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Abstract

The multi-skill project scheduling problem (MSPSP) has been first addressed in the scheduling community for
more than 15 years. This paper deals with a new variant of this problem, the multi-skill project scheduling problem
with partial preemption (MSPSP-PP), where only a subset of resources can be released during the preemption
periods. Like the standard problem, this variant is NP-hard, because of that we propose in this article a series
of heuristic algorithms to solve instances arising from an industrial application. First, we present a serial greedy
algorithm, based on priority rules and a flow problem for resource allocation. To improve the solutions of the
greedy algorithm, we then introduce a binary-tree-based search algorithm and a greedy randomised adaptive search
procedure (GRASP). Finally, we propose a large neighbourhood search (LNS) algorithm integrating exact and
heuristic methods. The best results in terms of solution quality and execution time are obtained by combining the
GRASP algorithm and the LNS approach. Furthermore, the proposed GRASP algorithm is able to find new best
results on 56 instances out of 216 on a standard MSPSP instance set which shows the quality of the approach even
on special cases of the considered problem.

Keywords: multi-skill scheduling; partial preemption; GRASP; local search; LNS

1. Introduction and related work

In some industrial environments, such as nuclear research facilities described in Polo-Mejı́a et al. (2020)
that inspired our study, scheduling activities need to take into account a set of skills and clearances
required to execute the activities and to match them with those that some technicians master. In this con-
text, where regulations require the presence of a group of technicians having a set of well-defined skills
for the execution of an activity, the multi-skill project scheduling problem (MSPSP) is important, see for
example Bellenguez-Morineau and Néron (2007); Bellenguez-Morineau (2008); Montoya et al. (2014);
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Correia and Saldanha-da Gama (2015); Almeida et al. (2016); Young et al. (2017); Almeida (2018);
Almeida et al. (2019). The MSPSP, initially proposed to schedule IT development projects (Néron,
2002), turns out to be more challenging than traditional scheduling problems, due to additional deci-
sions to be made: it is needed to decide not only which resources will be allocated to each activity,
but also the skills with which they will contribute. The MSPSP is a generalisation of the well-known
resource-constrained project scheduling problem (RCPSP) (Artigues, 2008), where resources are char-
acterised by the skills they master, and non-preemptive tasks require a certain amount of resources with
a specific skill. Determining a solution consists in computing the periods in which each activity is exe-
cuted and also which resources are allocated to the activity at each period, while satisfying activity and
resource constraints: a resource can execute only those skills it masters and must cover only one skill
per activity. The MSPSP can also be seen as a multi-mode RCPSP (Noori and Taghizadeh, 2018) where
each execution mode is defined for a feasible resource allocation. However, most of the time, the number
of resulting modes can be prohibitive to use the conventional algorithms used for solving the multi-mode
RCPSP.

As indicated in Bellenguez-Morineau (2006), the MSPSP is NP-hard, thus solving industrial-sized in-
stances of the MSPSP is time-consuming. Exact methods are proposed, among them branch-and-bound
(Bellenguez-Morineau and Néron, 2007), branch-and-price (Montoya et al., 2014), constraint program-
ming (Young et al., 2017) and mixed-integer linear programming (Correia et al., 2012; Almeida et al.,
2019). Heuristic methods are then necessary to tackle this type of instances in short computing times.
Most of the heuristics for the MSPSP in the literature are based on using priority rules. In her thesis
work, Bellenguez-Morineau (2006) presents various greedy algorithms: one based on the Serial Genera-
tion Scheme (SGS) and two using the Parallel Generation Scheme (PGS), all of them using priority rules
for determining the order in which activities are considered at each iteration of the heuristics. Almeida
et al. (2016) also present a greedy algorithm using the PGS. However, this time, the authors propose a
multi-pass version of the algorithm, where different priority lists for activities and different criticality
functions for resource allocation are tested and the best solution found is kept. Almeida et al. (2018) pro-
pose a biased random-key genetic algorithm that significantly improved the heuristic of Almeida et al.
(2016). In independently carried-out research efforts, Myszkowski et al. (2013) test different priority
rules, the traditional ones and some more complex ones, with an SGS algorithm. They conclude that
more complex rules do not always lead to better results. Because of their ease of development and the
quality of the results obtained, the authors propose algorithms based on priority rule as an element of
more elaborate metaheuristics. Later on, Myszkowski and Siemieński (2016) present a basic GRASP
for the MSPSP. At each iteration of the algorithm, a feasible priority list (sequence) for activities is ran-
domly generated, then a randomised greedy-based algorithm based on an SGS is used to perform the
resource allocation. For the local search phase, a series of swapping moves are performed on the ini-
tial sequence, and the randomised greedy-based algorithm is used again to allocate the resources. More
recently, Myszkowski et al. (2018) proposed a hybrid differential evolution and greedy algorithm. Lin
et al. (2020) propose a genetic programming hyper-heuristic algorithm that outperforms the heuristics of
Myszkowski and Siemieński (2016) and Myszkowski et al. (2018). More contributions related to heuris-
tic and metaheuristic methods for the MSPSP can be found in Kolisch and Heimerl (2012) and Li and
Womer (2009).

All above-described approaches for the MSPSP assume that interruption of activities is not allowed
once they have started. However, operational and regulatory restrictions of sensitive units cannot guar-
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antee the uninterrupted execution of all activities; a preemptive version of the MSPSP is thus required.
There are very few works on preemptive MSPSP (Javanmard et al., 2017); most of the time, they consider
that all resources can be released during the periods where an activity is preempted.

In addition to the very specific requirements of skills and clearances for ensuring their executions,
some activities in the considered nuclear research facility have another important characteristic: they
can be interrupted (preempted) and resumed later; however, during these preemption periods not all
resources can be released due to safety reasons. This is the case, for example, for experimental activities
requiring an inert atmosphere for their execution. In practice, one can stop these activities and allow the
technicians and pieces of equipment to be used for other activities. However, safety constraints force
to preserve continuously (even during the preemption periods) the inert atmosphere from the beginning
until the end of the activity. No variant of the multi-skill scheduling problem had been proposed to model
this behaviour before the work of Polo-Mejı́a et al. (2018b), which introduces the concept of partial
preemption, and presents how this concept can be integrated into the MSPSP, leading to the MSPSP
with partial preemption (MSPSP-PP). The main idea behind the partial preemption is to allow activities
to be interrupted but releasing only a subset of resources during the preemption periods. A more precise
description of the concept is presented in Section 2, where we describe the problem at hand.

The MSPSP-PP, in the same way as the standard MSPSP, is NP-hard (Polo-Mejı́a et al., 2018a), and
the use of exact methods can be prohibitive to solve large-sized industrial instances, as shown in Polo-
Mejı́a et al. (2020). The industrial applications of scheduling models require, most of the time, to be able
to obtain high-quality solution in limited time. That is why we propose in this article various heuristic
and metaheuristic methods for the MSPSP-PP. We present in Section 3 a basic serial greedy algorithm,
inspired by the work of Bellenguez-Morineau (2006), that will be the base of the other heuristics pro-
posed in this paper. The algorithm makes extensive use of priority rules for generating the schedule
and of the solution of flow problems for the allocation of the technicians. Following the proposition of
Myszkowski et al. (2013), we take the basic priority list-based heuristic presented in Section 3 and use
it within a modified version of the limited discrepancy search procedure introduced in Harvey and Gins-
berg (1995), to propose in Section 4 a local search procedure. To improve the results of our local search
algorithm, we describe in Section 5 a greedy randomised adaptive search procedure (GRASP), combin-
ing the greedy and the local search algorithm. Most of the GRASP algorithms found in the literature
for the MSPSP, such as the one presented by Myszkowski and Siemieński (2016), do not learn from the
results of past iterations. The inclusion of learning from past iterations is part of the GRASP algorithm
proposed in Section 5. Finally, we present in Section 6 a Large Neighbourhood Search (LNS) algorithm,
a hybrid procedure combining exact (linear and constraint programming) and our heuristic methods.
To assess the performance of the proposed methods, we describe in Section 7 extensive computational
experiments. Concluding remarks are presented in Section 8.

Note that this paper is a considerably extended version of the works presented in Polo-Mejı́a et al.
(2019a), where we introduced a greedy algorithm and an initial version of the tree-based local search
algorithm, and in the extended abstract of Polo-Mejı́a et al. (2019b), where the GRASP was sketched
on a pure conceptual level without providing any computational results. Here, we extend these previous
papers by including tests with larger instances and new configurations for the local search algorithm,
together with an improved GRASP and new LNS algorithms.
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2. Problem description and formulation

The MSPSP-PP considers a set of activities A = {1, . . . , n} partitioned into three subsets A = AP ∪
ANP ∪ APP , where AP is the set of fully preemptive activities, ANP is the set of non-preemptive
activities and APP is the set of partially preemptive activities. We consider a discrete time horizon
T = {1, . . . , T} and a set L = {1, . . . , L} of skills. We have a set O of disjunctive resources that
represent multi-skilled operators/technicians. A parameter Aot ∈ {0, 1} indicates if at each time period
t ∈ T , an operator o ∈ O is present (Aot = 1) or absent (Aot = 0). A parameter mol ∈ {0, 1} indicates
whether resource/technician o ∈ O masters skill l ∈ L (mkl = 1) or not (mkl = 0). R is a set of
renewable resources of cumulative type. Each resource k ∈ R has a discrete availability Bkt ∈ N for
each time period t ∈ T . Such resources typically represent geographical areas of limited capacities,
teams of mono-skilled operators, inert atmosphere chambers, etc. Each activity i ∈ A is defined by a
release date ri ∈ N, a deadline di ∈ N, a processing time pi ∈ N, a demand bik ∈ N for each cumulative
resource k ∈ R and a requirement ail ∈ N for each skill l ∈ L. In addition, an activity must be assigned
to a minimum number of technicians qi. Furthermore, for each partially preemptive activity i ∈ APP
and each resource k ∈ R a parameter ρik ∈ {0, 1} indicates whether resource k can be released during
preemption periods of activity i (ρik = 0) or not (ρik = 1). Finally, there is a set E of precedence
constraints, where (i, j) ∈ E means that activity j cannot start before activity i is completed.

The problem can now be formulated by a binary linear program, as the one proposed in Polo-Mejı́a
et al. (2020). Variables xit ∈ {0, 1} indicate whether activity i ∈ A is in process at time t ∈ T . Variables
yit ∈ {0, 1} are equal to 1 if and only if activity i is being preempted at time t ∈ T , meaning that there
must be a period τ < t such that xiτ = 1 and a period τ ′ > t such that xiτ ′ = 1, while xit = 0.
Variables zoit ∈ {0, 1} indicate whether activity i ∈ A is assigned to technician o ∈ O at time t ∈ T
or not. Auxiliary variables are necessary to linearly express some constraints: x−it ∈ {0, 1} is equal to 1
if activity i starts at a period t′ < t ; x+

it ∈ {0, 1} is equal to 1 if activity i ends at a period t′ > t. For
non-preemptive activities, the binary variable Zoi ∈ {0, 1} indicates that operator o ∈ O is allocated
to activity i throughout its execution. The set of operators allocated to a non-preemptive activity cannot
change during the activity process for safety and security reasons regarding the nuclear context. For
preemptive and partially activities the set of allocated operators can be changed at any time.

Given these variables, the binary formulation (1)–(14) formally defines the problem.

minCmax (1)(∑
i∈A

xit +
∑
i∈APP

ρikyit

)
bik ≤ Bkt ∀k ∈ R, ∀t ∈ T (2)∑

i∈A
zoit ≤ Aot ∀o ∈ O, ∀t ∈ T (3)

ailxit ≤
∑
o∈O

molzoit ∀i ∈ A,∀l ∈ L, ∀t ∈ T (4)∑
o∈O

zoit ≥ qixit ∀i ∈ A, ∀t ∈ T (5)
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di∑
t=ri

xit ≥ pi ∀i ∈ A (6)

pi(1− xjt) ≥
T∑
t′=t

xit′ ∀(i, j) ∈ E,∀t ∈ T (7)

x−it ≥ xit′ ∀i ∈ ANP ∪ APP ,∀t ∈ T ,∀t′ ≤ t (8)

x+
it ≥ xit′ ∀i ∈ ANP ∪ APP ,∀t ∈ T ,∀t′ ≥ t (9)

yit = x−it + x+
it − xit − 1 ∀i ∈ APP , ∀t ∈ T (10)

x−it + x+
it − xit = 1 ∀i ∈ ANP , ∀t ∈ T (11)

zoit ≥ Zoi + xit − 1 ∀i ∈ ANP ,∀o ∈ O, ∀t ∈ T (12)

zoit ≤ Zoi ∀i ∈ ANP , ∀o ∈ O, ∀t ∈ T (13)
Cmax ≥ txit ∀i ∈ A, ∀t ∈ T (14)

The objective (1) is to minimise the makespan. Constraints (2) ensure that the total demand for a
resource k ∈ R at a given time t ∈ T does not exceed its capacity. An activity i occupies bik units
of resource k at time t if it is in process at time t (xit = 1) or if it is a partially preemptive activity
i ∈ APP being preempted at time t (yit = 1) and if the resource cannot be released for this activity
(ρik = 1). Constraints (3) ensure that at most one activity i ∈ A is assigned to operator o ∈ O at
time t ∈ T if the operator is present (Aot = 1). No activity can be assigned if the operator is absent
(Aot = 0). Constraints (4) ensure that an activity in process (xit = 1) must be assigned to ail operators
mastering skill l ∈ L. Constraints (5) ensure the fulfilment of the minimum number of allocated
operators qi to an activity i ∈ A in process at any time t ∈ T . Constraints (6) enforce each activity to
be in process during pi time units. Constraints (7) state that for each precedence constraint (i, j) ∈ E
activity j cannot be processed at any time t if activity i is not completed at time t. Constraints (8)
enforce variable x−it to be equal to 1 if activity i is in process before t while Constraints (9) enforce
variable x+

it to be equal to 1 if activity i is in process after t. Then Constraints (10) state that a partially
preemptive activity is preempted if it is not in process at time t while being in process at periods
before and after t. Constraints (11) specify that a non-preemptive activity must be processed at time
t if it is in process before and after t. Finally, for each non-preemptive activity, Constraints (12) state
that an operator o allocated to an activity i (Zoi = 1) must remain allocated to an activity during
all time periods in which i is in process. Constraints (13) prevent an operator not globally allocated
to a non-preemptive activity (Zoi = 0) from being allocated to the activity at any time period. Fi-
nally, Constraints (14) ensure that the makespan is not smaller than the completion time of every activity.

From these constraints, it is important to note that a preemptive activity i ∈ AP can be preempted
at any time, releasing all its allocated resources. A partially preemptive activity i ∈ APP can be also
preempted at any time but only its allocated resources k ∈ R such that ρik = 0 are released. For
preemptive and partially preemptive activities, the technicians can be changed at any time regardless of
whether the activity is preempted or not. However a non-preemptive activity must keep the same set of
allocated technicians all along its execution.
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Another feature that distinguishes our problem from the standard MSPSP, even for non-preemptive
activities, is the fact that Constraints (4) ensure that for each activity and at any time of its execution the
required number of allocated operators mastering each required skill is obtained. However, there is no
constraint that prevents an operator from being employed for several skills simultaneously.

An example of an MSPSP-PP instance is shown in Appendix A; in particular, it illustrates the distinc-
tive characteristics of our problem. This example is used as a running example throughout the paper.

3. Greedy Algorithm: Serial schedule generation scheme and operator allocation

The MSPSP-PP can be decomposed into two interrelated subproblems, namely an activity scheduling
problem coupled to a resource allocation problem. We propose a greedy algorithm using a serial Sched-
ule Generation Scheme (SGS) that iteratively selects an activity for being scheduled with a priority rule
and determines the earliest resource- and precedence-feasible start time. By solving a Minimum-Cost
Maximum-Flow (MCMF) problem (Ababei and Kavasseri, 2010) for the selected activity, the operator
allocation is further optimised. We first describe the greedy serial schedule generation scheme in Sec-
tion 3.1, followed by the MCMF operator allocation procedure in Section 3.2. The assessed priority rules
and a multi-pass variant of the algorithm are presented in Section 3.3.

3.1. The serial schedule generation scheme

All the material presented in this section is a considerably extended version of the conference paper by
Polo-Mejı́a et al. (2019a), except that, to make the research reproducible, much more details are provided
here on the scheduling and resource allocation procedures. The algorithm is a direct extension of the
serial SGS initially proposed for the resource-constrained project scheduling problem in Kolisch (1996).
The main differences are the possibility of preemption and partial preemption and the management of
operators and skills.

Regardless of whether the activity is preemptive or not, the schedule of an activity is represented by a
set of time points Ti, which are stored as an ordered list of non-overlapping discrete intervals. The small-
est time period in Ti is the activity start time Si and the largest time period in Ti is the activity completion
time Ci. For a non-preemptive activity, there is a single interval in Ti with Ti = JSi, Ci = Si + pi− 1K.1

For a (partially) preemptive activity that has been preempted νi times, there is a set of intervals such that
Ti = JSi, t1K ∪ Jt1, t2K ∪ . . . ∪ Jtνi−1, CiK. Note that there is no interest of preempting or changing the
operator allocation of an activity at a time period over which no activity starts, ends, or no operator or
resource becomes unavailable (due to initial availabilities Aot and Bkt). Hence the number of execution
intervals in Ti is independent of the time horizon T as it is lower than min(pi, 2n + Q) where Q is the
total number of different breakpoints of the piece-wise constant initial availability functionsBkt andAot.

The serial SGS (Algorithm 1) is a greedy constructive algorithms that starts with an empty schedule,

1Note that the use of notation J.K refers to discrete intervals.
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selects an activity at each iteration from a listQ initialised to the set of activities at line 1, and schedules it
at its earliest precedence- and resource-feasible starting time taking account of the previously scheduled
activities (lines 3–38). To evaluate resource feasibility the algorithm maintains a resource timetable I in
the form of a set of discrete intervals that partition the time horizon T such that the resource and operator
availability is constant over each interval. The timetable is initialised with the intervals issued from the
initial resource and operator availability Aot and Bkt (line 2). For the same reason as explained above,
the number of intervals in the timetable is lower than 2n+Q.

An interval Īq of I is defined by its left bound tq, while tq+1 refers to the left bound of the subse-
quent interval, therefore we have Īq = Jt̄q, t̄q+1 − 1K and Aoq (respectively Bkq) refers to the constant
availability of operator o (resp. resource k) during interval Iq.

The efficiency of the serial SGS lies in the fact that the execution periods in Ti of the selected activity
is obtained by traversing in the worst case the intervals in I in a single pass (of at most 2n + Q steps).
We detail this process thereafter.

At each iteration, one activity i is extracted from Q (line 4), assuming in a conventional way that an
activity cannot be selected if one of its predecessor is still in Q. Then the earliest start time ES of the
selected activity is determined at line 5 as the maximum of its release date and the largest completion
time of its predecessors. The algorithm then determines the earliest set of time periods in Ti ∈ JES, T K
over which the activity can be scheduled (lines 5–32). For that, an index q of the intervals in timetable
I is first positioned at the first interval such that ES ∈ Jt̄q, t̄q+1 − 1K (lines 5–8) to check the resource
availability starting from time ES. The remaining duration P and the set of scheduling intervals Ti are
initialised to the activity duration and the empty set (line 9). Then, lines 10–32 perform the traversal
of intervals Jt̄q, t̄q+1 − 1K from I while there remain unassigned time periods for the activity. We first
compute at line 11 the set Otempi of operators available in interval Jt̄q, t̄q+1 − 1K that master at least
one skill required by the activity. For a non-preemptive activity, the set of allocated operators must be
the same during all the activity execution intervals. So, if i is a non-preemptive activity that already
tentatively starts before the examined interval q, lines 12–16 update the set Oi of available operators
from the start by taking the intersection with Otempi . Otherwise, if the activity is preemptive, partially
preemptive or not already started, only the operators available during the examined interval matter,
therefore Oi is set to Oiq.

If the setOi contains at least qi operators able to fulfil the requirement ail of the activity for each skill
l ∈ L and if all resources required by the activity are sufficiently available (test at line 17), then a portion
of the activity can be scheduled on the considered interval. If the activity is not started yet (Boolean
tentStart), the start time of the activity Si is set to its earliest start time in the interval (line 19), the
activity is marked as tentatively started (line 19). If i is non-preemptive, Ti is tentatively set to a single
interval from Si to Si + pi − 1 (line 21), otherwise, if the activity is preemptive or partially preemptive,
there remain P time units to be scheduled. The activity will therefore occupy all time periods from
τ = max(Si, tq) until τ ′ = min(τ + P − 1, tq+1 − 1) in the current interval Jtq, tq+1 − 1K, which
allows the insertion of interval Jτ, τ ′K in Ti (line 25). Then, the remaining duration P is decreased by
the amount that can be placed in the interval.

If there is not enough available resource or operators for the activity in the examined interval, the
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Algorithm 1: Serial SGS
1 Q ← A
2 Initialise I by intervals issued from Aot and Bkt, ∀o ∈ O, k ∈ R, t ∈ T
3 while Q 6= ∅ do
4 Select an activity i from Q by a priority rule.
5 ES ← max(ri,max(j,i)∈E Ci); q ← 1

6 while tq+1 ≥ ES do
7 q ← q + 1
8 end
9 P ← pi; Ti ← ∅ ; tentStart← false

10 while P > 0 do
11 Otempi ← {o ∈ O|Āoq = 1 and ∃l ∈ L, ail ≥ mol ≥ 1}
12 if i ∈ ANP and tentStart = true then
13 Oi ← Oi ∩ Otempi
14 else
15 Oi ← Otempi
16 end
17 if |Oi| ≥ qi and ∀l ∈ L,

∑
o∈Oimol ≥ ail and ∀k ∈ R, B̄kq ≥ bik then

18 if tentStart = false then
19 Si ← max(ES, t̄q); tentStart← true

20 if i ∈ ANP then
21 Ti ← JSi, Si + pi − 1K
22 end
23 end
24 if i 6∈ ANP then
25 Ti ← Ti ∪ Jmax(Si, tq),min

(
max(Si, tq) + P − 1, tq+1 − 1

)
K

26 end
27 P ← max

(
0, P − tq+1 + max(Si, tq)

)
28 else if tentStart = true and (i ∈ ANP or (i ∈ APP and ∃k ∈ R, ρik = 1, B̄kq < bik))

then
29 tentStart← false; Ti ← ∅; P ← pi
30 end
31 q ← q + 1

32 end
33 set Ci = max{t′|Jt, t′K ∈ Ti}
34 if Ci > di then
35 exit // fail

36 end
37 Obtain operator allocations Oir, r = 1, . . . , |Ti| by solving the MCMF subproblem for each

interval Ir ∈ Ti.
38 Update I with intervals Ti and operator allocations (Oir)r=1..|Ti|
39 Q ← Q \ {i}
40 end
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current tentative start at Si must be aborted in all the cases for a non-preemptive activity. For a partially
preemptive activity the start time at Si must be aborted if the non-releasable resources are available in
a non-sufficient amount (test at line 28). In such situations, the activity is marked as not started and the
remaining time periods and set of scheduling intervals are reinitialised.

The intervals are enumerated by incrementing q (line 31) until the activity is fully scheduled, i.e. when
P = 0. The completion time of the activity is then obtained from Ti (line 33). The greedy algorithm fails
if the completion time exceeds the deadline. Otherwise, we proceed to operator allocation. Note that
to obtain a feasible operator allocation, it is sufficient to greedily select ail operators that master skill
l ∈ L. That requires O(L|O|) time. However, as the operator allocation highly influences the schedule
quality, we decide for a smarter operator allocation. A minimum-cost maximum-flow problem is solved
on each interval in Ti to optimise the operator allocation (line 37). The MCMF procedure outputs a set
of allocated operators, where Oiq denotes the set of operators allocated to i for the qth interval Iq in Ti.
The timetable I is then updated using scheduled time periods Ti, operator allocation Oiq, and removing
i from Q.

Without solving the MCMF problems, the time complexity of the algorithm is O(n(n + Q)(L|O| +
|R|). The MCMF procedure and additional computational efforts are detailed in Section 3.2.

3.2. The minimum-cost maximum-flow operator allocation procedure

We aim at finding a feasible operator allocation that preserves future allocations w.r.t. operator scarce-
ness. To that purpose, we compute a criticality indicator co of an operator o as follows. First, let gio
denote the correlation indicator that measures the degree to which activity i might require operator o for
its execution:

gio = |{l ∈ L|mol = 1} ∩ {l ∈ L|ail > 0}|.

Then, the criticality of operator o relatively to the activity i to be scheduled is equal to the following
ratio co, where the numerator estimates the degree to which the operator should be allocated to the
unscheduled activities except i while the numerator is the correlation indicator with i:

co =

∑
j∈Q\{i} pjgjo

gio
.

Finding the subset of operator of minimum criticality among a set Oi on a time range Jt, t′K can
be approximated by solving an MCMF problem. Such an MCMF flow for operator allocation with
criticality costs was proposed by Bellenguez-Morineau (2006) for the standard MSPSP where an
operator can cover at most a single skill when allocated to an activity. We proposed a variant where
the operator can cover several skills and with a minimum number of required operators for the activity.
We create a source node 0 connected to one node per required skill l such that ail > 0 with an arc
of maximal capacity ail and zero cost. We also create an arc connecting the source to a dummy skill
L + 1 node (corresponding to the minimum required number of operators) of maximum capacity qi
and cost zero. We then create an arc between each skill node l (including the dummy one) and a node
per operator o ∈ O such that mol = 1 of maximal capacity 1 and 0 cost. Finally, we create a sink
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node ∗ and we connect each operator node to the sink node with an infinite capacity and criticality
cost co. The problem is then solved by solving a minimum cost flow of value

∑
l∈L ail + qi. Let

L∗i =
∑

o∈Oi |{l ∈ L,mol = 1}| be the number of arcs between skills and operator nodes and let
cmax denote the maximum criticality cost. As there are O(Li + |Oi|) nodes and Li + |Oi| + L∗i arcs,
the MCMF problem can be solved in O((L∗i |Oi|)2(Li + |Oi| + L+

i ) log((Li + |Oi|)cmax) by the cost
scaling push-relabel algorithm (Goldberg, 1997).

See Appendix B for an illustration of an iteration of the greedy algorithm.

3.3. Priority rules and multi-pass variant

The greedy algorithm can be used with a single priority rule but better solutions can be obtained in a
multi-pass version where the algorithm is launched successively with different priority rules and the
schedule with the best Cmax is the result.

For the multi-pass test, we use the most common priority rules in the scheduling literature (Pan-
walkar and Iskander, 1977): Longest Duration, Most Successors, Earliest Start Time, Earliest Finish
Time, Greatest Rank Positional Weight, Greatest Resource Demand, Latest Start Time, and Minimum
Slack.

Whatever the priority rule is, the algorithm first schedules all activities having a deadline, then all
non-preemptive activities, then all partially preemptive activities, and finally all preemptive activities.
The idea is to consider the most constrained activities first. Such single or multiple priority rule-based
procedures may fail in obtaining a feasible solution because of the deadlines. This typically does not
happen in the industrial problem as only a few activities have deadlines and they are not very restrictive.
This is why our methods tends to scheduling activities with deadline first but have no means to enforce
strict feasibility.

4. Tree-based Local Search Algorithm

Greedy construction algorithms are known by their risk of accepting myopic choices that may lead to
local optima (Voß et al., 2005). Inspired by the limited discrepancy search proposed by Harvey and
Ginsberg (1995), we propose to execute an additional phase in such procedures, based on a tree-based
local search algorithm to improve an incumbent solution. For each sequence used in the generation
phase, there is a large amount of possible schedules that are defined by the technician allocations we
made. The fact of choosing a specific technician may change the earliest start time of future activities
since this decision modifies technician availability, and thus producing different schedules. The objective
of the tree-based local search algorithm is to visit some of these possible schedules.

4.1. Enumeration of alternative operator allocations via tree search

The tree-search algorithm maintains a set of open nodes N where each node represent a stage of the
greedy SGS with a selected activity and a possible operator allocation.
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More precisely, a node N ∈ N is a tuple storing the current set of unscheduled activities, the resource
and operator timetable, the execution intervals of scheduled activities and their operator allocations, as
well as a depth indicator ∆ and the number of discrepancies #discr (selection of an alternative operator
allocation instead of the preferred one) used in the branch so far, which gives respectively:

N =
(
Q, I, (Ti)i∈A\Q, (Oir)i∈A\Q,Ir∈Ti ,∆,#discr

)
.

Let us come back to the operator allocation step (line 37) of Algorithm 1. If, for a given interval
Iq in Ti, the MCMF subproblem computes preferred operator allocation Oir, then alternative operator
sets can be possibly obtained by solving |Oir| MCMF problems, each being obtained by removing
one operator of Oir from the available operators. Let the best operator allocation obtained this way be
denoted by O′ir and consider it as the alternative allocation. For a non-preemptive task there are only
two operator allocations, the preferred one and the alternative one, as |Ti| = 1. But for a preemptive
or partially preemptive activity we have in the worst case |Ti| = min(pi, 2n + Q), which yields 2|Ti|

different operator allocations, i.e. child nodes of the current node.

Appendix C is illustrates the local search algorithm on the running example. Appendix C.1 shows the
local search tree.

4.2. Controlling the search by probabilistic traversal of an equivalent binary tree

However, there is in general an exponential number of nodes; therefore, we introduce different param-
eters to control the search. The main parameter to control the search is the probability π to select the
alternative operator allocation instead of the preferred one for each execution interval of an activity. This
is the main parameter of the proposed algorithm since it controls the number of visited branches, and thus
the time required to visit the generated tree, and the solution quality. It is also experimentally determined
that, for the same π value, a higher portion of preemptive or partially preemptive activities in the instance
increases the time required by the algorithm. To limit the computing time, we propose, after several pre-
liminary experiments, to use a version of this parameter based on a function that depends on the number
of non-preemptive activities present in the instance (i.e. self-adaptive to the instance characteristics):

π = π−e
ln(π+)−ln(π−)

|A| |ANP |
,

where π− and π+ are input parameters giving the minimum and the maximum values the initial proba-
bility can take.

The probability to accept a given alternative for one of the execution intervals of a selected activity
is π(1 − ∆/∆max) where ∆ is the depth of the alternative allocation in a binary tree equivalent to the
search tree presented in the previous section and ∆max is the maximal depth of this binary tree.

Furthermore, from the way schedules are generated, we can expect that the chance of making poor
decisions by the heuristic decreases as we add more activities to the partial schedule (going deep in
the search tree); if there are fewer activities to be scheduled, the criticality cost of a technician is more
accurate. We exploit this characteristic by assigning to each alternative operator allocation a probability
that depends on its depth in the equivalent binary search tree where each interval of a preemptive or
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partially preemptive activity is considered as a non-preemptive task.

See Appendix C.2 for the binary search tree equivalent to the tree given in Appendix C.1.

4.3. Algorithm description

Algorithm 2 describes the tree based local search procedure. Line 3 pushes the root node in the node
stackN , with no activity scheduled and the initial resource timetable, empty scheduled intervals, opera-
tor allocation and an initial depth equal to 0. Then the local search begins while there remains unexplored
nodes, which constitutes the main loop (lines 4–34). Following the depth-first search principle, the latest
added node is taken from N , giving the partial schedule made of unscheduled activities Q, the opera-
tor and resource timetable I, the execution intervals for scheduled activities (Tj)j∈A\Q, their operator
allocations (Ojr)j∈A\Q,Ir∈Ti , and the node depth ∆ (line 5). An elementary step of the greedy SGS is
then applied by selecting an activity i from Q and obtaining its feasible earliest execution intervals Ti
(lines 6-7). If the reachable Cmax (which is either the obtained makespan ifQ is empty or a simple lower
bound based on the earliest completion time of the activities taking account of their possibly scheduled
predecessors) is not better than the makespan of the best solution C∗max (i.e. when test of line 8 fails)
or if the completion time of i exceeds its deadline, the node is not developed further. Otherwise, the
preferred and alternative operator allocations of each interval in Ti are computed by the MCMF (line 9).
If all activities are scheduled, we reach a leaf node and the new best solution (schedule and operator
allocations) is stored (line 12).

Otherwise, the different operator allocations for activity i are generated by traversing a local binary
tree. To that purpose, we use a second node stack B in which a node is a tuple (r, (Ōiq)q=1..r,#ldiscr)
where r is the index of the last interval for which the operator allocation is fixed and (Ōiq)q=1..r is the
selected preferred or alternative operator allocations for i up to interval Ir in the considered branch;
#ldiscr is the number of discrepancies in the branch of the binary tree. When a node is taken from
B (line 16), we first check if all intervals in Ti have an operator allocation (line 17), in which case
we are at a leaf of the binary tree at depth r = |Ti|. The resource timetable is then updated with the
schedule and the obtained operator allocations of the execution of intervals i (line 18) and these operator
allocations are added to the set of operator allocations of the scheduled activities (line 19). A child
node in the global search tree is pushed to a temporary stack N temp. The node stores Q, the updated
timetable I, the schedule, the operator allocations and the depth (line 20). Otherwise, the node of binary
tree does not correspond to a leaf and the next interval is considered by incrementing r. The alternative
allocation (right child node) is only considered with a probability π (1− (∆ + r)/∆max), as the node
depth in the global binary tree would be ∆ + r. If the probability is reached by the random value and
if a maximum number of discrepancies per branch NBMAXDISCR is not reached, the alternative
operator allocation for interval Ir is added to the set of operator allocations for execution intervals of
the parent node (line 24) and a new node with the new interval index r, the set of operator allocations
up to r and the updated cumulative probability is pushed to B (line 25). Then, the preferred operator
allocation for interval Ir is added to the set of operator allocations for execution intervals of i of the parent
node (line 27) and the new node is generated as for the right child but with an unchanged cumulative
probability (line 28). Finally, when the binary tree has been explored, all new nodes stored in stack
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Algorithm 2: Tree-based local search algorithm
1 Q ← A
2 Initialise I by intervals issued from Aot and Bkt, ∀o ∈ O, k ∈ R, t ∈ T
3 N ← {(Q, I, ∅, ∅, 0, 0)}
4 while N 6= ∅ do
5 Pop node

(
Q, I, (Tj)j∈A\Q, (Ojq)j∈A\Q,Iq∈Ti ,∆,#discr

)
from N

6 Select an activity i from Q by a priority rule.
7 Apply steps 5–32 of Algorithm 1
8 if Ci ≤ di and Cmax < C∗max then
9 Obtain preferred and alternative operator allocations Oir and O′ir, by solving the |Oir|

MCMF subproblems for each interval Ir ∈ Ti.
10 Q ← Q \ {i}
11 if Q = ∅ then
12 store solution as the best one and update C∗max

13 else
14 B ← {(0, ∅, 0)}; N temp ← ∅
15 while B 6= ∅ do
16 pop (r, (Ōiq)q=1..r,#ldiscr) from B
17 if r = |Ti| then
18 Update I with intervals Ti and operator allocationallocation (Ōiq)q=1..r

19 Oiq ← Ōiq, ∀q = 1, . . . , r

20 push node
(
Q, I, (Tj)j∈A\Q, (Ojr)j∈A\Q,r=1..q,∆ + r,#discr + #ldiscr

)
on N temp

21 else
22 r ← r + 1
23 if random(0,1)≤ π (1− (∆ + r)/∆max) and

#discr + #ldiscr + 1 < NBMAXDISCR then
24 Ōir ← O′ir
25 push (r, (Ōiq)q=1..r, π (1− (∆ + r)/∆max) ,#ldiscr + 1) to B
26 end
27 Ōir ← Oir
28 push (r, (Ōiq)q=1..r,#ldiscr) on B
29 end
30 push all nodes of N temp to N
31 end
32 end
33 end
34 end
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N temp are popped from N temp and pushed in N to reverse their order accordingly to the depth-first
search (line 30).

See Appendix D for an illustration of an iteration of Algorithm 2.

5. Greedy randomised Adaptive Search Procedure

GRASP is an iterative multi-start algorithm in which each iteration consists of two phases: generation of
a feasible solution (construction phase) and improvements by local search. Surveys of GRASP and its
applications are presented in Resende and Ribeiro (2019); Festa and Resende (2009a,b). For the MSPSP-
PP, in the construction phase, a feasible solution is generated by means of the greedy SGS (Algorithm 1)
with an adaptive priority rule based on a restricted candidate list updated at each iteration of the SGS.
The neighbourhood is then explored by the tree-based local search (Algorithm 2) until a local optimum
is found. The best solution found over all GRASP iterations is kept as a result. Hereafter, we describe
the GRASP algorithm we propose to solve the MSPSP-PP.

In Section 5.1 we describe how the restricted candidate list is built, based on an adaptive greedy eval-
uation function described precisely in Section 5.2, which includes priority, intensification and feasibility
components. The intensification component is based on the storage of an elite solution set regularly
updated, as explained in Section 5.3.

5.1. Restricted candidate list construction and activity selection

The GRASP algorithm specified by Algorithm 3, uses a specific activity selection procedure to extract
the activity to be scheduled at line 4 of Algorithm 1. Let F (i) be an adaptive greedy evaluation function
which indicates the degree of relevance of selecting activity i in the current greedy iteration. Recall
that |Q| is the number of not yet scheduled activities after the current greedy iteration. The restricted
candidate list (RCL) is built at this step. It is made up of the 1 + bα|Q|c, α ∈ [0, 1], activities having the
best F (i) values. Each activity within the RCL has a probability of being chosen (πi) defined as follows:

πi =
F (i)∑

j∈RCL F (j)
.

For choosing the value of α, we apply the reactive strategy proposed by Prais and Ribeiro (2000),
where the value of α is randomly selected from a discrete set Ψ = {α1, ..., αn} of possible α values.
The probabilities associated with the choice of each value are all initially uniformly distributed. After
a few iterations, they are periodically recalculated, taking into consideration the quality of the obtained
solution for each αk ∈ Ψ. In our case, we use the Cmax as a quality indicator. More precisely, for
each αk ∈ Ψ, we compute the average makespan C̄max(αk) over the last N iterations and the sum
χ =

∑
αk∈Ψ

1
C̄max(αk)

. To give a smaller probability to the αk that yield larger C̄max(αk), we update the

probability of αk with 1
C̄max(αk)χ

(so the sum of probabilities is 1).
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Algorithm 3: GRASP for the MSPSP-PP
1 git← 0; fail← 0; it← 0; fit← 0; ε← ∅; OLDSIM ←∞; OLDFAIL← −∞
2 Choose randomly α and initialise β, δ and γ to 0.33;
3 while git ≤MAXITER do
4 it← it+ 1 // Iterations counter for parameters

// Generate initial solution

5 Run greedy SGS (algorithm 1) with parameters α, β, δ and γ to update the RCL
6 if Algorithm 1 found a feasible solution with sequence σ then
7 Run tree-based local search (Algorithm 2) using sequence σ for selecting activities;
8 Update ε with σ;
9 git← git+ 1

10 else
11 fail← fail + 1 // Fails counter

12 end
// Update α, β, δ and γ

13 if it = NITER then
14 Update the probability of each α;
15 if |Θ| 6= 0 then
16 AV SIM ←

∑
σ∈Θ SIM(σ,Θ)

|Θ| ;
17 if AV SIM < OLDSIM and δ ≤ 0.9 then
18 δ ← δ + 0.1
19 else if δ ≥ 0.1 then
20 δ ← δ − 0.1
21 end
22 end
23 if fail < OLDFAIL then
24 γ ← γ − 0.1; fit← 0
25 else if γ ≥ 0.9 and fit = NINF then
26 exit // fail

27 else if γ ≥ 0.9 then
28 fit← fit+ 1
29 else
30 γ ← γ + 0.1
31 end
32 β ← 1− δ − γ; it← 0; OLDFAIL← fail; fail← 0; OLDSIM ← AV SIM

33 end
34 end

5.2. Adaptive greedy evaluation function

Associated with an activity i, the proposed adaptive greedy evaluation function F (i) has three compo-
nents: priority rule L(i), intensification I(i) and feasibility G(i), each of them with a respective weight
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β, δ, γ ∈ [0, 1], such that β+δ+γ = 1, representing the importance of each component of the evaluation
function. The adaptive greedy evaluation function is then defined as follows:

F (i) = β × L(i) + δ × I(i) + γ ×G(i).

Priority due to a priority rule L(i): Computational experiments presented in Polo-Mejı́a et al. (2019a)
suggest that using the greedy algorithm with priority rules “Most Successors”, “Greatest Rank” and
“Longest Duration” provides smaller optimality gaps. Let Γi be the set of successors of activity i in
precedence constraint set E. We opt for a mixed priority rule that extends the Greatest Rank rule to all
successors in Γi, i.e.

L(i) = pi +
∑
j∈Γi

pj .

Intensification component I(i): The idea is to use the characteristics of a set ε of elite solutions to
influence the construction phase. In our algorithm, the quality of the solution is highly dependent on the
order (σs) in which activities are handled by the greedy algorithm to obtain a solution s. Hence ε stores
the set of sequences of the elite solutions. Let us define e(σ, i, j) as a binary function taking the value of
1 if activity i was treated before activity j in σ, and 0 otherwise. Recall that Q is be the set of not yet
scheduled activities. The intensification component is defined as follows:

I(i) =
∑
σ∈ε

∑
j∈Q

e(σ, i, j) .

The reader should observe that the intensification component favours activities with more successors.
For each pair of activities {i, j} in each sequence σs the value 1 is obtained every time i is scheduled
before j. The intensification component sums all these values, thus preferring activities with more
successors.

Feasibility factor G(i): As stated at the beginning of the present article, the presence of time windows
can make the greedy algorithm fail in obtaining a feasible solution. We propose then to introduce a com-
ponent giving priority to activities with a short slack time, which allows us to have a greater probability
to generate feasible solutions. Let ESi ≥ ri denote the earliest time activity i can be started taking
account of its already scheduled predecessors. Slack time refers to the margin an activity i has in its
planning window. The feasibility factor is defined as follows:

G(i) =
1

di − ESi − pi + 1
.

Note that L(i), I(i) and G(i) must be normalised before taking the weighted sum, giving L(i), I(i)
and G(i), respectively, taking their values in [0, 1]. This normalisation is done by dividing the value for an
activity by the sum of all activity values. Parameters β, δ and γ are self-adaptive; they are initially equal
(to 0.33) and their values are periodically updated. If after NITER GRASP iterations the number of
infeasible solutions increases, we must increase the value of γ; on the contrary, if this number decreases,
we decrease γ (to try more diverse solutions). If no feasible solution has been found during NINF
iterations with the maximum γ ≥ 0.9, the algorithm stops with a failure.
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On the other hand, the parameter δ decreases when the diversity of obtained solutions is too low and
increases when the variability is high. Finally, β is a function of δ and γ: β = 1 − δ + γ. To ensure
that δ + γ ≤ 1, we limit δ and γ to be not greater than 1 or lower than 0 (see Algorithm 3 for a better
presentation of the self-adaptation scheme).

For measuring the variability (diversity) of the solutions, we keep the sequences used to generate
them as reference. Let us define Θ as the set of the last sequences that generated feasible solutions
during the last GRASP iterations, and Θi≺j as the set of sequences σ ∈ Θ where activity i is handled
before activity j by the greedy algorithm. σ(v) represents the v−th element (activity) of sequence σ.
For each sequence, we can define a similarity index (SIM(σ,Θ)), very close to Kendall’s tau distance
(Kendall, 1938), indicating the degree on which a sequence σ shares the same characteristics of the other
sequences belonging to Θ, as follows:

SIM(σ,Θ) =

|σ|−1∑
v=1

|σ|∑
u=v

|Θσ(v)≺σ(u)| .

A reduction on the average value of SIM(σ,Θ) after NITER iterations indicates a better diversity
of the solutions.

5.3. Updating the elite solutions set

A warm-up phase is necessary to be able to build the initial set of elite solutions (i.e. the sequences
that generate these solutions). During this warm-up phase, all sequences, regardless of the quality of
the solutions they generate, will be included in the elite solution set until reaching the number of elite
solutions; the only condition to include sequences in ε is that all sequences must be different. Note
that during this warm-up phase F (i) = βL(i) + γG(i) (with β + γ = 1). Parameters β and γ will be
self-adapting according to the solution quality and the number of infeasible solutions, respectively.

Once the warm-up phase is finished, the set of elite solutions is updated according to the quality of
solutions and their similarity indicator. If a new sequence generates a solution with a Cmax lower than
the worst Cmax in the elite solutions, this new sequence is included in ε. The sequence with the worst
Cmax is then deleted from the elite set. If several sequences have the worst Cmax, we delete the sequence
with the highest SIM(σ, ε) value to improve the diversity within the elite solution. If the new solution
generates a solution with a Cmax equal to the worst Cmax in ε, we will include the new sequence only
if it has a lower SIM(σ, ε) value than the sequences with the worst Cmax in the elite set (the sequence
with the highest similarity indicator value is deleted).

6. Large neighbourhood search

In this section, we present a Large Neighbourhood Search (LNS) algorithm with an exact solution ap-
proach for subproblems inspired by the algorithms proposed by Palpant et al. (2004) for the RCPSP. At
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each iteration, starting from a feasible initial solution, the method fixes a part of the current solution,
while the other part is solved using an exact method.

In our algorithm, we start with an initial solution obtained by the multi-pass greedy algorithm (Sec-
tion 3). For generating the subproblem to be solved, we define a sliding time window with a fixed length.
The length of the window is a function of the average duration of the activities (various length are
tested for the computational experiments). At each iteration of the algorithm, all the activities within
the time window are selected according to their preemption type to be rescheduled, and all resources
and technicians used by them are released and can be redistributed using an exact technique. For our
numerical experiments we test and compare both Constraint Programming (CP) and Mixed-Integer Lin-
ear Programming (MILP) models presented in Polo-Mejı́a et al. (2020) for the MSPSP-PP, the latter
formulation is recalled in Section 2. For ensuring that the subproblem is solved in reasonable time, we
limit the maximal solution time allowed to the solver. The time window is then shifted to the right at
each iteration of the algorithm. The first time window starts at t = 0, and windows to follow start in the
middle of the previous one.

To select the activities that are included in the subproblem, we must look at their preemption type:

• For non-preemptive and partially preemptive activities, we include all activities for which the interval
[start, end] of the activity overlaps the time window. For these type of activities, we select the entire
activity to be rescheduled;

• For preemptive activities, we only include the time units of the activity that are executed within the
time window.

See Appendix E for an illustration of time window activity selection.

The scheduling horizon of the subproblem spans from the earliest start time to the latest end time of
selected activities. These start and end times must take into account the precedence relationships with
the activities that remain fixed. The fixed activities will also be reflected in the resources and technicians
availability. A small modification must be done for the objective function of the models proposed by
Polo-Mejı́a et al. (2020). Instead of always minimising the Cmax, we must try now to minimise the
average end time of activities, except when time window reaches the Cmax of the current solution, such
as time window TW3 in Figure E5-c. In the latter case, the objective function is still the minimisation of
Cmax. The new objective function associated to the activities included in TWq is:

min
∑
i∈TWq

Ci .

If after solving the subproblem we obtain a solution that can lead to improvement (at least the finish
time of one of the activities within the time window has decreased), we keep the subproblem solution and
insert it to the global problem solution. Using the greedy algorithm, we try to improve the scheduling of
activities to the right of the time windows. More precisely, the multi-pass greedy Algorithm 1 is called
on these activities, which has the effect to possibly shifting some of these activities to the left thanks to
the time slots left free by the activities of the subproblem. Making the schedule more compact may lead
to a makespan reduction.

Once these operations are performed, the time window is shifted to the right, and the process is re-
peated. The heuristic stops when the time window reaches the Cmax of the current solution.
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As a modification, a multi-sweep version of the algorithm can be carried out. After reaching the Cmax

of the current solution, the sliding time window is reset to the period twhere the first change between the
initial solution and the new one occurs. The time window starts to slide again until it reaches the Cmax.
The multi-sweep version stops after two iterations without improving theCmax. Algorithm 4 summarises
the proposed method.

Algorithm 4: LNS for the MSPSP-PP
1 Generate initial solution using the multi-pass greedy SGS (Algorithm 1);
2 if a feasible solution has been found then
3 Improvement← True;
4 Define initial time window;
5 while Improvement do
6 Select activities for the subproblem;
7 Construct subproblem;
8 Solve subproblem using the CP or MILP exact method (Polo-Mejı́a et al., 2020);
9 if Subproblem solution is improved then

10 Include subproblem solution in the global solution;
11 Reschedule the activities to the right of the current time window with multi-pass

greedy Algorithm 1
12 end
13 if Cmax is inside the current time window then
14 if Current Cmax is equal than previous one then
15 Improvement← False;
16 else
17 Return the time window to period t where first change happened (compared to

previous solution)
18 end
19 else
20 Shift time window to start at the middle of the previous one;
21 end
22 end
23 end

7. Computational experiments

For testing the performance of the proposed heuristic methods, we generate four sets of instances (A, B,
C, D) using a basic instance generation procedure that reflects some of the characteristics of a real nuclear
research facility. The procedure allows fixing aspects such as portions of preemption type, percentage of
activities with time windows, density of precedence relationships, and skill number per technician. Since
the portion of preemption type within an instance seems to have a great impact on problem complexity,
we analyse the behaviour of the proposed algorithms when this portion changes (see Table 1). As indi-
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cated before, the objective of this work is to use heuristic methods to solve problems of real industrial
size. Each of the four sets has a total of 50 instances, each of them with 50 activities to be scheduled
(average number of activities per week executed in the nuclear facility under study), and an expected
Cmax ranging from 130 to 170 time units (representing the total number of working hours in a week for
the nuclear laboratory). The duration of the activities is from 5 up to 15 time units; they may require up
to 15 skills and up to 8 cumulative resources (both following a discrete uniform probability distribution).
20% of the activities are subject to time windows. Each activity may have at most 3 successors. A total
of 8 technicians (multi-skilled resources) are available in 2 teams (out of 4 each) doing work-shifts of
12 hours. The skills mastered for each technician are also randomly generated, going from 5 up to 10
skills for each of them. For ensuring the feasibility of an instance, we use a trial and error approach,
generating first the instance with the random generator and proving then its feasibility (or not) using the
CP Optimizer solver and the CP model presented in Polo-Mejı́a et al. (2020).

Table 1
Distribution of preemption types for instances of the MSPSP-PP

Preemption type Set A Set B Set C Set D

Non-preemptive 10% 10% 80% 33.3%
Partially preemptive 10% 80% 10% 33.3%

Preemptive 80% 10% 10% 33.3%

The proposed heuristics are coded in the C++ programming language. To solve the flow problems, we
use an adapted procedure of the Edmonds-Karp algorithm proposed by Ababei (2009), which is coded
in the C++ programming language. To obtain a lower bound or, in some cases, optimal solutions, we use
the MILP and CP models proposed in Polo-Mejı́a et al. (2020) which are solved using CPLEX 12.7.1
and CP Optimizer 12.7.1 and limiting the solving time to 2 hours (using up to 16 threads and 64 GB of
RAM). All computational tests for the heuristics have been carried out using a machine under Ubuntu
16.04.6 operating system, equipped with an Intel Xeon E5-2695 processor running at 2.3 GHz, and RAM
limited to 16 GB.

7.1. Tree-based local search

We propose a multi-pass version using the priority rules presented in Section 3.3. We may argue that
the computational time for each priority list grows exponentially according the percentage of preemptive
activities. However, we control the exponential time complexity with the priority parameters. To get
faster results, we propose first to determinate the Cmax for every priority list using the multi-pass greedy
algorithm. Then, the local search algorithm is executed starting from the list with the smallest Cmax to
the one having the largest one, keeping always the best Cmax as upper bound for cutting branches.

We test the self-adaptive multi-pass version of the tree-based local search algorithm (Algorithm 2),
setting the values of π− and π+ to 10% and 80% respectively. We do not set any limit on the maximum
number of discrepancies (NBMAXDISCR = +∞). Note that we do not set any other stopping cri-
teria neither, since the fact of having a self-adaptive π allows us to perform the search in a reduced time
regardless of the instance characteristic. Table 2 shows the average gap values (percentage difference be-
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tween the obtained solution and the best known lower bound) for the multi-pass tree-based local search
algorithm. It also shows the average gap for the CP model after 5 minutes of computation using CP
Optimizer with only one thread. Results obtained with the MILP model are not shown since the solver
runs out of memory before giving any feasible solution. We observe that the self-adaptive configuration,
presented in this article, allows obtaining less variable average execution times for all sets of instances,
compared to those obtained in Polo-Mejı́a et al. (2019a). The tree-based local search algorithm outper-
forms the results obtained by the CP solver after 5 minutes of computing time for sets A, B and D,
being faster and giving lower average gap. However, for highly non-preemptive instances, set C, the CP
solver gives better results. This can be explained by the fact that, for highly non-preemptive instances,
the tree-based local search algorithm will explore less feasible solutions.

Table 2
Results for local search algorithm with self-adaptive π

Local search algorithm CP after 5 min
Average Average Average

gap execution time gap

Set A 4.03% 89.89 s 6.01%
Set B 4.78% 160.35 s 6.65%
Set C 8.77% 115.10 s 7.65%
Set D 4.30% 193.88 s 5.56%

All 5.46% 139.80 s 6.47%

7.2. GRASP

The GRASP algorithm is tested on the set of 200 instances. After testing different configurations for the
size of the elite solution set and the maximum number of feasible GRASP iterations, we fix these values
to 20 and 550, respectively. This decision is motivated by the objective of keeping the execution time
per instance below 90 seconds. In fact, for a fixed number of iterations, a bigger set of elite solutions
will increase the execution time, but will not improve significantly the quality of solutions. A smaller
set of elite solutions, on the other hand, will negatively impact the quality. To analyse the impact of
the intensification component, we test a basic GRASP version where this component is not taken into
account, and perform a maximum of 550 feasible GRASP iterations. For the local search phase, we use,
in both configurations, the self-adaptive version presented in Section 4 (Algorithm 2), fixing π− and π+

to 5% and 60%, respectively. The number of discrepancies by branch is limited toNBMAXDISCR =
1. Results are shown in Table 3.

We observe that the GRASP with intensification component (complete GRASP) gives a lower average
gap for all sets of instances. The p-values for the Wilcoxon Signed Rank Test (Scheff, 2016) show that
there is enough evidence to say that the intensification component improved the results obtained for
sets B (p-value=0.026) and D (p-value=0.017). For sets A (p-value=0.246) and C (p-value=0.1129),
the GRASP with intensification is in the worst case equal to its version without intensification. We can
then conclude that the intensification component helps to improve the quality of final solutions. Both
configurations outperform the CP results for sets A, B and D. CP remains better when the portion of
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Table 3
Results for the GRASP algorithm

Complete GRASP Basic GRASP CP after 5 min
Average Average Average Average Average

gap execution time gap execution time gap

Set A 2.21% 77.76 s 2.32% 73.31 s 6.01%
Set B 2.51% 88.75 s 2.77% 91.34 s 6.65%
Set C 8.26% 37.53 s 8.63% 35.94 s 7.65%
Set D 2.98% 71.22 s 3.30% 68.02 s 5.56%

All 3.99% 68.81 s 4.26% 67.15 s 6.47%

non-preemptive activities is high (set C).

7.3. LNS

We test our algorithm using different fixed lengths for the sliding time window, all of them depending of
the average duration (p) of activities within the instances: 0.5p, p, and 1.5p. The first issue we want to
study is the benefit of using CP or MILP to solve the optimisation subproblem; we then tested the single-
sweep version of the heuristic using both techniques. Note that we limit the number of threads used
by CPLEX and CP Optimizer to 1, and the maximum computing time expended on each optimisation
subproblem is 30 sec. The maximum computation time per instance allowed to the entire heuristic is
5 min. We use as an initial solution the best solution obtained by the multi-pass version of the greedy
algorithm (Algorithm 1). Results are presented in Table 4.

Table 4
Results for single-sweep LNS using MILP and CP

MILP CP
0.5p p 1.5p 0.5p p 1.5p

Average Average Average Average Average Average Average Average Average Average Average Average
gap time gap time gap time gap time gap time gap time

Set A 2.34% 23.36 s 2.18% 49.69 s 1.97% 164.9 s 3.47% 234.08 s 3.39% 311.09 s 3.45% 310.46 s
Set B 2.62% 231.77 s 3.05% 286.28 s 3.56% 312.54 s 4.69% 310.95 s 4.55% 308.33 s 4.60% 305.13 s
Set C 7.93% 56.95 s 7.85% 80.92 s 7.53% 173.17 s 8.20% 88.42 s 8.17% 80.48 s 7.95% 109.59 s
Set D 2.96% 102.12 s 2.87% 179.40 s 3.28% 281.73 s 4.32% 311.03 s 3.95% 312.93 s 3.94% 311.65 s

All 3.97% 103.56 s 3.99 % 149.07 s 4.09% 233.14 s 5.18% 236.12 s 5.02% 253.21 s 4.99% 259.21 s

We observe that the heuristic using MILP always gives a smaller average gap. It is also most of
the time faster than the heuristic using CP. The analysis of the results of all instances does not allow
to determine whether the length of the sliding time window has an impact on the quality of the final
solution or not. However, if we analyse the results for each set of instances, we observe that for sets A
and C (i.e. instances with a low portion of partially preemptive activities) a larger length of the sliding
time window reduces the final average gap for the MILP heuristic. On the other hand, if the portion of
partially preemptive activities is high (set B), the MILP heuristic gives better results when the length
of the time window is smaller. Larger time windows are expected to allow lower gaps, specifically
when dealing with a small number of preemptive activities. The more the number of non-preemptive
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activities, the higher the need of having wider time windows that contemplate entire activities and that
allows the MILP to reallocate resources more efficiently.

Table 5 presents the results for the multi-sweep version of the heuristic. We use MILP to solve the
subproblem, as it gives the best and fastest results, with an time limit for subproblem solution of 30
seconds. We test the algorithm using three time windows selection sizes: 0.5p, p, and 1.5p. We stop
algorithm’s execution after two complete sweep without improvement. In any case, the maximal time
allowed to the whole algorithm is 5 minutes. As expected, there is a small reduction of the average gap
for all sets of instances and all time windows length. For set A, we observe a similar behaviour to the
one observed during the single-sweep version, i.e. larger time windows lead to lower gaps. Instances
from sets B and D have lower average gaps when time windows are small. When compared against the
single-sweep version, the execution time is increased by 1.5 times on average, for a reduction of 12%
for the average gap.

Table 5
Results for multi-sweep LNS using MILP

Multi-sweep LNS using MILP
0.5p p 1.5p

Average Average Average Average Average Average
gap time gap time gap time

Set A 2.13% 47.59 s 1.83% 151.43 s 1.78% 296.94 s
Set B 2.44% 287.51 s 3.01% 312.89 s 3.56% 312.93 s
Set C 7.34% 99.26 s 7.67% 159.04 s 7.16 % 279.21 s
Set D 2.39% 191.59 s 2.64% 270.46 s 3.24% 310.87 s

All 3.58% 156.65 s 3.79% 223.46 s 3.94% 299.99 s

7.4. Combining GRASP and LNS

To improve the obtained results, we combine the GRASP algorithm with a single LNS iteration. We
execute first the complete version of the GRASP algorithm using the configuration described before.
The LNS algorithm (applying its MILP version) then improves the obtained solution on a single-sweep
(we decided to use the single-sweep since it gives a better ratio gap/execution time that the multi-sweep
version). We use a fixed time window length of 0.5p (since it gives the fastest results). Results are
presented in Table 6. We observe that combining GRASP and LNS significantly improves the quality of
the obtained solutions. This combination outperforms all the solutions obtained by the CP solver within
a limited time. Similar to the other proposed heuristics, this algorithm performs better when the portion
of non-preemptive activities is low.

7.5. Comparing all methods

Table 7 show a synthesis of the average execution times and average gaps for the different heuristic
methods proposed in this article. One observes that the execution time of the multi-pass greedy algorithm
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Table 6
Results for LNS after GRASP

GRASP + LNS (single-sweep) CP after 5 min
Average Average Average

gap execution time gap

Set A 1.56% 87.29 s 6.01%
Set B 1.79% 279.56 s 6.65%
Set C 6.68% 82.65 s 7.65%
Set D 2.06% 147.97 s 5.56%

All 3.02% 149.37 s 6.47%

Table 7
Results for all proposed algorithms

Gap Time (sec)
Set A Set B Set C Set D All Set A Set B Set C Set D All

Multi-pass greedy algorithm 5.51% 6.14% 12.79% 6.51% 7.74% 0.2 0.3 0.4 0.3 0.3
Tree-based local search 4.03% 4.78% 8.77% 4.30% 5.46% 89.9 160.4 115.1 193.88 139.8

Complete GRASP 2.21% 2.51% 8.26% 2.98% 3.99% 77.8 88.8 37.5 71.2 68.8
LNS (MILP) Single-sweep (0.5p) 2.34% 2.62% 7.93% 2.96% 3.97% 23.4 231.8 56.9 102.1 103.6
LNS (MILP) Multi-sweep (0.5p) 2.13% 2.44% 7.34% 2.39% 3.58% 47.6 287.5 99.3 191.6 156.7

GRASP + LNS 1.56% 1.79% 6.68% 2.06% 3.02% 87.3 279.6 82.7 147.9 149.4
CP (1 thread) 6.01% 6.65% 7.65% 5.56% 6.47% 300 300 300 300 300

is significantly lower than all other approaches. However, its average gap is the highest (7.74%) — a
typical behaviour given the simplicity of the method. The GRASP method gives the best compromise
between execution time and average gap. This method has the second smallest average execution time
(68.81 sec) and an average gap of 3.99%. When compared to the approach giving the smallest gap
(GRASP + LNS single-sweep), the GRASP is twice faster; and its average gap is only 30% away from the
best average gap value. The tree-based local search, on the other hand, gives the worst trade-off between
time and quality. This algorithm is slower and results in a worse average gap than the GRASP and LNS
single-sweep methods. Even if the local search algorithm is 1.1 times faster than the GRASP+LNS,
its average gap is 79% worse than the average gap of the GRASP+LNS algorithm. However, it largely
improves the results of the greedy algorithm and it is also a key component of the efficient GRASP
approach.

7.6. Comparing iterative methods within a time budget

The GRASP, LNS, and the hybrid GRASP+LNS procedures are iterative methods that can be stopped
with a time limit criterion. To fairly compare these methods, we perform them with a global 300 sec time
limit. The results, in terms of average gap from the best known solution on each instance family, and
the number of times each method is able to reach the best known solution on each instance family, are
displayed in Table 8. For the hybrid GRASP+LNS approach, we test different combinations to meet the
global 5 min time budget. The results show that LNS performs better than the GRASP under this budget.
The best combination is the hybrid approach using 2 min for the GRASP and 3 min for LNS or 1 min for
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the GRASP and 4 min for LNS. The improvement upon the CP method is much larger for all instance
families, including the strongly non-preemptive ones, when the methods are given the same time budget.

Table 8
Results for the proposed iterative algorithms within a 300 sec time budget

Gap Number of best solutions found
Set A Set B Set C Set D All Set A Set B Set C Set D All

Complete GRASP 2.07% 2.21% 7.43% 2.86% 3.65% 5 20 11 9 45
LNS (MILP) Multi-sweep (0.5p) 1.25% 2.24% 6.79% 2.18% 3.13% 20 13 17 23 73

GRASP (240s) + LNS(60s) 1.35% 1.97% 6.16% 2.17% 2.92% 17 20 28 22 87
GRASP (180s) + LNS(120s) 1.14% 1.95% 5.89% 1.99% 2.75% 25 21 34 26 106
GRASP (120s) + LNS(180s) 0.91% 1.66% 5.83% 1.90% 2.58% 33 28 35 29 125
GRASP (60s) + LNS(240s) 0.83% 1.90% 5.83% 1.92% 2.63% 37 25 35 31 128

7.7. Experimental results on standard MSPSP instances from the literature

Since the GRASP algorithm provides the desired compromise between execution time and average gap,
we test its performance on conventional MSPSP instances. To that purpose, we need to make a few
changes to the greedy algorithm (Algorithm 1) which is used by the GRASP and also by the tree-based
local search method (Algorithm 2) used inside GRASP. The MCMF problem has to be changed in two
ways: first there is no need to include the L+ 1 skill node as there is not a minimum number of required
operators. Second, one operator must be allocated to at most one skill. This is simply achieved in the
MCMF model by setting the maximal capacity of the arc issued from the operator to the sink to 1. Also, in
the search for feasible intervals, the condition for operator allocation feasibility at line 17 of Algorithm 1
is not sufficient anymore and the feasibility of the MCMF problem must be checked instead.

We use as reference the instances and results presented by Young et al. (2017). The instances are
decomposed into four sets. The instances of Set 1A, generated with the same parameters as the instances
proposed by Correia et al. (2012), have 22 activities, 4 skills and from 10 to 30 resources. Set 1B is
generated using the parameters of the instance set originally proposed by Almeida et al. (2016) and it
contains instances with 42 activities, 4 skills and from 20 to 60 resources. Sets 2A, 2B and 2C are taken
from Montoya et al. (2014) and the instances have from 20 to 62 activities, from 2 to 15 skills and from
5 to 19 resources.

Table 9 shows the results obtained by our GRASP algorithm. All the parameters used for solving the
literature instances, are the same as presented for the complete GRASP in Section 7.2 Column “Gap for
GRASP” provides the average gap from the best known solution (Young et al., 2017) on the different
instance sets. For instances of Set 1A and Set 1B, GRASP is able to find solutions with an average gap
smaller than 3%. Regarding the instances of Set 1B, the GRASP algorithm is 3.5 times faster than the
algorithm proposed by Young et al. (2017)2. In addition, the GRASP algorithm is also able to improve
56 of the best solutions ever found within this set. For instances in Sets 2A, 2B and 2C, our algorithm

2Their experiments were run on a PC with an Intel i7 2600 CPU 3.4 GHz and 8 GB of memory, which represents a computer
architecture comparable with ours.
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give solutions3 with average gap lower than 5.3%.
This demonstrates the quality of the proposed algorithm, even for the particular case of the considered

problem. The use of a memory intensification component, mostly missing in the heuristics proposed for
the MSPSP, is the key factor for the success of our GRASP algorithm on these standard instances. The
inclusion of this component improves the quality of solutions, as demonstrated in Section 7.2.

Table 9
Results for the MSPSP instances of Young et al. (2017)

Execution time (sec)
Gap for GRASP GRASP Young et al. (2017)

Set 1A 2.8% 40.3 0.5
Set 1B 2.3% 151.1 536.3
Set 2A 4.7% 67.6 196.6
Set 2B 4.3% 58.9 122.8
Set 2C 5.21% 68.6 1.2

8. Concluding remarks

In this article, we presented various heuristic and metaheuristic methods for solving the multi-skill
project scheduling problem with partial preemption (MSPSP-PP). Initially, a greedy algorithm was
proposed. At each iteration, the greedy algorithm decomposed the MSPSP-PP into two subproblems:
scheduling and resource allocation. For the scheduling part, a priority rule was used. The allocation sub-
problem was solved using a minimum-cost maximum-flow problem. Computational tests showed that
the greedy algorithm allows obtaining solutions (in time lower than 1 second) that are close to the ones
obtained by a CP solver after 5 min of computing.

A tree-based local search algorithm, partially inspired by limited discrepancy search, was also pro-
posed to improve the solutions obtained by the greedy algorithm. The self-adaptive version of this local
search algorithm allowed obtaining solutions with an average gap of 5.5%.

A greedy randomised adaptive search procedure (GRASP), combining the greedy and local search
algorithms, has been then introduced. The proposed GRASP included some components looking for an
improvement of the solution feasibility, and the use of characteristics of best found solutions to bias the
generation of new solutions (intensification). The GRASP provided good results during the computa-
tional test, being able to obtain solutions with an average gap of only 4%. The use of intensification in
the GRASP showed an improvement of the quality of solutions when the portion of partially preemptive
activities is high. The GRASP was the method giving the best trade-off between execution time and
solution quality.

Finally, an LNS-algorithm was also proposed. The LNS scheme hybridises the greedy algorithm with
the exact resolution of an optimisation subproblem. Computational tests showed that the use of MILP
for solving the optimisation subproblem allowed obtaining better solutions faster (compared with the
use of CP for the subproblem exact resolution). The LNS method allowed obtaining solutions with an

3These solutions are publicly available at: https://homepages.laas.fr/lopez/PUBLIC/ImprovedYoungSolutions.zip .
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average gap of 3.5%. Executing LNS after GRASP provided better results (average gap of 3%), largely
outperforming the results of the CP solver (with time limited to 5 min).

To validate our approach we slightly modified the components used in the GRASP heuristic to be
able to deal with standard MSPSP instances. On the instances proposed by Young et al. (2017), the
GRASP remains under an average gap of 5.21% from the best known solution and is able to find 56 new
best solutions in a reasonable time. All proposed methods were negatively affected by a high portion of
non-preemptive activities (higher average gaps).

Further research should be carried out to improve the quality of solutions when this portion of non-
preemptive is substantial. Special attention must be given to the study of a better local search algorithm
since it plays an important role in all the proposed methods. The local search algorithm proposed in
this article has an exponential time complexity. In addition, we cannot guarantee that it always finds
the local optimum of the neighbour. The parallelisation of our methods is another way of improvement,
since it will allow reducing the execution time or increasing the number of generated solutions and the
size of the explored neighbours without increasing the current execution time (Alba, 2005). Finally,
a worthwhile research direction would be to consider two-phase heuristics where the schedule of all
activities satisfying renewable resource requirements is solved first and operator allocation is carried out
in the second phase which is the principle of the method proposed by Bellenguez-Morineau and Néron
(2007).
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Appendix A: An MSPSP-PP instance (running example)

Table A1 illustrates an example of an MSPSP-PP instance with four activities (A1, A2, A3, A4), a single
resource (R1), two operators (O1, O2) and four skills (l1, l2, l3, l4). Note that this example will serve as
a running example throughout the paper. All activities require 1 unit of resource R1. A1 is preemptive,
A2 and A4 are non-preemptive and A3 is partially preemptive in the sense that R1 cannot be released
during its preemption. Processing times, release dates, and deadlines are also displayed, if any. Skill
requirements are given so that only non-zero requirements are displayed, i.e. a11 = a23 = a24 = a32 =
a43 = 1. We assume that each activity requires at least one operator q1 = q2 = q3 = q4 = 1. The skills
mastered by the operators are also given with m11 = m13 = m21 = m22 = m24 = 1. Resource R1 has
capacity B1t = 2,∀t ∈ T .

A feasible solution with makespan 7 is shown in Figure A1. At the left part of the figure, an activity-
oriented Gantt chart gives the execution periods of each activity. For the partially preemptive activity A3

the light-yellow interval corresponds to the time period where the activity is preempted while resource
R1 is not released. The resource-oriented Gantt chart of the right part indicates the resource and operators
occupation by the activities. At time period 3, the non-preemptive activity A2 must be started to meet
its deadline. The activities A1 and A3 must be preempted since the required skill l3 is only mastered by
operator O1 and l4 only by operator O2. The Gantt chart shows that, contrarily to operators O1 and O2,
resource R1 is not released during this preemption, which illustrates the concept of partial preemption.
At period 6, A4 can start and operator O1 is the only one mastering skill l3, required by the activity.
Thus, operator O1 switches to A4 while O2 switches to A1 as it also masters skill l1. This illustrates the
possibility to change the operators at any time for preemptive or partially preemptive activities.

Another specific feature of our problem is that there is no constraint that prevents an operator from
being employed for several skills simultaneously. Assume for instance that operatorO2 masters also skill
l3 in the example from Table A1. Then, since the minimum number of required operators for activity
A2 is q2 = 1, both skills l3 and l4 could be covered by operator O2. There is a decoupling between the
number of required operators for each skill and the global minimum number of required operators for a
task. This is motivated by the industrial context of our study. However, the standard MSPSP constraint
that only a single operator can be used for a single skill at a given time can easily be incorporated in our
models and algorithms (see our results on the standard MSPSP in Section 7.7).
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Table A1
An instance for the multi-skill project scheduling problem with partial preemption (MSPSP-PP)

Activity Duration (Required skill, (Required resource, Deadline Release Type
Quantity) Quantity) date

A1 5 (l1, 1) (R1, 1) – – P

A2 1 (l3, 1), (l4, 1) (R1, 1) 3 3 NP

A3 3 (l2, 1) (R1, 1) – – PP
(R1 cannot

be released: ρ31 = 1)

A4 2 (l3, 1) – – 6 NP

Operator Mastered skills Resource Capacity

O1 {l1, l3} R1 2

O2 {l1, l2, l4}

72 2 3 4 5 6 713 4 5 61

A3

A2

A1

O2

O1

A4

R1
A1 A1

A2

A2

A2

A3

A1

A1

A4

A3 A3

A1

Fig. A1. A feasible solution for the instance from Table A1

Appendix B: Serial SGS illustration

We illustrate an iteration of the greedy algorithm for the Table A1/Figure A1 example. We consider a
stage of the greedy algorithm where all activities shown in Figure A1 are scheduled except preemptive
activity A1 and activity A4. Hence, the timetable I is made of intervals I1 = J1, 2K with operator
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availability Ā11 = 1, Ā21 = 0, B̄11 = 1, I2 = J3, 3K with Ā12 = Ā22 = B̄12 = 0, I3 = J4, 4K with
Ā13 = 1, Ā23 = 0, B̄13 = 1, I4 = J5, T K with Ā14 = 1, Ā24 = 1, B̄14 = 2.

Activity A1 requires skill l1 which is mastered by both operators O1 and O2. Given that A1 re-
quires also one time unit of resource R1, the serial SGS would schedule A1 over intervals Ti =
{J1, 2K, J4, 4K, J5, 6K}. Now the MCMF algorithm is applied on each of these intervals to allocate the
operators. Figure B2 displays the minimum-cost maximum-flow problem for allocating operators O1

and O2 in interval J5, 6K. Values above the arcs are the arc capacities while the values below the arc
are the arc cost. Node l5 corresponds to the dummy skill for obtaining at least q1 = 1 operator.
The operator criticality costs are computed using correlation factors g11 = |{l1} ∩ {l1, l3}| = 1 and
g12 = |{l1} ∩ {l1, l2, l4}| = 1. Then the criticality of operator 1, which may be required by the unsched-
uled activity A4, is equal to c1 = p4g41/g11 = 2 while the criticality of operator 2, which is no more
required, is c2 = 0. Hence in this situation the serial SGS would allocate operator O1 to A1 in interval
J5, 6K. Note that the schedule shown in Figure A1 rather corresponds to orderA2,A3,A4,A1 as operator
O1 is selected in interval J5, 6K, being in this case of criticality 0.

0

l1

l5

O1

O2

*

1
0
1
0

1
01

0
1
0

1
0

1
2
1
0

Fig. B2. An MCMF problem for operator allocation

Appendix C: Tree-based local search illustration

C.1. Local search tree

Let us take again the example proposed in Table A1, and suppose we have started our algorithm by
scheduling activity A2 at time r2 = 3 (no alternative is possible for A2 assignment to the operators).
Now the next activity to be scheduled is the preemptive activity A1. The greedy SGS selects for A1

execution intervals Ti = {J1, 2K, J4, 6K}. Let us compute the operator criticality indicator to determine
the preferred allocation for each interval. As already established, correlation indicators for operator 1
are such that g11 = g41 = 1 and g31 = 0. For operator 2, we have g12 = g32 = 1 and g4,2 = 0. It
follows that the operator criticalities are c1 = p4 = 2 and c2 = p3 = 3. Hence operator O2 is the
most critical operator, which means that at this iteration the preferred allocation for A1 is O1. As we
have two intervals in T1, this yields 22 operator allocations, which can be sorted by preference order:
{{O1}, {O1}}, {{O1}, {O2}}, {{O2}, {O1}}}, {{O2}, {O2}}}. The process can be recursively applied
to build a search tree enumerating different possible operator allocations and resulting schedules. The
method remains a heuristic as the activity selection process follows a priority rule. Figure C3 displays the
search tree in case the greedy algorithm selects the first three activities in the order A2, A1, A3. Selected
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intervals Ti are depicted near each branch and the selected allocation for each of them is displayed inside
the node. Nodes are numbered in the order of exploration in a depth-first search. We see the impact
of operator allocation on the schedule by remarking that intervals selected by activity A3 depend on the
availability of operatorO2. Hence the method can be seen as a tree-based local search based on a priority
rule used to select the activities.

root0

{O1, O2}1

{O1}, {O1}2 {O1}, {O2}4 {O2}, {O1}6 {O2}, {O2}8

{O2}, {O2}3 {O2}, {O2}5 {O2}7 {O2}9

A2 J3, 3K

A1 J1, 2K,J4, 6K

A3 J1, 2K , J4, 4K J1, 2K , J7, 7K J4, 6K J7, 9K

Fig. C3. Local search tree

C.2. An equivalent binary tree

The binary search tree equivalent to the tree of Figure C3 is displayed in Figure C4. We see that the
four alternative operator allocations (nodes 2, 4, 6, 8 in Figure C3) for activity A1 that is preemptively
scheduled in two execution intervals J1, 2K and J4, 6K can be enumerated by a binary tree of 6 nodes and 4
leaves starting for the 2 possible allocations for the first execution intervalA1,1 and then enumerating for
each of them the 2 possible allocations for the second execution interval A1,2. Suppose that the maximal
depth of binary tree is ∆max = 4, the probability of node 4 is π(1 − 3/∆max) = π/4 as the depth of
the alternative allocation {O2} for interval J4, 6K of A1 in the binary tree is 3. The probability of node 6
is π(1− 2/∆max) = π/2, which is lower as the alternative {O2} appears deeper in the binary tree. The
probability of node 8 is the product of the latter two, i.e. π2/8.

root

{O1, O2}

{O1} {O2}

{O1} {O2} {O1} {O2}

{O2}, {O2} {O2}, {O2} {O2} {O2}

A2 J3, 3K

A1.1 J1, 2K

A1.2 J4, 6K

A3 J1, 2K , J4, 4K J1, 2K , J7, 7K J4, 6K J7, 9K

Fig. C4. Binary local search tree equivalent to the non-binary tree of Figure C3
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Appendix D: Illustration of an iteration of Algorithm 2

Let us illustrate an iteration of Algorithm 2 for the Table A1/Figure A1 example. We assume that the
node extracted from N at line 5 corresponds to the partial schedule including only activity A2. The
information carried by the node is the following: unscheduled activities Q = {A1, A3, A4}, partial
schedule T2 = {J3, 3K}, operator allocations O2 = {O1, O2}, timetable I with 3 intervals: interval
I1 = J1, 2K with operator availability Ā11 = Ā21 = 1, B̄11 = 2, I2 = J3, 3K with Ā12 = Ā22 =
B̄12 = 0, I3 = J4, T K with Ā13 = A23 = 1, B̄13 = 2. Moreover, the depth is ∆ = 1 and the number
of discrepancies is #discr = 0. Suppose that activity A1 is selected from being scheduled at step 6.
As already established, there are two execution intervals computed by Algorithm 1 at line 7, which are
T1 {J1, 2K, J4, 6K} and the preferred and alternative operator allocation are the same for both intervals
O11 = O12 = {O1} and O′11 = O′12 = {O1}. We illustrate how the binary search tree will enumerate
the allocations. The initial node in B popped at line 16 is such that r = 0 and #ldiscr = 0. Therefore
the interval index r is set to 1 at line 22, and we assume that the random number obtained at line 23
exceeds the probability 2π/∆max. Consequently, the allocationO11 for interval 1 is set to the alternative
allocation O2 and the first right child node (r = 1,O11 = {O2},#ldiscr + 1 = 1) is pushed to B
(line 25), assuming NBMAXDISCR > 1. The allocationO11 for interval 1 is set to the preferred one
{O1} and the first left child node (r = 1,O11 = {O1},#ldiscr = 0) is pushed to B (line 28). At the next
iteration, the same node is popped from B and r is set to 2 at line 22. We still assume that the random
number obtained at line 23 exceeds the probability 3π/∆max, hence the allocation O12 for interval
r = 2 is set to the alternative allocation O2 and the second right child node (r = 2,O11 = {O1},O12 =
{O2},#ldiscr+ 1 = 1) is pushed to B. The allocationO12 for interval r = 2 is then set to the preferred
one {O1} and the second left child node (r = 2,O11 = {O1},O12 = {O1},#ldiscr = 0) is pushed
to B. At the next iteration, this node is popped from B and since r = 2 we have a leaf node of the
binary tree. We consequently push a new node in the temporary stack N temp with updated information
(Q = {A3, A3}, T2 = {J3, 3K}, O2 = {O1, O2}, T1 = {J1, 2K, J4, 6K}, O11 = {O1}, O12 = {O1},
I1 = J1, 2K, I2 = J3, 3K, I3 = J4, 6K, I4 = J7, T K, Ā11 = 0, Ā21 = 1, B̄11 = 1, Ā12 = Ā22 = B̄12 = 0,
Ā13 = 0, Ā23 = 1, B̄13 = 1, Ā14 = A24 = 1, B̄14 = 2, δ = 3, #discr = 0). This corresponds to the
node child where all preferred operator allocations are selected for the intervals of activity A1. The next
popped node from B is also a leaf node of the binary tree (r = 2,O11 = {O1},O12 = {O2}). Thus,
another node is pushed to N temp, corresponding to the preferred allocation for the first interval and the
alternative allocation for the second interval. The process ends when all 22 nodes are inserted in N temp

(or discarded due to the probabilities). Then, all nodes of N temp are pushed to N in reverse order to
ensure that the node with all preferred allocations shall be popped first.

Appendix E: Time window activity selection for large neighborhood search

Let us take the solution proposed in Figure A1 for the MSPSP-PP example of Table A1. Let suppose
we use a time selection window with size 4 time units. The first time window (TW1) will go from 1
to 4 (Figure E5-a), activities A2 and A3 are completely within TW1, they will thus be included in the
optimisation subproblem. Activity A1 is preemptive, we choose then only the 3 time units within TW1.
Activity A4 is outside TW1 and thus not included in the optimisation subproblem. Once solved the
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optimisation subproblem (let suppose for our example no amelioration was found), we must shift the
time window to the right, and put its start at the middle of the previous one. In our example, the second
time window (TW2) will go then from 3 to 6 (see Figure E5-b). Activities A3 and A4 are partially
included within TW2, however, since they are non-preemptive and partially-preemptive respectively, the
whole activities must be included in the optimisation subproblem. Activity A2 is also totally included,
while for activity A1 only the last three time units are included in the optimisation subproblem. Once
again, after solving the optimisation subproblem, shift to the right the time windows (Figure E5-c) and
repeat the selection and solution actions.

Fig. E5. Time window activity selection
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