection Γ a ∩ L P , that tend to zero, as z 0 ∈ S tends to 0.

Proposition 5.11 Let a and b be non-linear irreducible δ-satellite germs at a point O ∈ C 2 with Puiseux exponent r. Let S, g a , g b be the same, as in (5.4). Let S and Γ a,b be as above. As P = (z 0 , g b (z 0 )) → O, z 0 ∈ S , the intersection Γ a ∩L P contains exactly two points whose u-coordinates converge to zero. Their u-coordinates u ± are related by the asymptotic formula 

u -= -u + + (ρ 0 + δ)u 2 + + o(u 2 + ), ρ 0 = 2 3 (r + 1). ( 5 
ζ(P ) = 1, h a (ζ) -h b (ζ) = cz δ 0 (1 + u) r+δ (1 + θ(z 0 , u)),
The curve a should lie in a level curve α of the meromorphic integral, which is a one-dimensional analytic subset in a neighborhood of the origin O and hence, has finite intersection index with the tangent line L O at O. Therefore, only finite and uniformly bounded number of points of intersection α ∩ L P converge to O, as P → O, i.e., as z 0 → 0. Using the next proposition, we show that for every N ∈ N and z 0 small enough (dependently on N ) there are at least N above intersection points that converge to O. The contradiction thus obtained will prove Theorem 5.10. We use the following characterization of satellite germs.

Proposition 5.12 Let a, b be two irreducible germs of holomorphic curves at O ∈ C 2 . Let b be non-linear, r = p q be its Puiseux exponent, (p, q) = 1. 1) The germs a, b are satellites, if and only the germ a has the same Puiseux exponent r, and the lower (p, q)-quasihomogeneous parts of their defining functions are powers of one and the same prime (p, q)-quasihomogeneous polynomial w q -cz p .

2) Let a and b be quadratic germs. They are satellites if and only if all the points of intersection a ∩ L P have ζ-coordinates, ζ = z z(P ) , that tend to one. This holds if and only if some point of the above intersection has ζ-coordinate that tends to one.

Proof Clearly the germs a, b cannot be satellites, if they have different Puiseux exponents. Let f a , f b be the functions defining a and b, and let f a , f b be their lower (p, q)-quasihomogeneous parts. Then up to constant factor, f g (z, w) = (w q -C g z p ) sg , g = a, b, s g ∈ N, C g ∈ C \ {0}, see (3.3). Without loss of generality we can and will consider that C b = 1, rescaling w. The curves b and a are parametrized respectively by t → (t qs b , t ps b (1 + o(1))) and τ → (τ qsa , c a τ psa (1 + o(1))), c q a = C a , see the discussion in Example 3.5. Therefore, they are satellites, if and only if C a = 1. This proves Statement 1). The equality C a = 1 is equivalent to the statement that the restrictions to the line L = L (1,1) (tangent to the curve {y = ζ 2 } at (1, 1)) of the quasihomogeneous polynomials f a (ζ, y) and f b (ζ, y) have the same roots. The latter roots are exactly the finite limits of the ζ-coordinates of points of the intersections a ∩ L P and b ∩ L P respectively (Proposition 3.6). In the case of quadratic germs the polynomial

f b | L = -1 + 2ζ -ζ 2 = -(1 -ζ) 2 has just one, double root 1. If f a = f b , i.e., C a = 1, then the polynomial f a | L = -1 + 2ζ -C a ζ 2
does not vanish at 1. This together with Statement 1) and the above discussion proves Statement 2).

2

Recall that in the chart ζ the dual billiard involution σ P converges to η ρ . Therefore, in the chart u it converges to the involution u → -u 1+ρu , see (4.20). Hence, the germ of the involution σ P at u = 0 acts as

σ P : u → -u + (ρ + φ(z 0 ))u 2 + . . . , φ(z 0 ) → 0, as z 0 → 0. ( 5.10) 
The intersection points from Proposition 5.11 with u-coordinates u ± will be denoted by A 0± . The point A 1+ = σ P (A 0-) ∈ L P should lie in the same level curve α of the integral, as A 0-. Therefore, it lies in some irreducible germ a 1 of holomorphic curve at O, since the germ of α is analytic. One has

u 1+ := u(A 1+ ) = -u -+ (ρ + o(1))u 2 -= u + + Θu 2 + + o((u + ) 2 ), (5.11) 
by (5.5), (5.9), (5.10), and since r = ρ 0 = 2. In particular, ζ(A 1+ ) = 1 + u 1+ → 1, as z 0 → 1, and u 1+ u + . Hence, u 1+ has asymptotics (5.8), and a 1 is a δ-satellite of the germ b (Proposition 5.12 and (5.8)). Therefore, a 1 intersects L P at another point A 1-with

u 1-:= u(A 1-) = -u 1+ + (2 + δ)u 2 1+ , by (5.5) 
. The point A 2+ := σ P (A 1-) also lies in the intersection α ∩ L P , and

u 2+ := u(A 2+ ) = -u 1-+ (ρ + o(1))u 2 1- = u 1+ (1 + Θu 1+ + o(u 1+ )) = u + + 2Θu 2 + + o(u 2 +
). Repeating this procedure we get a sequence of distinct points A k+ ∈ α ∩ L P with coordinates asymptotic to u + + kΘu 2 + + o(u 2 + ), k ∈ N. Passing to limit we get that the level curve α, which is a one-dimensional analytic subset in a neighborhood of the point O, has infinite intersection index with the tangent line L O at O. This is obviously impossible. The contradiction thus obtained proves Theorem 5.10. 2

Theorem 5.10 together with Remarks 5.8, 5.9 imply the statement of Theorem 5.6. Proof The proof of Proposition 5.14 is analogous to the proof of theorem 4.24 in [31, p. 1037]. The intersection points with those germs in Γ that are based at points different from O (if any) have ζ-coordinates that tend to infinity, since their z-coordinates tend to either infinity, or non-zero finite limits, as z(P ) → 0. Suppose the contrary to the statement of the proposition: the ζ-coordinate of some point of the intersection Γ ∩ L P tends to infinity. Its σ P -image also lies in Γ∩L P , by invariance, and has ζ-coordinate converging to θ ρ := ρ-1 ρ = η ρ (∞), since σ P (ζ) → η ρ (ζ). This implies that there exists a germ b 1 ⊂ Γ based at O whose intersection point with L P has ζ-coordinate converging to θ ρ . One has θ ρ ∈ (θ r , 1), θ r = r-1 r , since ρ > r. Therefore, ζ 1-:= θ ρ is a root of a polynomial R p,q,C b 1 = (1-r+rζ) q -C b 1 ζ p , by Proposition 3.6. Hence, 0 < C b 1 < 1, and the same polynomial R p,q,C b 1 has a unique root ζ 1+ ∈ (1, +∞), due to the following proposition. Proposition 5.15 Let p, q ∈ N, 1 ≤ q < p, r = p q . The following statements are equivalent:

1) The polynomial R p,q,C has a real root in the interval (θ r , 1).

2) It has a real root greater than 1.

3) 0 < C < 1.

In this case the above roots are unique, and the correspondence between them for all C ∈ (0, 1) is a decreasing homeomorphism (θ r , 1) → (1, +∞).

Proof The complex roots of the polynomial R p,q,C (ζ) are q-th powers of roots of a polynomial H p,q,c (θ) = cθ p -rθ q + r -1, c q = C, since R p,q,c (θ q ) = q-1 j=0 ((1 -r + rθ q ) -ce 2πj q θ p ). The statement of Proposition 5.15 for q-th powers of roots of the polynomial H p,q,c is given by [31, proposition 4.25], and it implies Proposition 5.15.

2

The root ζ 1+ is the limit of the ζ-coordinate of some point of intersection b 1 ∩L P (Proposition 3.6). Hence, its η ρ -image, which will be denoted by ζ 2-, is the limit of the ζ-coordinate of an intersection point of the line Suppose now the contrary to the last statement of Theorem 5.1: the punctured line L O \ {O} contains a singular point A for the foliation R = const. Without loss of generality we consider that R| L O ≡ 0. Let us consider the germ of the integral R at A and write it as the product w k f (z, w) with k ∈ N; f (z, w) being a germ of meromorphic function with f (z, 0) ≡ 0, ∞. The point A is singular for the foliation, if and only if at least one of the two following statements holds: either A is an indeterminacy point for the function f , or A is its pole (zero). In both cases at least one of the level curves {R = 0} or {R = ∞} contains a local branch a based at A that does not lie in the z-axis L O . Let us denote the latter level curve by Γ. Its (L O , O)-localization is a multigerm satisfying the conditions, and hence, the statement of Proposition 5.14. Therefore, it consists of germs of curves based at the unique point O, while, by assumption, some of its germs has base point A = O. The contradiction thus obtained proves that L O \ {O} is a regular leaf of the foliation R = const and proves Theorem 5. 

L P with a germ b 2 ⊂ Γ based at O. One has θ r < ζ 1-< ζ 2-< 1, by monotonicity of the map η ρ | R . Again ζ 2-is a root of a polynomial R p,q,C b 2 , C b 2 > 1,
L 1 = L 2 . Indeed, if L 1 = L 2 , then the punctured line L 1 \ {O 1 } would contain a singular point O 2 of
foliation by level curves of the integral, which is forbidden by Theorem 5.1. Thus, L 1 and L 2 intersect at some point A distinct from some of the points O j , say, O 1 . But then the punctured line L 1 \ {O 1 } contains a singular point A of foliation by level curves, -a contradiction to Theorem 5.1. Theorem 1.37 is proved.

6 Plane curve invariants. Proof of Theorem 1.38

Here we prove Theorem 1.38 stating that every irreducible algebraic curve γ ⊂ CP 2 satisfying the statements of Theorem 1.37 is a conic. The proof given in Subsection 6.2 is based on Bézout Theorem applied to the intersection of the curve γ with its Hessian curve and Shustin's formula [START_REF] Shustin | On invariants of singular points of algebraic curves[END_REF] for Hessians of singular points. The corresponding background material is recalled in Subsection 6.1.

Invariants of plane curve singularities

Hereby we recall the material from [16, Chapter III], [40, §10], [START_REF] Shustin | On invariants of singular points of algebraic curves[END_REF], see also a modern exposition in [START_REF] Greuel | Introduction to singularities and deformations[END_REF]Section I.3]. This material in a brief form needed here is presented in [28, subsection 4.1]. Let γ ⊂ CP 2 be a non-linear irreducible algebraic curve. Let d denote its degree. Let H γ denote its Hessian curve: the zero locus of the Hessian determinant of the defining homogeneous polynomial of γ. It is an algebraic curve of degree 3(d -2). The set of all singular and inflection points of the curve γ coincides with the intersection γ ∩ H γ . The intersection index of these curves is equal to 3d(d -2), by Bézout Theorem. On the other hand, it is equal to the sum of the contributions h(γ, Q), which are called the Hessians of the germs (γ, Q), through all the singular and inflection points Q of the curve γ: 

3d(d -2) = Q∈γ h(γ, Q). ( 6 
Let b Q1 , . . . , b Qn(Q) denote the local branches of the curve γ at Q; here n(Q) denotes their number. The above-mentioned formula for h(γ, Q) from [START_REF] Shustin | On invariants of singular points of algebraic curves[END_REF] has the form

h(γ, Q) = 3κ(γ, Q) + n(Q) j=1 (s * (b Qj ) -s(b Qj )), (6.3) 
where κ(γ, Q) is the κ-invariant, the class of the singular point. Namely, consider the germ of function f defining the germ (γ, Q); (γ, Q) = {f = 0}. Fix a line L through Q that is transversal to all the local branches of the curve γ at Q. Fix a small ball U = U (Q) centered at Q and consider a level curve γ ε = {f = ε} ∩ U with small ε = 0, which is non-singular. The number κ(Q) = κ(γ, Q) is the number of points of the curve γ ε where its tangent line is parallel to L. It is well-known that

κ(γ, Q) = 2δ(γ, Q) + n(Q) j=1 (s(b Qj ) -1), (6.4) 
see, for example, [33, propositions I.3.35 and I.3.38], where δ(γ, Q) = δ(Q) is the δ-invariant. Namely, consider the curve γ ε , which is a Riemann surface whose boundary is a finite collection of closed curves: their number equals to n(Q). Let us take the 2-sphere with n(Q) deleted disks. Let us paste it to γ ε : this yields to a compact surface. By definition, its genus is the δ-invariant δ(Q). One has δ(Q) ≥ 0, and δ(Q) = 0 whenever Q is a non-singular point. Hironaka's genus formula [START_REF] Hironaka | Arithmetic genera and effective genera of algebraic curves[END_REF] implies that

Q∈Sing(γ) δ(γ, Q) ≤ (d -1)(d -2) 2 . (6.5) 
Formulas (6.1), (6.3) and (6.4) together imply the formula

3d(d -2) = 6 Q δ(γ, Q) + 3 Q n(Q) j=1 (s(b Qj ) -1) (6.6) 
+ Q n(Q) j=1 (s * (b Qj ) -s(b Qj )).

Proof of Theorem 1.38

All the local branches of the curve γ are quadratic. All of them are regular, except maybe for some branches at a unique singular point O (if any). Therefore, the third sum in the right-hand side in (6.6) vanishes. All the terms in the second sum vanish except for those corresponding to the singular branches based at the point O. The first sum is no greater than The contradiction thus obtained proves Theorem 1.38.

f (z) = 1 z (λ + o(1)), as z → ∞; λ ∈ C. (7.1)
The residue at infinity is equal to 4 -λ. The above dual billiard structure has regular point at infinity, if and only if λ = 4.

Proof A finite singular point of σ P is of order one, if and only if the corresponding function f (z) has simple pole there (Proposition 2.13). Let E = [0 : 1 : 0] be the infinite point of the conic γ. Consider the affine coordinates ( z, w) = ( z w , 1 w ) centered at E. Let ρ denote the residue at E: then in the coordinate ζ := z z(P ) on L P the involution σ P converges to η ρ ( ζ), as P → E. Therefore, in the coordinate ζ the involution σ P converges to η 4-ρ , see statement (4.34) and discussion before it. Hence, in the coordinate û := ζ -1 the involution σ P takes the form û → -û 1+g(z 0 )u , g(z) is a rational function, g(z) → 4 -ρ, as z → ∞. Rescaling to the coordinate u = z 0 û yields (7.1) with f (z) = g(z)

z , λ = 4 -ρ. The converse is proved by converse argument. The last statement of Proposition 7.2 (regularity at E) follows from Proposition 2.13. Proposition 7.2 is proved.

2

Consider now an arbitrary dual billiard structure on a conic whose singularities are of order at most one. Let us choose an affine chart C 2 z,w in which γ ∩C 2 = {w = z 2 } and so that the above point E at infinity be regular for the dual billiard structure. Then the corresponding function f (z) from (7.1) is rational with simple poles, let us denote them a j (Proposition 2.13). Hence, f (z) = j λ j z-a j , λ j being residues, and thus, j λ j = 4, by the last statement of Proposition 7.2. This proves Proposition 7.1. 2

Proposition 7.3 Let γ be a regular conic equipped with a rationally integrable singular dual billiard structure. Then each singular point of the structure is its pole of order 1, and its residue lies in M \ {0}.

Proof Well-definedness of residues follows from integrability and Proposition 2. Proof The residues lie in M \ {0} (Proposition 7.3), and hence, are greater or equal to one. Their sum is equal to 4 (Proposition 7.1). Therefore, the number of singularities is between one and four. The cases of one and two singularities are obviously given by the first, second, third and sixth collections in (7.2). The case of three singularities with natural residues is the collection (2, 1, 1). The case of four singularities is (1, 1, 1, 1). Cases of three singularities with some of residues being non-integer correspond to the three last residue collections in (7.2). Indeed, each non-integer number in M \ {0} takes the form 2 ± 2 k , k ∈ N ≥3 . Therefore, if the number of singularities is three, then non-integer residues are of the type 2 -2 k , k ≥ 3. Finally, all possible configurations have one of the two following types: (2

-2 k 1 , 2 -2 k 2 , 2 -2 k 3 ), (2 -2 k 1 , 2 -2 k 2 , 1)
. For the first type, writing the condition that the sum of residues is equal to 4 yields x j = 4 there exists a unique singular holomorphic dual billiard structure on γ with singular points a j being poles of order one with residues x j .

2 k 1 + 2 k 2 + 2 k 3 = 2, k 1 , k 2 , k 3 ≥ 3. Therefore, k 1 = k 2 = k 3 = 3,
Proof The proposition follows from (7.1) and uniqueness of a rational function f (z) vanishing at infinity as λ z (1 + o(1)) with given λ and simple poles with given positions and residues (see the proof of Proposition 7.1). 2 7.2 Case of integer residues: pencil of conics Proposition 7.6 Let a singular holomorphic dual billiard structure on a regular conic γ have singularities a 1 , . . . , a m , m ∈ {1, 2, 3, 4}, with residues λ j ∈ N, j = 1, . . . , m. Then it is realized by the pencil of conics passing through a j and having contact with γ of order λ j at a j .

Proof Case 1): four distinct points a 1 , . . . , a 4 with residues λ j = 1. Consider the pencil of conics passing through them. It defines the projective involutions σ P : L P → L P , P ∈ γ \ {a 1 , . . . , a 4 }, permuting the intersection points of the lines L P with each conic of the pencil. This yields a singular holomorphic dual billiard structure on γ with singularities at a j . Claim 6. The involution family σ P is holomorphic with singularities a j of order one and residue one. Proof For every a j each conic C of the pencil, C = γ, intersects the line L a j transversally at two distinct points: a j and some point b j . For every P ∈ γ close to a j the line L P intersects C at two points Q(P ) and Y (P ) converging to a j and b j respectively, as P → a j . They are permuted by the involution σ P , and their ζ-coordinates tend to 0 and ∞ respectively. Therefore, in the coordinate ζ the involution σ P converges to η 1 (ζ) = 1 ζ . Hence, σ P has simple pole with residue one at a j . The claim is proved. 2 Claim 6 together with Proposition 7.5 imply that the initial dual billiard coincides with the one defined by the above pencil.

Case 2): three singular points a 1 , a 2 , a 3 with residues 1, 1, 2 respectively. Consider the pencil of conics passing through these points and tangent to γ at a 3 . The above involution family σ P defined by this pencil has a rational quadratic integral (Example 1.14). Therefore, its singularities a 1 , a 2 , a 3 are poles of order one, by Proposition 2.11. Its residues at a 1 , a 2 are equal to 1, see Claim 6 and its proof. Therefore, its residue at the third point a 3 is equal to 4-2 = 2 (Proposition 7.1). Hence, the initial dual billiard structure coincides with the one defined by the pencil, by Propositon 7.5.

The remaining cases of residue configurations [START_REF] Advis-Gaete | Golfer's dilemma[END_REF][START_REF] Amiran | Caustics and evolutes for convex planar domains[END_REF] 

K(z, w) = w + 8z 2 + 4w 2 + 5z 2 w -14zw -4z 3 (7.13)
Proof One can prove the proposition directly by substituting the parametrization (7.12) to (7.13). But we will give a geometric proof explaining how formula (7.13) was found. First let us show that γ ∩ S = Σ := {(0, 0), (1, 1), E}, (7.14) t = 0, 1, ∞ at (0, 0), (1, 1), E respectively.

Indeed, for every P ∈ γ \ Σ the line L P intersects γ only at P , and its intersection points A and D with C do not coincide with P , since γ and C intersect only at two points: (0, 0) and E. Therefore, σ P (D) ∈ L P \ {P } lies outside γ. On the other hand, as P tends to a point X ∈ Σ, one has σ D (P ) → X. Indeed, this holds exactly when z 0 = z(P ) tends to some of the points 0, 1 or ∞, and in this case σ D (P ) → X: both latter statements follow from (7.11). This proves (7.14). Claim 8. The germs of the curve S at (0, 0) and E are regular and tangent to the conic C and to the conic {w = - 5 4 z 2 } respectively with contact of order at least three. The curve S is bijectively parametrized by the parameter t, see (7.12), except maybe for possible self-intersections. Proof The coordinates of a point of the curve S with a parameter t → 0 are asymptotic to -t 2 and -2t 2 respectively. This implies the statement of the claim for the germ at (0, 0). The proof for the germ at infinity is analogous. The parametrization (7.12) is either bijective (up to self-intersections), or a covering of degree at least two. The latter case is clearly impossible, since the germ of the curve S at (0, 0) is injectively parametrized by a neighborhood of the point t 0 = 0 and no other parameter value is sent to (0, 0). 2

Claim 9. The germ of the curve S at (1, 1) is a cusp. Proof The germ of the curve S at (1, 1) is irreducible, since it is a germ of curve parametrized by the parameter t at the base point t 0 = 1 in the parameter line, see (7.14). It is a singular germ, since the derivative of the map (7.12) at t = 1 is zero and by the last statement of Claim 8. Therefore, the projective line L = L (1,1) tangent to S at the point (1, 1) is tangent to S with contact at least three. On the other hand, the tangency order cannot be bigger than three, since S is a cubic. Hence, it is equal to three, and (1, 1) is a cusp. The claim is proved. 2

Claim 10. There exists a cubic polynomial vanishing on S of the form

K(z, w) = w + 8z 2 + αw(w + 5 4 z 2 ) + βzw + ψz 3 . (7.15)
Proof Let K(z, w) be a cubic polynomial vanishing on S. Its homogeneous cubic part should contain no w 3 and w 2 z terms, since S contains the point E = [0 : 1 : 0] ∈ CP 2 and is tangent to the infinity line there. Therefore, it is a linear combination of monomials from (7.15) (and may be z). Its lower (2, 1)-quasihomogeneous part at (0, 0) is w + 8z 2 up to constant factor, since the germ of the curve S at the origin is regular and tangent to the conic C = {w + 8z 2 = 0} with contact of order at least three (Claim 8). Hence normalizing K by constant factor, we can and will consider that K is equal to w + 8z 2 plus a linear combination of monomials w 2 , wz, wz 2 , z 3 . Passing to the affine coordinates ( z, w) = ( z w , 1 w ) centered at E we get that K(z, w) is equal to 1 w 3 H( z, w), where H( z, w) is a polynomial vanishing on the germ of the curve S at E. The latter germ being regular and tangent to the conic {w + 5 4 z 2 = 0} = { w + 5 4 z 2 = 0} with contact of order at least three (Claim 8), the (2, 1)-quasihomogeneous part of the polynomial H( z, w) is equal to w + 5 4 z 2 up to constant factor; hence H( z, w) is equal to α( w + 5 4 z 2 ) + ψ z 3 plus a polynomial of degree at most three whose monomials are divisible by either w 2 , or w z. One has

1 w 3 ( w + 5 4 z 2 ) = w(w + 5 4 z 2 ), z 3 w 3 = z 3 , 1 w 3 w z = zw.
This together with the above discussion implies that the polynomial K has the type (7.15). The claim is proved. 2

Finding unknown coefficients α, β, ψ from the linear equation saying that K(z, w) vanishes at (1, 1) with its first derivatives yields (7.13). One can also check directly that the polynomial K given by (7.13) vanishes at (1, 1) with its first partial derivatives. Proposition 7.15 is proved. 2 Proposition 7.16 Set Γ := C ∪ {z = 1} ∪ S, C = {w + 8z 2 = 0}, S is given by (7.12).

For every P ∈ γ \ Σ the intersection L P ∩ Γ is σ P -invariant. z,w = {t = 1} is an algebraic curve, and the billiard structure extends to a rationally integrable singular holomorphic dual billiard structure on every its non-linear irreducible component (Proposition 1.35). Therefore, each non-linear irreducible component is a conic (Theorem 1.18). Thus, the germ γ is a chain of adjacent arcs of a finite collection of non-linear conics and maybe lines. It contains at least one conical arc, being nonlinear. A conical arc cannot be adjacent to a straightline segment, since γ is C 2 -smooth. There are no adjacent arcs of distinct conics: they would have contact of order at most 4 (Bézout Theorem), and hence, would not paste together in C 4 -smooth way, while γ is C 4 -smooth. This is the place where we use the condition that γ is C 4 -smooth. Thus, γ is a germ of real conic, which will be also denoted γ, and the complexified billiard structure on its complexification is one of those given by Theorem 1.18. Let us find real forms of the complex dual billiards on conic given by Theorem 1.18.

Case 1): The complexified dual billiard on the complexified conic γ is given by a complex pencil of conics C λ ; γ = C 0 . Proposition 8.1 The real dual billiard on the real conic γ is defined by a real pencil of conics whose complexification is the pencil C λ .

Claim 13. The pencil C λ contains a complexified real conic C λ 0 = γ. Proof Fix a real point P 0 ∈ γ where the dual billiard involution σ P 0 : L P 0 → L P 0 is well-defined. Fix a point E 1 ∈ RP 2 \ γ close to P 0 and lying on the concave side from the conic γ. Consider the right real tangent line to γ through E 1 , let P 1 be its tangency point with γ. Set E 2 = σ P 1 (E 1 ). Take now the right real tangent line to γ through E 2 , let P 2 be the corresponding tangency point. Similarly we construct E 3 , E 4 , E 5 . If E 1 is close enough to P 0 , then the points E 2 , . . . , E 5 , P 2 , . . . , P 4 are well-defined and close to P 0 . The five real points E 1 , . . . , E 5 lie in the same complex conic C λ 0 = γ, since the complex dual billiard is defined by the pencil C λ . The conic C λ 0 is the complexification of a real conic. Indeed, otherwise C λ 0 and its complex Let us calculate the integral of the dual billiard structure 2b2) in the above affine chart (z, w). To do this, we find explicitly the projective equivalence F : CP 2 → CP 2 between the structures 2b1) and 2b2). The matrix of the projective transformation F is uniquely defined up to scalar factor. Its columns are λ 1 (0, 1, 1), λ 2 (-i, -1, 1), λ 3 (i, -1, 1), by the above statement; λ j ∈ C * . Let us choose the normalizing scalar factor so that λ 1 = 1. Then the coefficients λ 2 and λ 3 are found from the linear equation saying that F ([1 : 1

: 1]) = [0 : 1 : 0]: λ 2 = λ 3 = -1 2 . We get that F is given by M :=   0 i 2 -i 2 1 1 2 1 2 1 -1 2 -1 2   , M -1 =   0 1 2 1 2 -i 1 2 -1 2 i 1 2 -1 2   . (8.1)
The transformation F thus constructed preserves the conic γ = {wt = z 2 }. Indeed, its image is a conic tangent to γ at two points [±i : -1 : 1] and intersecting γ in yet another point [0 : 1 : 0] (by construction). Hence, it has intersection index at least 5 with γ and thus, coincides with γ, by Bézout Theorem. The map F sends the billiard structure 2b1) to 2b2), by construction. Let us check that it sends the integral R b1 of the structure 2b1) to the integral R b2 of the structure 2b2). Indeed, the integrals written in the homogeneous coordinates [z : w : t] take the form

R b1 (z, w, t) = (wt -z 2 ) 2 (wt + 3z 2 )(z -t)(z -w) , R b2 (z, w, t) = (wt -z 2 ) 2 (z 2 + w 2 + t 2 + wt)(z 2 + t 2 )
.

the latter intersection point is found from the equation

ε + 2ε(z -ε) = ε + 2ε(z -ε) : z = - 1 2 , w = -ε -ε = 1.
Finally, the projective transformation F should send the points [1 : 0

: 0], [0 : 1 : 0], [0 : 0 : 1] to [-1 2 : 1 : 1], [ε : ε : 1], [ε : ε : 1].
Hence, its matrix (normalized by appropriate scalar factor) takes the form

  -1 2 λ 2 ε λ 3 ε 1 λ 2 ε λ 3 ε 1 λ 2 λ 3   , λ 2 , λ 3 ∈ C * . (8.2)
The coefficients λ 2 and λ 3 are found from the following system of equations saying that the transformation F should fix the point [1 : 1 : 1]:

λ 2 (1 -ε) + λ 3 (1 -ε) = 0 3 2 + λ 2 (1 -ε) + λ 3 (1 -ε) = 0. We get that λ 3 = ελ 2 , 3 2 + λ 2 (1 + ε -2ε) = 0, λ 2 = ε 2 , λ 3 = ε 2
, and the transformation F is given by the matrix

M :=   -1 2 1 2 1 2 1 ε 2 ε 2 1 ε 2 ε 2   (8.3)
Let us now calculate the pullback of the integral R c1 under the projective transformation F . Writing R c1 in the homogeneous coordinates [z : w : t], we get

R c1 ([z : w : t]) = (wt -z 2 ) 3 (t 3 + w 3 -2zwt) 2 .
Applying the linear transformation given by the matrix M to the polynomial Q 1 (z, w, t) = wt -z 2 in the numerator yields

Q 1 •M (z, w, t) = 1 4 ((2z + εw +εt)(2z +εw + εt)-(w +t-z) 2 ) = - 3 4 (wt-z 2 ). Applying M to the polynomial Q 2 (z, w, t) = t 3 + w 3 -2zwt in the denomi- nator yields 8Q 2 • M (z, w, t) = (2z + εw + εt) 3 + (2z + εw + εt) 3 -2(w + t -z)(2z + εw + εt)(2z + εw + εt) = 16z 3 + 2w 3 + 2t 3 -12z 2 w -12z 2 t -6zw 2 -6zt 2 -3w 2 t -3wt 2 +24zwt + 2(z -w -t)(4z 2 + w 2 + t 2 -2zw -2zt -wt) = 24(z 3 -z 2 w -z 2 t) -3(w 2 t + wt 2 ) + 30zwt = 3(8z 3 -8z 2 w -8z 2 t -w 2 t -wt 2 + 10zwt).
In the affine chart

C 2 z,w = {t = 1} we get Q 1 • M (z, w, 1) = -3 4 (w -z 2 ), Q 2 • M (z, w, 1) = 3 8 (8z 3 -8z 2 w -8z 2 -w 2 -w + 10zw).
Therefore, R c1 • F = R c2 up to constant factor. Case 2d): the complexified dual billiard on the conic has three singularities with residues 4 3 , 1, 5 3 . The complex conjugation, which preserves the dual billiard, should fix them, since their residues are distinct. Therefore, applying a real projective transformation, we can and will consider that the underlying real conic is the parabola {w = z 2 }, and the singularities are respectively the points (0, 0), (1, 1) and its infinite point. The involution family defining the dual billiard is of the type 2d), by construction and Proposition 7.5. It has integral R 2d given by (1.12), due to Lemma 7.12. Theorem 1.16 and the addendums to Theorems 1.16 and 1.18 are proved.

Case of closed curve. Proof of Theorem 1.11

Let now γ be a C 4 -smooth closed curve equipped with an integrable dual billiard structure. The involutions σ P can be defined by just one convex closed invariant curve, and they depend continuously on P ∈ γ. Let R be a non-trivial rational first integral of the foliation by invariant curves. For every P ∈ γ the restriction R| L P is σ P -invariant, since this holds in a neighborhood of the point P in L P (by definition), and by analyticity. Therefore, γ is a conic, by Theorem 1.16, and it contains no singularity of the dual billiard. Hence, the dual billiard is given by a pencil of conics containing γ, since all the other rationally integrable dual billiards on conic listed in Theorem 1.16 have real singularities. Those conics of the pencil that are close enough to γ and lie on its concave side are disjoint and form a foliation of a topological annulus adjacent to γ. Indeed, otherwise the pencil would consists of conics intersecting at some point P 0 ∈ γ. But then P 0 would be a singular point of the dual billiard, see the proof of Proposition 7.6. The contradiction thus obtained proves Theorem 1.11.

The basic set of the corresponding pencil lies in CP 2 \RP 2 and is described by the following obvious proposition. Proposition 8.2 Let γ ⊂ RP 2 be a regular conic equipped with a dual billiard structure given by a real pencil of conics. Let the basic set of the pencil contain no real points. Then it consists of either four distinct points, or two distinct points. In the latter case the regular complexified conics of the pencil are tangent to each other at the two points of the basic set. 9 Integrable projective billiards. Proof of Theorem 1.26 and its addendum

Here we prove Theorem 1.26 classifying rationally 0-homogeneously integrable projective billiards and its addendum providing formulas for integrals (in Subsection 9.4). To do this, in Subsection 9.1 we prove Proposition 1.23 stating that such a billiard admits an integral that is a 0-homogeneous rational function in the moment vector. Afterwards in Subsection 9.2 we prove Proposition 1.24 stating that rational 0-homogeneously integrability of a projective billiard is equivalent to rational integrability of its dual billiard. In Subsection 9.3 we prove Proposition 1.27.

The moment map and normalization of integral. Proof of Proposition 1.23

Recall that we identify the ambient Euclidean plane R 2 x 1 ,x 2 of a projective billiard with the plane {x 3 = 1} ⊂ R 3

x 1 ,x 2 ,x 3 , and we denote r = (x 1 , x 2 , 1). The geodesic flow has an universal invariant: the moment vector

M := [r, v] = (-v 2 , v 1 , ∆(x, v)), ∆(x, v) := x 1 v 2 -x 2 v 1 ,
which separates any two orbits of the geodesic flow [START_REF] Bolotin | Integrable billiards on surfaces of constant curvature[END_REF]. This implies that, every integral of the projective billiard is a reflection-invariant function of M and vice versa, as in [START_REF] Bolotin | Integrable billiards on surfaces of constant curvature[END_REF].

Consider now a C 2 -germ of planar curve equipped with a transversal line field, a connected domain U adjacent to it and the projective billiard in U . (Or a (global) projective billiard in some connected domain U in R 2 .) Let it have a first integral R(x, v) that is a rational 0-homogeneous function in v of degree uniformly bounded by some constant d. Proof As x = (x 1 , x 2 ) is fixed, the restricted moment map v → M = [r, v] is a linear isomorphism of the tangent plane T x R 2 and the plane r ⊥ orthogonal to r. Therefore, the restriction to r ⊥ of the function R is rational 0-homogeneous of degree no greater than d. This proves 0-homogeneity of the function R(M ) and well-definedness of the function R on P(W ). Let (x) ⊂ RP 2 denote the projective line that is the projectivization of the subspace r ⊥ . One has P(W ) = ∪ x∈U (x). The function R| (x) is rational for every x ∈ U , by rationality on r ⊥ . The map R 2 → RP 2 * , x → (x) is a diffeomorphism onto the open subset of those projective lines that do not pass through the origin in the affine chart R 2

Let W ⊂ R 3 M 1 ,M 2 ,M 3 denote the image of the moment map T R 2 | U → R 3 , (x, v) → [r, v], x = (x 1 , x 2 ).
x 1 ,x 2 = {x 3 = 1}. Hence, it maps U onto an open subset in RP 2 * . This proves the proposition.

2

As is shown below, the statement of Proposition 1.23 is implied by Proposition 9.1 and the next proposition. Proposition 9.2 Let d ∈ N. Let a function f (z, w) be defined on a neighborhood of the origin in R 2 z,w . Let it be rational in each variable, and let its degree in the variable w be no greater than d. Then it is a rational function of two variables.

Proof Let us write

f (z, w) = a 0 (z) + a 1 (z)w + • • • + a d (z)w d b 0 (z) + b 1 (z)w + • • • + b d (z)w d .
Fix 2d + 1 distinct points w 0 , . . . , w 2d close to zero. The functions R j (z) := f (z, w j ) are rational. The system of 2d + 1 equations

f (z, w j ) = a 0 (z) + a 1 (z)w j + • • • + a d (z)w d j b 0 (z) + b 1 (z)w j + • • • + b d (z)w d j = R j (z)
in 2d + 2 unknown coefficients a s (z), b s (z) can be rewritten as a system of 2d + 1 linear equations on them (multiplying by denominator). For every z it has a unique solution up to constant factor depending on z, since two rational functions in w of degree at most d cannot coincide at 2d + 1 distinct points. This follows from the fact that their difference, which is a rational function in w of degree at most 2d, cannot have more than 2d zeros. The solution (a 0 (z), . . . , a d (z), b 0 (z), . . . , b d (z)) of the above linear systems can be normalized by constant factor so that its components be expressed as rational functions of the parameters w j and R j (z) of the system. Therefore, a s (z) and b s (z) are rational functions in z. This proves the proposition. 2

Let V ⊂ RP 2 * denote the open set of lines from the last statement of Proposition 9.1. Fix two distinct lines Λ 1 , Λ 2 ∈ V and two distinct points y j ∈ Λ j , j = 1, 2. Consider two pencils P j of lines through y j . The function R is rational along each line in P j close to Λ j . Choosing affine chart R 2 z,w ⊂ RP 2 so that y 1 , y 2 be the intersection points of the infinity line with the coordinate axes we get that R is locally a rational function in each separate variable z, w. Therefore, it is locally rational in two variables, by Proposition 9.2. Hence, it is globally rational on all of P(W ), by connectivity of the domain U , and hence, of the open subset P(W ). Therefore, R(M ) is a 0homogeneous rational function in M . The first part of Proposition 1.23 is proved. Let us prove its second part: independence of integrability on choise of side. Let a C 2 -smooth germ of curve C equipped with a transversal line field define a rationally 0-homogeneously integrable projective billiard on one side from C. Then it admits an integral that is a rational 0-homogeneous function R(M ) of the moment vector M (the first part of Proposition 1.23). The moment vector (and hence, the integral) extends as a constant function along straight lines crossing C (treated as orbits of geodesic flow) from one side of the curve C to the other side. Invariance of the integral R(M ) under the billiard flow is equivalent to its reflection invariance. But reflection invariance depends only on the transversal line field and not on the choice of side. Therefore, if R is an integral on one side, it will be automatically an integral on the other side. Proposition 1.23 is proved.

Integrability and duality. Proof of Proposition 1.24

The proof of Proposition 1.24 is analogous to the arguments from [START_REF] Bolotin | Integrable billiards on surfaces of constant curvature[END_REF][START_REF] Bialy | Angular billiard and algebraic Birkhoff conjecture[END_REF][START_REF] Glutsyuk | On polynomially integrable Birkhoff billiards on surfaces of constant curvature[END_REF]. On the ambient projective plane RP 2 [x 1 :x 2 :x 3 ] ⊃ R 2 we deal with the projective duality RP 2 * → RP 2 given by the orthogonal polarity. We use the following Remark 9.3 [START_REF] Bolotin | Integrable billiards on surfaces of constant curvature[END_REF][START_REF] Bialy | Angular billiard and algebraic Birkhoff conjecture[END_REF][START_REF] Glutsyuk | On polynomially integrable Birkhoff billiards on surfaces of constant curvature[END_REF]. For every r = (x 1 , x 2 , 1) ∈ R 3 and v ∈ T (x 1 ,x 2 ) R 2 consider the two-dimensional vector subspace in R 3 generated by r and v (punctured at the origin). Let L(r, v) ⊂ RP 2 denote the corresponding projective line (its projectivization). The composition of the moment map (r, v) → M = [r, v] and the tautological projection R 3 M 1 ,M 2 ,M 3 \ {0} → RP 2

[M 1 ,M 2 ,M 3 ] sends each pair (r, v) to the point L * (r, v) dual to L(r, v).

Consider a projective billiard on a curve C ⊂ R 2 x 1 ,x 2 . Its dual curve is identified with a curve γ = C * ⊂ RP 2 [M 1 :M 2 :M 3 ] , see the above remark. Let the dual billiard on γ have a rational integral. It can be written as a 0homogeneous rational function R(M 1 , M 2 , M 3 ). The corresponding function R([r, v]) is a rational 0-homogeneous integral of the projective billiard. Indeed, its invariance under reflections acting on v ∈ T Q R 2 , Q ∈ C, follows from the above remark and the fact that duality conjugates the billiard reflection acting on lines through Q to the dual billiard involution acting on the dual line Q * . Conversely, let the projective billiard have a rational 0homogeneous integral. Then it can be written as R [r, v], where R(M ) is a rational 0-homogeneous function, by Proposition 1.23. The function R(M ) is an integral of the dual billiard, since R[r, v] is an integral of the projective billiard and by the above conjugacy. Proposition 1.24 is proved.

Space form billiards on conics. Proof of Proposition 1.27

Let a projective billiard on a finitely punctured conic C be a space form billiard with matrix A. In the case, when A = diag(1, 1, 0), the billiard is Euclidean, and each conic confocal to C is a caustic. Analogous statement holds in the case of non-zero constant curvature, when A = diag(1, 1, ±1). This implies the second statement of Proposition 1.27.

Let us prove the converse. Let a transversal line field N on a punctured conic C define a projective billiard having a complex conical caustic S. Let us show that it is projectively equivalent to a space form billiard with matrix diag(1, 1, -1). Let D ⊂ C denote the finite set of those points Q ∈ C for which the line L Q tangent to C at Q is also tangent to S at some point. For every Q ∈ C o := C \ (D ∪ S) the line N (Q) is well-defined by harmonicity condition on the tuple of four distinct lines through Q: L Q , N (Q) and the complex lines Λ 1 , Λ 2 through Q tangent to S. It says that there exists a projective involution of the space CP 1 of complex lines through Q that fixes L Q , N (Q) and permutes Λ 1 , Λ 2 . Let E j = E j (Q), j = 1, 2, denote the tangency points of the lines Λ j with S. Fix coordinates (x 1 , x 2 , x 3 ) on R 3 (homogeneous coordinates on RP 2 ⊃ C) in which S = {< Ax, x >= 0}, A = diag(1, 1, -1). Let us show that the projective billiard on C o is the space form billiard with the matrix A: for every Q ∈ C o the twodimensional subspaces H T (Q), H N (Q) ⊂ R 3 projected to the lines L Q and N (Q) respectively are orthogonal in the scalar product < Ax, x >.

Fix a point B ∈ N (Q) ∩ S. The four points E 1 , E 2 , Q, B are distinct, and no three of them are collinear, since Q ∈ C o . There exists a projective involution I : CP 2 → CP 2 fixing the points of the line QB and permuting E 1 , E 2 (and hence, Λ 1 , Λ 2 ). It fixes N (Q), and hence, L Q , by harmonicity. It preserves S: the conic I(S) is tangent to S at E 1 and E 2 and intersects S at B = E 1,2 ; hence, I(S) = S. Thus, I is the projectivization of a non-trivial linear involution R 3 → R 3 preserving the quadratic form < Ax, x > and transversal two-dimensional subspaces H T (Q), H N (Q) and acting trivially on H N (Q). This implies orthogonality of the latter subspaces in the scalar product < Ax, x >. Proposition 1.27 is proved.

Proof of Theorem 1.26 and its addendum

Proof of Theorem 1.26. Let a nonlinear germ of C 4 -smooth curve C ⊂ R 2 carry a transversal line field N defining a 0-homogeneously rationally integrable projective billiard. Then the dual billiard on the dual curve γ = C * is rationally integrable (Proposition 1.24). Let C ⊂ C denote the complement of the curve C to the set of its inflection points, i.e., points where the geodesic curvature vanishes. (A priori the set of inflection points may contain a straightline interval.) The dual to C is a union of C 4 -smooth arcs of the curve γ. The latter arcs are conics, by Theorem 1.16. Hence, C is a union of conical arcs. The curve C being C 4 -smooth, the boundary points of the set C are not inflection points, and adjacent conical arcs paste C 4 -smoothly. This implies that C = C is a conic.

The rationally 0-homogeneously integrable projective billiards on a (punctured) conic C are exactly those dual to the rationally integrable dual billiards on (punctured) conic γ (Proposition 1.24). Thus, it suffices to find the projective billiards dual to all the integrable dual billiards in Theorem 1. [START_REF] Brieskorn | Plane algebraic curves[END_REF]. In each of these projective billiards the transversal line field N is defined on C o = C \ (at most four points).

Case 1): the dual billiard structure on a (punctured) conic γ is given by a pencil of conics. Then the complexified conic dual to any regular conic from the pencil is a complex caustic of the projective billiard on C. This together with Proposition 1.27 implies that the projective billiard is a space form billiard, whose space form matrix can be chosen diag(1, 1, -1).

To treate the other cases, let us introduce the next notations. Proof In the affine charts R 2 x 1 ,x 2 = {x 3 = 1} ⊂ RP 2 , R 2 z,w = {t = 1} ⊂ RP 2 in the source and image the map [F ] -1 and its differential take the form

[F ] -1 : (x 1 , x 2 ) → (z, w) := 2x 1 x 2 , 1 x 2 , d[F ] -1 (x 1 , x 2 )(v) = v := - 2∆ x 2 2 , - v 2 x 2 2 , ∆ := x 1 v 2 -x 2 v 1 .
Set r := (z, w, 1) = ( In what follows we calculate the integral (9.4) explicitly for the integrals R listed in the addendum to Theorem 1.16.

Case 1): the dual billiard structure on γ is given by a pencil of conics containing γ. Then it admits a quadratic rational integral R, which is a ratio of two quadratic forms in (M 1 , M 2 , M 3 ). The corresponding integral (9.4) is a ratio of two quadratic forms in the vector (v 2 , -2∆, -2v 1 ). its intersection points with I, see [START_REF] Bialy | Angular billiard and algebraic Birkhoff conjecture[END_REF], [31, proposition 2.18]. Thus, it leaves invariant polar and zero loci L P ∩ I, L P ∩ S * of the rational function R| L P . One has S * ⊂ I, since a caustic contains no straight line. This together with Proposition 4.12 applied to the involution σ P implies non-constance and σ P -invariance of the restriction R| L P and proves Proposition 10.2. 2 Thus, the dual billiard structure on γ is rationally integrable. Therefore, γ (and hence, C) lies in a conic. In more detail, if C were C 4 -smooth, then this would follow from Theorem 1.16. Let us treat the case, when C is C 2smooth. The polar locus of the integral R lies in I, and R| L P is invariant under the angular symmetry. Therefore, the billiard on C is polynomially integrable, see the discussion on p. 1004 in [START_REF] Glutsyuk | On polynomially integrable Birkhoff billiards on surfaces of constant curvature[END_REF], and hence, C is a conic, by [31, theorem 1.6]. Here is a more detailed explanation. The complex Zariski closure of the curve γ is an algebraic curve (Proposition 1.35). The family σ P extends to a singular dual billiard structure on each its non-linear irreducible component, with integral R having polar locus in I. Hence, each component is a conic, by [31, theorem 1.25]. Thus, C is a union of conical arcs. Different conical arcs (if any) should be confocal, see the discussion in [31, subsection 6.2]. Any two intersecting confocal conics are orthogonal. This together with C 2 -smoothness of the curve C implies that C lies in a conic; see [31, subsection 6.3] for more details. Theorem 1.31 is proved.

Case of projective billiard. Proof of Theorem 1.32

Let S 1 and S 2 be two complex algebraic caustics. Let S * 1 , S * 2 be their dual curves. Let d j denote the degrees of the curves S * j , and let P j be their defining polynomials of degrees d j . The dual curve γ = C * equipped with the corresponding dual billiard structure has a non-constant rational integral

R := P 2d 2 1 P 2d 1 2
, as in the above proof of Proposition 10.2. Therefore, γ, and hence, C is a conic, by Theorem 1.16. Theorem 1.32 is proved.
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Figure 1 :

 1 Figure 1: The projective billiard reflection.

Figure 2 :

 2 Figure 2: The projective billiard reflection involution T acting on lines through a point Q ∈ C and the dual involution σ = σ P acting on the dual line Q * tangent to the dual curve γ = C * at the point P = L * Q .

  the flow moves the point Q along the straight line directed by v with the fixed uniform velocity v, until it hits the boundary ∂Ω at some point H. Let v * ∈ T H R 2 denote the image of the velocity vector v (translated to H) under the projective billiard reflection from the tangent line T H ∂Ω. Afterwards the flow moves the point H with the new uniform velocity v * until its trajectory hits the boundary again etc. See Fig. 4 below.

Figure 4 :

 4 Figure 4: Projective billiard flow

  and only if b is a regular germ. The projective Puiseux exponent [27, p. 250, definition 2.9] of the germ b is the number r = r b := p b q b . The germ b is called quadratic, if r = 2 [28, definition 3.5]. When b is a germ of line, it is parametrized by t → (t, 0): then we set q b = 1, p b = r b = ∞.
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 1 Algebraicity of underlying curve. Proof of Propositions 1.34 and 1.35, parts 1)

Theorem 2 . 4

 24 For a given P ∈ b \ {B} the cubic Taylor coefficient of the function ξ from (2.3) at 0 vanishes, if and only if dH(G) d∇ skew G (P ) = 6φ(P )H(G)(P ).

Proposition 2 . 11

 211 Let b ⊂ CP 2 be an irreducible germ of holomorphic curve at a point B equipped with a singular holomorphic dual billiard structure admitting a meromorphic integral R. Let f be an irreducible germ of holomorphic function defining b, i.e., b = {f = 0}, and let k and G = R 1 k be the same, as in (2.1). Let (z, w) be affine coordinates centered at B and adapted to b. Let us equip the germ b with the coordinate z. Consider the restriction H(G)| b as a multivalued function of z. Let d ∈ Q be the minimal number such that the monomial z d is contained in its Laurent Puiseux series:

. 1 ) 2 . 3 . 5

 1235 uniformly on compact subsets in CExample Let a germ of holomorphic function f at the origin be irreducible (not a product of holomorphic germs vanishing at 0). If f (z, 0) ≡ 0, then the Newton diagram N f consists of just one, horizontal edge of height one. Let now f (z, 0), f (0, w) ≡ 0. It is well-known that then the Newton diagram of the germ f consists of one edge [(ps b , 0), (0, qs b )] with some s b ∈ N and coprime p, q ∈ N. Let b be its zero locus. Then b is a germ of curve injectively parametrized by a germ at 0 of holomorphic map of the type t → (t qs b , c b t ps b (1 + O(t))), c b = 0;(3.2)

  )up to constant factor. The proof of formula(3.3) repeats the proof of[31, proposition 3.5] with minor changes. Proposition 3.6 Let a, b be two irreducible germs of holomorphic curves at O. Let r = r b = p q be the projective Puiseux exponent of the germ b, (p, q) = 1, r a be that of the germ a. Let (z, w) be affine coordinates centered at O adapted to b; the coordinate w being rescaled so that c b = 1 in (3.2).1) Let f a (z, w) be the lower (p, q)-quasihomogeneous part of the germ of function f a defining a. Up to constant factor, the polynomial f a (z, w) has one of the following types: a) z m , if either a is transversal to b, or a, b are tangent and r a < r b ; b) w m , if a, b are tangent and r a > r b ; c) (w q -C a z p ) m , if a, b are tangent and r a = r b ; C a is given by (3.3). 2) For every P ∈ b \ {O} consider the coordinate ζ := z z(P ) on the line L P . Let L = L (1,1) denote the tangent line to γ p,q := {y q -ζ p = 0} ⊂ C 2 ζ,y at the point (1, 1). As P → O, the ζ-coordinates of points of the intersection a ∩ L P tend to some (finite or infinite) limits in C ζ . The set of their finite limits coincides with the set of zeros of the restriction to L of the polynomial f a (ζ, y). In the above cases a), b), c) it coincides respectively with the sets {0}, { r-1 r } and the collection of roots of the polynomial

2

 2 

Corollary 4 . 15

 415 For every λ ∈ C the polynomialH λ (z) := H(z) -λ z -ρ -2 ρ dPhas exactly two roots ζ ± (λ) converging to 1, as λ → 0. These roots are permuted by the involution η ρ .

1 2 . 2 w 2 z- 1 2

 2221 The restriction toL = L (1,1) of the function R 2 (z, w) = w-z written in the coordinate z is (z-1)up to constant factor. It is η ρ -invariant, by Proposition 4.12 and invariance of its zero and pole divisors: double zero 1 and the pair of simple poles 1 2 , ∞. Hence, R 2 is an integral of the (2, 1; 2)-billiard. Case 2): ρ = 1. Then the involution η ρ (z) = 1

Claim 5 .

 5 e., m > 0, χ := {ζ m+1 , . . . , ζ -1 }, if ρ < 2 i.e., m < 0. The set χ is a collection χ(P) of roots of restriction to L of a primitive η ρ -quasi-invariant (2, 1)-quasihomogeneous polynomial P. The polynomial P does not vanish identically on γ= γ 2,1 = {w = z 2 }. Proof The restriction to L of a prime quasihomogeneous polynomial w-cz 2 is R c (z) := -cz 2 + 2z -1.The map η 2 permutes roots of the polynomial R c for every c, since the sum of inverses of roots is equal to 2 and η 2 acts as v → 2-v in the chart v = 1 z . It permutes ζ j and ζ m-j for every j = 0, . . . , m, since y(ζ j ) form an arithmetic progression, see (4.32), y(ζ 0 ) = -2, y(ζ m ) = 0, and η 2 : y → -y -2. Therefore, the numbers ζ j and ζ m-j are roots of a quadratic polynomial R c j (z), unless ζ j ∈ {0, 1 2 , ∞}. The middle point -1 of the segment [-2, 0] ∈ R y corresponds to z = 0. One has ζ j = 0 for some j, if and only if m ∈ 2Z, and then j = m 2 . Therefore, χ consists of the union of roots of the quadratic polynomials R c j , |j| = 1, . . . , [ |m|-1 2 ], the point 1 2

Theorem 5 . 1

 51 Let a non-linear irreducible germ of analytic curve b ⊂ CP 2 at a point O admit a germ of singular holomorphic dual billiard structure with a meromophic integral R. Then the germ b is quadratic and one of the two following statements holds: a) either b is regular; b) or b is singular, the integral R(z, w) is a rational function that is constant along the projective tangent line L O to b at O, and the punctured line L O \ {O} is a regular leaf of the foliation R = const on CP 2 .

Definition 5 . 4 Remark 5 . 5 Theorem 5 . 6 . 3 )Definition 5 . 7 . 4 ) 5 . 8 Remark 5 . 9

 54555635745859 If b is not primitive and (5.2) holds for a unique δ, then b will be called uniformly (δ-) folded. This definition is equivalent to the well-known definition of a germ having two Puiseux pairs. Let an irreducible quadratic germ b of analytic curve at O ∈ C 2 admit a structure of meromorphically integrable singular dual billiard with residue ρ at O. Then b is either regular, or uniformly δ-folded with δ related to ρ by the formula ρ = 2 + δ. (5Proof Below we prove a more general theorem. To state it, let us introduce the following definition. Let a and b be two irreducible germs of analytic curves at O ∈ C 2 tangent to each other. Let b be non-linear; let r = r b be its projective Puiseux exponent. Let δ ∈ Q >0 . We say that a is a δ-satellite for b, if a, b are graphs of two multivalued functions {w = g a (z)}, {w = g b (z)} (represented by Puiseux series in z) satisfying the following statement: there exist a sector S with vertex at 0, a c ∈ C \ {0}, and holomorphic branches of the functions g a (z), g b (z) over S (near 0) for which g a (z) -g b (z) = cz r+δ (1 + o(1)), as z → 0, z ∈ S. (5Remark Any two satellites have the same Puiseux exponent. A uniformly δ-folded germ b is a δ-satellite for itself. If a and b are δ-satellites, then the above sector S can be chosen with angle arbitrarily large and containing an arbitrary given ray. A priori it may happen that a and b are δ 1 -and δ 2 -satellites with different δ 1 , δ 2 > 0 corresponding to two different pairs of holomorphic branches. (This holds, e.g., for a = b, if b is neither primitive, nor uniformly folded.) Two germs that are δ-satellites for a unique δ > 0 are called pure δ-satellites. Theorem 5.10 Let an irreducible quadratic germ b at O ∈ C 2 admit a structure of meromorphically integrable singular dual billiard. Let the corresponding involution family have residue ρ at O. Let a be an irreducible germ with the same base point O that lies in a level curve of the meromorphic integral. Let a be a δ-satellite of the germ b. Then they are pure δ-satellites, and the corresponding number δ is given by formula (5.3).

. 5 )

 5 Proof Without loss of generality we consider that g b (z) z r (1 + o(1)), as z → 0, rescaling the coordinate w. Let us work in the further rescaled coordinates (ζ, y), (z, w) = (z 0 ζ, z r 0 y), in which Γ a,b are graphs of functions h a,b (ζ), h a,b (ζ) converging to ζ r together with derivatives uniformly on compact subsets in S, as z 0 → 0. In the new coordinates
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 221 Singular quadratic germs. Proof of Theorem 5.In the proof of Theorem 5.1 we use Theorem 5.6 and the following proposition. To state it, let us recall the following definition. Definition 5.13 [28, definition 3.3] Let L ⊂ CP 2 be a line, and let O ∈ L. A (L, O)-local multigerm (divisor) is respectively a finite union (linear combination j k j b j with k j ∈ R \ {0}) of distinct irreducible germs of analytic curves b j (called components) at base points B j ∈ L such that each germ at B j = O is different from the line L. (A germ at O can be arbitrary, in particular, it may coincide with the line germ (L, O).) The (L, O)-localization of an algebraic curve (divisor) in CP 2 is the (L, O)-local multigerm (divisor) formed by all its local branches b j of the above type. Proposition 5.14 Let b be an irreducible germ of holomorphic curve at O ∈ C 2 , and let (z, w) be coordinates adapted to b in which the corresponding constant C b from (3.3) is equal to one. Let L O be the projective tangent line to b at O. Let Γ be a (L O , O)-local multigerm. Let σ P : L P → L P be a family of projective involutions, P ∈ b \ {O}, such that the intersections Γ ∩ L P are σ P -invariant for all P ∈ b close enough to O. Let σ P converge to η ρ in the coordinate ζ := z z(P ) on L P , as P → O. Let the corresponding number ρ be greater than the projective Puiseux exponent r = r b of the germ b. Then all the germs in Γ are based at the point O, and the ζ-coordinate of each point of the intersection Γ ∩ L P has a finite limit, as P → O.

2 Proof of Theorem 5 . 1 .

 251 and the latter polynomial has another root ζ 2+ ∈ (1, ζ 1+ ), as in [31, proof of theorem 4.24]. Continuing this procedure we get an infinite decreasing sequence of roots ζ j+ , all of them being limits of ζ-coordinates of points of the intersection Γ ∩ L P . Hence, the cardinality of the latter intersection is unbounded, as P → O, while the intersection index of the multigerm Γ with L O is finite. The contradiction thus obtained proves the proposition. Quadraticity of the germ b follows from Theorems 3.3 and 4.1. If b is regular, then there is nothing to prove. Let b be singular. Let ρ denote the residue at O of the dual billiard structure. Then b is uniformly δ-folded for some δ > 0, and ρ = 2 + δ > 2, by Theorem 5.6. Therefore, the meromorphic integral R is rational and b lies in an algebraic curve, by Proposition 2.14. Suppose the contrary to the constance statement: R ≡ const along the line L O tangent to b at O, i.e.,, the z-axis. Fix a point A ∈ L O \ {O} with finite z-coordinate z 1 = z(A) that is not an indeterminacy point for the integral R. For every P ∈ b \ {O} the intersection of the line L P with the level curve Γ := {R = R(A)} is σ P -invariant. The (L O , O)-localization of the algebraic curve Γ is a (L O , O)-local multigerm satisfying the conditions of Proposition 5.14, by construction. Hence, all its curves are based at one point O, by Proposition 5.14. On the other hand, it contains a germ of analytic curve based at the point A, by construction. The contradiction thus obtained proves that R| L O ≡ const.
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 123 Uniqueness of singular point with singular branch. Proof of Theorem 1.37 Here we prove Theorem 1.37. Quadraticity of local branches is already proved (Theorem 5.1). Let us prove uniqueness of point O ∈ γ at which some local branch of the curve γ is singular. Suppose the contrary: there exist at least two distinct points O 1 , O 2 ∈ γ with singular local branches b 1 and b 2 respectively. Let L 1 , L 2 denote their projective tangent lines at O 1 , O 2 . The rational integral is constant along both lines L 1 and L 2 , by Theorem 5.1. One has

. 1 )

 1 Let us recall an explicit formula for the Hessians h(γ, Q) [42, formula (2) and theorem 1]. To do this, let us introduce the following notations. For every local branch b of the curve γ at Q let s(b) denote its multiplicity: its intersection index with a generic line through Q. Let s * (b) denote the analogous multiplicity of the dual germ. Note that s(b) = q b , s * (b) = p b -q b , where p b and q b are the exponents in the parametrization t → (t q b , c b t p b (1 + o(1))) of the local branch b in adapted coordinates. One has s(b) = s * (b) = q b for every quadratic branch b.

(d- 1 )(d- 2 ) 2 ,

 122 by (6.5). Therefore, 3d(d -2) ≤ 3(d -1)(d -2) + n(O) j=1 (s(b Oj ) -1). (6.7) If all the local branches at O are regular, then the latter sum vanishes, and we get 3d(d -2) ≤ 3(d -1)(d -2), hence d = 2. Let now there exist at least one singular branch, say b Ot : s(b Ot ) ≥ 2. The intersection index of the curve γ with a line through O tangent to b Ot is no less than 2s(b Ot ) + j =t s(b Oj ). The latter intersection index should be no greater than d, by Bézout Theorem. Therefore, 2s(b Ot ) + j =t s(b Oj ) ≤ d, Oj ) -1) < d -2, 3d(d -2) < 3(d -1)(d -2) + d -2 = 3d(d -2).

  It should send singular points [0 : 0 : 1], [0 : 1 : 0], [1 : 1 : 1] of the structure 2b1) to the singular points of the structure 2b2) with the same residues. Let us construct an F sending them to [i, -1 : 1], [-i : -1 : 1], [0 : 1 : 0]. It should send the projective tangent lines to the conic at the points [0 : 0 : 1], [0 : 1 : 0] to its tangent lines at their images [i, -1 : 1], [-i : -1 : 1]. The two former tangent lines are the z-axis and the infinity line {t = 0}; their intersection point is [1 : 0 : 0]. The two latter tangent lines at [i, -1 : 1], [-i : -1 : 1] intersect at the point (0, 1) = [0 : 1 : 1], by symmetry and since in the affine chart C 2 z,w = {t = 1} they pass through (±i, -1) and have slopes ±2i. Therefore, F should also send [1 : 0 : 0] to [0 : 1 : 1]. Finally, it sends [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] to [0 : 1 : 1], [-i : -1 : 1], [i, -1 : 1].

Proposition 9 . 1

 91 Let us represent the above integral R as a function of the moment M . The function R is 0-homogeneous in M : R(λM ) = R(M ) for every λ ∈ R; thus, it is well-defined on the tautological projection image P(W ) = π(W \ {0}). The image P(W ) is a union of projective lines along which the function R is rational of degree at most d. The family of the latter lines forms an open subset in the space RP 2 * of lines.

Proposition 9 . 5

 95 For Q ∈ C o set P = L * Q := the point dual to the line L Q ; P ∈ γ = C * ; (9.1) P = N * (Q) := the point dual to the projective line tangent to N (Q); P lies in the line Q * = L P tangent to γ at P. Let [F ] -1 : RP 2 → RP 2 denote the projectivization of the transformation F -1 . Recall that the orthogonal-polar-dual to the conic [F ] -1 (C) is the conic γ = C * = {wt = z 2 }, see Claim 14 above, and the post-composition of [F ] -1with the duality sends the projective billiard on C to the corresponding dual billiard on γ given by Theorem 1.16. See the above proof of Theorem 1.26. Let R be a rational integral of the dual billiard on γ written as a 0-homogeneous rational function R(z, w, t). Then the functionR(x, v) := R(v 2 , -2∆, -2v 1 ), ∆ := x 1 v 2 -x 2 v 1 ,(9.4)is a 0-homogeneous rational integral of the projective billiard on C.

2x 1 x 2 , 1 x 2 , 1 )x 2 2 , - v 2 x 2 2 ,x 2 2 (v 2 ,

 2212222 , and let us identify v = (v 1 , v2 ) with v = (v 1 , v2 , 0) = -2∆ 0 ∈ R 3 z,w,t . The function R([r, v]) is an integral of the [F ] -1 -pushforward of the projective billiard on C, which is a projective billiard on [F ] -1 (C); see Proposition 1.24. Therefore, R([r, v]) written as a function of x = (x 1 , x 2 ) and v = (v 1 , v 2 ) is an integral of the projective billiard on C. One has [r, v] = 1 -2∆, -2v 1 ).Hence, R([r, v]) takes the form (9.4), by 0-homogeneity. Proposition 9.5 is proved. 2

  Let φ(P ) denote the function (2.2) defined by the involutions σ P . Equation (2.5) extends the function φ(P ) holomorphically along paths in γ avoiding a finite collection of points where some branch of the multivalued function H(G) either vanishes, or is not holomorphic, or its derivative in the left-hand side in (2.5) is not holomorphic. It defines a holomorphic extension of the involution family σ P . The relation R • σ P | L P = R remains valid for the extended dual billiard structure, by uniqueness of analytic extension. Let us show that this yields a well-defined singular holomorphic dual billiard structure on γ. Suppose the contrary: thus extended family σ P is multivalued, i.e., its extensions along two different paths arriving to one and the same point A are two different involutions σ A and σ A . Then their composition σ A • σ

.11) Proof of parts 2) of Propositions 1.34, 1.35, 2.2. Let us prove part 2) of Proposition 1.34: for the other propositions the proof is analogous. Let γ denote the irreducible algebraic curve containing the initial germ γ. A : L A → L A is a parabolic transformation with unique fixed point A, leaving invariant the restriction R| L A . Its orbits (except for the fixed point A) being infinite and accumulating to A, one has R| L A ≡ const. The involutions σ A , σ A are well-defined and satisfy the above statements on an open subset of points A in γ, by local analyticity. Therefore, R| L A ≡ const for an open subset of points A ∈ γ, which is impossible. The contradiction thus obtained implies that the extended dual billiard structure is singular holomorphic. 2

  .13) 

	∇ skew G and H(G), see the statement after formula (2.4) above and the dis-
	cussion in [31, p. 1022, proof of proposition 3.6]. Therefore, we can calculate
	the exponent d writing H(G) in the adapted coordinates (z, w).
	Proof of Proposition 2.11. Consider a line L P equipped with the coor-
	dinate ζ = z z(P ) and its parametrization by the parameter θ:
	Remark 2.12 The above asymptotic exponent d is well-defined, since H(G)
	is a finite sum of products of rational powers of holomorphic functions, see
	(2.4). It is independent on the affine chart containing B chosen to define

  R • η ρ = ±R. The sign ± is in fact +, taking into account the condition at the point 1, which is fixed by η ρ .2

	Proof of Proposition 4.11. Let us show, case by case, that if the corre-
	sponding relation (4.7), (4.8) or (4.9) holds, then the zero and pole divizors
	of the restriction R|

L are η ρ -invariant. This together with Proposition 4.12 implies that R| L is η ρ -invariant, and hence, R is an integral (Remark 4.2).

Case 1): θ ρ / ∈ χ(P 1 ) ∪ χ(P 2 ) and m 1 d 1 = m 2 d 2 .

  Definition 5.2 A non-linear irreducible germ b will be called primitive, if s = 1 in (5.1) (following a suggestion of E.Shustin). = ν j t qs(r+δ) (1 + o(1)), for j = 1, . . . , s -1, as t → 0; (5.2) b) or there exit at least two distinct δ 1 , δ 2 ∈ Q >0 and distinct j 1 , j 2 ∈ {1, . . . , s -1} for which (5.2) holds with δ replaced by δ 1 and δ 2 respectively.

	Remark 5.3 A quadratic germ is primitive, if and only if it is regular. It
	is well-known that if s ≥ 2, then the function φ(t) in (5.1) satisfies one of
	the two following statements:
	a) either there exist a δ ∈ Q >0 and ν 1 , . . . , ν s-1 ∈ C \ {0}, such that
	φ(te	2πij s ) -φ(t)

  [START_REF] Bialy | Algebraic Birkhoff conjecture for billiards on Sphere and Hyperbolic plane[END_REF]. Their non-vanishing follows from Proposition 2.13. Let O be a singular point, and let ρ be the corresponding residue. Then the (2, 1; ρ)-billiard is quasihomogeneously integrable, by Theorem 3.3. Therefore, ρ ∈ M, by Theorem 4.1. Proposition 7.3 is proved.2

	3 2	,	3 2	, 1 ,	4 3	,	4 3	,	4 3	,	4 3	,	5 3	, 1 .
	Corollary 7.4 Let γ be a regular conic equipped with a rationally integrable
	singular dual billiard structure. Then it has at least one and most four
	singular points, with residue collections being of one of the following types:
	4, (2, 2), (1, 3), (2, 1, 1), (1, 1, 1, 1); (ρ, 4 -ρ) with ρ ∈ M \ Z; (7.2)

  Let γ ⊂ CP 2 be a regular conic. For any two collections of distinct points a 1 , . . . , a n ∈ γ and non-zero numbers (x 1 , . . . , x n ) with

	and we get the residue collection ( 4 3 , 4 3 , 4 3 ). For k 1 + 2 the second type we get 2 k 2 = 1, k 1 , k 2 ∈ N ≥3 . The only solutions of the
	latter equation are {k 1 , k 2 } = {4, 4}, {3, 6}, which correspond to the residue
	configurations ( 3 2 , 3 2 , 1) and ( 4 3 , 5 3 , 1) respectively. The corollary is proved. 2
	Proposition 7.5 n
	j=1

  Every singular holomorphic dual billiard structure on a regular conic with two singularities of order one is projectively equivalent to a (2, 1; ρ)-billiard. It is rationally integrable, if and only if the latter billiard is quasihomogeneously integrable; this holds if and only if ρ ∈ M. Proposition 7.[START_REF] Bolotin | Integrable billiards on surfaces of constant curvature[END_REF] The cubic S is the zero locus of the polynomial

	Corollary 7.14 The families of images σ P (A(P )) and σ P (D(P )) are re-
	spectively the line {z = 1} and the rational cubic		
	S := { -	t(2t + 1) 2 -5t	,	t 2 (t -4) 2 -5t	| t ∈ C}	(7.12)
					, 4 are treated anal-
	ogously. Proposition 7.6 is proved.				2
	7.3 Case of two singularities: a quasihomogeneously inte-
	grable (2, 1; ρ)-billiard				
	Proposition 7.7 Proof The first statement of Proposition 7.7, with ρ being the residue at
	some singularity, follows from Propositions 7.1 and 7.5. The condition that
	ρ ∈ M is necessary for rational integrability, by Proposition 7.3. Conversely,
	it ρ ∈ M, then the billiard, which is equivalent to the (2, 1; ρ)-billiard, is
	rationally integrable, by Theorem 4.1. This proves Proposition 7.7.	2

  Let a germ of real C 4 -smooth curve γ ⊂ R 2 carry a rationally integrable dual billiard structure. Then its complex Zariski closure γ ⊂ CP 2 [z:w:t] ⊃ C 2

	8 Real integrable dual billiards. Proof of Theo-
	rems 1.16, 1.11 and the addendums to Theorems
	1.18, 1.16
	8.1 Real germs: proof of Theorem 1.16 and the addendums
	to Theorems 1.18, 1.16

This conjecture, attributed to G.Birkhoff, was first mentioned in print in the paper[START_REF] Poritsky | The billiard ball problem on a table with a convex boundary -an illustrative dynamical problem[END_REF] by H. Poritsky, who worked with Birkhoff as a post-doctoral fellow in late 1920-ths.

In other words, two lines a, b through Q are permuted by reflection at Q, if and only if the quadruple of lines TQC, N (Q), a, b is harmonic: there exists a projective involution of the space RP 1 of lines through Q that fixes TQC, N (Q) and permutes a, b.

A space form projective billiard with matrix A = diag(1, 1, -1) is not necessarily the projection of a billiard in the hyperbolic plane Σ = Σ+. Some its part may lie in the projection to RP 2 of the de Sitter cylinder {< Ax, x >= 1}, where the quadratic form < Ax, x > defines a pseudo-Riemannian metric of constant curvature.

z 0 , u(B) = 1 -z 0 , u(F ) = z 0 (1 -z 0 ) 2z 0 -1 . (7.5)
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Proof of the main part of Theorem 4.1: necessity

The main part of Theorem 4.1 is given by the next lemma. Lemma 4.17 Let a (p, q; ρ)-billiard be quasihomogeneously integrable. Then p = 2, q = 1 and ρ ∈ M.

Proof The case of polynomial integrability, was already treated in Subsection 4.1. Let us treat the case, when there are no polynomial integral. Then there exists a primitive integral R vanishing on γ p,q ; let us fix it. One has

(z, w),

The statement of the lemma will be deduced by equating the two formulas for the residue ρ given by Proposition 4.13 and Lemma 4.14 (applied to P 1 ). Case 1): θ ρ = η ρ (∞) / ∈ χ(P 1 ) ∪ χ(P 2 ). Then

by Proposition 4.13 and Lemma 4.14 applied to P 1 . Subcase 1a): β 1 = β 2 = 0. Then (4.21) yields (ρ 0 -2)(N 1 p + α 1 ) = 0, ρ 0 = 2 3 (r + 1).

Hence, ρ 0 = r = 2, since N 1 p > 0, α 1 ≥ 0. This together with (4.21) yields p = 2, q = 1, ρ = ρ 0 = 2.

Subcase 1b): β 1 = 1, β 2 = 0. Then (4.21) yields

Substituting r = p q and multiplying the latter equation by 3q yields 6N 1 pq + 6α 1 q + 6p = 2(p + q)(N 1 p + α 1 + 1) + 3(q -p)(N 1 p + α 1 -1). (4.22) Writing equation (4.22) modulo p and dividing it by q(mod p) yields 6α 1 = 2(α 1 + 1) + 3(α 1 -1) = 5α 1 -1(mod p), α 1 ≡ -1(mod p).

Thus, α 1 ∈ {0, 1} and α 1 ≡ -1(mod p), p ∈ N, p ≥ 2. Therefore, p = 2, q = 1, α 1 = 1, ρ 0 = 2,

by (4.21). Hence, 2(2N 1 + 1) = 2N 1 and N 1 < 0. The contradiction thus obtained shows that Subcase 1b) is impossible. Subcase 1c):

by (4.21) and since in our case ν = m 2 m 1 = d 1 d 2 , see (4.7). Moving ρ 0 from the right-to the left-hand side, dividing both sides by N 1 p + α 1 and multiplying them by the product of denominators in (4.23) yields

Substituting the value of ρ 0 and multiplying the latter equation by 3q yields (4q -2p)(N 2 p + α 2 + 1) = 3(p -q)(N 1 p + α 1 -2).

Reducing the latter equation modulo p and dividing it by q(mod p) yields 4α 2 + 3α 1 ≡ 2(mod p).

(4.24)

In the case, when α 1 = 1, one has α 2 = 0 and 3 ≡ 2(mod p), which is impossible, since p ≥ 2. Hence, α 1 = 0. In this case α 2 ∈ {0, 1}, 4α 2 -2 = ±2 ≡ 0(mod p). Hence, p = 2, q = 1, ρ 0 = 2. This together with the first equality in (4.23) implies that either ρ = 2, or N 1 p + α 1 -2 = 0. If ρ = 2, then ρ = ρ 0 , which contradicts the second equality in (4.23), Therefore,

Case 2): θ ρ = η ρ (∞) ∈ χ(P 1 ). Then

by (4.14) (applied to P 1 ) and Proposition 4.13. Multiplying by the denominator yields ((r -1)νβ 2 -s)(N 1 p + α 1 + β 1 -1) = 2s, s := 1 + β 1 (r -1) -ρ 0 . (4.26) Subcase 2a): β 2 = 0. Then (4.26) yields (N 1 p + α 1 + β 1 + 1)s = 0, hence s = 0 and ρ 0 = 2 3 (r + 1) = β 1 (r -1) + 1. Thus,

Subcase 2b): β 2 = 1. Then β 1 = 0, and (4.26) yields

The right-hand side of the latter equation is negative, while the first factor in the left-hand side is positive. Therefore, the second factor should be negative, which is obviously impossible. Hence, Subcase 2b) is impossible.

Case 3):

by (4.14), Proposition 4.13 and (4.9).

Claim 3. If β 2 = 0, then one has

Proof Multiplying (4.27) with β 2 = 0 by its denominator yields

Note that one has always t ≥ 0. Case t > 0. Then s -ν and s either have different signs, or both vanish (which is impossible, since ν > 0). Thus, s -ν < 0 < s. But s = 1 3 (2(r + 1) + 3β 1 (1 -r) -6). If β 1 = 1, then the latter expression in the brackets is 2(r + 1) -3r + 3 -6 = -1 -r < 0, hence s < 0. The contradiction thus obtained shows that β 1 = 0. Hence, s = ρ 0 -2,

Substituting the above formula for the number ν, multiplying by its denominator and by 3q and dividing by

Reducing (4.31) modulo p and dividing by q(mod p) yields -4(α 2 + 1)

In the case, when α 1 = 1, one has α 2 = 0. Hence, -1 ≡ 0(mod p), which is impossible. Thus, α 1 = 0. Then 2 -4α 2 = ±2 ≡ 0(mod p). Hence, p = 2, q = 1, ρ 0 = 2, s = 0. This together with (4.30) implies that t = N 1 p + α 1 -2 = 0. Hence, N 1 = 1, α 1 = 0. The first statement of the claim is proved. Together with (4.27) and (4.28), it implies (4.29).

2

Claim 4. In the case, when β 2 = 1, one has p = r = ρ = 2, q = 1. Proof In this case β 1 = 0, and (4.27) yields

The latter equality implies that r = 2. Thus, p = r = ρ 0 = ρ = 2, q = 1. 2

Claims 3, 4 together with the previous discussion imply the statement of Lemma 4.17. 2

4.5 Sufficience and integrals. End of proof of Theorem 4.1.

Proof of the addendum

Lemma 4.17 reduces Theorem 4.1 to the following lemma.

Lemma 4.18 A)

The following statements are equivalent:

1) The (2, 1; ρ)-billiard is quasihomogeneously integrable.

2) One has ρ ∈ M.

3) Either the mapping T := η 2 • η ρ is the identity, or the points ∞ and 1 2 lie in the same T -orbit, i.e., T m ( 1 2 ) = ∞ for some m ∈ Z. B) For every ρ ∈ M the corresponding function R ρ (z, w) from the table in Theorem 4.1 is an integral of the (2, 1; ρ)-billiard.

Equivalence of Statements 1)-3) is proved. Now for the proof of Lemma 4.18 it remains to calculate the integrals. To do this, let us calculate the c j from the proof of Claim 5 for j = m 2 . One has

Therefore, in the case, when ρ > 2, the polynomial P(z, w) is the product of the quadratic polynomials w -c j z 2 , j = 1, . . . , [ m-1 2 ], the polynomial w, and also the polynomial z (which enters P if and only if m ∈ 2Z). In the case, when ρ < 2, the polynomial P(z, w) is the product of the polynomials w -c j z 2 , j = 1, . . . , [-m+1 2 ], and also the polynomial

Then P is the product of the polynomial w and N above polynomials w -c j z 2 . Its degree is equal to 2N + 1 = m. The divisor χ(P) contains 1 2 and does not contain η ρ (∞), by construction and the above discussion. Substituting m = 2N + 1 to formula (4.33) yields the formula for the coefficients c j given by the table in Theorem 4.1. This together with Proposition 4.11 implies that the corresponding function R ρ from the same table is an integral of the (2, 1; ρ)-billiard.

Subcase 5b): ρ = 2 -2 2N +1 . It is treated analogously. In this case P is just the product of the above N polynomials w -c j z 2 . The divisor χ(P) contains θ ρ = η ρ (∞). This together with Proposition 4.11 implies that the corresponding function R ρ from the table is an integral.

Subcase 5c): ρ = 2 + 1 N +1 , m = 2N + 2. Treated analogously to Subcase 5a). But now the polynomial P contains the additional factor z, and substituting m = 2N +2 to (4.33) yields the formula for c j from the corresponding line of the table in Theorem 4.1.

Subcase 5d): ρ = 2 -1 N +1 . Treated analogously. Lemma 4.18 is proved. The proof of Theorem 4.1 is complete.

2

Proof of the addendum to Theorem 4.1. The equation for the curve γ = {w = z 2 } in the new coordinates ( z, w) is the same: w = z 2 . The variable change (z, w) → ( z, w) preserves the point (1, 1), and hence, the corresponding tangent line L = L (1,1) to γ, along which one has

Therefore, in the coordinate z the involution η ρ takes the form

θ(z 0 , u) → 0, as z 0 → 0, uniformly with derivatives in u lying in a disk centered at 0, by (5.4). Hence,

The u-coordinates of points of the intersection Γ a ∩ L P are found from the equation

Moving h b (1 + u) to the left-hand side and expressing the new left-hand side by Taylor formula with base point 1 we get:

, as z 0 → 0. Substituting these expressions to (5.6) yields

φ(z 0 ), χ(z 0 ) → 0. Equation (5.7) has exactly two solutions u ± that tend to zero, as z 0 → 0: they have asymptotics

Let us now prove (5.5). Dividing equations (5.7) written for u+ and u -and taking into account that u + -u -, we get

The latter formula implies (5.5). Proposition 5.11 is proved. 2

Let now b be a singular quadratic germ equipped with a meromorphically integrable singular dual billiard structure. Fix two graphs Γ a ⊂ a, Γ b ⊂ b satisfying (5.4) over S with some δ > 0. For the proof of Theorem 5.10 it suffices to show that ρ = 2 + δ. Suppose the contrary:

(5.9)

7 Classification of complex rationally integrable dual billiards. Proof of Theorem 1.18

Let γ ⊂ CP 2 be a non-linear irreducible algebraic curve equipped with a rationally integrable singular dual billiard structure. The curve γ is a conic, by Theorems 1.37 and 1.38. Thus, for the proof of Theorem 1.18 it suffices to classify rationally integrable singular dual billiard structures on the conic

To do this, we first classify the a priori possible residue configurations of the corresponding involution family. In Subsection 7.1 we show that the billiard structure in question may have at most four singularities, the corresponding residues lie in M \ {0} and their sum is equal to 4. This implies that the a priori possible residue configurations are 4, (1, 1, 1, 1), (2, 1, 1), (ρ, 4 -ρ)

. We prove that each residue configuration is realized by a rationally integrable dual billiard, and we find the corresponding integrals. We show that the cases of integer residues correspond to the dual billiard structures of conical pencil type.

Residues of singular dual billiard structures on conic

Proposition 7.1 Let γ ⊂ CP 2 be a regular conic equipped with a singular holomorphic dual billiard structure with isolated singularities that are its poles of order at most one. Then the sum of their residues is equal to 4.

Proof Let us take an affine chart

For the (2, 1; 2)-billiard on the latter conic the sum of residues is equal to four: the residues at 0, ∞ are both equal to 2, since the projective symmetry (z, w) → ( z w , 1 w ) of the billiard structure (see the addendum to Theorem 4.1) permutes 0 and ∞ and preserves the residues. To treat the general case, we use the following proposition. Proposition 7.2 Let γ and the affine chart C 2 z,w be as above. A singular holomorphic dual billiard structure on γ is meromorphic (i.e., has order at most one at each singular point), if and only if the corresponding involutions σ P : L P → L P , P = (z 0 , z 2 0 ) ∈ C 2 , written in the coordinate u = z -z 0 on L P , have the form

Take an affine chart (z, w) in which the conic γ is given by the equation w = z 2 , the singular points of the billiard structure with residue 3 2 are (0, 0) and the infinite point, and the singular point with residue 1 is (1, 1). The corresponding involution family σ P : L P → L P written in the coordinate u = z -z 0 , z 0 := z(P ), takes the form (1.3), by Proposition 2.13, 7.2, 7.5:

The billiard structure on γ defined by the above involution family σ P admits the rational integral

Motivation of construction of integral. The singular point at the origin has residue 3 2 . The corresponding (2, 1; 3 2 )-billiard has a quasihomoge-

z(w+3z 2 ) , see Theorem 4.1. Let us try to construct a rational integral of our non-quasihomogeneous dual billiard in the form

Q(z,w) so that the lower (2, 1)-quasihomogeneous part at (0, 0) of the denominator Q(z, w) be equal to the denominator in R 3 2 up to constant factor (see the proof of Theorem 3.3). Then the zero locus {Q = 0} should contain an irreducible quadratic germ of analytic curve at (0, 0) having a contact bigger than two with the conic C := {w+3z 2 = 0}. Let us look for a polynomial Q of degree four vanishing on the conic C: Q(z, w) = (w +3z 2 )H(z, w). To find the zero locus of the polynomial H, we have to find the images of the points of intersection L P ∩ C under the involutions σ P . We show that the latter images lie in the union of lines {w = z} and {z = 1}. This together with Proposition 4.12 will imply that the function (7.4) is an integral. Proof of Lemma 7.8. 

The latter formula implies the last formula in (7.5). One has

The claim is proved. 2

The claim together with the above discussion implies the statement of Lemma 7.8. 2

7.5 Integrability of residue configuration ( 4 3 , 4 3 , 4 3 )

Lemma 7.9 The singular holomorphic dual billiard structure on a regular conic with three poles of order one and residues equal to 4 3 is rationally integrable. In the affine chart C 2 z,w , where the conic is given by the equation w = z 2 and the singularities are

the corresponding involution family σ P : L P → L P written in the coordinate u := z -z 0 , z 0 = z(P ), takes the form (1.4):

The rational function given by (1.10):

is an integral of the billiard.

Proof Take an affine chart as above. The involution family σ P given by (7.6) has first order poles at a j with residues 4 3 and is regular at infinity, by Propositions 2.13 and 7.2. For the proof of invariance of the restrictions R| L P under the involutions σ P , it suffices to show that the intersection of each line L P with the zero locus of the denominator, the cubic

is σ P -invariant. We will do this in the two following propositions.

Proposition 7.10 For every P ∈ γ \ {a 0 , a 1 , a 2 } let S(P ) ∈ L P denote the fixed point distinct from P of the involution σ P . The fixed point family S(P ) coincides with the triple punctured cubic C \ {a 0 , a 1 , a 2 }. In particular, the cubic C is rational.

Therefore, the fixed point family S(P ) runs along the parametrized rational curve

The curve K obviously satisfies the equation 1 + w 3 -2zw = 0 of the cubic C, and hence, coincides with C. 2

Proposition 7.11 For every P ∈ γ \ {a 0 , a 1 , a 2 } the intersection

Proof One of the points of the intersection L P ∩ C is the fixed point S(P ).

Let us show that the other intersection points are permuted by σ P . To do this, let us find explicitly their t-parameters, see (7.8). Along the line L P one has w = z 2 0 + 2z 0 (z -z 0 ) = 2z 0 z -z 2 0 . Substituting z = 1+t 3 2t 2 and w = 1 t to the latter equation yields the equation

Its solution t = z 0 corresponds to the fixed point S(P ). The other two solutions are t = ± 1 √ z 0 . Here we fix some value of square root and denote it √ z 0 ; the other value is -√ z 0 . The corresponding values z and u are equal respectively to

The involution σ P sends the point with the u-coordinate u + to the point with the u-coordinate

.

0 + 1) in the denominator and cancelling the former factor yields

This implies that the involution σ P permutes the intersection points with u-coordinates u ± . The proposition is proved. 2 Lemma 7.9 follows from Propositions 7.11 and 4.12. 2

7.6 Integrability of the configuration ( 4 3 , 5 3 , 1). End of proof of Theorem 1.18 Lemma 7.12 The singular holomorphic dual billiard structure on a regular conic γ with three singularities of order one and residues 4 3 , 5 3 , 1 is rationally integrable. In the affine chart C 2 z,w where γ = {w = z 2 } and the corresponding singularities are (0, 0), infinity and (1, 1) respectively the involutions σ P : L P → L P defining the dual billiard structure have the following form in the coordinate u = z -z 0 , z 0 = z(P ):

The function

is an integral of the dual billiard.

Proof Formula (7.9) follows from Propositions 7.2 and 7.5.

Motivation of the construction of the integral R. The residue of the dual billiard at (0, 0) is equal to 4 3 . The corresponding (2, 1; 4 3 )billiard has quasihomogeneous integral R 4 3 (z, w) = (w-z 2 ) 3 (w+8z 2 ) 2 , by Theorem 4.1. Let E denote the infinity point of the conic γ. Its residue is equal to 

We would like to construct an integral of the billiard from the lemma as a ratio R(z, w) = (w-z 2 ) 3 (w+8z 2 )Y (z,w) . To find the polynomial Y , we find the images of points of the intersection L P ∩ C under the involution σ P . We show that their families parametrized by P form the union of the line {z = 1} and a cubic. The latter union will be the zero locus of the polynomial Y . Proposition 7.13 For every P = (z 0 , z 2 0 ) ∈ γ \ {(0, 0), (1, 1), E} the intersection L P ∩ C consists of two points A = A(P ) and D = D(P ):

.11)

Proof The ζ-coordinates of points of the intersection L P ∩ C, ζ = z z 0 , are roots of the polynomial R 2,1,-8 (ζ) = 8ζ 2 + 2ζ -1. Its roots are 1 4 and - 1 2 , and the corresponding intersection points will be denoted by A and D respectively. This proves the first statement of the proposition. Let us find their σ P -images in the coordinate u = z -z 0 . One has

Proposition 7.11 is proved. 2

Proof For every P ∈ γ \ Σ the line L P intersects Γ at six points: A, D ∈ C ∩ L P , the point σ P (A) ∈ {z = 1} ∩ L P , the point σ P (D) ∈ S ∩ L P and two more points B 1 , B 2 ∈ S ∩ L P ; B j = B j (P ). It suffices to show that the involution σ P permutes B 1 and B 2 for every P ∈ γ \ Σ. (7.16) The proof of (7.16) will be split into the two following claims. Set

Claim 11. One has

(7.17)

Proof One has z = z 0 + u, w = z 2 0 + 2z 0 u on L P . In the coordinate u on L P the restriction to L P of the polynomial K(z, w) takes the form

Indeed, the cubic term in K| L P coincides with that of the sum

Thus, the coefficient at u 3 equals 10z 0 -4. The coefficient at u 2 in K| L P is the sum of similar coefficients in (7. [START_REF] Dragović | Integrable billiards and quadrics[END_REF]) and in the expression 8z 2 + 4w 2 -14zw = (8 + 16z 2 0 -28z 0 )u 2 + lower terms.

The coefficient at u 2 in (7. [START_REF] Dragović | Integrable billiards and quadrics[END_REF]) is equal to -12z 0 +25z 2 0 . Hence, the coefficient at u 2 in K| L P is equal to 41z 2 0 -40z 0 + 8. The free term of the polynomial K| L P is equal to its value at the point P = (z 0 , z 2 0 ):

This proves (7.18). The roots of the restriction K| L P are u 1 , u 2 and the u-coordinate u 3 of the point σ P (D):

Formula (7.18) together with Vieta's formulas imply that

This proves (7.17). 2

Thus, by (7.17), the numbers u 1 , u 2 are roots of the quadratic polynomial Q(u) := 2u 2 + (7z 0 -4)u + 3z 0 (z 0 -1).

Claim 12. One has

The numerator in the latter ratio is equal to

This proves Claim 12. 2

The involution σ P sends the collection of roots of the polynomial Q to itself: their images are zeros of the pullback Q • σ P , which are roots of Q, by Claim 12. Therefore, σ P permutes the roots: otherwise, it would fix three points, two roots and 0 = u(P ), which is impossible, since σ P = Id. Thus, σ P permutes the points B 1 , B 2 ∈ S ∩ L P . This proves Proposition 7.16. 2

The zero locus of the rational function R(z, w) given by (7.10) is the conic γ. Its polar locus is the curve Γ from Proposition 7.16. For every P ∈ γ \ Σ the intersections of the latter loci with L P are respectively the point P and Γ ∩ L P . They are σ P -invariant, by Proposition 7.16. Therefore, the function R| L P is also σ P -invariant, by Proposition 4.12. Hence, R is an integral of the dual billiard in question. This proves Lemma 7.12.

2

Proof of Theorem 1.18. Let an irreducible germ of analytic curve γ ⊂ CP 2 admit a structure of rationally integrable dual billiard. Then the curve γ is a conic, and the billiard structure extends to a singular holomorphic one with poles of order at most one and residues lying in M\{0}, by Proposition 1. Proof of Proposition 8.1. Let C λ 0 be the real conic from the claim. The complex pencil C λ of complex conics is the complexification of the real pencil of real conics containing γ and C λ 0 , by construction and since a pencil of conics is uniquely determined by its two conics. Hence, the involution σ P : L P → L P permutes the points of intersection of the line L P with each conic from the real pencil, since this is true for the pencil C λ . Thus, the real dual billiard on γ is defined by a real pencil. This proves Proposition 8.1. 2

Case 2a): the billiard structure has two singular points with residues 2 ± 2 k , k ∈ N ≥3 . The coordinatewise complex conjugation cannot permute them, since it should preserve the residue. Therefore, both singular points lie in the real part of the conic, and the dual billiard structure has the type 2a) from Theorem 1.16 and has the corresponding integral (1.6) or (1.7).

Case 2b): the billiard structure has three singular points with residues 3 2 , 3 2 , 1. Then the coordinatewise complex involution fixes the singular point with residue 1 and may either fix, or permute the two other singular points.

Subcase 2b1): the coordinatewise complex conjugation fixes all the three singular points. Then all of them lie in the real conic. Let us choose real homogeneous coordinates [z : w : t] so that the singular points with residue 3 2 are [0 : 0 : 1] and [0 : 1 : 0], the singular point with residue 1 is [1 : 1 : 1] and the lines w = 0, z = 0 are tangent to γ at the two former points. Then we get that in the affine chart C 2 z,w = {t = 1} the real conic γ is given by the equation w = z 2 , the dual billiard structure has type 2b1) from Theorem 1.16 and has integral (1.8) (Lemma 7.8). The fact that γ indeed coincides with the conic {wt = z 2 } ⊂ CP 2 [z:w:t] follows from Bézout Theorem and the fact that the conics in question are tangent to each other at two points [0 : 0 : 1] and [0 : 1 : 0] and have yet another common point [1 : 1 : 1].

Subcase 2b2): the coordinatewise complex conjugation permutes the singular points with residue 3 2 . Applying a real projective transformation, we can and will consider that the singular point with residue 1 (which lies in the real conic) has coordinates [0 : 1 : 0], the line {t = 0} is tangent to γ at the latter point, the line {w = 0} is tangent to γ at the point [0 : 0 : 1], the points with residue 3 2 have coordinates [±i : -1 : 1]. Then γ is given by the equation wt = z 2 , as in the above discussion. Passing to the affine chart C 2 z,w = {t = 1} we get that the dual billiard structure has type 2b2) from Theorem 1.16. This argument implies that the dual billiard structures 2b1) and 2b2) are complex-projective equivalent and proves the corresponding statement of the addendum to Theorem 1.18.

The variable change given by the inverse matrix in (8.1),

Case 2c): the complexified dual billiard structure has three singularities with residues equal to 4 3 . The coordinatewise complex conjugation permutes them. Hence, it should fix some of them, being an involution. Thus, it either fixes one singularity and permutes the two other ones (Subcase c1)), or fixes all the three singularities (Subcase c2)).

Subcase c1). The singular point fixed by coordinatewise complex conjugation is a real point of the conic γ, and the two other (permuted) singularities are complex-conjugated. Applying a projective transformation with a real matrix, we can and will consider that γ = {wt = z 2 }, the fixed singularity is the point [1 : 1 : 1] and the permuted singularities are [e ± 2πi

3 : e ∓ 2πi 3 : 1]. Then in the affine chart C 2 z,w = {t = 1} the dual billiard structure in question takes the form 2c1) as in Theorem 1.16. Hence, it has first integral R c1 given by (1.10), see Lemma 7.9. Subcase c2). Then all the singularities of the billiard structure are real points in γ. Applying a real projective transformation, we can and will consider that γ = {wt = z 2 } and the singularities are [0 : 0 : 1], [0 : 1 : 0] and [1 : 1 : 1]. Then in the affine chart C 2 z,w = {t = 1} the dual billiard takes the form 2c2). This together with Proposition 7.5 implies that there exists a complex projective transformation F fixing the complexified conic γ and sending the dual billiard of type 2c2) to that of type 2c1). This proves the corresponding statement of the addendum to Theorem 1.18. Let us show that the real dual billiard of type 2c2) has the integral R c2 given by (1.11), and R c2 = R c1 • F up to constant factor. To do this, we find F . Set

We choose F so that it sends the singular points In what follows for every rationally integrable dual billiard from Theorem 1.16, cases 2a)-2d), we find the above fixed points P of the corresponding involutions. Their dual lines N (Q) = P * form the line field defining the corresponding projective billiard. To do this, we work in homogeneous coordinates [z : w : t] in the ambient projective plane RP 2 ⊃ γ in which

The curve C is projective dual to γ with respect to the duality RP 2 * → RP 2 [z:w:t] given by the orthogonal polarity. We will work with the curve C in the new homogeneous coordinates [x 1 , x 2 , x 3 ] given by the projectivization

of the linear map

For every point Q ∈ C let P ∈ γ be the corresponding point in (9.1). Set z 0 := z(P ).

Claim 14. In the coordinates [x 1 : x 2 : x 3 ] given by (9.2) one has

Proof The projective tangent line Q * to γ at the point P and its orthogonalpolar-dual point Q ∈ RP 2 [z:w:t] are given by the equations

In the coordinates [x 1 :

Thus, [z :

[z:w:t] is given by the equation g(z 0 )z + (2g(z 0 )z 0 -z 2 0 )w + t = 0. Writing it in the coordinates (x 1 , x 2 , x 3 ), see (9.2), yields 2g(z 0 )x 1 + (2g(z 0 )z 0 -z 2 0 )x 3 + x 2 = 0. Thus, in the affine chart R 2 x 1 ,x 2 the latter line is directed by the vector (1, -2g(z 0 )) = (1, -2g(-x 1 (Q)), by (9.3).

2

Case 2a): the dual billiard structure on γ is given by the family of involutions σ P : L P → L P taking the form

The fixed point P ∈ L P of the involution σ P has ζ-coordinate ρ-2 ρ , hence

Therefore, the dual line P * is directed by the vector (1, -2g(-

x 1 (Q)) at Q. Thus, the line field N defining the projective billiard on C is directed by the vector field (ρ, 2(ρ -2)x 1 ) on C. The latter field is tangent to the level curves of the quadratic polynomial Q

1 . Thus, it has type 2a) from Theorem 1.26. Cases 2b), 2c), 2d): in the coordinate u := z -z 0 , z 0 = z(P ), the involutions σ P : Q * → Q * take the form

.

The u-and z-coordinates of the fixed point P of the involution σ P are

.

Subcase 2b1

). One has

Therefore, the dual line P * is directed by the vector

Here we have substituted x 2 1 = x 2 , since Q ∈ C. Hence, the line field N is directed by the vector field (5x 1 + 3, 2(x 2 -x 1 )) and thus, has type 2b1). Subcase 2b2). One has

and the line field N on C is directed by the vector field (1, -2g(-x 1 )) = (1,

3x 1 ). Or equivalently, by the vector field (3x 1 , 2x 2 -4), since x 2 1 = x 2 on C. Thus, it has type 2b2). Subcase 2c1). One has

the field N is directed by the vector field (1, -2g(-x 1 )) = (1,

x 2 ) on C. Or equivalently, by (x 2 , x 1 x 2 -1). We get type 2c1). Subcase 2c2). One has

the line field N is directed by the vector field (1,

) on C. Or equivalently, by the field (2x 1 + 1, x 2 -x 1 ). Hence, it has type 2c2). Subcase 2d). One has

). Or equivalently, by the field (7x 1 + 4, 2x 2 -4x 1 ). Hence, it has type 2d). This proves Theorem 1.26.

2

Proof of the addendum to Theorem 1.26. Consider the real conic

equipped with a projective billiard structure from Theorem 1.26. Let F : R 3 → R 3 be the transformation from (9.2):

, the integral R(z, w) written in the affine chart R 2 z,w = {t = 1} has type (1.6). In the homogeneous coordinates [z :

to R, see (9.4), and multiplying by 4 yields integral (1.14):

, the integral R(z, w) has type (1.7), and in the homogeneous coordinates R(z, w, t) = (wt -z 2 ) N +1

zt N j=1 (wt -c j z 2 )

, c j = -j(2N + 2 -j) (N + 1 -j) 2 . Substitution (9.5) and multiplication by -2 yield (1.15):

.

Case 2b1): R(z, w) has type (1.8), and in the homogeneous coordinates R(z, w, t) = (wt -z 2 ) 2 (wt + 3z 2 )(z -t)(z -w) .

Substitution (9.5) yields (1.16):

.

Case 2b2): R(z, w) has type (1.9), and in the homogeneous coordinates R(z, w, t) = (wt -z 2 ) 2 (z 2 + w 2 + wt + t 2 )(z 2 + t 2 ) .

Substitution (9.5) yields (1.17):

.

Case 2c1): R(z, w) has type (1.10), and in the homogeneous coordinates R(z, w, t) = (wt -z 2 ) 3 (t 3 + w 3 -2zwt) 2 . Substitution (9.5) and multiplication by 64 yield (1.18):

Case 2c2): R(z, w) has type (1.11), and in the homogeneous coordinates R(z, w, t) = (wt -z 2 ) 3 (8z 3 -8z 2 w -8z 2 t -w 2 t -wt 2 + 10zwt) 2 . Substituting (9.5) and multiplying by 64 yields (1.19):

Case 2d): R(z, w) is as in (1.12), and in the homogeneous coordinates R(z, w, t) = (wt -z 2 ) 3 (wt + 8z 2 )(z -t)(wt 2 + 8z 2 t + 4w 2 t + 5wz 2 -14zwt -4z 3 ) .

Substituting (9.5) and multiplying by -8 yields (1.20):

.

The addendum to Theorem 1.26 is proved. Proposition 10.2 Let C, γ, σ P be as above. Let the billiard in C have a complex algebraic caustic S. Let S * be its complex projective dual, and let H(x 1 , x 2 , x 3 ) be its defining homogeneous polynomial: S * = {H = 0}, and H has the minimal possible degree. Set

The function R is an integral of the Bialy-Mironov angual billiard on γ.

Proof Set I := {x 2 1 + x 2 2 = 0} ⊂ CP 2 [x 1 :x 2 :x 3 ] . For every P ∈ γ the complexification of the angular symmetry σ P : L P → L P is the projective involution of the complexified line L P that permutes