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Abstract

A caustic of a strictly convex planar bounded billiard is a smooth
curve whose tangent lines are reflected from the billiard boundary to its
tangent lines. The famous Birkhoff Conjecture states that if the billiard
boundary has an inner neighborhood foliated by closed caustics, then
the billiard is an ellipse. It was studied by many mathematicians, in-
cluding H.Poritsky, M.Bialy, S.Bolotin, A.Mironov, V.Kaloshin, A.Sorrentino
and others. In the paper we study its following generalized dual ver-
sion stated by S.Tabachnikov. Consider a closed smooth strictly convex
curve γ ⊂ RP2 equipped with a dual billiard structure: a family of non-
trivial projective involutions acting on its projective tangent lines and
fixing the tangency points. Suppose that its outer neighborhood admits
a foliation by closed curves (including γ) such that the involution of
each tangent line permutes its intersection points with every leaf. Then
γ and the leaves are conics forming a pencil. We prove positive answer
in the case, when the curve γ is C4-smooth and the foliation admits
a rational first integral. To this end, we show that each C4-smooth
germ of curve carrying a rationally integrable dual billiard structure is
a conic and classify rationally integrable dual billiards on (punctured)
conic. They include the dual billiards induced by pencils of conics, two
infinite series of exotic dual billiards and five more exotic ones.
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1 Introduction

1.1 Main results: classification of rationally integrable dual
planar billiards

The famous Birkhoff Conjecture deals with a billiard in a bounded planar
domain Ω ⊂ R2 with smooth strictly convex boundary. Recall that its caus-
tic is a curve S ⊂ R2 such that each tangent line to S is reflected from the
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boundary ∂Ω to a line tangent to S. A billiard Ω is called Birkhoff caustic-
integrable, if a neighborhood of its boundary in Ω is foliated by closed caus-
tics, and the boundary ∂Ω is a leaf of this foliation. It is well-known that
each elliptic billiard is integrable: ellipses confocal to the boundary are caus-
tics, see [44, section 4]. The Birkhoff Conjecture states the converse: the
only Birkhoff caustic-integrable convex bounded planar billiards with smooth
boundary are ellipses.1 See its brief survey in Subsection 1.5.

S.Tabachnikov suggested its generalization to projective billiards intro-
duced by himself in 1997 in [43]. See the following definition and conjecture.

Definition 1.1 [43] A projective billiard is a smooth planar curve C ⊂ R2

equipped with a transversal line field N . For every Q ∈ C the projective
billiard reflection involution at Q acts on the space of lines through Q as
the affine involution R2 → R2 that fixes the points of the tangent line to
C at Q, preserves the line N (Q) and acts on N (Q) as central symmetry
with respect to the point2 Q. In the case, when C is a strictly convex closed
curve, the projective billiard map acts on the phase cylinder: the space of
oriented lines intersecting C. It sends an oriented line to its image under
the above reflection involution at its last point of intersection with C in the
sense of orientation. See Fig. 1.

Figure 1: The projective billiard reflection.

1This conjecture, attributed to G.Birkhoff, was first mentioned in print in the paper
[41] by H. Poritsky, who worked with Birkhoff as a post-doctoral fellow in late 1920-ths.

2In other words, two lines a, b through Q are permuted by reflection at Q, if and only
if the quadruple of lines TQC, N (Q), a, b is harmonic: there exists a projective involution
of the space RP1 of lines through Q that fixes TQC, N (Q) and permutes a, b.
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Example 1.2 A usual Euclidean planar billiard is a projective billiard with
transversal line field being normal line field.

Example 1.3 Each simply connected complete Riemannian surface of con-
stant curvature is isometric (up to constant factor) to one of the two-
dimensional space forms: the Euclidean plane, the unit sphere, the hyper-
bolic plane. Any billiard in the hyperbolic plane (hemisphere) is isomorphic
to a projective billiard. Namely, each space form is represented by a hyper-
surface Σ in the space R3 equipped with appropriate quadratic form

< Ax, x >, < x, x >:= x2
1 + x2

2 + x2
3,

A is a symmetric 3x3-matrix called space form matrix :

Euclidean plane: A = diag(1, 1, 0), Σ = {x3 = 1}.
Sphere: A = Id, Σ = {< x, x >= 1} is the unit sphere.
Hyperbolic plane: A = diag(1, 1,−1), Σ = {< Ax, x >= −1, x3 > 0}.

The metric of the surface Σ is induced by the quadratic form < Ax, x >.
Its geodesics are the sections of the surface Σ by two-dimensional vector
subspaces in R3. The billiard in a domain Ω ⊂ Σ+ := Σ ∩ {x3 > 0}
is defined by reflection of geodesics from its boundary. The tautological
projection π : R3 \ {0} → RP2 sends Ω diffeomorphically to a domain in
the affine chart {x3 = 1}. It sends billiard orbits in Ω to orbits of the
projective billiard on C = π(∂Ω) with the transversal line field N on C
being the image of the normal line field to ∂Ω under the differential dπ. The
projective billiard on C is a space form billiard, see the next definition.

Definition 1.4 Let A be a space form matrix. Let C be a curve in an affine
chart in RP2. Let N be the transversal line field on C defined as follows.

a) Case, when A = diag(1, 1, 0). Then N is the normal line field to C in
the affine chart {x3 6= 0}.

b) Case, when detA 6= 0, i.e., A = diag(1, 1,±1). Then for every Q ∈ C
the two-dimensional subspaces in R3 projected to the lines tangent to TQC
and N (Q) are orthogonal with respect to the scalar product < Ax, x >.

Then the projective billiard defined by N is called a space form billiard3.

The definitions of caustic and Birkhoff integrability for projective bil-
liards repeat the above definitions given for classical billiards.

3A space form projective billiard with matrix A = diag(1, 1,−1) is not necessarily the
projection of a billiard in the hyperbolic plane Σ = Σ+. Some its part may lie in the
projection to RP2 of the de Sitter cylinder {< Ax, x >= 1}, where the quadratic form
< Ax, x > defines a pseudo-Riemannian metric of constant curvature.
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Conjecture 1.5 (S.Tabachnikov) In every Birkhoff integrable projective
billiard its boundary and closed caustics forming a foliation are ellipses
whose projective-dual conics form a pencil.

Below we state the dual version of the Tabachnikov’s Conjecture (2008,
[45]) and present partial positive results. To do this, consider R2

x1,x2 as the
plane {x3 = 1} ⊂ R3

x1,x2,x3 identified with the corresponding affine chart

in RP2
[x1:x2:x3]. The orthogonal polarity sends a two-dimensional vector sub-

space W ⊂ R2 to its Euclidean-orthogonal subspace W⊥. The corresponding
projective duality (also called orthogonal polarity) is the map RP2∗ → RP2

sending lines to points so that the tautological projection of each punctured
two-dimensional subspace W \ {0} ⊂ R3 (a line L) is sent to the projection
of its punctured orthogonal complement W⊥ \{0} (called its dual point and
denoted by L∗). The line dual to a point P will be denoted by P ∗. To each
curve C ⊂ R2 we associate the dual curve γ = C∗ ⊂ RP2 consisting of those
points that are dual to the tangent lines to C.

Let now a planar curve C be equipped with a projective billiard struc-
ture: a transversal line field N . For every point Q ∈ C let LQ denote the
projective tangent line to C at Q in the ambient projective plane RP2 ⊃ R2.
The projective duality sends the space RP1

Q of lines through Q to the projec-
tive line Q∗ dual to Q. The line Q∗ is tangent to γ at the point P = L∗Q dual
to LQ. The duality ”line 7→ point” conjugates the projective billiard involu-
tion acting on RP1

Q with a non-trivial projective involution σP : LP → LP
fixing P and the point dual to N (Q). Thus, the duality transforms a projec-
tive billiard on C to a dual billiard on γ = C∗, see the next definition.

Definition 1.6 A dual billiard structure on a smooth curve γ ⊂ RP2 is a
family of non-trivial projective involutions σP : LP → LP fixing P .

Remark 1.7 Let a projective billiard on C have a strictly convex closed
caustic S. Then its dual curve S∗ is also strictly convex and closed, and for
every P ∈ γ = C∗ the dual billiard involution σP : LP → LP permutes the
two points of intersection LP ∩ S∗. See Fig. 2. A curve S∗ satisfying the
latter statement is called an invariant curve for the dual billiard.

Definition 1.8 A dual billiard on a strictly convex closed curve γ is inte-
grable, if there exists a C0-foliation by closed strictly convex invariant curves
on a neighborhood of γ on its concave side, with γ being a leaf. See Fig. 3.
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Figure 2: The projective billiard reflection involution T acting on lines
through a point Q ∈ C and the dual involution σ = σP acting on the
dual line Q∗ tangent to the dual curve γ = C∗ at the point P = L∗Q.

Conjecture 1.9 (S.Tabachnikov [45]); dual to Conjecture 1.5). For
every integrable dual billiard the underlying curve and the corresponding
invariant curves forming foliation are conics forming a pencil.

Remark 1.10 A projective billiard on a strictly convex closed curve is in-
tegrable, if and only if so is its dual billiard. The outer dual billiard in R2,
with σP : LP → LP being the central symmetry with respect to the tan-
gency point P , is dual to the centrally-projective billiard, whose transversal
field consists of lines passing through the origin [43]. Thus, Conjecture 1.9
would imply the Birkhoff Conjecture and its versions on surfaces of constant
curvature and for outer billiards (as observed in [45]), see Examples 1.2, 1.3.

One of the main results of the present paper is the following theorem.

Theorem 1.11 Let γ ⊂ RP2 be a C4-smooth strictly convex closed planar
curve equipped with an integrable dual billiard structure. Let the correspond-
ing foliation by invariant curves admit a rational first integral. Then its
leaves, including γ, are conics forming a pencil.

Below we state a more general result for γ being a germ. To do this, let
us introduce the following definition.

Definition 1.12 A dual billiard on a (germ of) curve γ ⊂ RP2 given by
involution family σP : LP → LP is called rationally integrable, if there

7



Figure 3: An integrable dual billiard structure

exists a non-constant rational function R on RP2 whose restriction to LP is
σP -invariant for every P ∈ γ: R ◦ σP = R on LP .

Example 1.13 Let a dual billiard on γ be polynomially integrable: the
above integral R is polynomial in some affine chart R2. Then for every
P ∈ γ ∩ R2 the involution σP fixes the intersection point of the line LP
with the infinity line, and hence, is the central symmetry LP → LP with
respect to the tangency point P . Thus, the dual billiard in question is a
polynomially integrable outer billiard. It is known that in this case the
underlying curve is a conic: stated as a conjecture and proved in [45] under
some non-degeneracy assumption; proved in full generality in [28].

Example 1.14 (S.Tabachnikov’s observation). Let A, B be real sym-
metric 3 × 3-matrices, B be non-degenerate. Consider the pencil of conics
Cλ := {< (B − λA)x, x >= 0}; set γ := C0 = {< Bx, x >= 0}. The set
of those points in CP2 that lie in complexifications of all Cλ simultaneously
will be called the basic set of the pencil and denoted by B(C). For every
P ∈ γo := γ \ B(C) the involution permuting the two complex points of
intersection Cλ ∩ LP for each λ is a well-defined real projective involution
σP : LP → LP . This yields a dual billiard on γo, which will be called dual
billiard of conical pencil type. It is known to be rationally integrable with
a quadratic integral: the ratio of quadratic polynomials vanishing on some
two given conics of the pencil.

Definition 1.15 Two dual billiard structures on two (germs of) curves γ1,
γ2 in RP2 are real-projective equivalent, if there exists a projective trans-
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formation RP2 → RP2 sending γ1 to γ2 and transforming one structure
to the other one. (Projective equivalence preserves rational integrability.)
Real-projective equivalence of projective billiards is defined analogously.

The main result of the paper is the next theorem stating that for every
rationally integrable dual billiard the underlying curve is a conic, the dual
billiard structure extends to the conic punctured in at most four points,
and classifying rationally integrable dual billiards on punctured conic. Un-
expectedly, there are infinitely many exotic, non-pencil rationally integrable
dual billiards on punctured conic, with integrals of arbitrarily high degrees.

Theorem 1.16 Let γ ⊂ R2 ⊂ RP2 be a C4-smooth non-linear germ of
curve equipped with a rationally integrable dual billiard structure. Then γ is
a conic, and the dual billiard structure has one of the three following types
(up to real-projective equivalence):

1) The dual billiard is of conical pencil type and has a quadratic integral.
2) There exists an affine chart R2

z,w ⊂ RP2 in which γ = {w = z2} and
such that for every P = (z0, w0) ∈ γ the involution σP : LP → LP is given
by one of the following formulas:

a) In the coordinate

ζ :=
z

z0

σP : ζ 7→ ηρ(ζ) :=
(ρ− 1)ζ − (ρ− 2)

ρζ − (ρ− 1)
,

ρ = 2− 2

2N + 1
, or ρ = 2− 1

N + 1
for some N ∈ N. (1.1)

b) In the coordinate
u := z − z0

σP : u 7→ − u

1 + f(z0)u
, (1.2)

f = fb1(z) :=
5z − 3

2z(z − 1)
(type 2b1)), or f = fb2(z) :=

3z

z2 + 1
(type 2b2)).

(1.3)
c) In the above coordinate u the involution σP takes the form (1.2) with

f = fc1(z) :=
4z2

z3 − 1
(type 2c1)), or f = fc2(z) :=

8z − 4

3z(z − 1)
(type 2c2)).

(1.4)
d) In the above coordinate u the involution σP takes the form (1.2) with

f = fd(z) =
4

3z
+

1

z − 1
=

7z − 4

3z(z − 1)
(type 2d). (1.5)
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Addendum to Theorem 1.16. Every dual billiard structure on γ of
type 2a) has a rational first integral R(z, w) of the form

R(z, w) =
(w − z2)2N+1∏N
j=1(w − cjz2)2

, cj = −4j(2N + 1− j)
(2N + 1− 2j)2

, for ρ = 2− 2

2N + 1
;

(1.6)

R(z, w) =
(w − z2)N+1

z
∏N
j=1(w − cjz2)

, cj = −j(2N + 2− j)
(N + 1− j)2

, for ρ = 2− 1

N + 1
.

(1.7)
The dual billiards of types 2b1) and 2b2) have respectively the integrals

Rb1(z, w) =
(w − z2)2

(w + 3z2)(z − 1)(z − w)
, (1.8)

Rb2(z, w) =
(w − z2)2

(z2 + w2 + w + 1)(z2 + 1)
. (1.9)

The dual billiards of types 2c1), 2c2) have respectively the integrals

Rc1(z, w) =
(w − z2)3

(1 + w3 − 2zw)2
, (1.10)

Rc2(z, w) =
(w − z2)3

(8z3 − 8z2w − 8z2 − w2 − w + 10zw)2
. (1.11)

The dual billiard of type 2d) has the integral

Rd(z, w) =
(w − z2)3

(w + 8z2)(z − 1)(w + 8z2 + 4w2 + 5wz2 − 14zw − 4z3)
.

(1.12)

We prove the following theorem, which is a unifying complex version of
Theorems 1.11, 1.16. To state it, let us introduce the following definition.

Definition 1.17 Consider a regular germ of holomorphic curve γ ⊂ CP2 at
a point O. A complex (holomorphic or not) dual billiard on γ is a germ of
(holomorphic or not) family of complex projective involutions σP : LP →
LP , P ∈ γ, acting on complex projective tangent lines LP to γ at P and
fixing P . A complex dual billiard on γ is said to be rationally integrable,
if there exists a non-constant complex rational function R on CP2 such
that for every P ∈ γ the restriction R|LP is σP -invariant: R ◦ σP = R on
LP . The definition of complex-projective equivalent complex dual billiards
repeats the definition of real-projective equivalent ones with change of real
projective transformations RP2 → RP2 to complex ones acting on CP2.
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Theorem 1.18 Every regular germ of holomorphic curve in CP2 (differ-
ent from a straight line) equipped with a rationally integrable complex dual
billiard structure is a conic. Up to complex-projective equivalence, the cor-
responding billiard structure has one of the types 1), 2a), 2b1), 2c1), 2d)
listed in Theorem 1.16, with a rational integral as in its addendum. (Here
the coordinates (z, w) as in the addendum are complex affine coordinates.)

Addendum to Theorem 1.18 The billiards of types 2b1), 2b2), see (1.3),
are complex-projectively equivalent, and so are the billiards of types 2c1) and
2c2). For every g = b, c there exists a complex projective equivalence between
the billiards 2g1), 2g2) that sends the integral Rg1 of the former, see (1.8),
(1.10) (treated as a rational function on CP2

[z:w:t] ⊃ C2
z,w = {t = 1}), to the

integral Rg2 of the latter, see (1.9), (1.11), up to constant factor.

1.2 Classification of rationally 0-homogeneously integrable
projective billiards with smooth connected boundary

Let Ω ⊂ R2
x1,x2 be a domain with smooth boundary ∂Ω equipped with a

projective billiard structure (transverse line field). The projective billiard
flow (introduced in [43]) acts on TR2|Ω analogously to the classical case of
Euclidean billiards. Given a point (Q, v) ∈ TR2, Q ∈ Ω, v = (v1, v2) ∈
TQR2, the flow moves the point Q along the straight line directed by v with
the fixed uniform velocity v, until it hits the boundary ∂Ω at some point
H. Let v∗ ∈ THR2 denote the image of the velocity vector v (translated
to H) under the projective billiard reflection from the tangent line TH∂Ω.
Afterwards the flow moves the point H with the new uniform velocity v∗

until its trajectory hits the boundary again etc. See Fig. 4 below.

Figure 4: Projective billiard flow
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Remark 1.19 The flow in a Euclidean planar billiard always has a triv-
ial first integral ||v||2. But it is not a first integral in a generic projective
billiard. It is a well-known folklore fact that Birkhoff integrability of a Eu-
clidean planar billiard with strictly convex closed boundary is equivalent to
the existence of a non-trivial first integral of the billiard flow independent
with ||v||2 on a neighborhood of the unit tangent bundle to ∂Ω in TR2|Ω.

Billiard flows in space forms of constant curvature and their integrabil-
ity were studied by many mathematicians, including A.P.Veselov [49, 50],
S.V.Bolotin [14, 15] (both in any dimension), M.Bialy and A.E.Mironov
[10, 11, 8, 9, 12], the author [29, 31] and others. A Euclidean planar bil-
liard is called polynomially integrable, if its flow admits a first integral that
is polynomial in the velocity v whose restriction to the unit velocity hy-
persurface {||v|| = 1} is non-constant [14, 15, 37, 10], [31, definition 1.1].
S.V.Bolotin suggested the polynomial version of Birkhoff Conjecture stating
that if a billiard in a strictly convex bounded planar domain with C2-smooth
boundary is polynomially integrable, then the billiard boundary is an ellipse,
together with its versions on the sphere and on the hyperbolic plane. Now
this is a theorem: a joint result of M.Bialy, A.E.Mironov and the author of
the present paper [10, 11, 29, 31]. Here we present a version of this result for
rationally integrable projective billiard flows, see the following definition.

All the results of this subsection will be proved in Section 9.

Definition 1.20 A planar projective billiard is rationally 0-homogeneously
integrable, if its flow admits a non-constant first integral I that is a ratio-
nal homogeneous function of the velocity with numerator and denominator
having the same degrees (called a rational 0-homogeneous integral):

I(Q, v) =
I1,Q(v)

I2,Q(v)
; I1,Q(v), I2,Q(v) are homogeneous polynomials,

deg I1,Q = deg I2,Q.

Here we consider that the degrees deg Ij,Q(v) are uniformly bounded.

Example 1.21 It is known that for every polynomially integrable planar
billiard the polynomial integral IQ(v) can be chosen homogeneous of even
degree 2n, see [14], [15, p.118; proposition 2 and its proof on p.119], [37,
chapter 5, section 3, proposition 5]. Then the rational function

Ψ(Q, v) :=
IQ(v)

||v||2n

12



is a rational 0-homogeneous integral of the billiard. Thus, every polynomially
integrable Euclidean planar billiard is rationally 0-homogeneously integrable.
This also holds for billiards on the sphere and the hyperbolic plane.

Theorem 1.22 Let a projective billiard in a strictly convex bounded domain
Ω ⊂ R2 with C4-smooth boundary be defined by a continuous transversal line
field on ∂Ω and be rationally 0-homogeneously integrable. Then its boundary
is a conic, and the projective billiard is a space form billiard (see Definition
1.4).

Theorem 1.26 stated below extends Theorem 1.22 to germs of planar
projective billiards. Each of them is a germ of C4-smooth curve C equipped
with a transversal line field N . Here C is not necessarily convex. We choose
a side from the curve C and a simply connected domain U adjacent to C
from the chosen side. Let Q ∈ U and v ∈ TQR2 be such that the ray issued
from the point Q in the direction of the vector v intersects C, and the
distance of the point Q to their first intersection point be equal to τ0||v||,
τ0 > 0. Then for t0 > τ0 close enough to τ0 the projective billiard flow maps
in times τ ∈ (0, t0) are well-defined on (Q,P ). As before, we say that a germ
of projective billiard thus defined is rationally 0-homogeneously integrable, if
it admits a first integral rational and 0-homogeneous in v on TR2|U for some
U (small enough) whose degree is uniformly bounded in Q ∈ U .

Before the statement of Theorem 1.26 let us state two preparatory propo-
sitions: the first saying that integrability is independent on choice of side;
the second reducing classification of germs of integrable projective billiards
to classification of germs of integrable dual billiards given by Theorem 1.16.
To do this, following S.V.Bolotin [15], let us identify the ambient plane R2 of
a projective billiard with the plane {x3 = 1} in the Euclidean space R3

x1,x2,x3
and represent a point x = (x1, x2) ∈ R2 and a vector v = (v1, v2) ∈ TxR2 by
the vectors

r = (x1, x2, 1), v = (v1, v2, 0) ∈ R3.

Proposition 1.23 1) Let a germ of projective billiard in R2
x1,x2 with re-

flection from a C2-smooth germ of curve C (or a global planar projective
billiard in a connected domain with C2-smooth boundary) be rationally 0-
homogeneously integrable. Then the rational 0-homogeneous integral can be
chosen as a rational 0-homogeneous function of the moment vector M :

M = M(r, v) := [r, v] = (−v2, v1,∆), ∆ = ∆(x, v) := x1v2 − x2v1. (1.13)
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2) The property of a projective billiard germ to be rationally 0-homogeneously
integrable depends only on the germ of curve with transversal line field and
does not depend on the choice of side.

Proposition 1.24 A planar projective billiard with C2-smooth boundary
is rationally 0-homogeneously integrable, if and only if its dual billiard is
rationally integrable. If R is a rational integral of the dual billiard, written
as a 0-homogeneous rational function in homogeneous coordinates on the
ambient projective plane, then R([r, v]) is a 0-homogeneous rational integral
of the projective billiard.

Remark 1.25 Versions of Propositions 1.23, 1.24 for polynomially inte-
grable billiards on surfaces of constant curvature were earlier proved respec-
tively in the paper [15] by S.V.Bolotin (Proposition 1.23) and in two joint
papers by M.Bialy and A.E.Mironov [10, 11] (Proposition 1.24, see also [31,
theorem 2.8]).

Theorem 1.26 Let C ⊂ R2
x1,x2 be a non-linear C4-smooth germ of curve

equipped with a transversal line field N . Let the corresponding germ of
projective billiard be 0-homogeneously rationally integrable. Then C is a
conic; the line field N extends to a global analytic transversal line field on the
whole conic C punctured in at most four points; the corresponding projective
billiard has one of the following types up to projective equivalence.

1) A space form billiard whose matrix can be chosen A = diag(1, 1,−1).
2) C = {x2 = x2

1} ⊂ R2
x1,x2 ⊂ RP2, and the line field N is directed by

one of the following vector fields at points of the conic C:

2a) (ẋ1, ẋ2) = (ρ, 2(ρ− 2)x1),

ρ = 2− 2

2N + 1
(case 2a1), or ρ = 2− 1

N + 1
(case 2a2), N ∈ N,

the vector field 2a) has quadratic first integral Qρ(x1, x2) := ρx2− (ρ−2)x2
1.

2b1) (ẋ1, ẋ2) = (5x1 + 3, 2(x2 − x1)), 2b2) (ẋ1, ẋ2) = (3x1, 2x2 − 4),

2c1) (ẋ1, ẋ2) = (x2, x1x2 − 1), 2c2) (ẋ1, ẋ2) = (2x1 + 1, x2 − x1).
2d) (ẋ1, ẋ2) = (7x1 + 4, 2x2 − 4x1).

Addendum to Theorem 1.26. The projective billiards from Theorem
1.26 have the following 0-homogeneous rational integrals:

Case 1): A ratio of two homogeneous quadratic polynomials in (v1, v2,∆),

∆ := x1v2 − x2v1.
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Case 2a1), ρ = 2− 2
2N+1 :

Ψ2a1(x1, x2, v1, v2) :=
(4v1∆− v2

2)2N+1

v2
1

∏N
j=1(4v1∆− cjv2

2)2
. (1.14)

Case 2a2), ρ = 2− 1
N+1 :

Ψ2a2(x1, x2, v1, v2) =
(4v1∆− v2

2)N+1

v1v2
∏N
j=1(4v1∆− cjv2

2)
. (1.15)

The cj in (1.14), (1.15) are the same, as in (1.6) and (1.7) respectively.
Case 2b1):

Ψ2b1(x1, x2, v1, v2) =
(4v1∆− v2

2)2

(4v1∆ + 3v2
2)(2v1 + v2)(2∆ + v2)

. (1.16)

Case 2b2):

Ψ2b2(x1, x2, v1, v2) =
(4v1∆− v2

2)2

(v2
2 + 4∆2 + 4v1∆ + 4v2

1)(v2
2 + 4v2

1)
. (1.17)

Case 2c1): Ψ2c1(x1, x2, v1, v2) =
(4v1∆− v2

2)3

(v3
1 + ∆3 + v1v2∆)2

. (1.18)

Case 2c2):

Ψ2c2(x1, x2, v1, v2) =
(4v1∆− v2

2)3

(v3
2 + 2v2

2v1 + (v2
1 + 2v2

2 + 5v1v2)∆ + v1∆2)2
. (1.19)

Case 2d): Ψ2d(x1, x2, v1, v2)

=
(4v1∆− v2

2)3

(v1∆ + 2v2
2)(2v1 + v2)(8v1v2

2 + 2v3
2 + (4v2

1 + 5v2
2 + 28v1v2)∆ + 16v1∆2)

.

(1.20)
In Subsection 9.3 we prove the following characterization of space form

billiards on conics as projective billiards on conics with conical caustics.

Proposition 1.27 A transversal line field N on a punctured planar regular
conic C defines a projective billiard that is projectively equivalent to a space
form billiard, if and only if there exists a regular conic S 6= C such that for
every Q ∈ C the complexified projective billiard reflection at Q permutes the
complex lines through Q tangent to the complexified conic S.

Remark 1.28 The latter permutation condition determines N by S in a
unique way. The corresponding projective billiard has a family of conical
caustics whose dual conics form a pencil, see [17] and [24, subsection 2.3].
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1.3 Applications to billiards with complex algebraic caustics

Definition 1.29 Let C ⊂ R2 ⊂ RP2 be a planar curve equipped with a
projective billiard structure. For every Q ∈ C consider the complexification
of the billiard reflection involution acting on the space of complex lines
through Q. Let S ⊂ CP2 be an algebraic curve in the complexified ambient
projective plane that contains no straight line. We say that S is a complex
caustic of the real billiard on C, if for every Q ∈ C each complex projective
line tangent to S and passing through Q is reflected by the complexified
reflection at Q to a line tangent to S.

Remark 1.30 The usual Euclidean billiard on a strictly convex planar
curve C has C as a real caustic: through each its point Q passes the unique
tangent line to C, and it is fixed by the reflection. If C is a conic, then its
complexification CC is a complex caustic for C for the same reason. But if C
is a higher degree algebraic curve, then a priori its complexification CC is not
necessarily a complex caustic. In this case through a generic point Q ∈ C
passes at least one complex line tangent to CC that does not coincide with
its tangent line at Q. To check, whether CC is a complex caustic, one has
to check whether the collection of all the complex lines through Q tangent
to CC is invariant under the reflection at Q. This is a non-trivial condition
on the algebraic curve C.

Open problem. Consider Euclidean billiard on a strictly convex closed
planar curve C. Let C be contained in an algebraic curve and have a real
caustic contained in an algebraic curve. Is it true that C is a conic?

A positive answer would imply the particular case of the Birkhoff Con-
jecture, when the billiard boundary is contained in an algebraic curve.

We prove the following theorem as an application of results of [31].

Theorem 1.31 Let C ⊂ R2 be a non-linear C2-smooth connected embedded
(not necessarily closed, convex or algebraic) curve equipped with the structure
of standard Euclidean billiard (with the usual reflection law). Let the latter
billiard have a complex algebraic caustic. Then C is a conic.

The next theorem is its analogue for projective billiards. It will be
deduced from main results of the present paper.

Theorem 1.32 Let C be a non-linear C4-smooth connected embedded pla-
nar curve. Let C be equipped with a projective billiard structure having at
least two different complex algebraic caustics. Then C is a conic.
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Theorems 1.31 and 1.32 will be proved in Section 10.

1.4 Sketch of proof of Theorem 1.18 and plan of the paper

First we prove algebraicity of a rationally integrable dual billiard.

Definition 1.33 A singular holomorphic dual billiard on a holomorphic
curve γ ⊂ CP2 is a holomorphic dual billiard structure on the complement
of the curve γ to a discrete subset of points where the corresponding family
of involutions σP : LP → LP does not extend holomorphically.

Proposition 1.34 Let a regular non-linear germ of holomorphic curve γ ⊂
CP2 carry a complex (not necessarily holomorphic) rationally integrable dual
billiard structure with a rational integral R. Then 1) R|γ ≡ const, and thus,
γ is contained in an irreducible algebraic curve, which will be also denoted
by γ; 2) the involution family σP extends to a singular holomorphic dual
billiard structure on the algebraic curve γ with the same rational integral R.

Proposition 1.35 Let γ ⊂ R2 be a regular non-linear C2-smooth germ of
curve equipped with a dual billiard structure having a rational integral R.
Then 1) R|γ ≡ const, and thus, the complex Zariski closure of the curve
γ is an algebraic curve in CP2; 2) the dual billiard structure extends to a
singular holomorphic dual billiard structure on each its non-linear irreducible
component, with the same integral R.

Parts 1), 2) of these propositions will be proved in Subsections 2.1, 2.2.
Recall that each (may be singular) germ of analytic curve in CP2 is

a finite union of its irreducible components, which are locally bijectively
holomorphically parametrized germs called local branches.

Definition 1.36 [31, definition 3.3] Let b be an irreducible (i.e., parametrized)
non-linear germ of analytic curve at a point O ∈ CP2. An affine chart (z, w)
centered at O such that the z-axis is tangent to b at O is called adapted
to b. In an adapted chart the germ b can be holomorphically bijectively
parametrized by a complex parameter t from a disk centered at 0 as follows:

t 7→ (tqb , cbt
pb(1 + o(1))), as t→ 0; qb, pb ∈ N, 1 ≤ qb < pb, cb 6= 0,

qb = 1, if and only if b is a regular germ.

The projective Puiseux exponent [27, p. 250, definition 2.9] of the germ b is
the number

r = rb :=
pb
qb
.
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The germ b is called quadratic, if r = 2 [28, definition 3.5]. When b is a germ
of line, it is parametrized by t 7→ (t, 0): then we set qb = 1, pb = rb =∞.

The main part of the proof of Theorem 1.18 is the proof of the following
theorem on possible types of singularities and local branches of the curve γ.

Theorem 1.37 Let an irreducible complex algebraic curve γ ⊂ CP2 carry
a structure of rationally integrable singular holomorphic dual billiard. Then
the following statements hold:

(i) the curve γ has no inflection points, and at each its singular point (if
any) all its local branches are quadratic;

(ii) there exists at most unique singular point of the curve γ where there
exists at least one singular local branch.

Theorem 1.38 Every complex irreducible projective planar algebraic curve
satisfying the above statements (i) and (ii) is a conic.

The proof of Theorem 1.38 will be given in Section 6. It is based on
E.Shustin’s generalized Plucker formula [42], dealing with intersection of an
irreducible algebraic curve with its Hessian curve. It gives formula for the
contributions of singular and inflection points to their intersection index.

Theorems 1.37, 1.38 together with Proposition 1.34 immediately imply
that every germ of holomorphic curve γ carrying a rationally integrable
complex dual billiard structure is a germ of a conic. Afterwards in Section 7
we classify the rationally integrable dual billiard structures on a conic. This
will finish the proof of Theorem 1.18. Then in Section 8 we classify the real
forms of the complex dual billiards from Theorem 1.18 and finish the proof
of Theorems 1.16, 1.11.

The proof of Theorem 1.37 is based on studying the Hessian of appropri-
ately normalized rational integral: the Hessian introduced by S.Tabachnikov,
who used it to study polynomially integrable outer billiards [45]. This idea
was further elaborated and used by M.Bialy and A.Mironov in a series of
papers on Bolotin’s Polynomial Birkhoff Conjecture and its analogues for
magnetic billiards [10, 11, 9]. It was also used in the previous paper by the
author and E.Shustin on polynomially integrable outer billiards [28] and in
the author’s recent paper on S.V.Bolotin’s Polynomial Birkhoff Conjecture
[31]. The rational integral R being constant along the curve γ (Proposition
1.34), we normalize it to vanish identically on γ. Let f be the irreducible
polynomial vanishing on γ in an affine chart C2

x1,x2 ⊂ CP2. Then

R = fkg1, g1|γ 6≡ 0.
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Replacing R by its k-th root G := fg, g := g
1
k
1 , we consider its Hessian

H(G) :=
∂2G

∂x2
1

(
∂G

∂x2

)2

− 2
∂2G

∂x1∂x2

∂G

∂x2

∂G

∂x1
+
∂2G

∂x2
2

(
∂G

∂x1

)2

.

Its key property is that H(G)|γ 6= 0 outside singular and inflection points
of the curve γ and zeros (poles) of the function g1|γ.

Plan of proof of Theorem 1.37.
Step 1 (Subsection 2.2): differential equation on H(G). Given a point

P0 ∈ γ, consider an affine chart (z, w) in which the tangent line LP0 is
not parallel to the w-axis. Then for every P ∈ γ close enough to P0 the
line LP is parametrized by affine coordinate z. The involution σP : LP →
LP is conjugated to the standard involution Cθ → Cθ, θ 7→ −θ, via a
mapping FP : θ 7→ FP (θ) that sends θ to the point in the tangent line LP
with z-coordinate z(P ) + θ

1+ψ(P )θ ; ψ(P ) ∈ C is uniquely determined by σP .

Invariance of the function R|LP under the involution σP is equivalent to
statement that the function R ◦ FP (θ) is even. Writing the condition that
its cubic Taylor coefficient vanishes (analogously to [45, 10, 11]), we get the
differential equation

dH(G)|γ
dz

(P ) = 6ψ(P )H(G). (1.21)

We prove equation (1.21) in a more general situation, for an irreducible
germ of analytic curve b at a point B equipped with a family of projective
involutions σP : LP → LP , P ∈ b\{B}, admitting a germ R of meromorphic
(not necessarily rational) integral. Here f is a local defining function of the
germ b, and G, H(G) are defined as above. Relation between meromorphic
and rational integrability will be explained in Subsection 2.4.

Step 2 (Subsection 2.3): formula relating asymptotics of H(G) and σP .
We fix a potential singular (inflection) point B ∈ γ, a local branch b of the
curve γ at B (whose quadraticity we have to prove) and affine coordinates
(z, w) centered at B and adapted to b. The function H(G) being a linear
combination of products of rational powers of holomorphic functions at B,
we get that H(G)|b = αzd(1 + o(1)), as z → 0, for some d ∈ Q and α 6= 0.
This together with equation (1.21) implies that

ψ|b\{B} =
1

z

(
d

6
+ o(1)

)
= −1

z

(ρ
2

+ o(1)
)
, as z → 0; ρ = −d

3
∈ Q.

We then say that the involution family σP is meromorphic with pole at B
of order at most one with residue ρ. This means exactly that

in the coordinate ζ :=
z

z(P )
on LP
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the involution σP converges to ηρ(ζ) :=
(ρ− 1)ζ − (ρ− 2)

ρz − (ρ− 1)
, as P → B.

Thus, the above number ρ in the limit and H(G) are related by the formulas

H(G)|b = αzd(1 + o(1)), α 6= 0, ρ = −d
3
. (1.22)

Step 3 (Section 3) Consider the projective Puiseux exponent r of the
local branch b, and let us represent it as an irreducible fraction:

r =
p

q
, p, q ∈ N, (p, q) = 1 : pb = psb, qb = qsb, sb = G.C.D(pb, qb). (1.23)

For given p, q as above and ρ ∈ C we introduce the (p, q; ρ)-billiard: the
curve

γp,q := {wq = zp} ⊂ C2

equipped with the dual billiard structure given by the family of involutions

σP : LP → LP , P ∈ γp,q; σP : ζ → ηρ(ζ) in the coordinate ζ for all P.

We show (Theorem 3.3) that if a germ of family of involutions σP : LP → LP
defined on a punctured irreducible germ of holomorphic curve b with Puiseux
exponent r = p

q admits a meromorphic first integral, then the corresponding
(p, q; ρ)-billiard (with ρ given by (1.22)) admits a (p, q)-quasihomogeneous
rational first integral. To do this, we consider the lower (p, q)-quasihomogeneous
parts in the numerator and the denominator of the meromorphic integral.
We show that their ratio is an integral of the (p, q; ρ)-billiard. If it is non-
constant, then we get a non-trivial integral. The opposite case, when the
latter lower (p, q)-quasihomogeneous parts are the same up to constant fac-
tor, will be reduced to the previous one by replacing the denominator by
appropriate linear combination of the numerator and denominator.

Step 4 (Section 4). Classification of quasihomogeneously rationally in-
tegrable (p, q; ρ)-billiards (Theorem 4.1). Our first goal is to show that the
underlying curve γp,q is a conic: p = 2, q = 1. In Subsection 4.1 we treat
the case of polynomial integral. To treat the case of non-polynomial ratio-
nal integral, we first show (in Subsection 4.2) that one can normalize it to

be a so-called ηρ-primitive quasihomogeneous rational function R =
Pm1
1

Pm2
2

vanishing on γp,q. In particular, this means that each Pj is a product of
prime factors wq − cjzp, cj 6= 0 (and may be z, w) in power 1, including
the factor wq − zp. Then in Subsection 4.3 we prove two formulas (4.12),
(4.14) expressing ρ via the powers m1, m2, the number of factors wq − cjzp

20



and the powers of z, w in Pj . The first formula (4.12) will be deduced from
(1.22). The second formula (4.14) is obtained as follows. Restricting the
polynomial P1 from the numerator to the line LP , P = (1, 1), and dividing
it by appropriate power (z− ρ−2

ρ )d yields a ηρ-invariant rational function in

the coordinate z with numerator divisible by (z − 1)2. Existence of such a
power d will follow from the fact that ρ−2

ρ is a fixed point of the involution ηρ.

Afterwards we replace the numerator P1 by the difference P1 − λ(z − ρ−2
ρ )d

with small λ; we get a family of ηρ-invariant rational functions depending on
the parameter λ, which has a pair of roots ζ±(λ) converging to 1, as λ→ 0.
Comparing the asymptotics of the roots ζ±(λ) and taking into account that
they should be permuted by the involution ηρ, we get formula (4.14). The
main miracle in the proof of Theorem 4.1 (Subsection 4.4) is that combining
First and Second Formulas (4.12), (4.14) yields that p = 2, q = 1 and the
curve γp,q is the conic {w = z2}, and it also yields the constraints on ρ given
by Theorem 4.1: the necessary condition for quasihomogeneous integrability.
Then we prove its sufficience by constructing integrals (Subsection 4.5).

Steps 3 and 4 together imply Statement (i) of Theorem 1.37: each local
branch of the curve γ is quadratic. They also yield a list of a priori possible
values of the residue ρ.

Step 5. Proof of statement (ii) of Theorem 1.37: uniqueness of singular
point of the curve γ with a singular local branch. To do this, we prove
Theorem 5.1 stating that if a quadratic local branch b at a pointO is singular,
then the integral R is constant along its projective tangent line LO, and the
punctured line LO \ {O} is a regular leaf of the foliation R = const. This
implies that if γ had two distinct points with singular local branches, then
the corresponding tangent lines would intersect, and we get a contradiction
with regularity of foliation at the intersection point. The proof of Theorem
5.1 given in Subsection 5.2 is partly based on Theorem 5.6 (Subsection 5.1),
which implies that if there exists a singular quadratic local branch, then its
self-contact order is expressed via the corresponding residue ρ by an explicit
formula (5.3) implying that ρ > r = 2. Once having inequality ρ > r, we
deduce the statements of Theorem 5.1 analogously to [31, subsection 4.6,
proof of theorem 4.24]. Step 5 finishes the proof of Theorem 1.37.

In Section 6 we prove Theorem 1.38. Theorems 1.37 and 1.38 together
imply that γ is a conic. Afterwards in Section 7 we classify singular holo-
morphic rationally integrable dual billiards on a complex conic. The list of a
priori possible residues ρ at singularities is given by Theorem 4.1, Step 4. In
Subsection 7.1 we show that the sum of residues should be equal to four (a
version of residue formula for singular holomorphic dual billiard structures).

21



Afterwards we consider all the a priori possible residue configurations given
by these constraints and show that all of them are indeed realized by ratio-
nally integrable dual billiards. This will finish the proof of Theorem 1.18.
Then Theorems 1.16, 1.11 are proved in Section 8 by describing different
real forms of thus classified complex integrable dual billiards. Theorems
1.22 and 1.26 classifying integrable projective billiards (which are dual to
the latter real forms) will be proved in Section 9. Theorems 1.31 and 1.32
on billiards with complex caustics will be proved in Section 10.

1.5 Historical remarks

In 1973 V.Lazutkin [38] proved that every strictly convex bounded planar
billiard with sufficiently smooth boundary has an infinite number (contin-
uum) of closed caustics. The Birkhoff Conjecture was studied by many
mathematicians. In 1950 H.Poritsky [41] (and later E.Amiran [3] in 1988)
proved it under the additional assumption that the billiard in each closed
caustic near the boundary has the same closed caustics, as the initial bil-
liard. In 1993 M.Bialy [5] proved that if the phase cylinder of the billiard in a
domain Ω is foliated by non-contractible continuous closed curves which are
invariant under the billiard map, then the boundary ∂Ω is a circle. (Another
proof of the same result was later obtained in [51].) In 2012 Bialy proved a
similar result for billiards on the constant curvature surfaces [7] and also for
magnetic billiards [6]. In 1995 A.Delshams and R.Ramirez-Ros suggested an
approach to prove splitting of separatrices for generic perturbation of ellipse
[18]. D.V.Treschev [46] made a numerical experience indicating that there
should exist analytic locally integrable billiards, with the billiard reflection
map having a two-periodic point where the germ of its second iterate is an-
alytically conjugated to a disk rotation. See also [47] for more detail and
[48] for a multi-dimensional version. A similar effect for a ball rolling on a
vertical cylinder under the gravitation force was discovered in [1]. Recently
V.Kaloshin and A.Sorrentino have proved a local version of the Birkhoff
Conjecture [35]: an integrable deformation of an ellipse is an ellipse. Very
recently M.Bialy and A.E.Mironov [13] proved the Birkhoff Conjecture for
centrally-symmetric billiards having a family of closed caustics that extends
up to a caustic tangent to four-periodic orbits. For a dynamical entropic
version of the Birkhoff Conjecture and related results see [39]. For a survey
on the Birkhoff Conjecture and results see [35, 36, 13] and references therein.

Recently it was shown by the author [32] that every strictly convex C∞-
smooth non-closed planar curve has an adjacent domain from the convex
side that admits an infinite number (continuum) of distinct C∞-smooth
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foliations by non-closed caustics (with the boundary being a leaf).
A.P.Veselov proved a series of complete integrability results for billiards

bounded by confocal quadrics in space forms of any dimension and described
billiard orbits there in terms of a shift of the Jacobi variety corresponding
to an appropriate hyperelliptic curve [49, 50]. Dynamics in (not necessarily
convex) billiards of this type was also studied in [19, 20, 21, 22, 23].

The Polynomial Birkhoff Conjecture together with its generalization to
surfaces of constant curvature was stated by S.V.Bolotin and partially stud-
ied by himself, see [14], [15, section 4], and by M.Bialy and A.E.Mironov
[8]. Its complete solution is a joint result of M.Bialy, A.E.Mironov and the
author given in the series of papers [10, 11, 29, 31].

For a survey on the Polynomial Birkhoff Conjecture, its version for mag-
netic billiards and related results see the above-mentioned papers [10, 11]
by M.Bialy and A.E.Mironov, [9, 12] and references therein.

The analogues of the Birkhoff Conjecture for outer and dual billiards
was stated by S.Tabachnikov [45] in 2008. Its polynomial version for outer
billiards was stated by Tabachnikov and proved by himself under genericity
assumptions in the same paper [45], and solved completely in the joint work
of the author of the present paper with E.I.Shustin [28].

In 1995 M.Berger have shown that in Euclidean space Rn with n ≥ 3 the
only hypersurfaces admitting caustics are quadrics [4]. In 2020 this result
was extended to space forms of constant curvature of dimension greater than
two by the author of the present paper [30].

In 1997 S.Tabachnikov [43] introduced projective billiards and proved
a criterium and a necessary condition for a planar projective billiard to
preserve an area form. He had shown that if a projective billiard on circle
preserves an area form that is smooth up to the boundary of the phase
cylinder, then the billiard is integrable.

A series of results on projective billiards with open sets of n-periodic
orbits (classification for n = 3 and new examples for higher n) were obtained
by C.Fierobe [25, 26, 24].

2 Preliminaries

2.1 Algebraicity of underlying curve. Proof of Propositions
1.34 and 1.35, parts 1)

Let γ ⊂ CP2 be a regular germ of holomorphic curve. For every P ∈ γ the
restriction R|LP is invariant under an involution σP fixing P . In appropriate
affine coordinate θ on LP centered at P the latter involution takes the form

23



θ 7→ −θ. Therefore, the restriction R|LP has zero derivative at P , since an
even function has zero derivative at the origin. Finally, the rational function
R has zero derivative along any vector tangent to γ. Hence, it is constant on
γ, and the germ of curve γ is algebraic. This proof remains valid in the case,
when γ is a real germ. Parts 1) of Propositions 1.34 and 1.35 are proved.

For completeness of presentation (to state some results in full generality),
we will deal with the following notion of meromorphically integrable dual
billiard structure and meromorphic version of Proposition 1.34.

Definition 2.1 Let b be a non-linear (may be singular) irreducible germ of
analytic curve in C2 at a point B, and let σP : LP → LP be a family of
projective involutions parametrized by P ∈ b \ {B}. The family σP is called
a meromorphically integrable (singular) dual billiard structure, if there exists
a germ of meromorphic function R at B (defined on a neighborhood of the
point B in C2), R 6≡ const, such that the restrictions R|LP are σP -invariant:
there exists a neighborhood U = U(B) ⊂ C2 such that for every P ∈ b ∩ U ,
P 6= B, and every x, y ∈ LP ∩U such that σP (x) = y one has R(x) = R(y).

Proposition 2.2 In the conditions of the above definition 1) R|b ≡ const;
2) the family σP is holomorphic in P ∈ b \ {B} close enough to B.

The proof of the first part of Proposition 2.2 repeats that of Proposition
1.34, part 1). Its second part will be proved in the next subsection.

Later on, in Subsection 2.4 we will show that in many cases meromorphic
integrability implies rational integrability.

2.2 The Hessian of integral and its differential equation. Sin-
gular holomorphic extension of dual billiard structure

Let b be an irreducible germ of holomorphic curve in C2
x1,x2 at a point B.

Let b \ {B} be equipped with a germ of dual billiard structure having a
non-constant meromorphic integral R, see the above definition. Recall that
R|b ≡ const, by Proposition 2.2. Without loss of generality we consider that

R|b ≡ 0,

adding a constant to R (if R|b 6≡ ∞), or replacing R by R−1 (if R|b ≡ ∞).
Let f be an irreducible germ of holomorphic function defining b:

b = {f = 0}.
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One has

R = g1f
k, g1 is meromorphic, g1|b 6≡ 0, k ∈ N.

From now on we will work with the k-th root

G = R
1
k = gf, g = g

1
k
1 . (2.1)

For every P ∈ b \ {B} close enough to B each holomorphic branch of the
function G on LP is σP -invariant, since any two its holomorphic branches
are obtained one from the other by multiplication by a root of unity.

Recall that the skew gradient of the function G is the vector field

∇skewG := (
∂G

∂x2
,− ∂G

∂x1
),

which is tangent to its level curves.
The involution σP is conjugated to the standard involution Cτ → Cτ ,

τ 7→ −τ , via a transformation

ΦP : τ 7→ P +
τ

1 + φ(P )τ
∇skewG(P ), ΦP (0) = P. (2.2)

The conjugacy is unique up to its pre-composition with a multiplication by
constant τ → λτ ; we can normalize it to be of type (2.2) in unique way. The
σP -invariance of the function G is equivalent to the statement that

the function ξ(τ) := G(P +
τ

1 + φ(P )τ
∇skewG(P )) is even, (2.3)

which holds if and only if the function ξ(τ) has zero Taylor coefficients at
odd powers. The first coefficient vanishes for trivial reason, being derivative
of a function G along a vector tangent to its zero level curve.

Recall that the Hessian of the function G is the function

H(G) :=
∂2G

∂x2
1

(
∂G

∂x2

)2

− 2
∂2G

∂x1∂x2

∂G

∂x2

∂G

∂x1
+
∂2G

∂x2
2

(
∂G

∂x1

)2

. (2.4)

It coincides with the value of its Hessian quadratic form on its skew gradient
and also with the second derivative ξ′′(0), see [45, 10, 11].

Remark 2.3 The Hessian function H(G) was introduced by S.Tabachnikov
[45] and used in [45, 28, 10, 11, 31] to classify polynomially integrable
Birkhoff and outer planar billiards; see results mentioned in Subsection 1.5.
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Theorem 2.4 For a given P ∈ b \ {B} the cubic Taylor coefficient of the
function ξ from (2.3) at 0 vanishes, if and only if

dH(G)

d∇skewG
(P ) = 6φ(P )H(G)(P ). (2.5)

Remark 2.5 Theorems analogous to Theorem 2.4 were stated and proved
in [45, 10, 11], and the proofs from loc. cit. remain valid in our case. The
proof of Theorem 2.4 given below follows similar arguments.

Proof of Theorem 2.4. The third derivative ξ′′′(τ) is equal to the third
derivative in τ of the function

G(P+ω(τ)W ), W := ∇skewG(P ), ω(τ) :=
τ

1 + φ(P )τ
= τ−φ(P )τ2+O(τ3),

as τ → 0. The first derivative equals

ξ′(τ) =
dG

dW
(P + ω(τ)W )(1− 2φ(P )τ +O(τ2)).

We extend the vector W to a constant vector function (field) by translations.
Here and in what follows the derivative of a function along W means its
derivative along the latter constant vector field. For simplicity, in what
follows we omit the argument P + ω(τ)W at the derivatives. One has

ξ′′(τ) = (−2φ(P ) +O(τ))
dG

dW
+ (1− 2φ(P )τ +O(τ2))2 d

2G

dW 2
,

ξ′′′(τ) = O(1)
dG

dW
− (2φ(P ) +O(τ))(1− 2φ(P )τ +O(τ2))

d2G

dW 2

−(4φ(P ) +O(τ))
d2G

dW 2
+ (1− 2φ(P )τ +O(τ2))3 d

3G

dW 3
.

The value of the third derivative at zero is thus equal to

ξ′′′(0) =
d3G

dW 3
(P )− 6φ(P )

d2G

dW 2
(P ), (2.6)

since dG
dW (P ) = 0. One has d2G

dW 2 (P ) = H(G)(P ),

d3G

dW 3
(P ) =

dH(G)

d∇skewG
(P ),

by [45, lemma 2, (i)] and since d3G
dW 3 (P ) is the value at P of the expression

Gx1x1x1G
3
x2 − 3Gx1x1x2G

2
x2Gx1 + 3Gx1x2x2Gx2G

2
x1 −Gx2x2x2G

3
x1 .

26



This together with (2.6) implies the statement of the theorem. 2

Let us consider affine coordinates (z, w) such that the tangent line TBb
is not parallel to the w-axis. For every P ∈ b close to B the restriction to
LP of the coordinate z is an affine coordinate on the projective line LP .

We will deal with the following normalizations of mapping (2.2) and
equation (2.5) with respect to the coordinate z. Set

V (P ) = (1, β(P )) := the vector in TP b with unit z − component. (2.7)

The vectors V (P ) form a holomorphic vector field V on b \ {B}. One has

∇skewG = hV, h : b \ {B} → C is a non-zero function; (2.8)

a priori the function h is multivalued holomorphic on b \ {B} (with a priori
possible branching at B). Set

θ := h(P )τ, ψ(P ) := φ(P )h−1(P ).

Let ΦP (τ) be the mapping from (2.2). Set

FP (θ) := ΦP (h−1(P )θ) = P +
h−1(P )θ

1 + φ(P )h−1(P )θ
h(P )V (P )

= P +
θ

1 + ψ(P )θ
V (P ). (2.9)

Proposition 2.6 The map FP (θ) conjugates the involution σP with the
standard symmetry θ 7→ −θ, and its differential at 0 sends the unit vector
∂
∂θ to V (P ). One has

dH(G)

dV
(P ) = 6ψ(P )H(G)(P ). (2.10)

Proof The statements on conjugacy and differential follow by construction.
Equation (2.10) is obtained from (2.5) by multiplication by h−1(P ). 2

We use the following formula for Hessian of product, see [10, theorem
6.1], [11, formulas (16) and (32)]:

H(fg) = g3H(f) on the set {f = 0}. (2.11)

Proof of parts 2) of Propositions 1.34, 1.35, 2.2. Let us prove part
2) of Proposition 1.34: for the other propositions the proof is analogous. Let
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γ denote the irreducible algebraic curve containing the initial germ γ. Let
φ(P ) denote the function (2.2) defined by the involutions σP . Equation (2.5)
extends the function φ(P ) holomorphically along paths in γ avoiding a finite
collection of points where some branch of the multivalued function H(G)
either vanishes, or is not holomorphic, or its derivative in the left-hand side in
(2.5) is not holomorphic. It defines a holomorphic extension of the involution
family σP . The relation R ◦ σP |LP = R remains valid for the extended dual
billiard structure, by uniqueness of analytic extension. Let us show that
this yields a well-defined singular holomorphic dual billiard structure on
γ. Suppose the contrary: thus extended family σP is multivalued, i.e., its
extensions along two different paths arriving to one and the same point A are
two different involutions σA and σ̃A. Then their composition σA◦ σ̃A : LA →
LA is a parabolic transformation with unique fixed point A, leaving invariant
the restriction R|LA . Its orbits (except for the fixed point A) being infinite
and accumulating to A, one has R|LA ≡ const. The involutions σA, σ̃A are
well-defined and satisfy the above statements on an open subset of points
A in γ, by local analyticity. Therefore, R|LA ≡ const for an open subset of
points A ∈ γ, which is impossible. The contradiction thus obtained implies
that the extended dual billiard structure is singular holomorphic. 2

2.3 Asymptotics of degenerating involutions

Here we deal with an irreducible germ b at a point B of analytic curve in
C2 equipped with a meromorphically integrable singular holomorphic dual
billiard structure. We study asymptotics of involutions σP , as P → B.

For every ρ ∈ C we denote by ηρ ∈ PSL2(C) the projective involution

ηρ : Cζ → Cζ , ηρ(ζ) :=
(ρ− 1)ζ − (ρ− 2)

ρζ − (ρ− 1)
. (2.12)

Remark 2.7 Every projective involution C→ C fixing 1 coincides with ηρ
for some ρ ∈ C and vice versa.

Definition 2.8 Let b be an irreducible germ of holomorphic curve at a
point B ∈ C2. Let (z, w) be an affine chart adapted to b. A germ of singular
holomorphic dual billiard structure on b given by a holomorphic family of
involutions σP : LP → LP , P ∈ b \ {B} is said to be meromorphic with pole
of order at most one at B, if the involutions σP written in the coordinate

ζ :=
z

z(P )
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on LP converge in PSL2(C) to some involution Cζ → Cζ . Then the limit
involution is equal to ηρ for some ρ, by the above remark. The latter number
ρ is called the residue of the billiard structure at B. In the case, when ρ 6= 0,
we say that σP has pole of order exacly one at B.

Remark 2.9 For every meromorphic billiard structure of order at most one
the above residue is independent on choice of adapted chart.

Example 2.10 1) In the case, when σP limits to a well-defined projective
involution LB → LB, as P → B (e.g., if σP extends holomorphically to
P = B), we say that the dual billiard structure is regular at B. In this
case the involutions σP written in the above coordinate ζ converge to the
symmetry η0 : ζ 7→ 2− ζ, and the billiard structure has residue ρ = 0 at B.

2) Consider now the case, when there exists a conic Γ passing through
B such that each involution σP permutes the points of intersection LP ∩ Γ.
Let Γ be transversal to b at B. Then σP converges to the unique involution
η1 : ζ 7→ 1

ζ fixing 1 and permuting the origin and the infinity: ρ = 1.

One of the key statements used in the proof of main results is the following
proposition.

Proposition 2.11 Let b ⊂ CP2 be an irreducible germ of holomorphic curve
at a point B equipped with a singular holomorphic dual billiard structure
admitting a meromorphic integral R. Let f be an irreducible germ of holo-
morphic function defining b, i.e., b = {f = 0}, and let k and G = R

1
k be the

same, as in (2.1). Let (z, w) be affine coordinates centered at B and adapted
to b. Let us equip the germ b with the coordinate z. Consider the restriction
H(G)|b as a multivalued function of z. Let d ∈ Q be the minimal number
such that the monomial zd is contained in its Laurent Puiseux series:

H(G)|b = αzd(1 + o(1)), α 6= 0.

Then the involution family σP : LP → LP defining the dual billiard is mero-
morphic with pole B of order at most one, and its residue ρ is equal to

ρ = −d
3
. (2.13)

Remark 2.12 The above asymptotic exponent d is well-defined, sinceH(G)
is a finite sum of products of rational powers of holomorphic functions, see
(2.4). It is independent on the affine chart containing B chosen to define
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∇skewG and H(G), see the statement after formula (2.4) above and the dis-
cussion in [31, p. 1022, proof of proposition 3.6]. Therefore, we can calculate
the exponent d writing H(G) in the adapted coordinates (z, w).

Proof of Proposition 2.11. Consider a line LP equipped with the coor-
dinate ζ = z

z(P ) and its parametrization by the parameter θ:

ζ = 1 +
θ

z(P )(1 + ψ(P )θ)
.

Set ρ = −d
3 , see (2.13). One has

ψ(P ) =
1

z(P )

(
d

6
+ o(1)

)
=

1

z(P )

(
−ρ

2
+ o(1)

)
, as P → B,

by equation (2.10). Therefore,

ζ = 1 +
2θ

2z(P )(1 + o(1))− ρθ
=

2z(P )(1 + o(1))− (ρ− 2)θ

2z(P )(1 + o(1))− ρθ
. (2.14)

In the coordinate θ the involution σP is standard: θ 7→ −θ. Therefore, its
matrix in the coordinate ζ treated as an element in PSL2(C) is the conjugate
of the matrix diag(1,−1) by the matrix of transformation (2.14). Up to a
scalar factor, this is the matrix(

2− ρ 2z(P )(1 + o(1))
−ρ 2z(P )(1 + o(1))

)(
1 0
0 −1

)(
2z(P )(1 + o(1)) −2z(P )(1 + o(1))

ρ 2− ρ

)

= −4z(P )

((
ρ− 1 −(ρ− 2)
ρ −(ρ− 1)

)
+ o(1)

)
.

Hence, σP → ηρ in the coordinate ζ. This proves the proposition. 2

The number ρ is called ”residue” due to the following proposition.

Proposition 2.13 Let b be a regular germ at B equipped with a meromor-
phic dual billiard structure with pole of order at most one with residue ρ.
Then in the coordinate

u := z − z(P )

the family of involutions σP : LP → LP , P ∈ b \ {B}, takes the form

σP : u 7→ − u

1 + f(z(P ))u
, (2.15)
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f(z) =
ρ

z
+ g(z), g(z) is a holomorphic function at 0.

Conversely, an involution family holomorphic in P ∈ b\{B} and having form
(2.15) is meromorphic with pole of order at most one at B with residue ρ.
In particular, σP is regular at B, if and only if it has zero residue at B.

Proof The family σP is meromorphic of order at most one at B with residue
ρ, if and only if in the coordinate

ũ := ζ − 1

the involutions σP take the form

σP : ũ 7→ − ũ

1 + (ρ+ o(1))ũ
, as P → B, (2.16)

by definition and since ηρ sends ũ to − ũ
1+ρũ . Rescaling ũ to u = ũz(P )

yields (2.15) with f(z) = ρ
z + g(z), g(z) = o(1

z ). Conversely, rescaling
u to ũ transforms (2.15) to (2.16). The family of involution σP depends
holomorphically on P ∈ b \ {B}, and hence, on z = z(P ), by regularity
of the germ b. Therefore, if (2.16) holds, then the function zf(z), and
hence, h(z) := zg(z) extends holomorphically to 0. One has h(0) = 0, since

g(z) = o(1
z ). Hence, g(z) = h(z)

z is holomorphic at 0. Statement (2.15) is
proved, and it immediately implies the last statement of the proposition. 2

2.4 Meromorphic integrability versus rational

Here we prove the following proposition.

Proposition 2.14 Let b be a non-linear irreducible germ of holomorphic
curve at O ∈ C2 equipped with a meromorphically integrable singular dual
billiard structure with integral R. Let ρ be its residue at O (see Proposition
2.11). If ρ 6= 0, then R is rational, and b lies in an algebraic curve.

Proof Let (z, w) be coordinates adapted to b. Let U = Uz×Uw, Uz = {|z| <
ε}, Uw = {|w| < δ}, be a polydisk such that the meromorphic integral R
is well-defined on a bigger polydisk containing its closure. For every P ∈ b
let Pρ denote the point in LP with the ζ-coordinate θρ := ρ−1

ρ = ηρ(∞);
ζ = z

z(P ) . The involution σP : LP → LP sends the neighborhood of infinity

VP (ε) := LP ∩ {|z| > ε
2} to a o(z(P ))-neighborhood of the point Pρ (thus,

contained in U , if P is close enough to O), since σP → ηρ in the coordinate
ζ. The pullback of the integral R under the map σP |VP (ε) is a meromorphic
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function on VP (ε) whose restriction to the open subset LP ∩{ ε2 < |z| < ε} ⊂
VP (ε) coincides with R, by σP -invariance. This extends R to a meromorphic
(and hence, rational) function on all of LP for every P ∈ b\{O} close enough
to O. The domains VP ( ε2) ⊂ LP corresponding to P close enough to O foliate
a neighborhood of the complement LO \ {|z| < ε

2} in CP2. The function R
thus extended is meromorphic on the union of the latter neighborhood and
the bidisk U , which covers a neighborhood of the line LO in CP2.

Proposition 2.15 A function meromorphic on a neighborhood of a projec-
tive line in CP2 is rational.

Proof Take an affine chart C2
z,w on the complement of the projective line in

question. We choose the center of coordinates close to the infinity line and
the axes also close to the infinity line. The function in question is rational in
z with fixed small w and vice versa. Each function rational in two separate
variables is rational (Proposition 9.2). This proves Proposition 2.15. 2

Proposition 2.14 follows from Proposition 2.15 and the above discussion.
2

3 Reduction to quasihomogeneously integrable (p, q; ρ)-
billiards

Definition 3.1 Let p, q ∈ N, 1 ≤ q < p, be coprime numbers. The curve

γp,q := {wq = zp} ⊂ C2 ⊂ CP2

will be called the (p, q)-curve. (It is injectively holomorphically parametrized
by C∗ via the mapping t 7→ (tq, tp).) Let ρ ∈ C. The (p, q; ρ)-billiard is the
structure of singular holomorphic dual billiard on the (p, q)-curve γp,q defined
by the family of involutions σP : LP → LP , P ∈ γp,q \ {(0, 0)}, all of them
acting as the involution ηρ in the coordinate ζ = z

z(P ) on LP .

Definition 3.2 Recall that a polynomial P (z, w) is (p, q)-quasihomogeneous,
if it contains only monomials zkwm with (k,m) lying on the same line par-
allel to the segment [(p, 0), (0, q)]. That is, a polynomial that becomes ho-
mogeneous after the substitution z = tq, w = tp, i.e., after restriction to
the curve γp,q. A ratio of two (p, q)-quasihomogeneous polynomials will
be called a (p, q)-quasihomogeneous rational function. A (p, q; ρ)-billiard is
said to be quasihomogeneously integrable, if it admits a non-constant (p, q)-
quasihomogeneous rational integral.
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The main result of the present section is the following theorem.

Theorem 3.3 Let b be a non-linear irreducible germ of analytic curve at
a point B ∈ C2. Let r = p

q be its projective Puiseux exponent, (p, q) = 1,
see (1.23). Let b admit a structure of meromorphically integrable singular
dual billiard, ρ be its residue at B. Then the (p, q; ρ)-billiard is quasihomo-
geneously integrable.

3.1 Preparatory material. Newton diagrams

Let us recall the well-known notion of Newton diagram of a germ of holo-
morphic function f(z, w) at the origin. We consider that f(0, 0) = 0. To
each monomial zmwn entering its Taylor series we put into correspondence
the quadrant Km,n := (m,n) + (R≥0)2. Let K(f) denote the convex hull of
the union of the quadrants Km,n through all the Taylor monomials of the
function f ; it is an unbounded polygon with a finite number of sides. The
Newton diagram Nf is the union of those edges of the boundary ∂K(f) that
do not lie in the coordinate axes.

Fix a coprime pair of numbers p, q ∈ N, (p, q) = 1. For every monomial
zkwm define its (p, q)-quasihomogeneous degree:

degp,q z
kwm := kq +mp.

Let Mp,q(f) denote the minimal (p, q)-quasihomogeneous degree of a Tay-
lor monomial of the function f . The sum of its monomials fkmz

kwm with
degp,q = Mp,q(f) is a (p, q)-quasihomogeneous polynomial called the lower

(p, q)-quasihomogeneous part of the function f ; it will be denoted by f̃p,q(z.w).

Remark 3.4 In the case, when the Newton diagram Nf contains an edge
parallel to the segment [(p, 0), (0, q)], the collection of bidegrees of monomials
entering the lower (p, q)-quasihomogeneous part f̃p,q lies in the latter edge

and contains its vertices. In the opposite case f̃p,q is a monomial whose
bidegree is the unique vertex V of the Newton diagram such that the line
through V parallel to the above segment intersects K(f) only at V . One
has

ε−Mp,q(f)f(εqz, εpw) = f̃p,q(z, w) + o(1), as ε→ 0, (3.1)

uniformly on compact subsets in C2.

Example 3.5 Let a germ of holomorphic function f at the origin be irre-
ducible (not a product of holomorphic germs vanishing at 0). If f(z, 0) ≡ 0,
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then the Newton diagram Nf consists of just one, horizontal edge of height
one. Let now f(z, 0), f(0, w) 6≡ 0. It is well-known that then the Newton di-
agram of the germ f consists of one edge [(psb, 0), (0, qsb)] with some sb ∈ N
and coprime p, q ∈ N. Let b be its zero locus. Then b is a germ of curve
injectively parametrized by a germ at 0 of holomorphic map of the type

t 7→ (tqsb , cbt
psb(1 +O(t))), cb 6= 0; (3.2)

f̃p,q(z, w) = (wq − Cbzp)sb , Cb = cqb , (3.3)

up to constant factor. The proof of formula (3.3) repeats the proof of [31,
proposition 3.5] with minor changes.

Proposition 3.6 Let a, b be two irreducible germs of holomorphic curves
at O. Let r = rb = p

q be the projective Puiseux exponent of the germ b,
(p, q) = 1, ra be that of the germ a. Let (z, w) be affine coordinates centered
at O adapted to b; the coordinate w being rescaled so that cb = 1 in (3.2).

1) Let f̃a(z, w) be the lower (p, q)-quasihomogeneous part of the germ of
function fa defining a. Up to constant factor, the polynomial f̃a(z, w) has
one of the following types:

a) zm, if either a is transversal to b, or a, b are tangent and ra < rb;
b) wm, if a, b are tangent and ra > rb;
c) (wq − Cazp)m, if a, b are tangent and ra = rb; Ca is given by (3.3).
2) For every P ∈ b \ {O} consider the coordinate ζ := z

z(P ) on the line

LP . Let L = L(1,1) denote the tangent line to γp,q := {yq − ζp = 0} ⊂ C2
ζ,y

at the point (1, 1). As P → O, the ζ-coordinates of points of the intersection
a ∩ LP tend to some (finite or infinite) limits in Cζ . The set of their finite
limits coincides with the set of zeros of the restriction to L of the polynomial
f̃a(ζ, y). In the above cases a), b), c) it coincides respectively with the sets
{0}, { r−1

r } and the collection of roots of the polynomial

Rp,q,Ca(ζ) := (1− r + rζ)q − Caζp.

Proof Cases a) and b) correspond exactly to the cases, when the unique
edge of the Newton diagram of the function fa is not parallel to the segment
[(p, 0), (0, q)]; then the polynomial f̃a corresponds to one of its two vertices,
and hence, is a power of either z, or w. In Case c) Statement 1) of the propo-
sition follows from (3.3). Statement 2) follows from [27, p.268, Proposition
2.50] and can be proved directly as follows. Let P ∈ b \ {O}, z0 := z(P ).
Consider the variable change (z, w) = (z0ζ, z

r
0y) (for some chosen value of

fractional power zr0). As P → O, i.e., as z0 → 0, the curve b written in
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the coordinates (ζ, y) tends to the curve γp,q, (ζ(P ), y(P )) → (1, 1), and

LP → L. The function z
− 1
q
Mp,q(fa)

0 fa(z0ζ, z
r
0y) tends to f̃a(ζ, y), by (3.1).

This implies that each point of intersection a∩LP , whose ζ-coordinate con-
verges to a finite limit after passing to a subsequence, does converge to a zero
of the restriction f̃a|L, and each zero is realized as a limit. The ζ-coordinates
of the other intersection points (if any) converge to infinity, by construction.
The polynomial f̃a(ζ, y) is a power of the polynomial ζ, y, yq−Caζp respec-
tively up to constant factor, by Statement 1). The restrictions of the latter
polynomials to the line L are equal respectively to ζ, 1− r+ rζ and Rp,q,Ca .
This together with the above convergence implies Statement 2). 2

3.2 Proof of Theorem 3.3.

Let R(z, w) = f(z,w)
g(z,w) be a non-constant meromorphic first integral of the

dual billiard on b. Here f and g are coprime germs of holomorphic functions
at B written in affine coordinates (z, w) adapted to b. Let r = rb = p

q be the
irreducible fraction representation of the projective Puiseux exponent r of
the germ b. Without loss of generality we consider that the corresponding
constant cb in (3.2) is equal to one, rescaling the coordinate w. Then the
function fb(z, w) defining the curve b is equal to (wq−zp)sb plus higher (p, q)-
quasihomogeneous terms, by (3.3). For a point P ∈ b \ {B} set z0 = z(P ).
In the above rescaled coordinates (ζ, y) = (z−1

0 z, z−r0 w) one has P → (1, 1),
LP → L (L = L(1,1) is the same, as Proposition 3.6), and the functions

z
− 1
q
Mp,q(f)

0 f(z0ζ, z
r
0y), z

− 1
q
Mp,q(g)

0 g(z0ζ, z
r
0y) tends to f̃p,q(ζ, y) and g̃p,q(ζ, y)

respectively, by (3.1). The restriction R|LP is σP -invariant, and σP → ηρ in
the coordinate ζ on LP . Therefore, the restriction to the line L of the ratio

R̃(ζ, y) :=
f̃p,q(ζ, y)

g̃p,q(ζ, y)

is ηρ-invariant. Consider the action of group C∗ on C2 by rescalings (ζ, y) 7→
(τ qζ, τpy). It preserves the curve γp,q punctured at the origin and at infinity
and acts transitively on it. These rescalings multiply the quasihomogeneous
rational function R̃ by constants. This together with ηρ-invariance of its
restriction to the tangent line L implies invariance of its restriction to tan-
gent line at any other point Q ∈ γp,q under the involution ηρ acting in

the coordinate ζ
ζ(Q) . Therefore, R̃ is a quasihomogeneous integral of the

(p, q; ρ)-billiard. A priori it may be constant. This occurs exactly in the
case, when g̃p,q ≡ λf̃p,q, λ ∈ C. But then replacing g by g − λf cancels g̃p,q,
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and the lower (p, q)-quasihomogeneous part of the function g − λf is not
constant-proportional to f̃p,q. The ratio f

g−λf being a meromorphic integral
of the billiard on b, the above construction applied to it yields a non-constant
quasihomogeneous integral of the (p, q; ρ)-billiard. Theorem 3.3 is proved.

4 Classification of quasihomogeneously integrable
(p, q; ρ)-billiards

The main result of the present section is the following theorem.

Theorem 4.1 A (p, q; ρ)-billiard is quasihomogeneously integrable, if and
only if p = 2, q = 1 (i.e., the underlying curve γp,q is a conic) and

ρ ∈M := {0, 1, 2, 3, 4} ∪k∈N≥3
{2± 2

k
}. (4.1)

Then the following quasihomogeneous functions Rρ(z, w) are integrals.

ρ = 0 ρ = 1 ρ = 2 ρ = 3 ρ = 4

R0 = w − z2 R1 = w−z2
z R2 = w−z2

w R3 = w−z2
zw R4 = w−z2

w2

ρ = 2− 2
2N+1 Rρ(z, w) = (w−z2)2N+1∏N

j=1(w−cjz2)2
, cj = − 4j(2N+1−j)

(2N+1−2j)2

ρ = 2 + 2
2N+1 Rρ(z, w) = (w−z2)2N+1

w2
∏N
j=1(w−cjz2)2

, cj = − 4j(2N+1−j)
(2N+1−2j)2

ρ = 2− 1
N+1 Rρ(z, w) = (w−z2)N+1

z
∏N
j=1(w−cjz2)

, cj = − j(2N+2−j)
(N+1−j)2

ρ = 2 + 1
N+1 Rρ(z, w) = (w−z2)N+1

zw
∏N
j=1(w−cjz2)

, cj = − j(2N+2−j)
(N+1−j)2

Addendum to Theorem 4.1. The variable change (z̃, w̃) = ( zw ,
1
w ) trans-

forms a (2, 1, ρ)-billiard to a (2, 1, 4−ρ)-billiard. It interchanges the integrals
Rρ(z̃, w̃) and R4−ρ(z, w) given by the above formulas for every ρ ∈M.
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Everywhere below by L = L(1,1) we denote the projective tangent line
to the curve γp,q at the point (1, 1).

Remark 4.2 A (p, q)-quasihomogeneous rational function is an integral of
the (p, q; ρ)-billiard, if and only if its restriction to L written in the coordi-
nate z is ηρ-invariant, see the above proof of Theorem 3.3.

Remark 4.3 It is well-known that each (p, q)-quasihomogeneous polyno-
mial is a product of powers of prime quasihomogeneous polynomials z, w,
wq − cjzp with cj ∈ C \ {0}.

The proof of Theorem 3.3 is based on the following formula for the Hessian
(calculated in the coordinates (z, w)) of a product

G(z, w) = (wq − zp)zαwβ
M∏
j=2

(wq − cjzp)µj , α, β, µj ∈ R, cj 6= 0, 1. (4.2)

Proposition 4.4 Let G be the same, as in (4.2), with cj ∈ C \ {0, 1}. Set

N := 1 +
M∑
j=2

µj , ρ0 =
2

3
(r + 1), r =

p

q
.

There exists a c ∈ C \ {0} such that

H(G)|γp,q = czd; d = 3(pN + α+ βr − ρ0). (4.3)

Formula (4.3) holds for c = qp(q − p)
(∏p

j=2(1− cj)
)3

.

Proof The Hessian of the defining polynomial wq − zp of the curve γp,q
calculated in the coordinates (z, w) is equal to

H(wq − zp) = q(q − 1)p2wq−2z2(p−1) − p(p− 1)q2zp−2w2q−2.

Its restriction to γp,q is equal to the same expression with w replaced by zr,
which yields qp(q−p)z3p−2(r+1). Each polynomial wq−cjzp being restricted
to γp,q is equal to (1− cj)zp. This together with (2.11) implies (4.3). 2
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4.1 Case of (p, q)-quasihomogeneous polynomial integral

Proposition 4.5 Let a (p, q; ρ)-billiard admit a (p, q)-quasihomogeneous poly-
nomial integral. Then ρ = 0, p = 2, q = 1, and the polynomial w − z2 is an
integral.

Proof The restriction to L of a (p, q)-quasihomogeneous polynomial inte-
gral P is ηρ-invariant and has one pole, at infinity. Hence, ηρ(∞) = ∞,
thus, ρ = 0. Its restriction to γp,q should be constant, see Proposition 1.34.
On the other hand, the latter restriction written in the coordinate z is a
monomial czφ. Therefore, c = 0 and P|γp,q ≡ 0. Hence,

P(z, w) = zαwβ
M∏
j=1

(wq−cjzp)nj , cj 6= 0, c1 = 1, cj are distinct, α, β ∈ Z≥0,

see Remark 4.3. Set k = n1,

G(z, w) := P
1
k (z, w) = zα̃wβ̃(wq − zp)

M∏
j=2

(wq − cjzp)µj ,

µj :=
nj
k
, α̃ :=

α

k
, β̃ :=

β

k
, N := 1 +

M∑
j=2

µj .

The restriction to γp,q of the Hessian H(G) is given by formula (4.3). Hence,

ρ = −d
3

= ρ0 − (pN + α+ βr) =
2

3
(r + 1)− qNr − (α+ βr),

by (2.13). The latter right-hand side should vanish, since ρ = 0. Therefore,
2
3(r + 1) ≥ qNr, hence r ≤ 2

3Nq−2 . But r > 1, and N, q ≥ 1. Therefore,
q = 1, and r ≤ 2. Hence, p = r = 2.

Let us now show that the polynomial w−z2 is an integral of the (2, 1; 0)-
billiard. Indeed, its restriction to the tangent line L = L(1,1) is the polyno-
mial −1 + 2z − z2 = −(z − 1)2; here ζ = z. The latter polynomial is clearly
invariant under the involution η0 : z 7→ 2− z. Hence, w − z2 is an integral,
by Remark 4.2. Proposition 4.5 is proved. 2

4.2 Normalization of rational integral to primitive one

Here we consider a quasihomogeneously integrable (p, q; ρ)-billiard. We
prove that its integral (if it cannot be reduced to a polynomial) can be
normalized to a primitive integral, see definitions and Lemma 4.10 below.
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The restriction of a (p, q)-quasihomogeneous polynomial P to the tangent
line L = L(1,1) to the curve γp,q at the point (1, 1) is a polynomial in the
coordinate z on L. One has

w|L = 1− r + rz, (wq − czp)|L = Rp,q,c(z) := (1− r + rz)q − czp. (4.4)

Definition 4.6 The roots of the restriction P|L of a (p, q)-quasihomogeneous
polynomial P will be called its tangent line roots. The linear combination
of points representing roots with coefficients equal to their multiplicities is a
divisor on L ' Cz. It will be called the root divisor of the polynomial P and
denoted by χ(P). Sometimes we will deal with χ(P) as with a collection of
roots, e.g., when we write inclusions that some points belongs to χ(P).

Definition 4.7 Recall that the complement of a divisor χ to a point θ is
the divisor χ with the term corresponding to the point θ deleted. Set

θρ :=
ρ− 1

ρ
= ηρ(∞).

A (p, q)-quasihomogeneous polynomial P is called ηρ-quasi-invariant, if the
complement χ(P) \ {θρ} is ηρ-invariant. A ηρ-quasi-invariant polynomial P
is ηρ-primitive, if it is not a product of two ηρ-quasi-invariant polynomials.

Proposition 4.8 1) A primitive ηρ-quasi-invariant polynomial P is (up to
constant factor) a product

∏
j Qj of some distinct prime (p, q)-quasihomogeneous

polynomials Qj equal to wq − cjzp, z or w.
2) Any two prime factors Qk, Q` are equivalent in the following sense:

there exists a finite sequence k = j1, j2, . . . , jm = ` such that for every
s = 1, . . . ,m − 1 there exist tangent line roots zs, zs+1 of the polynomials
Qjs and Qjs+1 respectively such that zs+1 = ηρ(zs).

3) If ρ = r, then either P = cw, c ∈ C \ {0}, or P contains no w-factor.
4) For any two distinct primitive ηρ-quasi-invariant polynomials their

tangent line root collections do not intersect.
5) Every ηρ-quasi-invariant polynomial is a product of powers of primi-

tive ones.

The proposition follows from definition and the fact that the polynomial
w|L = 1− r + rz has one root r−1

r .

Definition 4.9 A (p, q)-quasihomogeneous rational integral of the (p, q; ρ)-
billiard is ηρ-primitive, if it is a ratio of nonzero powers of two non-trivial
primitive ηρ-quasi-invariant (p, q)-quasihomogeneous polynomials.
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Lemma 4.10 Let a (p, q; ρ)-billiard be quasihomogeneously integrable and
admit no polynomial (p, q)-quasihomogeneous integral. Then it admits a ηρ-
primitive rational integral vanishing identically on γp,q, and ρ 6= 0.

Proof Let R be a quasihomogeneous integral of the (p, q; ρ)-billiard rep-
resented as an irreducible ratio of two quasihomogeneous polynomials: nu-
merator and denominator, both being non-constant (absence of polynomial
integral). Its restriction to the curve γp,q is constant, by Proposition 1.34.
If the latter constant is finite non-zero, then the numerator and the denomi-
nator have equal (p, q)-quasihomogeneous degrees. Therefore, replacing the
numerator by its linear combination with denominator one can get another
quasihomogeneous integral that vanishes identically on γp,q. If the above
constant is infinity, we replace R by R−1 and get an integral vanishing on
γp,q. Thus, we can and will consider that R ≡ 0 on γp,q. Both numerator
and denominator are ηρ-quasi-invariant, which follows from ηρ-invariance of
the restriction of the integral to the tangent line L = L(1,1). Therefore, they
are products of powers of primitive ηρ-quasi-invariant polynomials. Among
all the ηρ-quasi-invariant primitive factors in the numerator and the de-
nominator there are at least two distinct ones, by irreducibility and non-
polynomiality of the ratio R. Take one of them P1, vanishing identically on
γp,q (hence, divisible by wq− zp) and another one P2. For every i = 1, 2 one
has

Pi(z, w) = zαiwβi
Ni∏
j=1

(wq − cijzp), cij 6= 0; (4.5)

αi, βi ∈ {0, 1}, α1α2 = β1β2 = 0, c11 = 1, all cij are distinct,

by Proposition 4.8. Set now

R(z, w) :=
Pm1

1

Pm2
2

, di := degPi = Nip+ αi + βi. (4.6)

Proposition 4.11 The ratio (4.6) of powers of two non-trivial primitive
ηρ-quasi-invariant polynomials P1, P2 is an integral of the (p, q; ρ)-billiard,
if the following relation holds:

Case 1), θρ /∈ χ(P1) ∪ χ(P2) : d1m1 = d2m2. (4.7)

Case 2), θρ ∈ χ(P1) : (d1 + 1)m1 = d2m2. (4.8)

Case 3), θρ ∈ χ(P2) : d1m1 = (d2 + 1)m2. (4.9)

As is shown below, Proposition 4.11 is implied by the following obvious
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Proposition 4.12 Let a rational function R(ζ) either do not vanish at 1,
or have 1 as a root of even degree. Then it is ηρ-invariant, if and only if its
zero locus and its pole locus are both ηρ-invariant.

Proof A rational function R is uniquely determined by its zero and pole
loci up to constant factor. Therefore, if the latter loci are invariant under a
conformal involution ηρ, then R ◦ ηρ = ±R. The sign ± is in fact +, taking
into account the condition at the point 1, which is fixed by ηρ. 2

Proof of Proposition 4.11. Let us show, case by case, that if the corre-
sponding relation (4.7), (4.8) or (4.9) holds, then the zero and pole divizors
of the restriction R|L are ηρ-invariant. This together with Proposition 4.12
implies that R|L is ηρ-invariant, and hence, R is an integral (Remark 4.2).

Case 1): θρ /∈ χ(P1)∪χ(P2) and m1d1 = m2d2. Then the infinity in L is
not a pole of the restriction R|L. Therefore, its zeros (poles) are zeros of the
polynomial P1|L (respectively, P2|L). Their divisors are ηρ-invariant, by ηρ-
quasi-invariance of the polynomials Pi, and since the root collections of their
restrictions to L do not contain θρ = ηρ(∞). Hence, R|L is ηρ-invariant.

Case 2): θρ ∈ χ(P1) and m1(d1 + 1) = m2d2. Then the infinity in L is a
zero of multiplicity m1 of the restriction R|L. The point θρ is a simple root
of the polynomial P1|L, by assumption and primitivity. This together with
its ηρ-quasi-invariance implies that the zero divizor of the function R|L is
ηρ-invariant. Its pole divisor, i.e., the zero divisor of the function Pm2

2 |L is
also ηρ-invariant, as in the above discussion.

Case 3) is treated analogously to Case 2). 2

Proposition 4.11 immediately implies the statement of Lemma 4.10, ex-
cept for the statement that ρ 6= 0. Suppose the contrary: ρ = 0. Then
ηρ(∞) = ∞ /∈ χ(P1). Therefore, the restriction to L of the ηρ-quasi-
invariant polynomial P1 is ηρ-invariant (Proposition 4.12). Hence, P1 is a
polynomial integral of the (p, q; ρ)-billiard. The contradiction thus obtained
proves that ρ 6= 0 and finishes the proof of Lemma 4.10. 2

4.3 Case of rational integral. Two formulas for ρ

Here we treat the case, when the (p, q; ρ)-billiard in question admits a ratio-
nal quasihomogeous integral and does not admit a polynomial one: thus,
ρ 6= 0 (Lemma 4.10). Everywhere below we consider that the integral
R(z, w) is ηρ-primitive, vanishes on γp,q (Lemma 4.10) and is given by for-
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mula (4.6) with m1,m2 6= 0 satisfying some of relations (4.7)-(4.9). Set

G(z, w) := (R(z, w))
1
m1 =

P1

Pν2
, ν :=

m2

m1
. (4.10)

We prove two different formulas for the residue ρ, deduced
- on one hand, from formula (4.3) for the Hessian H(G) and formula

(2.13) expressing ρ via the asymptotic exponent d;
- on the other hand, by applying a similar argument to a special ηρ-

invariant function on LP ' Cz: the ratio of the numerator of the integral
and a power of z − ρ−2

ρ . Combining the two formulas for ρ thus obtained,
we will show in Subsection 4.4 that p = 2, q = 1 and ρ ∈M.

In our case formulas (4.3) and (2.13) yield

H(G)|wq=zp = czd, d = 3((N1−νN2)p+α1−να2+r(β1−νβ2)−ρ0), (4.11)

r =
p

q
, ρ0 =

2

3
(r + 1),

ρ = −d
3

= ρ0 − (d1 − νd2)− (r − 1)(β1 − νβ2), di = Nip+ αi + βi. (4.12)

This is the First Formula for ρ. Substituting to (4.12) the relations between
the degrees d1 and d2 given by Proposition 4.11 and taking into account
that βj = 1 if and only if θr := r−1

r ∈ χ(Pj), we get

Proposition 4.13 Let d1, d2, G be as above. Then one has the follow-
ing formulas for the residue ρ dependently on whether or not some of the
numbers θρ = ηρ(∞) = ρ−1

ρ , θr = r−1
r lie in some of χ(P1,2):

θρ /∈ χ(P1) ∪ χ(P2) θρ ∈ χ(P1) θρ ∈ χ(P2)

θr /∈ χ(P1) ∪ χ(P2) ρ = ρ0 ρ = ρ0 + 1 ρ = ρ0 − ν
θr ∈ χ(P1) ρ = ρ1 := ρ0 + 1− r ρ = ρ1 + 1 ρ = ρ1 − ν
θr ∈ χ(P2) ρ = ρ2 := ρ0 − ν(1− r) ρ = ρ2 + 1 ρ = ρ2 − ν

The Second Formula for the residue ρ is given by the next lemma.

Lemma 4.14 Let P(z, w) = zαwβ
∏N
j=1(wq−cjzp) be a primitive ηρ-quasi-

invariant (p, q)-quasihomogeneous polynomial vanishing on γp,q: c1 = 1. Set

dP := degP = Np+ α+ β, d̂P :=

[
dP , if θρ /∈ χ(P)
dP + 1, if θρ ∈ χ(P).

(4.13)

Then the residue ρ is expressed by the formula

ρ(d̂P − 2) = 2(Np+ α+ βr − ρ0); here ρ0 =
2

3
(r + 1). (4.14)
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Proof The restriction of the polynomial P to the tangent line L = Cz is

H(z) := zα(1− r+ rz)β
N∏
i=1

((1− r+ rz)q− cizp), degH = dP = Np+α+β.

The roots of the latter polynomial are exactly points of χ(P). The involution
ηρ : L → L has two fixed points: those with z-coordinates 1 and ρ−2

ρ . We
consider the following auxiliary rational function

G(z) :=
H(z)

(z − ρ−2
ρ )d̂P

. (4.15)

Claim 1. The rational function G is ηρ-invariant.
Proof The zero divisor of the function G|L is ηρ-invariant. Indeed, the
complement of the root divisor χ(P) of the polynomialH to θρ is ηρ-invariant
(ηρ-quasi-invariance of the polynomial P). In the case, when H(θρ) = 0, one

has d̂P = degH + 1, and hence, ∞ is a simple zero of the function G. The
pole divisor of the function H is the fixed point ρ−2

ρ of the involution ηρ.
This together with Proposition 4.12 implies that G is ηρ-invariant. 2

Corollary 4.15 For every λ ∈ C the polynomial

Hλ(z) := H(z)− λ
(
z − ρ− 2

ρ

)d̂P
has exactly two roots ζ±(λ) converging to 1, as λ → 0. These roots are
permuted by the involution ηρ.

We will deduce formula (4.14) by comparing asymptotics of the numbers
ζ±(λ) as roots of the polynomial Hλ and writing the condition that they
should be permuted by the involution ηρ with known Taylor series. To this
end, we write the polynomials Hλ and their roots in the new coordinate

u := z − 1; u± := u(ζ±(λ)) = ζ±(λ)− 1.

Claim 2. There exists a constant A ∈ C∗ such that as u→ 0, one has

H(z) = H(1 + u) = A(1 + (Np+ α+ βr − ρ0)u+O(u2))u2. (4.16)

Proof One has p = qr,

zα(1− r + rz)β = (1 + u)α(1 + ru)β = 1 + (α+ rβ)u+O(u2), (4.17)
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(1− r + rz)q − zp = (1 + ru)q − (1 + u)p

=
q(q − 1)r2 − p(p− 1)

2
u2 +

q(q − 1)(q − 2)r3 − p(p− 1)(p− 2)

6
u3 +O(u4)

=
p(1− r)

2
u2 +

p

6
((p− r)(p− 2r)− (p− 1)(p− 2))u3 +O(u4)

=
p(1− r)

2
u2(1 + (p− ρ0)u+O(u2)). (4.18)

For ci 6= 1 one has the equality

(1−r+rz)q−cizp = ((1−r+rz)q−zp)+(1−ci)(1+u)p = (1−ci)(1+pu)+O(u2).

Multiplying it with (4.17), (4.18) yields (4.16) with A = p(1−r)
2

∏
i≥2(1− ci).

2

Corollary 4.16 One has u− = −u+(1 + o(1)), as λ→ 0, and

A(1 + (Np+α+βr−ρ0)u±+O(u2
+))u2

± = B(1 +
d̂Pρ

2
u±+O(u2

±)), (4.19)

B = B(λ) = λ

(
2

ρ

)d̂P
.

Proof One has H(ζ±) = λ(ζ± − ρ−2
ρ )d̂P , by definition. Substituting (4.16)

to the latter formula yields (4.19). 2

The involution ηρ(z) written in the coordinate u = z − 1 takes the form

ηρ : u 7→ − u

1 + ρu
. (4.20)

Therefore, u− = −u+ + (ρ+O(u+))u2
+, since u± converge to 0 and are per-

muted by ηρ. Dividing equations (4.19) for u+ and for u− and substituting
the latter asymptotic formula for u− yields

1 + (Np+ α+ βr − ρ0)u+ +O(u2
+)

(1− (Np+ α+ βr − ρ0)u+ +O(u2
+))(1− ρu+)2

= 1 + d̂Pρu+ +O(u2
+),

2(Np+ α+ βr − ρ0) + 2ρ = d̂Pρ.

This proves (4.14). 2
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4.4 Proof of the main part of Theorem 4.1: necessity

The main part of Theorem 4.1 is given by the next lemma.

Lemma 4.17 Let a (p, q; ρ)-billiard be quasihomogeneously integrable. Then
p = 2, q = 1 and ρ ∈M.

Proof The case of polynomial integrability, was already treated in Subsec-
tion 4.1. Let us treat the case, when there are no polynomial integral. Then
there exists a primitive integral R vanishing on γp,q; let us fix it. One has

R(z, w) =
Pm1

1

Pm2
2

(z, w), Pi = zαiwβi
Ni∏
j=1

(wq − cijzp),

αj , βj ∈ {0, 1}, α1α2 = β1β2 = 0, c11 = 1, all cij are distinct.

The statement of the lemma will be deduced by equating the two formulas
for the residue ρ given by Proposition 4.13 and Lemma 4.14 (applied to P1).

Case 1): θρ = ηρ(∞) /∈ χ(P1) ∪ χ(P2). Then

ρ = ρ0 + (1− r)(β1 − νβ2) =
2(N1p+ α1 + β1r − ρ0)

N1p+ α1 + β1 − 2
, (4.21)

by Proposition 4.13 and Lemma 4.14 applied to P1.
Subcase 1a): β1 = β2 = 0. Then (4.21) yields

(ρ0 − 2)(N1p+ α1) = 0, ρ0 =
2

3
(r + 1).

Hence, ρ0 = r = 2, since N1p > 0, α1 ≥ 0. This together with (4.21) yields

p = 2, q = 1, ρ = ρ0 = 2.

Subcase 1b): β1 = 1, β2 = 0. Then (4.21) yields

2N1p+ 2α1 + 2r = ρ0(N1p+ α1 + 1) + (1− r)(N1p+ α1 − 1)

=
2

3
(r + 1)(N1p+ α1 + 1) + (1− r)(N1p+ α1 − 1).

Substituting r = p
q and multiplying the latter equation by 3q yields

6N1pq+6α1q+6p = 2(p+q)(N1p+α1 +1)+3(q−p)(N1p+α1−1). (4.22)

Writing equation (4.22) modulo p and dividing it by q(mod p) yields

6α1 = 2(α1 + 1) + 3(α1 − 1) = 5α1 − 1(mod p), α1 ≡ −1(mod p).
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Thus, α1 ∈ {0, 1} and α1 ≡ −1(mod p), p ∈ N, p ≥ 2. Therefore,

p = 2, q = 1, α1 = 1, ρ0 = 2,

ρ = ρ0 + (1− 2) = 1 =
2(2N1 + 1 + 2− ρ0)

2N1
,

by (4.21). Hence, 2(2N1 + 1) = 2N1 and N1 < 0. The contradiction thus
obtained shows that Subcase 1b) is impossible.

Subcase 1c): β1 = 0, β2 = 1. Then

ρ =
2(N1p+ α1 − ρ0)

N1p+ α1 − 2

= ρ0 + (r − 1)ν = ρ0 + (r − 1)
N1p+ α1

N2p+ α2 + 1
, (4.23)

by (4.21) and since in our case ν = m2
m1

= d1
d2

, see (4.7). Moving ρ0 from the
right- to the left-hand side, dividing both sides by N1p+α1 and multiplying
them by the product of denominators in (4.23) yields

(2− ρ0)(N2p+ α2 + 1) = (r − 1)(N1p+ α1 − 2).

Substituting the value of ρ0 and multiplying the latter equation by 3q yields

(4q − 2p)(N2p+ α2 + 1) = 3(p− q)(N1p+ α1 − 2).

Reducing the latter equation modulo p and dividing it by q(mod p) yields

4α2 + 3α1 ≡ 2(mod p). (4.24)

In the case, when α1 = 1, one has α2 = 0 and 3 ≡ 2(mod p), which is
impossible, since p ≥ 2. Hence, α1 = 0. In this case α2 ∈ {0, 1}, 4α2 − 2 =
±2 ≡ 0(mod p). Hence, p = 2, q = 1, ρ0 = 2. This together with the first
equality in (4.23) implies that either ρ = 2, or N1p + α1 − 2 = 0. If ρ = 2,
then ρ = ρ0, which contradicts the second equality in (4.23), Therefore,

N1p+ α1 − 2 = 2N1 + α1 − 2 = 0, N1 = 1, α1 = 0,

ρ = ρ0 + (r − 1)
N1p+ α1

N2p+ α2 + 1
= 2 +

2

2N2 + α2 + 1
∈M. (4.25)

Case 2): θρ = ηρ(∞) ∈ χ(P1). Then

ρ = ρ0 + 1 + (1− r)(β1 − νβ2) =
2(N1p+ α1 + β1r − ρ0)

N1p+ α1 + β1 − 1
,
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by (4.14) (applied to P1) and Proposition 4.13. Multiplying by the denom-
inator yields

((r − 1)νβ2 − s)(N1p+ α1 + β1 − 1) = 2s, s := 1 + β1(r − 1)− ρ0. (4.26)

Subcase 2a): β2 = 0. Then (4.26) yields (N1p+α1 +β1 + 1)s = 0, hence
s = 0 and ρ0 = 2

3(r + 1) = β1(r − 1) + 1. Thus, β1 = 1, since ρ0 >
4
3 > 1,

2

3
(r + 1) = r, r = p = 2, q = 1, ρ = ρ0 + 1 + 1− r = ρ0 = 2.

Subcase 2b): β2 = 1. Then β1 = 0, and (4.26) yields

(−s+ ν(r − 1))(N1p+ α1 − 1) = 2s, s = 1− ρ0 < 0.

The right-hand side of the latter equation is negative, while the first factor
in the left-hand side is positive. Therefore, the second factor should be
negative, which is obviously impossible. Hence, Subcase 2b) is impossible.

Case 3): θρ = ηρ(∞) ∈ χ(P2). Then

ρ = ρ0 − ν + (1− r)(β1 − νβ2) =
2(N1p+ α1 + β1r − ρ0)

N1p+ α1 + β1 − 2
, (4.27)

ν =
d1

d2 + 1
=

N1p+ α1 + β1

N2p+ α2 + β2 + 1
, (4.28)

by (4.14), Proposition 4.13 and (4.9).

Claim 3. If β2 = 0, then one has β1 = α1 = 0, p = 2, N1 = 1,

ν =
2

2N2 + α2 + 1
, ρ = ρ0 − ν = 2− 2

2N2 + α2 + 1
∈M. (4.29)

Proof Multiplying (4.27) with β2 = 0 by its denominator yields

(s+ 2− ν)t = 2t− 2s, s := ρ0 + β1(1− r)− 2, t = N1p+ α1 + β1 − 2,

(s− ν)t = −2s. (4.30)

Note that one has always t ≥ 0.
Case t > 0. Then s− ν and s either have different signs, or both vanish

(which is impossible, since ν > 0). Thus, s − ν < 0 < s. But s = 1
3(2(r +

1) + 3β1(1− r)− 6). If β1 = 1, then the latter expression in the brackets is
2(r + 1) − 3r + 3 − 6 = −1 − r < 0, hence s < 0. The contradiction thus
obtained shows that β1 = 0. Hence, s = ρ0 − 2,

(ρ0 − 2− ν)(N1p+ α1 − 2) = −2(ρ0 − 2), ν =
N1p+ α1

N2p+ α2 + 1
,
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(ρ0 − 2)(N1p+ α1) = ν(N1p+ α1 − 2).

Substituting the above formula for the number ν, multiplying by its denom-
inator and by 3q and dividing by N1p+ α1 yields

(2p− 4q)(N2p+ α2 + 1) = 3q(N1p+ α1 − 2). (4.31)

Reducing (4.31) modulo p and dividing by q(mod p) yields −4(α2 + 1) ≡
3(α1 − 2)(mod p),

2− 4α2 − 3α1 ≡ 0(mod p).

In the case, when α1 = 1, one has α2 = 0. Hence, −1 ≡ 0(mod p),
which is impossible. Thus, α1 = 0. Then 2 − 4α2 = ±2 ≡ 0(mod p).
Hence, p = 2, q = 1, ρ0 = 2, s = 0. This together with (4.30) implies that
t = N1p + α1 − 2 = 0. Hence, N1 = 1, α1 = 0. The first statement of the
claim is proved. Together with (4.27) and (4.28), it implies (4.29). 2

Claim 4. In the case, when β2 = 1, one has p = r = ρ = 2, q = 1.
Proof In this case β1 = 0, and (4.27) yields

ρ = ρ0 + ν(r − 2) =
2(N1 + α1 − ρ0)

N1p+ α1 − 2
,

(s+ 2 + ν(r − 2))t = 2t− 2s, s := ρ0 − 2 =
2

3
(r − 2), t := N1p+ α1 − 2,

(s+ ν(r − 2))t = −2s, (
2

3
+ ν)(r − 2)t = −4

3
(r − 2), t ≥ 0, ν > 0.

The latter equality implies that r = 2. Thus, p = r = ρ0 = ρ = 2, q = 1. 2

Claims 3, 4 together with the previous discussion imply the statement
of Lemma 4.17. 2

4.5 Sufficience and integrals. End of proof of Theorem 4.1.
Proof of the addendum

Lemma 4.17 reduces Theorem 4.1 to the following lemma.

Lemma 4.18 A) The following statements are equivalent:
1) The (2, 1; ρ)-billiard is quasihomogeneously integrable.
2) One has ρ ∈M.
3) Either the mapping T := η2 ◦ ηρ is the identity, or the points ∞ and

1
2 lie in the same T -orbit, i.e., Tm(1

2) =∞ for some m ∈ Z.
B) For every ρ ∈M the corresponding function Rρ(z, w) from the table

in Theorem 4.1 is an integral of the (2, 1; ρ)-billiard.
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Proof The implication 1) => 2) is given by Lemma 4.17.
Proof of the equivalence 2) <=> 3). The map T is identity, if and
only if ρ = 2 ∈ M. Let us consider the case, when ρ 6= 2. Let us write the
map ηρ : L→ L, L = Cz, in the chart

y :=
1

z − 1
; y(1) =∞, y(∞) = 0, y

(
1

2

)
= −2, y(0) = −1.

The involution ηρ fixes 1, ρ−2
ρ , and y(ρ−2

ρ ) = −ρ
2 . Therefore, in the chart y

ηρ : y 7→ −y − ρ, T = η2 ◦ ηρ : y 7→ y + ρ− 2. (4.32)

The condition that ρ ∈ M \ {2} is equivalent to the condition saying that
ρ − 2 ∈ { 2

m | m ∈ Z \ {0}}. The latter in its turn is equivalent to the
condition that in the chart y the point y(∞) = 0 is the Tm-image of the
point y(1

2) = −2. This proves equivalence of Statements 2) and 3). 2

Proof of the implication 3) => 1). Case ρ = 0 was already treated in
Subsection 4.1; in this case the polynomial R0(z, w) = w− z2 is an integral.

Case 1): ρ = 2. Then ηρ(z) = z
2z−1 fixes 1 and permutes ∞, 1

2 . The

restriction to L = L(1,1) of the function R2(z, w) = w−z2
w written in the

coordinate z is (z−1)2

z− 1
2

up to constant factor. It is ηρ-invariant, by Proposition

4.12 and invariance of its zero and pole divisors: double zero 1 and the pair
of simple poles 1

2 , ∞. Hence, R2 is an integral of the (2, 1; 2)-billiard.
Case 2): ρ = 1. Then the involution ηρ(z) = 1

z fixes 1 and permutes 0,

∞. The restriction to L of the function R1(z, w) = w−z2
z is equal to (z−1)2

z
up to constant factor. It is ηρ-invariant, by Proposition 4.12 and invariance
of its zero and pole divisors, and R1 is an integral, as in the above case.

Case 3): ρ = 3. Then ηρ(z) = 2z−1
3z−2 fixes 1 and permutes 0, 1

2 . The

restriction to L of the function R3(z, w) = w−z2
zw has double zero 1 and

simple poles 0, 1
2 . Hence, it is ηρ-invariant, and R3 is an integral, as above.

Case 4): ρ = 4. Then ηρ(z) = 3z−2
4z−3 fixes the points 1 and 1

2 . The latter
points taken twice are respectively zero and pole divisors of the function
R4|L. Hence, the latter function is invariant, and R4 is an integral.

Case 5): ρ− 2 = 2
m , m ∈ Z \ {0}, |m| ≥ 3. Note that the integer number

m has the same sign, as the number ρ− 2. Set

ζ0 =
1

2
, ζj = T j(ζ0), j = 0, . . . ,m; ζm =∞,

χ := {ζ0, . . . , ζm−1}, if ρ > 2, i.e., m > 0,
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χ := {ζm+1, . . . , ζ−1}, if ρ < 2 i.e., m < 0.

Claim 5. The set χ is a collection χ(P) of roots of restriction to L of
a primitive ηρ-quasi-invariant (2, 1)-quasihomogeneous polynomial P. The
polynomial P does not vanish identically on γ = γ2,1 = {w = z2}.
Proof The restriction to L of a prime quasihomogeneous polynomial w−cz2

is Rc(z) := −cz2 + 2z − 1. The map η2 permutes roots of the polynomial
Rc for every c, since the sum of inverses of roots is equal to 2 and η2 acts as
v 7→ 2−v in the chart v = 1

z . It permutes ζj and ζm−j for every j = 0, . . . ,m,
since y(ζj) form an arithmetic progression, see (4.32), y(ζ0) = −2, y(ζm) = 0,
and η2 : y 7→ −y − 2. Therefore, the numbers ζj and ζm−j are roots of a
quadratic polynomial Rcj (z), unless ζj ∈ {0, 1

2 ,∞}. The middle point −1 of
the segment [−2, 0] ∈ Ry corresponds to z = 0. One has ζj = 0 for some j,
if and only if m ∈ 2Z, and then j = m

2 . Therefore, χ consists of the union

of roots of the quadratic polynomials Rcj , |j| = 1, . . . , [ |m|−1
2 ], the point 1

2
(if ρ > 2) and zero (if m ∈ 2Z). The complement χ \ {1

2} is η2-invariant, by
construction. One has m ≥ 0, if and only if ρ− 2 ≥ 0. The map ηρ = η2 ◦ T
sends each ζj ∈ χ to ζm−j−1, since T (ζj) = ζj+1, by construction. The latter
image ζm−j−1 = ηρ(ζj) lies in χ, except for the case, when

ρ < 2, m < 0, ζm−j−1 = ζm =∞, j = −1, ζ−1 = ηρ(∞) = θρ ∈ χ.

Indeed, if ρ > 2, then ζj ∈ χ exactly for j ∈ [0,m − 1], and in this case
m− 1− j lies there as well. If ρ < 2, then ζj ∈ χ exactly for j ∈ [m+ 1,−1],
and in this case ζm−1−j ∈ χ, unless j = −1. Thus, the complement χ \ {θρ}
is ηρ-invariant. Any two points ζj , ζk ∈ χ can be obtained one from the
other by the map T j−k = (η2 ◦ηρ)j−k so that the latter map considered as a
composition of 2|j − k| involutions is well-defined at ζk and T j−k(ζk) = ζj .
This follows from the above discussion. Thus, χ = χ(P) for some primitive
ηρ-quasi-invariant (2, 1)-quasihomogeneous polynomial P that is the product
of the polynomials w − cjz2 and may be some of the monomials z, w. One
has 1 /∈ χ, since y(1) =∞. Hence, P|γ 6≡ 0. Claim 5 is proved. 2

Thus, if Statement 3) of the lemma holds, then there exist at least two
distinct primitive quasihomogeneous ηρ-quasi-invariant polynomials: w− z2

and the above polynomial P. Hence, the (2, 1; ρ)-billiard admits a quasiho-
mogeneous rational first integral

R =
(w − z2)m1

(P(z, w))m2
,

by Proposition 4.11. Implication 3) => 1) is proved. 2

50



Equivalence of Statements 1)–3) is proved. Now for the proof of Lemma
4.18 it remains to calculate the integrals. To do this, let us calculate the cj
from the proof of Claim 5 for j 6= m

2 . One has

ρ−2 =
2

m
, yj := y(ζj) = −2+ j(ρ−2) = −2+

2j

m
, ζj =

1

yj
+1 =

2j −m
2(j −m)

,

cj = (ζjζm−j)
−1 = −4j(m− j)

(2j −m)2
, m =

2

ρ− 2
∈ Z \ {0}. (4.33)

Therefore, in the case, when ρ > 2, the polynomial P(z, w) is the product
of the quadratic polynomials w − cjz2, j = 1, . . . , [m−1

2 ], the polynomial w,
and also the polynomial z (which enters P if and only if m ∈ 2Z). In the
case, when ρ < 2, the polynomial P(z, w) is the product of the polynomials
w − cjz2, j = 1, . . . , [−m+1

2 ], and also the polynomial z (if m ∈ 2Z).
Subcase 5a): ρ = 2 + 2

m , m = 2N + 1, N ∈ N. Then P is the product of
the polynomial w and N above polynomials w− cjz2. Its degree is equal to
2N + 1 = m. The divisor χ(P) contains 1

2 and does not contain ηρ(∞), by
construction and the above discussion. Substituting m = 2N + 1 to formula
(4.33) yields the formula for the coefficients cj given by the table in Theorem
4.1. This together with Proposition 4.11 implies that the corresponding
function Rρ from the same table is an integral of the (2, 1; ρ)-billiard.

Subcase 5b): ρ = 2 − 2
2N+1 . It is treated analogously. In this case P is

just the product of the above N polynomials w − cjz2. The divisor χ(P)
contains θρ = ηρ(∞). This together with Proposition 4.11 implies that the
corresponding function Rρ from the table is an integral.

Subcase 5c): ρ = 2 + 1
N+1 , m = 2N + 2. Treated analogously to Subcase

5a). But now the polynomial P contains the additional factor z, and substi-
tuting m = 2N+2 to (4.33) yields the formula for cj from the corresponding
line of the table in Theorem 4.1.

Subcase 5d): ρ = 2− 1
N+1 . Treated analogously. Lemma 4.18 is proved.

The proof of Theorem 4.1 is complete. 2

Proof of the addendum to Theorem 4.1. The equation for the curve
γ = {w = z2} in the new coordinates (z̃, w̃) is the same: w̃ = z̃2. The
variable change (z, w) 7→ (z̃, w̃) preserves the point (1, 1), and hence, the
corresponding tangent line L = L(1,1) to γ, along which one has

w = 2z − 1, z̃ =
z

2z − 1
= η2(z).

Therefore, in the coordinate z̃ the involution ηρ takes the form

η2 ◦ ηρ ◦ η2 = ηρ̃, ρ̃ := 4− ρ; (4.34)
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the latter formula follows from (4.32). Thus, the variable change in question
transforms the (2, 1; ρ)-billiard to the (2, 1; 4− ρ)-billiard.

In new coordinates one has Rρ(z, w) = R4−ρ(z̃, w̃). Indeed,

R0(z, w) = w − z2 =
1

w̃2
(w̃ − z̃2) = R4(z̃, w̃),

R1(z, w) =
1

w̃z̃
(w̃ − z̃2) = R3(z̃, w̃), R2(z, w) = R2(z̃, w̃).

For the other integrals Rρ from the table in Theorem 4.1 the proof is anal-
ogous. The addendum is proved. 2

5 Local branches. Proof of Theorem 1.37

The main result of this section is the following theorem.

Theorem 5.1 Let a non-linear irreducible germ of analytic curve b ⊂ CP2

at a point O admit a germ of singular holomorphic dual billiard structure
with a meromophic integral R. Then the germ b is quadratic and one of the
two following statements holds:

a) either b is regular;
b) or b is singular, the integral R(z, w) is a rational function that is

constant along the projective tangent line LO to b at O, and the punctured
line LO \ {O} is a regular leaf of the foliation R = const on CP2.

Theorem 5.1 will be proved in Subsection 5.2. Theorem 1.37 will be deduced
from it in Subsection 5.3. Quadraticity of germ in Theorem 5.1 follows from
Theorems 3.3 and 4.1. The proof of Statement b) of Theorem 5.1 for a
singular germ is based on Theorem 5.6 (stated and proved in Subsection 5.1),
which yields a formula for residue of a meromorphically integrable singular
dual billiard on a singular quadratic germ in terms of its self-contact order.

5.1 Meromorphically integrable dual billiard structure on
singular germ: formula for residue

Recall that each non-linear irreducible germ b of analytic curve at O ∈
C2 in adapted coordinates centered at O admits an injective holomorphic
parametrization

t 7→ (tqs, φ(t)), φ(t) = ctps(1 +O(t)), 1 ≤ q < p, s, q, p ∈ N, (5.1)

c ∈ C \ {0}; (q, p) = 1, r =
p

q
is the projective Puiseux exponent.
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Definition 5.2 A non-linear irreducible germ b will be called primitive, if
s = 1 in (5.1) (following a suggestion of E.Shustin).

Remark 5.3 A quadratic germ is primitive, if and only if it is regular. It
is well-known that if s ≥ 2, then the function φ(t) in (5.1) satisfies one of
the two following statements:

a) either there exist a δ ∈ Q>0 and ν1, . . . , νs−1 ∈ C \ {0}, such that

φ(te
2πij
s )− φ(t) = νjt

qs(r+δ)(1 + o(1)), for j = 1, . . . , s− 1, as t→ 0; (5.2)

b) or there exit at least two distinct δ1, δ2 ∈ Q>0 and distinct j1, j2 ∈
{1, . . . , s−1} for which (5.2) holds with δ replaced by δ1 and δ2 respectively.

Definition 5.4 If b is not primitive and (5.2) holds for a unique δ, then b
will be called uniformly (δ-) folded.

Remark 5.5 This definition is equivalent to the well-known definition of a
germ having two Puiseux pairs.

Theorem 5.6 Let an irreducible quadratic germ b of analytic curve at O ∈
C2 admit a structure of meromorphically integrable singular dual billiard
with residue ρ at O. Then b is either regular, or uniformly δ-folded with δ
related to ρ by the formula

ρ = 2 + δ. (5.3)

Proof Below we prove a more general theorem. To state it, let us introduce
the following definition.

Definition 5.7 Let a and b be two irreducible germs of analytic curves
at O ∈ C2 tangent to each other. Let b be non-linear; let r = rb be its
projective Puiseux exponent. Let δ ∈ Q>0. We say that a is a δ-satellite for
b, if a, b are graphs of two multivalued functions {w = ga(z)}, {w = gb(z)}
(represented by Puiseux series in z) satisfying the following statement: there
exist a sector S with vertex at 0, a c ∈ C \ {0}, and holomorphic branches
of the functions ga(z), gb(z) over S (near 0) for which

ga(z)− gb(z) = czr+δ(1 + o(1)), as z → 0, z ∈ S. (5.4)

Remark 5.8 Any two satellites have the same Puiseux exponent. A uni-
formly δ-folded germ b is a δ-satellite for itself.
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Remark 5.9 If a and b are δ-satellites, then the above sector S can be
chosen with angle arbitrarily large and containing an arbitrary given ray.
A priori it may happen that a and b are δ1- and δ2-satellites with different
δ1, δ2 > 0 corresponding to two different pairs of holomorphic branches.
(This holds, e.g., for a = b, if b is neither primitive, nor uniformly folded.)
Two germs that are δ-satellites for a unique δ > 0 are called pure δ-satellites.

Theorem 5.10 Let an irreducible quadratic germ b at O ∈ C2 admit a
structure of meromorphically integrable singular dual billiard. Let the corre-
sponding involution family have residue ρ at O. Let a be an irreducible germ
with the same base point O that lies in a level curve of the meromorphic in-
tegral. Let a be a δ-satellite of the germ b. Then they are pure δ-satellites,
and the corresponding number δ is given by formula (5.3).

Proof Let S, ga and gb be the same, as in (5.4). Fix a smaller sector S′,
S′ \ {0} ⊂ S. The graphs of the functions ga, gb over the sector S will be
denoted by Γa, Γb respectively. Fix a z0 ∈ S′, set P = (z0, gb(z0)) ∈ Γb ⊂ b.
Let LP denote the line tangent to b at P . We introduce the coordinate

u := ζ − 1 =
z

z0
− 1

on the tangent line LP . Let us find asymptotics of those u-coordinates of
points of the intersection Γa ∩ LP , that tend to zero, as z0 ∈ S′ tends to 0.

Proposition 5.11 Let a and b be non-linear irreducible δ-satellite germs at
a point O ∈ C2 with Puiseux exponent r. Let S, ga, gb be the same, as in
(5.4). Let S′ and Γa,b be as above. As P = (z0, gb(z0)) → O, z0 ∈ S′, the
intersection Γa∩LP contains exactly two points whose u-coordinates converge
to zero. Their u-coordinates u± are related by the asymptotic formula

u− = −u+ + (ρ0 + δ)u2
+ + o(u2

+), ρ0 =
2

3
(r + 1). (5.5)

Proof Without loss of generality we consider that gb(z) ' zr(1 + o(1)),
as z → 0, rescaling the coordinate w. Let us work in the further rescaled
coordinates (ζ, y), (z, w) = (z0ζ, z

r
0y), in which Γa,b are graphs of functions

ha,b(ζ), ha,b(ζ) converging to ζr together with derivatives uniformly on com-
pact subsets in S, as z0 → 0. In the new coordinates

ζ(P ) = 1, ha(ζ)− hb(ζ) = czδ0(1 + u)r+δ(1 + θ(z0, u)),
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θ(z0, u) → 0, as z0 → 0, uniformly with derivatives in u lying in a disk
centered at 0, by (5.4). Hence,

θ(z0, u) = χ(z0) + o(u), χ(z0)→ 0, as z0 → 0.

The u-coordinates of points of the intersection Γa ∩ LP are found from the
equation

hb(1) + h′b(1)u = ha(1 + u) = hb(1 + u) + czδ0(1 + u)r+δ(1 + χ(z0) + o(u)).

Moving hb(1+u) to the left-hand side and expressing the new left-hand side
by Taylor formula with base point 1 we get:

−1

2
h′′b (1)u2 − 1

6
h′′′b (1)u3 + o(u3) = czδ0(1 + u)1+δ(1 + χ(z0) + o(u)). (5.6)

Since hb(ζ) → ζr, we get h′′b (1) = r(r − 1)(1 + φ(z0)), φ(z0) → 0, h′′′b (1) →
r(r − 1)(r − 2), as z0 → 0. Substituting these expressions to (5.6) yields

−u2(1+
r − 2

3
u+o(u)+φ(z0)) =

2c

r(r − 1)
zδ0(1+u)r+δ(1+χ(z0)+o(u)), (5.7)

φ(z0), χ(z0)→ 0. Equation (5.7) has exactly two solutions u± that tend to
zero, as z0 → 0: they have asymptotics

u+ ' −u− '

√
− 2c

r(r − 1)
z
δ
2
0 (1 + o(1)). (5.8)

Let us now prove (5.5). Dividing equations (5.7) written for u+ and u− and
taking into account that u+ ' −u−, we get(

u+

u−

)2 1 + φ(z0) + r−2
3 u+ + o(u+)

1 + φ(z0)− r−2
3 u+ + o(u+)

=

(
1 + u+

1− u+

)r+δ
(1 + χ(z0) + o(u+)),

u+

u−
= −(1 + (r + δ − r − 2

3
)u+ + o(u+) = −(1 + (ρ0 + δ)u+ + o(u+)).

The latter formula implies (5.5). Proposition 5.11 is proved. 2

Let now b be a singular quadratic germ equipped with a meromorphically
integrable singular dual billiard structure. Fix two graphs Γa ⊂ a, Γb ⊂ b
satisfying (5.4) over S with some δ > 0. For the proof of Theorem 5.10 it
suffices to show that ρ = 2 + δ. Suppose the contrary:

Θ := ρ− 2− δ 6= 0. (5.9)
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The curve a should lie in a level curve α of the meromorphic integral, which
is a one-dimensional analytic subset in a neighborhood of the origin O and
hence, has finite intersection index with the tangent line LO at O. Therefore,
only finite and uniformly bounded number of points of intersection α ∩ LP
converge to O, as P → O, i.e., as z0 → 0. Using the next proposition,
we show that for every N ∈ N and z0 small enough (dependently on N)
there are at least N above intersection points that converge to O. The
contradiction thus obtained will prove Theorem 5.10.

We use the following characterization of satellite germs.

Proposition 5.12 Let a, b be two irreducible germs of holomorphic curves
at O ∈ C2. Let b be non-linear, r = p

q be its Puiseux exponent, (p, q) = 1.
1) The germs a, b are satellites, if and only the germ a has the same

Puiseux exponent r, and the lower (p, q)-quasihomogeneous parts of their
defining functions are powers of one and the same prime (p, q)-quasihomogeneous
polynomial wq − czp.

2) Let a and b be quadratic germs. They are satellites if and only if all
the points of intersection a ∩ LP have ζ-coordinates, ζ = z

z(P ) , that tend
to one. This holds if and only if some point of the above intersection has
ζ-coordinate that tends to one.

Proof Clearly the germs a, b cannot be satellites, if they have different
Puiseux exponents. Let fa, fb be the functions defining a and b, and let
f̃a, f̃b be their lower (p, q)-quasihomogeneous parts. Then up to constant
factor, f̃g(z, w) = (wq − Cgzp)sg , g = a, b, sg ∈ N, Cg ∈ C \ {0}, see (3.3).
Without loss of generality we can and will consider that Cb = 1, rescaling w.
The curves b and a are parametrized respectively by t 7→ (tqsb , tpsb(1+o(1)))
and τ 7→ (τ qsa , caτ

psa(1+o(1))), cqa = Ca, see the discussion in Example 3.5.
Therefore, they are satellites, if and only if Ca = 1. This proves Statement
1). The equality Ca = 1 is equivalent to the statement that the restrictions
to the line L = L(1,1) (tangent to the curve {y = ζ2} at (1, 1)) of the

quasihomogeneous polynomials f̃a(ζ, y) and f̃b(ζ, y) have the same roots.
The latter roots are exactly the finite limits of the ζ-coordinates of points
of the intersections a∩LP and b∩LP respectively (Proposition 3.6). In the
case of quadratic germs the polynomial f̃b|L = −1 + 2ζ − ζ2 = −(1 − ζ)2

has just one, double root 1. If f̃a 6= f̃b, i.e., Ca 6= 1, then the polynomial
f̃a|L = −1 + 2ζ − Caζ2 does not vanish at 1. This together with Statement
1) and the above discussion proves Statement 2). 2

Recall that in the chart ζ the dual billiard involution σP converges to
ηρ. Therefore, in the chart u it converges to the involution u 7→ − u

1+ρu , see
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(4.20). Hence, the germ of the involution σP at u = 0 acts as

σP : u 7→ −u+ (ρ+ φ(z0))u2 + . . . , φ(z0)→ 0, as z0 → 0. (5.10)

The intersection points from Proposition 5.11 with u-coordinates u± will be
denoted by A0±. The point A1+ = σP (A0−) ∈ LP should lie in the same
level curve α of the integral, as A0−. Therefore, it lies in some irreducible
germ a1 of holomorphic curve at O, since the germ of α is analytic. One has

u1+ := u(A1+) = −u− + (ρ+ o(1))u2
− = u+ + Θu2

+ + o((u+)2), (5.11)

by (5.5), (5.9), (5.10), and since r = ρ0 = 2. In particular, ζ(A1+) =
1 + u1+ → 1, as z0 → 1, and u1+ ' u+. Hence, u1+ has asymptotics (5.8),
and a1 is a δ-satellite of the germ b (Proposition 5.12 and (5.8)). Therefore,
a1 intersects LP at another point A1− with

u1− := u(A1−) = −u1+ + (2 + δ)u2
1+,

by (5.5). The point A2+ := σP (A1−) also lies in the intersection α ∩ LP ,
and

u2+ := u(A2+) = −u1− + (ρ+ o(1))u2
1−

= u1+(1 + Θu1+ + o(u1+)) = u+ + 2Θu2
+ + o(u2

+).

Repeating this procedure we get a sequence of distinct points Ak+ ∈ α∩LP
with coordinates asymptotic to u+ +kΘu2

+ + o(u2
+), k ∈ N. Passing to limit

we get that the level curve α, which is a one-dimensional analytic subset
in a neighborhood of the point O, has infinite intersection index with the
tangent line LO at O. This is obviously impossible. The contradiction thus
obtained proves Theorem 5.10. 2

Theorem 5.10 together with Remarks 5.8, 5.9 imply the statement of
Theorem 5.6. 2

5.2 Singular quadratic germs. Proof of Theorem 5.1

In the proof of Theorem 5.1 we use Theorem 5.6 and the following proposi-
tion. To state it, let us recall the following definition.

Definition 5.13 [28, definition 3.3] Let L ⊂ CP2 be a line, and let O ∈
L. A (L,O)-local multigerm (divisor) is respectively a finite union (linear
combination

∑
j kjbj with kj ∈ R \ {0}) of distinct irreducible germs of

analytic curves bj (called components) at base points Bj ∈ L such that
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each germ at Bj 6= O is different from the line L. (A germ at O can be
arbitrary, in particular, it may coincide with the line germ (L,O).) The
(L,O)-localization of an algebraic curve (divisor) in CP2 is the (L,O)-local
multigerm (divisor) formed by all its local branches bj of the above type.

Proposition 5.14 Let b be an irreducible germ of holomorphic curve at
O ∈ C2, and let (z, w) be coordinates adapted to b in which the corresponding
constant Cb from (3.3) is equal to one. Let LO be the projective tangent line
to b at O. Let Γ be a (LO, O)-local multigerm. Let σP : LP → LP be a family
of projective involutions, P ∈ b\{O}, such that the intersections Γ∩LP are
σP -invariant for all P ∈ b close enough to O. Let σP converge to ηρ in the
coordinate ζ := z

z(P ) on LP , as P → O. Let the corresponding number ρ be
greater than the projective Puiseux exponent r = rb of the germ b. Then all
the germs in Γ are based at the point O, and the ζ-coordinate of each point
of the intersection Γ ∩ LP has a finite limit, as P → O.

Proof The proof of Proposition 5.14 is analogous to the proof of theorem
4.24 in [31, p. 1037]. The intersection points with those germs in Γ that
are based at points different from O (if any) have ζ-coordinates that tend
to infinity, since their z-coordinates tend to either infinity, or non-zero finite
limits, as z(P ) → 0. Suppose the contrary to the statement of the propo-
sition: the ζ-coordinate of some point of the intersection Γ ∩ LP tends to
infinity. Its σP -image also lies in Γ∩LP , by invariance, and has ζ-coordinate
converging to θρ := ρ−1

ρ = ηρ(∞), since σP (ζ) → ηρ(ζ). This implies that
there exists a germ b1 ⊂ Γ based at O whose intersection point with LP has
ζ-coordinate converging to θρ. One has θρ ∈ (θr, 1), θr = r−1

r , since ρ > r.
Therefore, ζ1− := θρ is a root of a polynomialRp,q,Cb1 = (1−r+rζ)q−Cb1ζp,
by Proposition 3.6. Hence, 0 < Cb1 < 1, and the same polynomial Rp,q,Cb1
has a unique root ζ1+ ∈ (1,+∞), due to the following proposition.

Proposition 5.15 Let p, q ∈ N, 1 ≤ q < p, r = p
q . The following state-

ments are equivalent:
1) The polynomial Rp,q,C has a real root in the interval (θr, 1).
2) It has a real root greater than 1.
3) 0 < C < 1.
In this case the above roots are unique, and the correspondence between

them for all C ∈ (0, 1) is a decreasing homeomorphism (θr, 1)→ (1,+∞).

Proof The complex roots of the polynomial Rp,q,C(ζ) are q-th powers of
roots of a polynomial

Hp,q,c(θ) = cθp − rθq + r − 1, cq = C,
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since Rp,q,c(θq) =
∏q−1
j=0((1 − r + rθq) − ce

2πj
q θp). The statement of Propo-

sition 5.15 for q-th powers of roots of the polynomial Hp,q,c is given by [31,
proposition 4.25], and it implies Proposition 5.15. 2

The root ζ1+ is the limit of the ζ-coordinate of some point of intersection
b1∩LP (Proposition 3.6). Hence, its ηρ-image, which will be denoted by ζ2−,
is the limit of the ζ-coordinate of an intersection point of the line LP with
a germ b2 ⊂ Γ based at O. One has θr < ζ1− < ζ2− < 1, by monotonicity
of the map ηρ|R. Again ζ2− is a root of a polynomial Rp,q,Cb2 , Cb2 > 1,
and the latter polynomial has another root ζ2+ ∈ (1, ζ1+), as in [31, proof
of theorem 4.24]. Continuing this procedure we get an infinite decreasing
sequence of roots ζj+, all of them being limits of ζ-coordinates of points of
the intersection Γ ∩ LP . Hence, the cardinality of the latter intersection is
unbounded, as P → O, while the intersection index of the multigerm Γ with
LO is finite. The contradiction thus obtained proves the proposition. 2

Proof of Theorem 5.1. Quadraticity of the germ b follows from Theorems
3.3 and 4.1. If b is regular, then there is nothing to prove. Let b be singular.
Let ρ denote the residue at O of the dual billiard structure. Then b is
uniformly δ-folded for some δ > 0, and ρ = 2 + δ > 2, by Theorem 5.6.
Therefore, the meromorphic integral R is rational and b lies in an algebraic
curve, by Proposition 2.14.

Suppose the contrary to the constance statement: R 6≡ const along the
line LO tangent to b at O, i.e.,, the z-axis. Fix a point A ∈ LO \ {O} with
finite z-coordinate z1 = z(A) that is not an indeterminacy point for the
integral R. For every P ∈ b \ {O} the intersection of the line LP with the
level curve Γ := {R = R(A)} is σP -invariant. The (LO, O)-localization of
the algebraic curve Γ is a (LO, O)-local multigerm satisfying the conditions
of Proposition 5.14, by construction. Hence, all its curves are based at one
point O, by Proposition 5.14. On the other hand, it contains a germ of
analytic curve based at the point A, by construction. The contradiction
thus obtained proves that R|LO ≡ const.

Suppose now the contrary to the last statement of Theorem 5.1: the
punctured line LO \ {O} contains a singular point A for the foliation R =
const. Without loss of generality we consider that R|LO ≡ 0. Let us consider
the germ of the integral R at A and write it as the product wkf(z, w) with
k ∈ N; f(z, w) being a germ of meromorphic function with f(z, 0) 6≡ 0,∞.
The point A is singular for the foliation, if and only if at least one of the
two following statements holds: either A is an indeterminacy point for the
function f , or A is its pole (zero). In both cases at least one of the level
curves {R = 0} or {R = ∞} contains a local branch a based at A that
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does not lie in the z-axis LO. Let us denote the latter level curve by Γ.
Its (LO, O)-localization is a multigerm satisfying the conditions, and hence,
the statement of Proposition 5.14. Therefore, it consists of germs of curves
based at the unique point O, while, by assumption, some of its germs has
base point A 6= O. The contradiction thus obtained proves that LO \ {O} is
a regular leaf of the foliation R = const and proves Theorem 5.1. 2

5.3 Uniqueness of singular point with singular branch. Proof
of Theorem 1.37

Here we prove Theorem 1.37. Quadraticity of local branches is already
proved (Theorem 5.1). Let us prove uniqueness of point O ∈ γ at which
some local branch of the curve γ is singular. Suppose the contrary: there
exist at least two distinct points O1, O2 ∈ γ with singular local branches
b1 and b2 respectively. Let L1, L2 denote their projective tangent lines at
O1, O2. The rational integral is constant along both lines L1 and L2, by
Theorem 5.1. One has L1 6= L2. Indeed, if L1 = L2, then the punctured line
L1 \ {O1} would contain a singular point O2 of foliation by level curves of
the integral, which is forbidden by Theorem 5.1. Thus, L1 and L2 intersect
at some point A distinct from some of the points Oj , say, O1. But then the
punctured line L1 \ {O1} contains a singular point A of foliation by level
curves, – a contradiction to Theorem 5.1. Theorem 1.37 is proved.

6 Plane curve invariants. Proof of Theorem 1.38

Here we prove Theorem 1.38 stating that every irreducible algebraic curve
γ ⊂ CP2 satisfying the statements of Theorem 1.37 is a conic. The proof
given in Subsection 6.2 is based on Bézout Theorem applied to the inter-
section of the curve γ with its Hessian curve and Shustin’s formula [42]
for Hessians of singular points. The corresponding background material is
recalled in Subsection 6.1.

6.1 Invariants of plane curve singularities

Hereby we recall the material from [16, Chapter III], [40, §10], [42], see also a
modern exposition in [33, Section I.3]. This material in a brief form needed
here is presented in [28, subsection 4.1].

Let γ ⊂ CP2 be a non-linear irreducible algebraic curve. Let d denote
its degree. Let Hγ denote its Hessian curve: the zero locus of the Hessian
determinant of the defining homogeneous polynomial of γ. It is an algebraic

60



curve of degree 3(d− 2). The set of all singular and inflection points of the
curve γ coincides with the intersection γ ∩ Hγ . The intersection index of
these curves is equal to 3d(d− 2), by Bézout Theorem. On the other hand,
it is equal to the sum of the contributions h(γ,Q), which are called the
Hessians of the germs (γ,Q), through all the singular and inflection points
Q of the curve γ:

3d(d− 2) =
∑
Q∈γ

h(γ,Q). (6.1)

Let us recall an explicit formula for the Hessians h(γ,Q) [42, formula (2)
and theorem 1]. To do this, let us introduce the following notations. For
every local branch b of the curve γ at Q let s(b) denote its multiplicity:
its intersection index with a generic line through Q. Let s∗(b) denote the
analogous multiplicity of the dual germ. Note that s(b) = qb, s

∗(b) = pb−qb,
where pb and qb are the exponents in the parametrization t 7→ (tqb , cbt

pb(1 +
o(1))) of the local branch b in adapted coordinates. One has

s(b) = s∗(b) = qb for every quadratic branch b. (6.2)

Let bQ1, . . . , bQn(Q) denote the local branches of the curve γ at Q; here n(Q)
denotes their number. The above-mentioned formula for h(γ,Q) from [42]
has the form

h(γ,Q) = 3κ(γ,Q) +

n(Q)∑
j=1

(s∗(bQj)− s(bQj)), (6.3)

where κ(γ,Q) is the κ-invariant, the class of the singular point. Namely,
consider the germ of function f defining the germ (γ,Q); (γ,Q) = {f = 0}.
Fix a line L through Q that is transversal to all the local branches of the
curve γ at Q. Fix a small ball U = U(Q) centered at Q and consider a
level curve γε = {f = ε} ∩ U with small ε 6= 0, which is non-singular. The
number κ(Q) = κ(γ,Q) is the number of points of the curve γε where its
tangent line is parallel to L. It is well-known that

κ(γ,Q) = 2δ(γ,Q) +

n(Q)∑
j=1

(s(bQj)− 1), (6.4)

see, for example, [33, propositions I.3.35 and I.3.38], where δ(γ,Q) = δ(Q) is
the δ-invariant. Namely, consider the curve γε, which is a Riemann surface
whose boundary is a finite collection of closed curves: their number equals to
n(Q). Let us take the 2-sphere with n(Q) deleted disks. Let us paste it to γε:
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this yields to a compact surface. By definition, its genus is the δ-invariant
δ(Q). One has δ(Q) ≥ 0, and δ(Q) = 0 whenever Q is a non-singular point.
Hironaka’s genus formula [34] implies that∑

Q∈Sing(γ)

δ(γ,Q) ≤ (d− 1)(d− 2)

2
. (6.5)

Formulas (6.1), (6.3) and (6.4) together imply the formula

3d(d− 2) = 6
∑
Q

δ(γ,Q) + 3
∑
Q

n(Q)∑
j=1

(s(bQj)− 1) (6.6)

+
∑
Q

n(Q)∑
j=1

(s∗(bQj)− s(bQj)).

6.2 Proof of Theorem 1.38

All the local branches of the curve γ are quadratic. All of them are regu-
lar, except maybe for some branches at a unique singular point O (if any).
Therefore, the third sum in the right-hand side in (6.6) vanishes. All the
terms in the second sum vanish except for those corresponding to the sin-
gular branches based at the point O. The first sum is no greater than
(d−1)(d−2)

2 , by (6.5). Therefore,

3d(d− 2) ≤ 3(d− 1)(d− 2) +

n(O)∑
j=1

(s(bOj)− 1). (6.7)

If all the local branches at O are regular, then the latter sum vanishes,
and we get 3d(d − 2) ≤ 3(d − 1)(d − 2), hence d = 2. Let now there
exist at least one singular branch, say bOt: s(bOt) ≥ 2. The intersection
index of the curve γ with a line through O tangent to bOt is no less than
2s(bOt) +

∑
j 6=t s(bOj). The latter intersection index should be no greater

than d, by Bézout Theorem. Therefore,

2s(bOt) +
∑
j 6=t

s(bOj) ≤ d,
n(O)∑
j=1

(s(bOj)− 1) < d− 2,

3d(d− 2) < 3(d− 1)(d− 2) + d− 2 = 3d(d− 2).

The contradiction thus obtained proves Theorem 1.38.

62



7 Classification of complex rationally integrable
dual billiards. Proof of Theorem 1.18

Let γ ⊂ CP2 be a non-linear irreducible algebraic curve equipped with a
rationally integrable singular dual billiard structure. The curve γ is a conic,
by Theorems 1.37 and 1.38. Thus, for the proof of Theorem 1.18 it suffices
to classify rationally integrable singular dual billiard structures on the conic

γ = {wt = z2} ⊂ CP2
[z:w:t].

To do this, we first classify the a priori possible residue configurations of the
corresponding involution family. In Subsection 7.1 we show that the billiard
structure in question may have at most four singularities, the corresponding
residues lie in M\ {0} and their sum is equal to 4. This implies that the
a priori possible residue configurations are 4, (1, 1, 1, 1), (2, 1, 1), (ρ, 4 − ρ)
with ρ ∈ M \ {0}, (4

3 ,
4
3 ,

4
3), (3

2 ,
3
2 , 1), (4

3 ,
5
3 , 1). We prove that each residue

configuration is realized by a rationally integrable dual billiard, and we find
the corresponding integrals. We show that the cases of integer residues
correspond to the dual billiard structures of conical pencil type.

7.1 Residues of singular dual billiard structures on conic

Proposition 7.1 Let γ ⊂ CP2 be a regular conic equipped with a singular
holomorphic dual billiard structure with isolated singularities that are its
poles of order at most one. Then the sum of their residues is equal to 4.

Proof Let us take an affine chart C2
z,w = {t = 1} ⊂ CP2

[z:w:t] in which

γ ∩ C2 = {w = z2}. For the (2, 1; 2)-billiard on the latter conic the sum
of residues is equal to four: the residues at 0, ∞ are both equal to 2, since
the projective symmetry (z, w) 7→ ( zw ,

1
w ) of the billiard structure (see the

addendum to Theorem 4.1) permutes 0 and ∞ and preserves the residues.
To treat the general case, we use the following proposition.

Proposition 7.2 Let γ and the affine chart C2
z,w be as above. A singular

holomorphic dual billiard structure on γ is meromorphic (i.e., has order at
most one at each singular point), if and only if the corresponding involutions
σP : LP → LP , P = (z0, z

2
0) ∈ C2, written in the coordinate u = z − z0 on

LP , have the form

σP : u 7→ − u

1 + f(z0)u
, f(z) is a rational function with simple poles,
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f(z) =
1

z
(λ+ o(1)), as z →∞; λ ∈ C. (7.1)

The residue at infinity is equal to 4 − λ. The above dual billiard structure
has regular point at infinity, if and only if λ = 4.

Proof A finite singular point of σP is of order one, if and only if the
corresponding function f(z) has simple pole there (Proposition 2.13). Let
E = [0 : 1 : 0] be the infinite point of the conic γ. Consider the affine
coordinates (z̃, w̃) = ( zw ,

1
w ) centered at E. Let ρ denote the residue at E:

then in the coordinate ζ̃ := z̃
z̃(P ) on LP the involution σP converges to ηρ(ζ̃),

as P → E. Therefore, in the coordinate ζ the involution σP converges to
η4−ρ, see statement (4.34) and discussion before it. Hence, in the coordinate
û := ζ−1 the involution σP takes the form û 7→ − û

1+g(z0)u , g(z) is a rational

function, g(z) → 4 − ρ, as z → ∞. Rescaling to the coordinate u = z0û

yields (7.1) with f(z) = g(z)
z , λ = 4− ρ. The converse is proved by converse

argument. The last statement of Proposition 7.2 (regularity at E) follows
from Proposition 2.13. Proposition 7.2 is proved. 2

Consider now an arbitrary dual billiard structure on a conic whose sin-
gularities are of order at most one. Let us choose an affine chart C2

z,w in
which γ∩C2 = {w = z2} and so that the above point E at infinity be regular
for the dual billiard structure. Then the corresponding function f(z) from
(7.1) is rational with simple poles, let us denote them aj (Proposition 2.13).

Hence, f(z) =
∑

j
λj
z−aj , λj being residues, and thus,

∑
j λj = 4, by the last

statement of Proposition 7.2. This proves Proposition 7.1. 2

Proposition 7.3 Let γ be a regular conic equipped with a rationally in-
tegrable singular dual billiard structure. Then each singular point of the
structure is its pole of order 1, and its residue lies in M\ {0}.

Proof Well-definedness of residues follows from integrability and Proposi-
tion 2.11. Their non-vanishing follows from Proposition 2.13. Let O be a sin-
gular point, and let ρ be the corresponding residue. Then the (2, 1; ρ)-billiard
is quasihomogeneously integrable, by Theorem 3.3. Therefore, ρ ∈ M, by
Theorem 4.1. Proposition 7.3 is proved. 2

Corollary 7.4 Let γ be a regular conic equipped with a rationally integrable
singular dual billiard structure. Then it has at least one and most four
singular points, with residue collections being of one of the following types:

4, (2, 2), (1, 3), (2, 1, 1), (1, 1, 1, 1); (ρ, 4− ρ) with ρ ∈M \ Z; (7.2)
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Proof The residues lie inM\{0} (Proposition 7.3), and hence, are greater
or equal to one. Their sum is equal to 4 (Proposition 7.1). Therefore,
the number of singularities is between one and four. The cases of one and
two singularities are obviously given by the first, second, third and sixth
collections in (7.2). The case of three singularities with natural residues is
the collection (2, 1, 1). The case of four singularities is (1, 1, 1, 1). Cases
of three singularities with some of residues being non-integer correspond to
the three last residue collections in (7.2). Indeed, each non-integer number
in M \ {0} takes the form 2 ± 2

k , k ∈ N≥3. Therefore, if the number
of singularities is three, then non-integer residues are of the type 2 − 2

k ,
k ≥ 3. Finally, all possible configurations have one of the two following
types: (2− 2

k1
, 2− 2

k2
, 2− 2

k3
), (2− 2

k1
, 2− 2

k2
, 1). For the first type, writing

the condition that the sum of residues is equal to 4 yields

2

k1
+

2

k2
+

2

k3
= 2, k1, k2, k3 ≥ 3.

Therefore, k1 = k2 = k3 = 3, and we get the residue collection (4
3 ,

4
3 ,

4
3). For

the second type we get 2
k1

+ 2
k2

= 1, k1, k2 ∈ N≥3. The only solutions of the
latter equation are {k1, k2} = {4, 4}, {3, 6}, which correspond to the residue
configurations (3

2 ,
3
2 , 1) and (4

3 ,
5
3 , 1) respectively. The corollary is proved. 2

Proposition 7.5 Let γ ⊂ CP2 be a regular conic. For any two collections
of distinct points a1, . . . , an ∈ γ and non-zero numbers (x1, . . . , xn) with∑n

j=1 xj = 4 there exists a unique singular holomorphic dual billiard struc-
ture on γ with singular points aj being poles of order one with residues xj.

Proof The proposition follows from (7.1) and uniqueness of a rational
function f(z) vanishing at infinity as λ

z (1 + o(1)) with given λ and simple
poles with given positions and residues (see the proof of Proposition 7.1). 2

7.2 Case of integer residues: pencil of conics

Proposition 7.6 Let a singular holomorphic dual billiard structure on a
regular conic γ have singularities a1, . . . , am, m ∈ {1, 2, 3, 4}, with residues
λj ∈ N, j = 1, . . . ,m. Then it is realized by the pencil of conics passing
through aj and having contact with γ of order λj at aj.
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Proof Case 1): four distinct points a1, . . . , a4 with residues λj = 1. Con-
sider the pencil of conics passing through them. It defines the projective
involutions σP : LP → LP , P ∈ γ \ {a1, . . . , a4}, permuting the intersection
points of the lines LP with each conic of the pencil. This yields a singular
holomorphic dual billiard structure on γ with singularities at aj .

Claim 6. The involution family σP is holomorphic with singularities aj
of order one and residue one.
Proof For every aj each conic C of the pencil, C 6= γ, intersects the line
Laj transversally at two distinct points: aj and some point bj . For every
P ∈ γ close to aj the line LP intersects C at two points Q(P ) and Y (P )
converging to aj and bj respectively, as P → aj . They are permuted by
the involution σP , and their ζ-coordinates tend to 0 and ∞ respectively.
Therefore, in the coordinate ζ the involution σP converges to η1(ζ) = 1

ζ .
Hence, σP has simple pole with residue one at aj . The claim is proved. 2

Claim 6 together with Proposition 7.5 imply that the initial dual billiard
coincides with the one defined by the above pencil.

Case 2): three singular points a1, a2, a3 with residues 1, 1, 2 respectively.
Consider the pencil of conics passing through these points and tangent to γ
at a3. The above involution family σP defined by this pencil has a rational
quadratic integral (Example 1.14). Therefore, its singularities a1, a2, a3 are
poles of order one, by Proposition 2.11. Its residues at a1, a2 are equal to
1, see Claim 6 and its proof. Therefore, its residue at the third point a3 is
equal to 4−2 = 2 (Proposition 7.1). Hence, the initial dual billiard structure
coincides with the one defined by the pencil, by Propositon 7.5.

The remaining cases of residue configurations (1, 3), 4 are treated anal-
ogously. Proposition 7.6 is proved. 2

7.3 Case of two singularities: a quasihomogeneously inte-
grable (2, 1; ρ)-billiard

Proposition 7.7 Every singular holomorphic dual billiard structure on a
regular conic with two singularities of order one is projectively equivalent to
a (2, 1; ρ)-billiard. It is rationally integrable, if and only if the latter billiard
is quasihomogeneously integrable; this holds if and only if ρ ∈M.

Proof The first statement of Proposition 7.7, with ρ being the residue at
some singularity, follows from Propositions 7.1 and 7.5. The condition that
ρ ∈M is necessary for rational integrability, by Proposition 7.3. Conversely,
it ρ ∈ M, then the billiard, which is equivalent to the (2, 1; ρ)-billiard, is
rationally integrable, by Theorem 4.1. This proves Proposition 7.7. 2
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7.4 Integrability of residue configuration (3
2
, 3

2
, 1)

Take an affine chart (z, w) in which the conic γ is given by the equation
w = z2, the singular points of the billiard structure with residue 3

2 are (0, 0)
and the infinite point, and the singular point with residue 1 is (1, 1). The
corresponding involution family σP : LP → LP written in the coordinate
u = z − z0, z0 := z(P ), takes the form (1.3), by Proposition 2.13, 7.2, 7.5:

u 7→ − u

1 + f(z0)u
, f(z) =

3

2z
+

1

z − 1
=

5z − 3

2z(z − 1)
. (7.3)

Lemma 7.8 The billiard structure on γ defined by the above involution fam-
ily σP admits the rational integral

R(z, w) =
(w − z2)2

(w + 3z2)(z − w)(z − 1)
. (7.4)

Motivation of construction of integral. The singular point at the
origin has residue 3

2 . The corresponding (2, 1; 3
2)-billiard has a quasihomoge-

neous integral R 3
2
(z, w) = (w−z2)2

z(w+3z2)
, see Theorem 4.1. Let us try to construct

a rational integral of our non-quasihomogeneous dual billiard in the form
(w−z2)2

Q(z,w) so that the lower (2, 1)-quasihomogeneous part at (0, 0) of the de-

nominator Q(z, w) be equal to the denominator in R 3
2

up to constant factor

(see the proof of Theorem 3.3). Then the zero locus {Q = 0} should contain
an irreducible quadratic germ of analytic curve at (0, 0) having a contact
bigger than two with the conic C := {w+3z2 = 0}. Let us look for a polyno-
mial Q of degree four vanishing on the conic C: Q(z, w) = (w+3z2)H(z, w).
To find the zero locus of the polynomial H, we have to find the images of the
points of intersection LP ∩ C under the involutions σP . We show that the
latter images lie in the union of lines {w = z} and {z = 1}. This together
with Proposition 4.12 will imply that the function (7.4) is an integral.
Proof of Lemma 7.8. Fix a P = (z0, z

2
0) ∈ γ. The line LP intersects

the conic C at two points A and D with coordinates z = −z0 and z = 1
3z0

respectively, since the ζ-coordinates of the intersection points are roots of
the polynomial R2,1,−3(ζ) = 3ζ2 + 2ζ − 1, see (4.4); its roots are −1 and 1

3 .
Let B and F denote respectively the intersection points of the line LP with
the lines {z = 1} and {w = z} respectively.

Claim 7. One has σP (D) = B, σP (A) = F .
Proof The u-coordinates of the points A, D, B, F , u = z − z0, are

u(A) = −2z0, u(D) = −2

3
z0, u(B) = 1− z0, u(F ) =

z0(1− z0)

2z0 − 1
. (7.5)
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For A, D, B the formulas are obvious. The z-coordinate of the point F
is found from the equation on F as the point of intersection of the lines
{w = z} and LP = {w = 2zz0 − z2

0}:

w(F ) = 2z0z(F )− z2
0 = z(F ), z(F ) =

z2
0

2z0 − 1
.

The latter formula implies the last formula in (7.5). One has

u(σP (D)) = − u(D)

1 + f(z0)u(D)
=

2z0

3(1 + 5z0−3
2z0(z0−1)(−2

3z0))

= −2z0(z0 − 1)

2z0
= 1− z0 = u(B),

u(σP (A)) = − u(A)

1 + f(z0)u(A)
=

2z0

1− 5z0−3
2z0(z0−1)2z0

=
2z0(z0 − 1)

2− 4z0
= u(F ).

The claim is proved. 2

The claim together with the above discussion implies the statement of
Lemma 7.8. 2

7.5 Integrability of residue configuration (4
3
, 4

3
, 4

3
)

Lemma 7.9 The singular holomorphic dual billiard structure on a regular
conic with three poles of order one and residues equal to 4

3 is rationally
integrable. In the affine chart C2

z,w, where the conic is given by the equation
w = z2 and the singularities are

aj := (εj , ε2j), ε = e
2πi
3 , j = 0, 1, 2,

the corresponding involution family σP : LP → LP written in the coordinate
u := z − z0, z0 = z(P ), takes the form (1.4):

σP : u 7→ − u

1 + f(z0)u
, f(z) =

4z2

z3 − 1
. (7.6)

The rational function given by (1.10):

R(z, w) =
(w − z2)3

(1 + w3 − 2zw)2
, (7.7)

is an integral of the billiard.
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Proof Take an affine chart as above. The involution family σP given by
(7.6) has first order poles at aj with residues 4

3 and is regular at infinity,
by Propositions 2.13 and 7.2. For the proof of invariance of the restrictions
R|LP under the involutions σP , it suffices to show that the intersection of
each line LP with the zero locus of the denominator, the cubic

C := {1 + w3 − 2zw = 0},

is σP -invariant. We will do this in the two following propositions.

Proposition 7.10 For every P ∈ γ \ {a0, a1, a2} let S(P ) ∈ LP denote the
fixed point distinct from P of the involution σP . The fixed point family S(P )
coincides with the triple punctured cubic C \ {a0, a1, a2}. In particular, the
cubic C is rational.

Proof Solving the fixed point equation u = − u
1+f(z0)u in non-zero u yields

u(S(P )) = − 2

f(z0)
=

1− z3
0

2z2
0

, z(S(P )) =
1 + z3

0

2z2
0

,

w(S(P )) = w(P ) + 2z0u(S(P )) = z2
0 +

1− z3
0

z0
=

1

z0
.

Therefore, the fixed point family S(P ) runs along the parametrized rational
curve

K :=

(
t 7→

(
1 + t3

2t2
,
1

t

)
, | t ∈ C

)
. (7.8)

The curve K obviously satisfies the equation 1 +w3 − 2zw = 0 of the cubic
C, and hence, coincides with C. 2

Proposition 7.11 For every P ∈ γ \ {a0, a1, a2} the intersection LP ∩C is
σP -invariant.

Proof One of the points of the intersection LP ∩C is the fixed point S(P ).
Let us show that the other intersection points are permuted by σP . To do
this, let us find explicitly their t-parameters, see (7.8). Along the line LP
one has w = z2

0 + 2z0(z− z0) = 2z0z− z2
0 . Substituting z = 1+t3

2t2
and w = 1

t
to the latter equation yields the equation

(t− z0)(t2 − 1

z0
) = 0.
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Its solution t = z0 corresponds to the fixed point S(P ). The other two
solutions are t = ± 1√

z0
. Here we fix some value of square root and denote it

√
z0; the other value is −√z0. The corresponding values z and u are equal

respectively to

z± =
z0 ± 1√

z0

2
, u± = z± − z0 =

−z0 ± 1√
z0

2
.

The involution σP sends the point with the u-coordinate u+ to the point
with the u-coordinate

− u+

1 + f(z0)u+
= −

1√
z0
− z0

2(1 + 2
z
3
2
0

z30−1
(1− z

3
2
0 ))

.

Writing z3
0 − 1 = (z

3
2
0 − 1)(z

3
2
0 + 1) in the denominator and cancelling the

former factor yields

− u+

1 + f(z0)u+
= − (1− z

3
2
0 )(1 + z

3
2
0 )

2
√
z0(1 + z

3
2
0 − 2z

3
2
0 )

= −
z0 + 1√

z0

2
= u−.

This implies that the involution σP permutes the intersection points with
u-coordinates u±. The proposition is proved. 2

Lemma 7.9 follows from Propositions 7.11 and 4.12. 2

7.6 Integrability of the configuration (4
3
, 5

3
, 1). End of proof

of Theorem 1.18

Lemma 7.12 The singular holomorphic dual billiard structure on a regular
conic γ with three singularities of order one and residues 4

3 , 5
3 , 1 is rationally

integrable. In the affine chart C2
z,w where γ = {w = z2} and the correspond-

ing singularities are (0, 0), infinity and (1, 1) respectively the involutions
σP : LP → LP defining the dual billiard structure have the following form
in the coordinate u = z − z0, z0 = z(P ):

σP : u 7→ − u

1 + f(z0)u
, f(z) =

4

3z
+

1

z − 1
=

7z − 4

3z(z − 1)
. (7.9)

The function

R(z, w) =
(w − z2)3

(w + 8z2)(z − 1)(w + 8z2 + 4w2 + 5z2w − 14zw − 4z3)
(7.10)

is an integral of the dual billiard.
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Proof Formula (7.9) follows from Propositions 7.2 and 7.5.
Motivation of the construction of the integral R. The residue

of the dual billiard at (0, 0) is equal to 4
3 . The corresponding (2, 1; 4

3)-

billiard has quasihomogeneous integral R 4
3
(z, w) = (w−z2)3

(w+8z2)2
, by Theorem

4.1. Let E denote the infinity point of the conic γ. Its residue is equal to
5
3 . In the coordinates (z̃, w̃) = ( zw ,

1
w ) the corresponding (2, 1; 5

3)-billiard has

quasihomogeneous integral R 5
3
(z̃, w̃) = (w̃−z̃2)3

(w̃+8z̃2)(w̃+ 5
4
z̃2)

(Theorem 4.1). Note

that the denominators in both R 4
3

and R 5
3

vanish on the same conic

C := {w = −8z2} = {w̃ = −8z̃2}.

We would like to construct an integral of the billiard from the lemma as a

ratio R(z, w) = (w−z2)3

(w+8z2)Y (z,w)
. To find the polynomial Y , we find the images

of points of the intersection LP ∩C under the involution σP . We show that
their families parametrized by P form the union of the line {z = 1} and a
cubic. The latter union will be the zero locus of the polynomial Y .

Proposition 7.13 For every P = (z0, z
2
0) ∈ γ \ {(0, 0), (1, 1), E} the inter-

section LP ∩C consists of two points A = A(P ) and D = D(P ): z(A) = z0
4 ,

z(D) = − z0
2 . One has

z(σP (A)) = 1, σP (D) =

(
−z0(2z0 + 1)

2− 5z0
,
z2

0(z0 − 4)

2− 5z0

)
. (7.11)

Proof The ζ-coordinates of points of the intersection LP ∩ C, ζ = z
z0

,

are roots of the polynomial R2,1,−8(ζ) = 8ζ2 + 2ζ − 1. Its roots are 1
4 and

−1
2 , and the corresponding intersection points will be denoted by A and D

respectively. This proves the first statement of the proposition. Let us find
their σP -images in the coordinate u = z − z0. One has

u(A) = −3z0

4
, u(σP (A)) = − u(A)

1 + f(z0)u(A)
=

3z0
4

1− 7z0−4
3z0(z0−1)

3z0
4

= 1− z0,

z(σP (A)) = 1, u(D) = −3z0

2
,

u(σP (D)) = − u(D)

1 + f(z0)u(D)
=

3z0
2

1− 7z0−4
3z0(z0−1)

3z0
2

=
3z0(z0 − 1)

2− 5z0
,

z(σP (D)) = −z0(2z0 + 1)

2− 5z0
, w(σP (D)) = 2z0z(σP (D))− z2

0 =
z2

0(z0 − 4)

2− 5z0
.

Proposition 7.11 is proved. 2
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Corollary 7.14 The families of images σP (A(P )) and σP (D(P )) are re-
spectively the line {z = 1} and the rational cubic

S := {
(
− t(2t+ 1)

2− 5t
,
t2(t− 4)

2− 5t

)
| t ∈ C} (7.12)

Proposition 7.15 The cubic S is the zero locus of the polynomial

K(z, w) = w + 8z2 + 4w2 + 5z2w − 14zw − 4z3 (7.13)

Proof One can prove the proposition directly by substituting the parametriza-
tion (7.12) to (7.13). But we will give a geometric proof explaining how
formula (7.13) was found. First let us show that

γ ∩ S = Σ := {(0, 0), (1, 1), E}, (7.14)

t = 0, 1,∞ at (0, 0), (1, 1), E respectively.

Indeed, for every P ∈ γ \ Σ the line LP intersects γ only at P , and its
intersection points A and D with C do not coincide with P , since γ and C
intersect only at two points: (0, 0) and E. Therefore, σP (D) ∈ LP \ {P}
lies outside γ. On the other hand, as P tends to a point X ∈ Σ, one has
σD(P ) → X. Indeed, this holds exactly when z0 = z(P ) tends to some of
the points 0, 1 or ∞, and in this case σD(P ) → X: both latter statements
follow from (7.11). This proves (7.14).

Claim 8. The germs of the curve S at (0, 0) and E are regular and
tangent to the conic C and to the conic {w = −5

4z
2} respectively with con-

tact of order at least three. The curve S is bijectively parametrized by the
parameter t, see (7.12), except maybe for possible self-intersections.
Proof The coordinates of a point of the curve S with a parameter t→ 0 are
asymptotic to − t

2 and −2t2 respectively. This implies the statement of the
claim for the germ at (0, 0). The proof for the germ at infinity is analogous.
The parametrization (7.12) is either bijective (up to self-intersections), or a
covering of degree at least two. The latter case is clearly impossible, since the
germ of the curve S at (0, 0) is injectively parametrized by a neighborhood
of the point t0 = 0 and no other parameter value is sent to (0, 0). 2

Claim 9. The germ of the curve S at (1, 1) is a cusp.
Proof The germ of the curve S at (1, 1) is irreducible, since it is a germ
of curve parametrized by the parameter t at the base point t0 = 1 in the
parameter line, see (7.14). It is a singular germ, since the derivative of the
map (7.12) at t = 1 is zero and by the last statement of Claim 8. Therefore,
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the projective line L = L(1,1) tangent to S at the point (1, 1) is tangent to S
with contact at least three. On the other hand, the tangency order cannot
be bigger than three, since S is a cubic. Hence, it is equal to three, and
(1, 1) is a cusp. The claim is proved. 2

Claim 10. There exists a cubic polynomial vanishing on S of the form

K(z, w) = w + 8z2 + αw(w +
5

4
z2) + βzw + ψz3. (7.15)

Proof Let K(z, w) be a cubic polynomial vanishing on S. Its homogeneous
cubic part should contain no w3 and w2z terms, since S contains the point
E = [0 : 1 : 0] ∈ CP2 and is tangent to the infinity line there. Therefore, it
is a linear combination of monomials from (7.15) (and may be z). Its lower
(2, 1)-quasihomogeneous part at (0, 0) is w+8z2 up to constant factor, since
the germ of the curve S at the origin is regular and tangent to the conic
C = {w + 8z2 = 0} with contact of order at least three (Claim 8). Hence
normalizing K by constant factor, we can and will consider that K is equal
to w+ 8z2 plus a linear combination of monomials w2, wz, wz2, z3. Passing
to the affine coordinates (z̃, w̃) = ( zw ,

1
w ) centered at E we get that K(z, w)

is equal to 1
w̃3H(z̃, w̃), where H(z̃, w̃) is a polynomial vanishing on the germ

of the curve S at E. The latter germ being regular and tangent to the conic
{w+ 5

4z
2 = 0} = {w̃+ 5

4 z̃
2 = 0} with contact of order at least three (Claim

8), the (2, 1)-quasihomogeneous part of the polynomial H(z̃, w̃) is equal to
w̃ + 5

4 z̃
2 up to constant factor; hence H(z̃, w̃) is equal to α(w̃ + 5

4 z̃
2) + ψz̃3

plus a polynomial of degree at most three whose monomials are divisible by
either w̃2, or w̃z̃. One has

1

w̃3
(w̃ +

5

4
z̃2) = w(w +

5

4
z2),

z̃3

w̃3
= z3,

1

w̃3
w̃z̃ = zw.

This together with the above discussion implies that the polynomial K has
the type (7.15). The claim is proved. 2

Finding unknown coefficients α, β, ψ from the linear equation saying
that K(z, w) vanishes at (1, 1) with its first derivatives yields (7.13). One
can also check directly that the polynomial K given by (7.13) vanishes at
(1, 1) with its first partial derivatives. Proposition 7.15 is proved. 2

Proposition 7.16 Set

Γ := C ∪ {z = 1} ∪ S, C = {w + 8z2 = 0}, S is given by (7.12).

For every P ∈ γ \ Σ the intersection LP ∩ Γ is σP -invariant.
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Proof For every P ∈ γ \ Σ the line LP intersects Γ at six points: A,D ∈
C ∩ LP , the point σP (A) ∈ {z = 1} ∩ LP , the point σP (D) ∈ S ∩ LP and
two more points B1, B2 ∈ S ∩ LP ; Bj = Bj(P ). It suffices to show that

the involution σP permutes B1 and B2 for every P ∈ γ \ Σ. (7.16)

The proof of (7.16) will be split into the two following claims. Set

uj = u(Bj(P )) = z(Bj(P ))− z(P ) = z(Bj(P ))− z0, j = 1, 2.

Claim 11. One has

u1 + u2 =
4− 7z0

2
, u1u2 =

3z0(z0 − 1)

2
. (7.17)

Proof One has z = z0 + u, w = z2
0 + 2z0u on LP . In the coordinate u on

LP the restriction to LP of the polynomial K(z, w) takes the form

K|LP = (10z0−4)u3+(41z2
0−40z0+8)u2+χu+9z2

0(z0−1)2, χ ∈ C. (7.18)

Indeed, the cubic term in K|LP coincides with that of the sum

−4z3 + 5z2w = −4(u+ z0)3 + 5(u+ z0)2(z2
0 + 2z0u). (7.19)

Thus, the coefficient at u3 equals 10z0 − 4. The coefficient at u2 in K|LP is
the sum of similar coefficients in (7.19) and in the expression

8z2 + 4w2 − 14zw = (8 + 16z2
0 − 28z0)u2 + lower terms.

The coefficient at u2 in (7.19) is equal to −12z0+25z2
0 . Hence, the coefficient

at u2 in K|LP is equal to 41z2
0 − 40z0 + 8. The free term of the polynomial

K|LP is equal to its value at the point P = (z0, z
2
0):

K(z0, z
2
0) = z2

0 + 8z2
0 + 4z4

0 + 5z4
0 − 14z3

0 − 4z3
0 = 9z2

0(z0 − 1)2.

This proves (7.18). The roots of the restriction K|LP are u1, u2 and the
u-coordinate u3 of the point σP (D):

u3 := z(σP (D))− z0 = −z0(2z0 + 1)

2− 5z0
− z0 =

3z0(z0 − 1)

2− 5z0
.

Formula (7.18) together with Vieta’s formulas imply that

u1 + u2 =
41z2

0 − 40z0 + 8

4− 10z0
− u3 =

41z2
0 − 40z0 + 8− 6z2

0 + 6z0

4− 10z0
=

4− 7z0

2
,
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u1u2 = u−1
3

9z2
0(z0 − 1)2

4− 10z0
=

3z0(z0 − 1)

2
.

This proves (7.17). 2

Thus, by (7.17), the numbers u1, u2 are roots of the quadratic polynomial

Q(u) := 2u2 + (7z0 − 4)u+ 3z0(z0 − 1).

Claim 12. One has

Q ◦ σP (u) =
Q(u)

(1 + f(z0)u)2
, f(z) =

7z − 4

3z(z − 1)
. (7.20)

Proof Recall that σP (u) = − u
1+f(z0)u . Therefore,

Q ◦ σP (u) =
2u2 − (1 + f(z0)u)(7z0 − 4)u+ 3z0(z0 − 1)(1 + f(z0)u)2

(1 + f(z0)u)2
.

The numerator in the latter ratio is equal to

(2− f(z0)(7z0 − 4) + 3z0(z0 − 1)f2(z0))u2

+(−(7z0 − 4) + 6z0(z0 − 1)f(z0))u+ 3z0(z0 − 1) = Q(u).

This proves Claim 12. 2

The involution σP sends the collection of roots of the polynomial Q to
itself: their images are zeros of the pullback Q◦σP , which are roots of Q, by
Claim 12. Therefore, σP permutes the roots: otherwise, it would fix three
points, two roots and 0 = u(P ), which is impossible, since σP 6= Id. Thus,
σP permutes the points B1, B2 ∈ S ∩ LP . This proves Proposition 7.16. 2

The zero locus of the rational function R(z, w) given by (7.10) is the
conic γ. Its polar locus is the curve Γ from Proposition 7.16. For every
P ∈ γ \ Σ the intersections of the latter loci with LP are respectively the
point P and Γ∩LP . They are σP -invariant, by Proposition 7.16. Therefore,
the function R|LP is also σP -invariant, by Proposition 4.12. Hence, R is an
integral of the dual billiard in question. This proves Lemma 7.12. 2

Proof of Theorem 1.18. Let an irreducible germ of analytic curve γ ⊂
CP2 admit a structure of rationally integrable dual billiard. Then the curve
γ is a conic, and the billiard structure extends to a singular holomorphic one
with poles of order at most one and residues lying inM\{0}, by Proposition
1.34, Theorems 1.37, 1.38 and Proposition 7.3. The sum of residues should
be equal to four, by Proposition 7.1. All the collections of residue values
lying inM\{0} with sum equal to 4 are described above. The corresponding
billiard structures are rationally integrable with integrals given in this and
previous subsections. This proves Theorem 1.18. 2
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8 Real integrable dual billiards. Proof of Theo-
rems 1.16, 1.11 and the addendums to Theorems
1.18, 1.16

8.1 Real germs: proof of Theorem 1.16 and the addendums
to Theorems 1.18, 1.16

Let a germ of real C4-smooth curve γ ⊂ R2 carry a rationally integrable
dual billiard structure. Then its complex Zariski closure γ ⊂ CP2

[z:w:t] ⊃
C2
z,w = {t = 1} is an algebraic curve, and the billiard structure extends

to a rationally integrable singular holomorphic dual billiard structure on
every its non-linear irreducible component (Proposition 1.35). Therefore,
each non-linear irreducible component is a conic (Theorem 1.18). Thus,
the germ γ is a chain of adjacent arcs of a finite collection of non-linear
conics and maybe lines. It contains at least one conical arc, being non-
linear. A conical arc cannot be adjacent to a straightline segment, since γ is
C2-smooth. There are no adjacent arcs of distinct conics: they would have
contact of order at most 4 (Bézout Theorem), and hence, would not paste
together in C4-smooth way, while γ is C4-smooth. This is the place where
we use the condition that γ is C4-smooth. Thus, γ is a germ of real conic,
which will be also denoted γ, and the complexified billiard structure on its
complexification is one of those given by Theorem 1.18. Let us find real
forms of the complex dual billiards on conic given by Theorem 1.18.

Case 1): The complexified dual billiard on the complexified conic γ is
given by a complex pencil of conics Cλ; γ = C0.

Proposition 8.1 The real dual billiard on the real conic γ is defined by a
real pencil of conics whose complexification is the pencil Cλ.

Claim 13. The pencil Cλ contains a complexified real conic Cλ0 6= γ.
Proof Fix a real point P0 ∈ γ where the dual billiard involution σP0 :
LP0 → LP0 is well-defined. Fix a point E1 ∈ RP2 \ γ close to P0 and lying
on the concave side from the conic γ. Consider the right real tangent line to
γ through E1, let P1 be its tangency point with γ. Set E2 = σP1(E1). Take
now the right real tangent line to γ through E2, let P2 be the corresponding
tangency point. Similarly we construct E3, E4, E5. If E1 is close enough
to P0, then the points E2, . . . , E5, P2, . . . , P4 are well-defined and close to
P0. The five real points E1, . . . , E5 lie in the same complex conic Cλ0 6= γ,
since the complex dual billiard is defined by the pencil Cλ. The conic Cλ0 is
the complexification of a real conic. Indeed, otherwise Cλ0 and its complex

76



conjugate conic would be distinct and would intersect at five distinct points
E1, . . . , E5, which is impossible. The claim is proved. 2

Proof of Proposition 8.1. Let Cλ0 be the real conic from the claim.
The complex pencil Cλ of complex conics is the complexification of the real
pencil of real conics containing γ and Cλ0 , by construction and since a pencil
of conics is uniquely determined by its two conics. Hence, the involution
σP : LP → LP permutes the points of intersection of the line LP with each
conic from the real pencil, since this is true for the pencil Cλ. Thus, the real
dual billiard on γ is defined by a real pencil. This proves Proposition 8.1. 2

Case 2a): the billiard structure has two singular points with residues
2 ± 2

k , k ∈ N≥3. The coordinatewise complex conjugation cannot permute
them, since it should preserve the residue. Therefore, both singular points
lie in the real part of the conic, and the dual billiard structure has the type
2a) from Theorem 1.16 and has the corresponding integral (1.6) or (1.7).

Case 2b): the billiard structure has three singular points with residues
3
2 , 3

2 , 1. Then the coordinatewise complex involution fixes the singular point
with residue 1 and may either fix, or permute the two other singular points.

Subcase 2b1): the coordinatewise complex conjugation fixes all the three
singular points. Then all of them lie in the real conic. Let us choose real
homogeneous coordinates [z : w : t] so that the singular points with residue
3
2 are [0 : 0 : 1] and [0 : 1 : 0], the singular point with residue 1 is [1 : 1 : 1]
and the lines w = 0, z = 0 are tangent to γ at the two former points. Then
we get that in the affine chart C2

z,w = {t = 1} the real conic γ is given by the
equation w = z2, the dual billiard structure has type 2b1) from Theorem
1.16 and has integral (1.8) (Lemma 7.8). The fact that γ indeed coincides
with the conic {wt = z2} ⊂ CP2

[z:w:t] follows from Bézout Theorem and
the fact that the conics in question are tangent to each other at two points
[0 : 0 : 1] and [0 : 1 : 0] and have yet another common point [1 : 1 : 1].

Subcase 2b2): the coordinatewise complex conjugation permutes the
singular points with residue 3

2 . Applying a real projective transformation,
we can and will consider that the singular point with residue 1 (which lies
in the real conic) has coordinates [0 : 1 : 0], the line {t = 0} is tangent to γ
at the latter point, the line {w = 0} is tangent to γ at the point [0 : 0 : 1],
the points with residue 3

2 have coordinates [±i : −1 : 1]. Then γ is given by
the equation wt = z2, as in the above discussion. Passing to the affine chart
C2
z,w = {t = 1} we get that the dual billiard structure has type 2b2) from

Theorem 1.16. This argument implies that the dual billiard structures 2b1)
and 2b2) are complex-projective equivalent and proves the corresponding
statement of the addendum to Theorem 1.18.
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Let us calculate the integral of the dual billiard structure 2b2) in the
above affine chart (z, w). To do this, we find explicitly the projective equiv-
alence F : CP2 → CP2 between the structures 2b1) and 2b2). It should
send singular points [0 : 0 : 1], [0 : 1 : 0], [1 : 1 : 1] of the structure 2b1)
to the singular points of the structure 2b2) with the same residues. Let us
construct an F sending them to [i,−1 : 1], [−i : −1 : 1], [0 : 1 : 0]. It
should send the projective tangent lines to the conic at the points [0 : 0 : 1],
[0 : 1 : 0] to its tangent lines at their images [i,−1 : 1], [−i : −1 : 1]. The
two former tangent lines are the z-axis and the infinity line {t = 0}; their
intersection point is [1 : 0 : 0]. The two latter tangent lines at [i,−1 : 1],
[−i : −1 : 1] intersect at the point (0, 1) = [0 : 1 : 1], by symmetry and
since in the affine chart C2

z,w = {t = 1} they pass through (±i,−1) and have
slopes ±2i. Therefore, F should also send [1 : 0 : 0] to [0 : 1 : 1]. Finally, it
sends [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] to [0 : 1 : 1], [−i : −1 : 1], [i,−1 : 1]. The
matrix of the projective transformation F is uniquely defined up to scalar
factor. Its columns are λ1(0, 1, 1), λ2(−i,−1, 1), λ3(i,−1, 1), by the above
statement; λj ∈ C∗. Let us choose the normalizing scalar factor so that
λ1 = 1. Then the coefficients λ2 and λ3 are found from the linear equation
saying that F ([1 : 1 : 1]) = [0 : 1 : 0]: λ2 = λ3 = −1

2 . We get that

F is given by M :=

0 i
2 − i

2
1 1

2
1
2

1 −1
2 −1

2

 , M−1 =

 0 1
2

1
2

−i 1
2 −1

2
i 1

2 −1
2

 . (8.1)

The transformation F thus constructed preserves the conic γ = {wt = z2}.
Indeed, its image is a conic tangent to γ at two points [±i : −1 : 1] and
intersecting γ in yet another point [0 : 1 : 0] (by construction). Hence,
it has intersection index at least 5 with γ and thus, coincides with γ, by
Bézout Theorem. The map F sends the billiard structure 2b1) to 2b2), by
construction. Let us check that it sends the integral Rb1 of the structure
2b1) to the integral Rb2 of the structure 2b2). Indeed, the integrals written
in the homogeneous coordinates [z : w : t] take the form

Rb1(z, w, t) =
(wt− z2)2

(wt+ 3z2)(z − t)(z − w)
,

Rb2(z, w, t) =
(wt− z2)2

(z2 + w2 + t2 + wt)(z2 + t2)
.
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The variable change given by the inverse matrix in (8.1), z̃w̃
t̃

 = M−1

zw
t

 ,

transforms Rb1(z̃, w̃, t̃) to Rb2(z, w, t).
Case 2c): the complexified dual billiard structure has three singularities

with residues equal to 4
3 . The coordinatewise complex conjugation permutes

them. Hence, it should fix some of them, being an involution. Thus, it either
fixes one singularity and permutes the two other ones (Subcase c1)), or fixes
all the three singularities (Subcase c2)).

Subcase c1). The singular point fixed by coordinatewise complex con-
jugation is a real point of the conic γ, and the two other (permuted) sin-
gularities are complex-conjugated. Applying a projective transformation
with a real matrix, we can and will consider that γ = {wt = z2}, the
fixed singularity is the point [1 : 1 : 1] and the permuted singularities are

[e±
2πi
3 : e∓

2πi
3 : 1]. Then in the affine chart C2

z,w = {t = 1} the dual billiard
structure in question takes the form 2c1) as in Theorem 1.16. Hence, it has
first integral Rc1 given by (1.10), see Lemma 7.9.

Subcase c2). Then all the singularities of the billiard structure are real
points in γ. Applying a real projective transformation, we can and will
consider that γ = {wt = z2} and the singularities are [0 : 0 : 1], [0 : 1 : 0]
and [1 : 1 : 1]. Then in the affine chart C2

z,w = {t = 1} the dual billiard takes
the form 2c2). This together with Proposition 7.5 implies that there exists
a complex projective transformation F fixing the complexified conic γ and
sending the dual billiard of type 2c2) to that of type 2c1). This proves the
corresponding statement of the addendum to Theorem 1.18. Let us show
that the real dual billiard of type 2c2) has the integral Rc2 given by (1.11),
and Rc2 = Rc1 ◦ F up to constant factor. To do this, we find F . Set

ε := e−
2πi
3 .

We choose F so that it sends the singular points [0 : 0 : 1], [0 : 1 : 0],
[1 : 1 : 1] of the structure 2c2) respectively to the singular points [ε : ε̄ : 1],
[ε̄ : ε : 1], [1 : 1 : 1] of the structure 2c1). It should preserve the conic γ.
Hence, it sends its projective tangent lines at [0 : 0 : 1], [0 : 1 : 0] to those at
the points [ε : ε̄ : 1], [ε̄ : ε : 1]. Therefore, the intersection point [1 : 0 : 0] of
the two former tangent lines should be sent to the intersection point of the
two latter tangent lines. In the above affine chart C2

z,w the z-coordinate of
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the latter intersection point is found from the equation

ε̄+ 2ε(z − ε) = ε+ 2ε̄(z − ε̄) :

z = −1

2
, w = −ε̄− ε = 1.

Finally, the projective transformation F should send the points [1 : 0 : 0],
[0 : 1 : 0], [0 : 0 : 1] to [−1

2 : 1 : 1], [ε̄ : ε : 1], [ε : ε̄ : 1]. Hence, its matrix
(normalized by appropriate scalar factor) takes the form−1

2 λ2ε̄ λ3ε
1 λ2ε λ3ε̄
1 λ2 λ3

 , λ2, λ3 ∈ C∗. (8.2)

The coefficients λ2 and λ3 are found from the following system of equations
saying that the transformation F should fix the point [1 : 1 : 1]:{

λ2(1− ε) + λ3(1− ε̄) = 0
3
2 + λ2(1− ε̄) + λ3(1− ε) = 0.

We get that λ3 = ελ2, 3
2 + λ2(1 + ε − 2ε̄) = 0, λ2 = ε

2 , λ3 = ε̄
2 , and the

transformation F is given by the matrix

M :=

−1
2

1
2

1
2

1 ε̄
2

ε
2

1 ε
2

ε̄
2

 (8.3)

Let us now calculate the pullback of the integral Rc1 under the projective
transformation F . Writing Rc1 in the homogeneous coordinates [z : w : t],
we get

Rc1([z : w : t]) =
(wt− z2)3

(t3 + w3 − 2zwt)2
.

Applying the linear transformation given by the matrix M to the polynomial
Q1(z, w, t) = wt− z2 in the numerator yields

Q1◦M(z, w, t) =
1

4
((2z+ ε̄w+εt)(2z+εw+ ε̄t)−(w+t−z)2) = −3

4
(wt−z2).

Applying M to the polynomial Q2(z, w, t) = t3 +w3 − 2zwt in the denomi-
nator yields

8Q2 ◦M(z, w, t) = (2z + εw + ε̄t)3 + (2z + ε̄w + εt)3
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−2(w + t− z)(2z + εw + ε̄t)(2z + ε̄w + εt)

= 16z3 + 2w3 + 2t3 − 12z2w − 12z2t− 6zw2 − 6zt2 − 3w2t− 3wt2

+24zwt+ 2(z − w − t)(4z2 + w2 + t2 − 2zw − 2zt− wt)
= 24(z3 − z2w − z2t)− 3(w2t+ wt2) + 30zwt

= 3(8z3 − 8z2w − 8z2t− w2t− wt2 + 10zwt).

In the affine chart C2
z,w = {t = 1} we get Q1 ◦M(z, w, 1) = −3

4(w − z2),

Q2 ◦M(z, w, 1) =
3

8
(8z3 − 8z2w − 8z2 − w2 − w + 10zw).

Therefore, Rc1 ◦ F = Rc2 up to constant factor.
Case 2d): the complexified dual billiard on the conic has three singular-

ities with residues 4
3 , 1, 5

3 . The complex conjugation, which preserves the
dual billiard, should fix them, since their residues are distinct. Therefore,
applying a real projective transformation, we can and will consider that the
underlying real conic is the parabola {w = z2}, and the singularities are
respectively the points (0, 0), (1, 1) and its infinite point. The involution
family defining the dual billiard is of the type 2d), by construction and
Proposition 7.5. It has integral R2d given by (1.12), due to Lemma 7.12.
Theorem 1.16 and the addendums to Theorems 1.16 and 1.18 are proved.

8.2 Case of closed curve. Proof of Theorem 1.11

Let now γ be a C4-smooth closed curve equipped with an integrable dual
billiard structure. The involutions σP can be defined by just one convex
closed invariant curve, and they depend continuously on P ∈ γ. Let R
be a non-trivial rational first integral of the foliation by invariant curves.
For every P ∈ γ the restriction R|LP is σP -invariant, since this holds in
a neighborhood of the point P in LP (by definition), and by analyticity.
Therefore, γ is a conic, by Theorem 1.16, and it contains no singularity
of the dual billiard. Hence, the dual billiard is given by a pencil of conics
containing γ, since all the other rationally integrable dual billiards on conic
listed in Theorem 1.16 have real singularities. Those conics of the pencil
that are close enough to γ and lie on its concave side are disjoint and form
a foliation of a topological annulus adjacent to γ. Indeed, otherwise the
pencil would consists of conics intersecting at some point P0 ∈ γ. But then
P0 would be a singular point of the dual billiard, see the proof of Proposition
7.6. The contradiction thus obtained proves Theorem 1.11.

The basic set of the corresponding pencil lies in CP2\RP2 and is described
by the following obvious proposition.
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Proposition 8.2 Let γ ⊂ RP2 be a regular conic equipped with a dual bil-
liard structure given by a real pencil of conics. Let the basic set of the pencil
contain no real points. Then it consists of either four distinct points, or
two distinct points. In the latter case the regular complexified conics of the
pencil are tangent to each other at the two points of the basic set.

9 Integrable projective billiards. Proof of Theo-
rem 1.26 and its addendum

Here we prove Theorem 1.26 classifying rationally 0-homogeneously inte-
grable projective billiards and its addendum providing formulas for integrals
(in Subsection 9.4). To do this, in Subsection 9.1 we prove Proposition 1.23
stating that such a billiard admits an integral that is a 0-homogeneous ratio-
nal function in the moment vector. Afterwards in Subsection 9.2 we prove
Proposition 1.24 stating that rational 0-homogeneously integrability of a
projective billiard is equivalent to rational integrability of its dual billiard.
In Subsection 9.3 we prove Proposition 1.27.

9.1 The moment map and normalization of integral. Proof
of Proposition 1.23

Recall that we identify the ambient Euclidean plane R2
x1,x2 of a projective

billiard with the plane {x3 = 1} ⊂ R3
x1,x2,x3 , and we denote r = (x1, x2, 1).

The geodesic flow has an universal invariant: the moment vector

M := [r, v] = (−v2, v1,∆(x, v)), ∆(x, v) := x1v2 − x2v1,

which separates any two orbits of the geodesic flow [15]. This implies that,
every integral of the projective billiard is a reflection-invariant function of
M and vice versa, as in [15].

Consider now a C2-germ of planar curve equipped with a transversal line
field, a connected domain U adjacent to it and the projective billiard in U .
(Or a (global) projective billiard in some connected domain U in R2.) Let it
have a first integral R(x, v) that is a rational 0-homogeneous function in v of
degree uniformly bounded by some constant d. Let W ⊂ R3

M1,M2,M3
denote

the image of the moment map TR2|U → R3, (x, v) 7→ [r, v], x = (x1, x2).

Proposition 9.1 Let us represent the above integral R as a function of the
moment M . The function R is 0-homogeneous in M : R(λM) = R(M) for
every λ ∈ R; thus, it is well-defined on the tautological projection image
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P(W ) = π(W \ {0}). The image P(W ) is a union of projective lines along
which the function R is rational of degree at most d. The family of the latter
lines forms an open subset in the space RP2∗ of lines.

Proof As x = (x1, x2) is fixed, the restricted moment map v 7→ M =
[r, v] is a linear isomorphism of the tangent plane TxR2 and the plane r⊥

orthogonal to r. Therefore, the restriction to r⊥ of the function R is rational
0-homogeneous of degree no greater than d. This proves 0-homogeneity of
the function R(M) and well-definedness of the function R on P(W ). Let
`(x) ⊂ RP2 denote the projective line that is the projectivization of the
subspace r⊥. One has P(W ) = ∪x∈U`(x). The function R|`(x) is rational

for every x ∈ U , by rationality on r⊥. The map R2 → RP2∗, x 7→ `(x) is
a diffeomorphism onto the open subset of those projective lines that do not
pass through the origin in the affine chart R2

x1,x2 = {x3 = 1}. Hence, it

maps U onto an open subset in RP2∗. This proves the proposition. 2

As is shown below, the statement of Proposition 1.23 is implied by Propo-
sition 9.1 and the next proposition.

Proposition 9.2 Let d ∈ N. Let a function f(z, w) be defined on a neigh-
borhood of the origin in R2

z,w. Let it be rational in each variable, and let its
degree in the variable w be no greater than d. Then it is a rational function
of two variables.

Proof Let us write

f(z, w) =
a0(z) + a1(z)w + · · ·+ ad(z)w

d

b0(z) + b1(z)w + · · ·+ bd(z)wd
.

Fix 2d+ 1 distinct points w0, . . . , w2d close to zero. The functions Rj(z) :=
f(z, wj) are rational. The system of 2d+ 1 equations

f(z, wj) =
a0(z) + a1(z)wj + · · ·+ ad(z)w

d
j

b0(z) + b1(z)wj + · · ·+ bd(z)w
d
j

= Rj(z)

in 2d + 2 unknown coefficients as(z), bs(z) can be rewritten as a system of
2d + 1 linear equations on them (multiplying by denominator). For every
z it has a unique solution up to constant factor depending on z, since two
rational functions in w of degree at most d cannot coincide at 2d+1 distinct
points. This follows from the fact that their difference, which is a rational
function in w of degree at most 2d, cannot have more than 2d zeros. The
solution (a0(z), . . . , ad(z), b0(z), . . . , bd(z)) of the above linear systems can
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be normalized by constant factor so that its components be expressed as
rational functions of the parameters wj and Rj(z) of the system. Therefore,
as(z) and bs(z) are rational functions in z. This proves the proposition. 2

Let V ⊂ RP2∗ denote the open set of lines from the last statement of
Proposition 9.1. Fix two distinct lines Λ1,Λ2 ∈ V and two distinct points
yj ∈ Λj , j = 1, 2. Consider two pencils Pj of lines through yj . The function
R is rational along each line in Pj close to Λj . Choosing affine chart R2

z,w ⊂
RP2 so that y1, y2 be the intersection points of the infinity line with the
coordinate axes we get that R is locally a rational function in each separate
variable z, w. Therefore, it is locally rational in two variables, by Proposition
9.2. Hence, it is globally rational on all of P(W ), by connectivity of the
domain U , and hence, of the open subset P(W ). Therefore, R(M) is a 0-
homogeneous rational function in M . The first part of Proposition 1.23 is
proved. Let us prove its second part: independence of integrability on choise
of side. Let a C2-smooth germ of curve C equipped with a transversal line
field define a rationally 0-homogeneously integrable projective billiard on one
side from C. Then it admits an integral that is a rational 0-homogeneous
function R(M) of the moment vector M (the first part of Proposition 1.23).
The moment vector (and hence, the integral) extends as a constant function
along straight lines crossing C (treated as orbits of geodesic flow) from one
side of the curve C to the other side. Invariance of the integral R(M) under
the billiard flow is equivalent to its reflection invariance. But reflection
invariance depends only on the transversal line field and not on the choice
of side. Therefore, if R is an integral on one side, it will be automatically
an integral on the other side. Proposition 1.23 is proved.

9.2 Integrability and duality. Proof of Proposition 1.24

The proof of Proposition 1.24 is analogous to the arguments from [15, 10, 31].
On the ambient projective plane RP2

[x1:x2:x3] ⊃ R2 we deal with the projective

duality RP2∗ → RP2 given by the orthogonal polarity. We use the following

Remark 9.3 [15, 10, 31]. For every r = (x1, x2, 1) ∈ R3 and v ∈ T(x1,x2)R2

consider the two-dimensional vector subspace in R3 generated by r and v
(punctured at the origin). Let L(r, v) ⊂ RP2 denote the corresponding
projective line (its projectivization). The composition of the moment map
(r, v) 7→ M = [r, v] and the tautological projection R3

M1,M2,M3
\ {0} →

RP2
[M1,M2,M3] sends each pair (r, v) to the point L∗(r, v) dual to L(r, v).

Consider a projective billiard on a curve C ⊂ R2
x1,x2 . Its dual curve is
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identified with a curve γ = C∗ ⊂ RP2
[M1:M2:M3], see the above remark. Let

the dual billiard on γ have a rational integral. It can be written as a 0-
homogeneous rational function R(M1,M2,M3). The corresponding function
R([r, v]) is a rational 0-homogeneous integral of the projective billiard. In-
deed, its invariance under reflections acting on v ∈ TQR2, Q ∈ C, follows
from the above remark and the fact that duality conjugates the billiard re-
flection acting on lines through Q to the dual billiard involution acting on
the dual line Q∗. Conversely, let the projective billiard have a rational 0-
homogeneous integral. Then it can be written as R[r, v], where R(M) is a
rational 0-homogeneous function, by Proposition 1.23. The function R(M)
is an integral of the dual billiard, since R[r, v] is an integral of the projective
billiard and by the above conjugacy. Proposition 1.24 is proved.

9.3 Space form billiards on conics. Proof of Proposition 1.27

Let a projective billiard on a finitely punctured conic C be a space form
billiard with matrix A. In the case, when A = diag(1, 1, 0), the billiard is
Euclidean, and each conic confocal to C is a caustic. Analogous statement
holds in the case of non-zero constant curvature, when A = diag(1, 1,±1).
This implies the second statement of Proposition 1.27.

Let us prove the converse. Let a transversal line field N on a punctured
conic C define a projective billiard having a complex conical caustic S. Let
us show that it is projectively equivalent to a space form billiard with matrix
diag(1, 1,−1). Let D ⊂ C denote the finite set of those points Q ∈ C for
which the line LQ tangent to C at Q is also tangent to S at some point. For
every Q ∈ Co := C \ (D ∪ S) the line N (Q) is well-defined by harmonicity
condition on the tuple of four distinct lines through Q: LQ, N (Q) and the
complex lines Λ1, Λ2 through Q tangent to S. It says that there exists
a projective involution of the space CP1 of complex lines through Q that
fixes LQ, N (Q) and permutes Λ1, Λ2. Let Ej = Ej(Q), j = 1, 2, denote
the tangency points of the lines Λj with S. Fix coordinates (x1, x2, x3) on
R3 (homogeneous coordinates on RP2 ⊃ C) in which S = {< Ax, x >=
0}, A = diag(1, 1,−1). Let us show that the projective billiard on Co is
the space form billiard with the matrix A: for every Q ∈ Co the two-
dimensional subspaces HT (Q), HN (Q) ⊂ R3 projected to the lines LQ and
N (Q) respectively are orthogonal in the scalar product < Ax, x >.

Fix a point B ∈ N (Q) ∩ S. The four points E1, E2, Q, B are distinct,
and no three of them are collinear, since Q ∈ Co. There exists a projective
involution I : CP2 → CP2 fixing the points of the line QB and permuting E1,
E2 (and hence, Λ1, Λ2). It fixes N (Q), and hence, LQ, by harmonicity. It
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preserves S: the conic I(S) is tangent to S at E1 and E2 and intersects S at
B 6= E1,2; hence, I(S) = S. Thus, I is the projectivization of a non-trivial
linear involution R3 → R3 preserving the quadratic form < Ax, x > and
transversal two-dimensional subspaces HT (Q), HN (Q) and acting trivially
on HN (Q). This implies orthogonality of the latter subspaces in the scalar
product < Ax, x >. Proposition 1.27 is proved.

9.4 Proof of Theorem 1.26 and its addendum

Proof of Theorem 1.26. Let a nonlinear germ of C4-smooth curve
C ⊂ R2 carry a transversal line field N defining a 0-homogeneously ra-
tionally integrable projective billiard. Then the dual billiard on the dual
curve γ = C∗ is rationally integrable (Proposition 1.24). Let C ′ ⊂ C denote
the complement of the curve C to the set of its inflection points, i.e., points
where the geodesic curvature vanishes. (A priori the set of inflection points
may contain a straightline interval.) The dual to C ′ is a union of C4-smooth
arcs of the curve γ. The latter arcs are conics, by Theorem 1.16. Hence,
C ′ is a union of conical arcs. The curve C being C4-smooth, the boundary
points of the set C ′ are not inflection points, and adjacent conical arcs paste
C4-smoothly. This implies that C = C ′ is a conic.

The rationally 0-homogeneously integrable projective billiards on a (punc-
tured) conic C are exactly those dual to the rationally integrable dual bil-
liards on (punctured) conic γ (Proposition 1.24). Thus, it suffices to find the
projective billiards dual to all the integrable dual billiards in Theorem 1.16.
In each of these projective billiards the transversal line field N is defined on

Co = C \ (at most four points).

Case 1): the dual billiard structure on a (punctured) conic γ is given by
a pencil of conics. Then the complexified conic dual to any regular conic
from the pencil is a complex caustic of the projective billiard on C. This
together with Proposition 1.27 implies that the projective billiard is a space
form billiard, whose space form matrix can be chosen diag(1, 1,−1).

To treate the other cases, let us introduce the next notations. For Q ∈ Co
set

P = L∗Q := the point dual to the line LQ; P ∈ γ = C∗; (9.1)

P̃ = N ∗(Q) := the point dual to the projective line tangent to N (Q);

P̃ lies in the line Q∗ = LP tangent to γ at P.
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Proposition 9.4 Consider the dual billiard on γ for the projective billiard
defined by the line field N . For every Q ∈ Co the point P̃ is the unique fixed
point distinct from P of the dual billiard involution σP : Q∗ → Q∗.

The proposition follows from definition.
In what follows for every rationally integrable dual billiard from Theorem

1.16, cases 2a)–2d), we find the above fixed points P̃ of the corresponding
involutions. Their dual lines N (Q) = P̃ ∗ form the line field defining the
corresponding projective billiard. To do this, we work in homogeneous co-
ordinates [z : w : t] in the ambient projective plane RP2 ⊃ γ in which

γ = {wt− z2 = 0}; γ = {w = z2} in the affine chart R2
z,w = {t = 1}.

The curve C is projective dual to γ with respect to the duality RP2∗ →
RP2

[z:w:t] given by the orthogonal polarity. We will work with the curve C in
the new homogeneous coordinates [x1, x2, x3] given by the projectivization
[F ] : RP2

[z:w:t] → RP2
[x1,x2,x3] of the linear map

F : (z, w, t) 7→ (x1, x2, x3) := (
z

2
, t, w). (9.2)

For every point Q ∈ C let P ∈ γ be the corresponding point in (9.1). Set

z0 := z(P ).

Claim 14. In the coordinates [x1 : x2 : x3] given by (9.2) one has

Q = [−z0 : z2
0 : 1], C = {x2x3 = x2

1}; C ∩ {x3 = 1} = {x2 = x2
1}. (9.3)

Proof The projective tangent lineQ∗ to γ at the point P and its orthogonal-
polar-dual point Q ∈ RP2

[z:w:t] are given by the equations

Q∗ = {−2z0z + w + z2
0t = 0}, Q = [−2z0 : 1 : z2

0 ] ∈ C.

In the coordinates [x1 : x2 : x3] one has Q = [−z0 : z2
0 : 1]. 2

Claim 15. Let Q = (x1, x2) ∈ C in the affine chart R2
x1,x2 = {x3 = 1}.

Consider a Q-parametrized family of points B(Q) ∈ Q∗. Let z(B(Q)) =
g(z0); g(z0) is a function of z0. For every Q ∈ C the dual to the point B(Q)
is the line through Q directed by the vector (ẋ1, ẋ2) = (1,−2g(−x1)) at Q.
Proof In the affine chart R2

z,w = {t = 1} ⊂ RP2
[z:w:t] one has

w(B(Q)) = 2z(B(Q))z(P )− z2(P ) = 2g(z0)z0 − z2
0 .
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Thus, [z : w : t](B(Q)) = [g(z0) : 2g(z0)z0 − z2
0 : 1]. Hence, the dual line

B∗(Q) ⊂ RP2
[z:w:t] is given by the equation g(z0)z + (2g(z0)z0 − z2

0)w + t =
0. Writing it in the coordinates (x1, x2, x3), see (9.2), yields 2g(z0)x1 +
(2g(z0)z0− z2

0)x3 + x2 = 0. Thus, in the affine chart R2
x1,x2 the latter line is

directed by the vector (1,−2g(z0)) = (1,−2g(−x1(Q)), by (9.3). 2

Case 2a): the dual billiard structure on γ is given by the family of
involutions σP : LP → LP taking the form

σP : ζ 7→ (ρ− 1)ζ − (ρ− 2)

ρζ − (ρ− 1)
, ζ =

z

z0
, ρ = 2− 2

2N + 1
, or ρ = 2− 1

N + 1
.

The fixed point P̃ ∈ LP of the involution σP has ζ-coordinate ρ−2
ρ , hence

z(P̃ ) = g(z0), g(θ) =
ρ− 2

ρ
θ.

Therefore, the dual line P̃ ∗ is directed by the vector (1,−2g(−x1(Q))) =

(1, 2(ρ−2)
ρ x1(Q)) at Q. Thus, the line field N defining the projective billiard

on C is directed by the vector field (ρ, 2(ρ − 2)x1) on C. The latter field
is tangent to the level curves of the quadratic polynomial Qρ(x1, x2) :=
ρx2 − (ρ− 2)x2

1. Thus, it has type 2a) from Theorem 1.26.
Cases 2b), 2c), 2d): in the coordinate u := z − z0, z0 = z(P ), the

involutions σP : Q∗ → Q∗ take the form

σP : u 7→ − u

1 + f(z0)u

f = fb1(z) :=
5z − 3

2z(z − 1)
(type 2b1)), or f = fb2(z) :=

3z

z2 + 1
(type 2b2)),

f = fc1(z) :=
4z2

z3 − 1
(type 2c1)), or f = fc2(z) :=

8z − 4

3z(z − 1)
(type 2c2)),

f = fd(z) :=
7z − 4

3z(z − 1)
.

The u- and z-coordinates of the fixed point P̃ of the involution σP are

u(P̃ ) = − 2

f(z0)
, z(P̃ ) = z0 −

2

f(z0)
.

Subcase 2b1). One has

z(P̃ ) = z0 −
4z0(z0 − 1)

5z0 − 3
= g(z0), g(θ) =

θ(θ + 1)

5θ − 3
.
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Therefore, the dual line P̃ ∗ is directed by the vector

(1,−2g(−x1)) = (1,
2x1(x1 − 1)

5x1 + 3
) = (1,

2(x2 − x1)

5x1 + 3
), xj = xj(Q).

Here we have substituted x2
1 = x2, since Q ∈ C. Hence, the line field N is

directed by the vector field (5x1 + 3, 2(x2 − x1)) and thus, has type 2b1).
Subcase 2b2). One has

z(P̃ ) = z0 −
2(z2

0 + 1)

3z0
= g(z0), g(θ) =

θ2 − 2

3θ
,

and the line field N on C is directed by the vector field (1,−2g(−x1)) =

(1,
2(x21−2)

3x1
). Or equivalently, by the vector field (3x1, 2x2−4), since x2

1 = x2

on C. Thus, it has type 2b2).
Subcase 2c1). One has

z(P̃ ) = z0 +
1− z3

0

2z2
0

= g(z0), g(θ) =
θ3 + 1

2θ2
,

the field N is directed by the vector field (1,−2g(−x1)) = (1,
x31−1

x21
) =

(1, x1x2−1
x2

) on C. Or equivalently, by (x2, x1x2 − 1). We get type 2c1).
Subcase 2c2). One has

z(P̃ ) = z0 −
3z0(z0 − 1)

4z0 − 2
= g(z0), g(θ) =

θ(θ + 1)

4θ − 2
,

the line field N is directed by the vector field (1, x1(x1−1)
2x1+1 ) = (1, x2−x12x1+1 ) on

C. Or equivalently, by the field (2x1 + 1, x2 − x1). Hence, it has type 2c2).
Subcase 2d). One has

z(P̃ ) = z0 −
6z0(z0 − 1)

7z0 − 4
= g(z0), g(θ) =

θ(θ + 2)

7θ − 4
,

the line field N is directed by the vector field (1, 2x1(x1−2)
7x1+4 ) = (1, 2x2−4x1

7x1+4 ).
Or equivalently, by the field (7x1 + 4, 2x2 − 4x1). Hence, it has type 2d).
This proves Theorem 1.26. 2

Proof of the addendum to Theorem 1.26. Consider the real conic
C = {x2x3 = x2

1} ⊂ RP2
[x1:x2:x3] equipped with a projective billiard structure

from Theorem 1.26. Let F : R3 → R3 be the transformation from (9.2):

(z, w, t) := F−1(x1, x2, x3) = (2x1, x3, x2).
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Let [F ]−1 : RP2 → RP2 denote the projectivization of the transformation
F−1. Recall that the orthogonal-polar-dual to the conic [F ]−1(C) is the conic
γ = C∗ = {wt = z2}, see Claim 14 above, and the post-composition of [F ]−1

with the duality sends the projective billiard on C to the corresponding dual
billiard on γ given by Theorem 1.16. See the above proof of Theorem 1.26.

Proposition 9.5 Let R be a rational integral of the dual billiard on γ writ-
ten as a 0-homogeneous rational function R(z, w, t). Then the function

R̃(x, v) := R(v2,−2∆,−2v1), ∆ := x1v2 − x2v1, (9.4)

is a 0-homogeneous rational integral of the projective billiard on C.

Proof In the affine charts R2
x1,x2 = {x3 = 1} ⊂ RP2, R2

z,w = {t = 1} ⊂ RP2

in the source and image the map [F ]−1 and its differential take the form

[F ]−1 : (x1, x2) 7→ (z, w) :=

(
2x1

x2
,

1

x2

)
,

d[F ]−1(x1, x2)(v) = v̂ :=

(
−2∆

x2
2

,− v2

x2
2

)
, ∆ := x1v2 − x2v1.

Set r := (z, w, 1) = (2x1
x2
, 1
x2
, 1), and let us identify v̂ = (v̂1, v̂2) with

v̂ = (v̂1, v̂2, 0) =

(
−2∆

x2
2

,− v2

x2
2

, 0

)
∈ R3

z,w,t.

The function R([r, v̂]) is an integral of the [F ]−1-pushforward of the pro-
jective billiard on C, which is a projective billiard on [F ]−1(C); see Propo-
sition 1.24. Therefore, R([r, v̂]) written as a function of x = (x1, x2) and
v = (v1, v2) is an integral of the projective billiard on C. One has

[r, v̂] =
1

x2
2

(v2,−2∆,−2v1).

Hence, R([r, v̂]) takes the form (9.4), by 0-homogeneity. Proposition 9.5 is
proved. 2

In what follows we calculate the integral (9.4) explicitly for the integrals
R listed in the addendum to Theorem 1.16.

Case 1): the dual billiard structure on γ is given by a pencil of conics
containing γ. Then it admits a quadratic rational integral R, which is a
ratio of two quadratic forms in (M1,M2,M3). The corresponding integral
(9.4) is a ratio of two quadratic forms in the vector (v2,−2∆,−2v1).
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Case 2a1): ρ = 2− 2
2N+1 , the integral R(z, w) written in the affine chart

R2
z,w = {t = 1} has type (1.6). In the homogeneous coordinates [z : w : t] it

takes the form

R(z, w, t) =
(wt− z2)2N+1

t2
∏N
j=1(wt− cjz2)2

, cj = −4j(2N + 1− j)
(2N + 1− 2j)2

.

Substituting

(z, w, t) = (v2,−2∆,−2v1), ∆ = x1v2 − x2v1, (9.5)

to R, see (9.4), and multiplying by 4 yields integral (1.14):

Ψ = Ψ2a1(x1, x2, v1, v2) :=
(4v1∆− v2

2)2N+1

v2
1

∏N
j=1(4v1∆− cjv2

2)2
.

Case 2a2): ρ = 2− 1
N+1 , the integral R(z, w) has type (1.7), and in the

homogeneous coordinates

R(z, w, t) =
(wt− z2)N+1

zt
∏N
j=1(wt− cjz2)

, cj = −j(2N + 2− j)
(N + 1− j)2

.

Substitution (9.5) and multiplication by −2 yield (1.15):

Ψ = Ψ2a2(x1, x2, v1, v2) =
(4v1∆− v2

2)N+1

v1v2
∏N
j=1(4v1∆− cjv2

2)
.

Case 2b1): R(z, w) has type (1.8), and in the homogeneous coordinates

R(z, w, t) =
(wt− z2)2

(wt+ 3z2)(z − t)(z − w)
.

Substitution (9.5) yields (1.16):

Ψ = Ψ2b1(x1, x2, v1, v2) =
(4v1∆− v2

2)2

(4v1∆ + 3v2
2)(2v1 + v2)(2∆ + v2)

.

Case 2b2): R(z, w) has type (1.9), and in the homogeneous coordinates

R(z, w, t) =
(wt− z2)2

(z2 + w2 + wt+ t2)(z2 + t2)
.
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Substitution (9.5) yields (1.17):

Ψ = Ψ2b2(x1, x2, v1, v2) =
(4v1∆− v2

2)2

(v2
2 + 4∆2 + 4v1∆ + 4v2

1)(v2
2 + 4v2

1)
.

Case 2c1): R(z, w) has type (1.10), and in the homogeneous coordinates

R(z, w, t) =
(wt− z2)3

(t3 + w3 − 2zwt)2
.

Substitution (9.5) and multiplication by 64 yield (1.18):

Ψ = Ψ2c1(x1, x2, v1, v2) =
(4v1∆− v2

2)3

(v3
1 + ∆3 + v1v2∆)2

Case 2c2): R(z, w) has type (1.11), and in the homogeneous coordinates

R(z, w, t) =
(wt− z2)3

(8z3 − 8z2w − 8z2t− w2t− wt2 + 10zwt)2
.

Substituting (9.5) and multiplying by 64 yields (1.19):

Ψ = Ψ2c2(x1, x2, v1, v2) =
(4v1∆− v2

2)3

(v3
2 + 2v2

2v1 + (v2
1 + 2v2

2 + 5v1v2)∆ + v1∆2)2
.

Case 2d): R(z, w) is as in (1.12), and in the homogeneous coordinates

R(z, w, t) =
(wt− z2)3

(wt+ 8z2)(z − t)(wt2 + 8z2t+ 4w2t+ 5wz2 − 14zwt− 4z3)
.

Substituting (9.5) and multiplying by −8 yields (1.20):

Ψ = Ψ2d(x1, x2, v1, v2)

=
(4v1∆− v2

2)3

(v1∆ + 2v2
2)(2v1 + v2)(8v1v2

2 + 2v3
2 + (4v2

1 + 5v2
2 + 28v1v2)∆ + 16v1∆2)

.

The addendum to Theorem 1.26 is proved. 2
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10 Billiards with complex algebraic caustics. Proof
of Theorems 1.31 and 1.32

10.1 Case of Euclidean billiard. Proof of Theorem 1.31

Let C ⊂ R2
x1,x2 = {x3 = 1} ⊂ R3

x1,x2,x3 be a C2-smooth connected curve.

We identify its ambient plane with the affine chart {x3 = 1} ⊂ RP2
[x1:x2:x3].

Let γ = C∗ ⊂ RP2
[x1:x2:x3] be its orthogonal-polar dual curve. Consider the

usual billiard on C. Its dual billiard on γ is given by Bialy–Mironov angular
symmetries σP : LP → LP , P ∈ γ, defined as follows: σP (P ) = P ; σP
permutes points a∗, b∗ ∈ LP , if and only if the lines Oa∗, Ob∗ are symmetric
with respect to the line OP . See Fig. 5 below. Here O = (0, 0) ∈ R2.

Remark 10.1 The Bialy – Mironov angular billiard was used in the solu-
tion of Bolotin’s polynomial version of Birkhoff Conjecture [10, 11, 31].

Figure 5: Euclidean billiard and its dual: Bialy – Mironov angular billiard

Proposition 10.2 Let C, γ, σP be as above. Let the billiard in C have a
complex algebraic caustic S. Let S∗ be its complex projective dual, and let
H(x1, x2, x3) be its defining homogeneous polynomial: S∗ = {H = 0}, and
H has the minimal possible degree. Set

d := degH, R(x1, x2, x3) :=
H2(x1, x2, x3)

(x2
1 + x2

2)d
.

The function R is an integral of the Bialy–Mironov angual billiard on γ.

Proof Set
I := {x2

1 + x2
2 = 0} ⊂ CP2

[x1:x2:x3].

For every P ∈ γ the complexification of the angular symmetry σP : LP →
LP is the projective involution of the complexified line LP that permutes
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its intersection points with I, see [10], [31, proposition 2.18]. Thus, it leaves
invariant polar and zero loci LP ∩ I, LP ∩ S∗ of the rational function R|LP .
One has S∗ 6⊂ I, since a caustic contains no straight line. This together
with Proposition 4.12 applied to the involution σP implies non-constance
and σP -invariance of the restriction R|LP and proves Proposition 10.2. 2

Thus, the dual billiard structure on γ is rationally integrable. Therefore,
γ (and hence, C) lies in a conic. In more detail, if C were C4-smooth, then
this would follow from Theorem 1.16. Let us treat the case, when C is C2-
smooth. The polar locus of the integral R lies in I, and R|LP is invariant
under the angular symmetry. Therefore, the billiard on C is polynomially
integrable, see the discussion on p. 1004 in [31], and hence, C is a conic,
by [31, theorem 1.6]. Here is a more detailed explanation. The complex
Zariski closure of the curve γ is an algebraic curve (Proposition 1.35). The
family σP extends to a singular dual billiard structure on each its non-linear
irreducible component, with integral R having polar locus in I. Hence, each
component is a conic, by [31, theorem 1.25]. Thus, C is a union of conical
arcs. Different conical arcs (if any) should be confocal, see the discussion
in [31, subsection 6.2]. Any two intersecting confocal conics are orthogonal.
This together with C2-smoothness of the curve C implies that C lies in a
conic; see [31, subsection 6.3] for more details. Theorem 1.31 is proved.

10.2 Case of projective billiard. Proof of Theorem 1.32

Let S1 and S2 be two complex algebraic caustics. Let S∗1 , S∗2 be their dual
curves. Let dj denote the degrees of the curves S∗j , and let Pj be their
defining polynomials of degrees dj . The dual curve γ = C∗ equipped with
the corresponding dual billiard structure has a non-constant rational integral

R :=
P2d2

1

P2d1
2

,

as in the above proof of Proposition 10.2. Therefore, γ, and hence, C is a
conic, by Theorem 1.16. Theorem 1.32 is proved.
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