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Abstract1

How the brain determines the vigor of goal-directed movements is a fundamental question2

in neuroscience. Recent evidence has suggested that vigor results from a trade-off between3

a cost related to movement production (cost of movement) and a cost related to our brain’s4

tendency to temporally discount the value of future reward (cost of time). However, whether it5

is critical to hypothesize a cost of time to explain the vigor of basic reaching movements with6

intangible reward is unclear because the cost of movement may be theoretically sufficient for7

this purpose. Here we directly address this issue by designing an isometric reaching task whose8

completion can be accurate and effortless in prefixed durations. The cost of time hypothesis9

predicts that participants should be prone to spend energy to save time even if the task10

can be accomplished at virtually no motor cost. Accordingly, we found that all participants11

generated substantial amounts of force to invigorate task accomplishment, especially when12

the prefixed duration was long enough. Remarkably, the time saved by each participant was13

linked to their original vigor in the task and predicted by an optimal control model balancing14

out movement and time costs. Taken together, these results supports the existence of an15

idiosyncratic, cognitive cost of time that underlies the invigoration of basic isometric reaching16

movements.17

New and Noteworthy18

Movement vigor is generally thought to result from a trade-off between time and motor costs.19

However, it remains unclear whether the time cost only modulates vigor around some nominal20

value explained by a minimal motor cost or whether it determines movement invigoration more21

broadly. Here, we present an original paradigm allowing to neutralize the cost of movement, and22

provide new evidence that a cost of time must underlie the invigoration of isometric reaching23

movements.24

Introduction25

Understanding the principles underlying movement invigoration is an important topic in neuro-26

science given its potential implications for disorders such as Parkinson’s disease (Mazzoni et al.,27

2007). Parkinsonian patients typically suffer from bradykinesia (Berardelli et al., 2001), an overall28

movement slowness which is related to a dysfunction of the basal ganglia (Turner and Desmurget,29

2010; Dudman and Krakauer, 2016; Robbe and Dudman, 2020). Vigor generally characterizes the30

preferred speed of movement, which has been experimentally quantified through the –idiosyncratic–31

increase of velocity and duration as a function of distance in simple point-to-point movements.32

Large differences in vigor were reported across individuals but, remarkably, these differences were33
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consistent between/within sessions or between movement modalities (e.g. head vs hand move-34

ments, dominant vs non-dominant reaching or vs walking Reppert et al., 2018; Berret et al., 2018;35

Labaune et al., 2020). While biomechanical factors may of course play a role, inter-individual dif-36

ferences of vigor were primarily attributed to psycho-economical processes that reflect a trait-like37

feature of individuality (Shadmehr et al., 2016; Berret et al., 2018; Shadmehr et al., 2019; Carland38

et al., 2019; Shadmehr and Ahmed, 2020a). The main results point to a cost of time related to the39

brain’s tendency to discount the value of delayed rewards (Shadmehr et al., 2010; Haith et al., 2012;40

Rigoux and Guigon, 2012; Choi et al., 2014; Berret and Jean, 2016). Assuming that the goal of any41

movement is to put the system in a more rewarding state (Shadmehr, 2010), moving slowly would42

decrease the subjective value of reward and would thus be avoided in the control of goal-directed43

actions. This principle has been formalized in optimal control theory by using a cost of time that44

explicitly penalizes the passage of time (Hoff, 1994; Berret and Jean, 2016), thereby compensating45

for the inability of classical trajectory-formation models to account for the duration of self-paced46

movement (e.g. Flash and Hogan, 1985; Uno et al., 1989; Berret et al., 2011). Together with other47

model-based studies linking vigor to a global background signal representing the opportunity cost48

of time (average rate of reward or capture rate, Niv et al., 2007; Yoon et al., 2018), this suggests49

that a time cost could be the cornerstone of movement invigoration (Fig. 1A).50

However, a cost of movement alone may be theoretically sufficient to explain our preferred speed51

(Fig. 1B). Objective measures of the cost of movement have shown that metabolic energy expen-52

diture increases at both low and fast speeds, which is a well-known result for walking that seems53

to be valid for arm reaching as well (Ralston, 1958; Huang and Ahmed, 2012; Shadmehr et al.,54

2016). Furthermore, people may be reluctant to move slowly for physiological reasons related to55

the properties of the underlying control system (Park et al., 2017; Guigon et al., 2019). Endpoint56

variance tends to increase at both fast and slow speeds due to the effects of signal-dependent and57

constant motor noise unless efficient feedback corrections are triggered by the central nervous sys-58

tem (Wang et al., 2016). Effort and variance are two fundamental features of sensorimotor control59

that are thought to compose the cost of movement (Todorov and Jordan, 2002; Liu and Todorov,60

2007; Gaveau et al., 2014, 2021; Berret and Jean, 2020). Interestingly, using a cost of movement61

was sufficient to explain the speed/accuracy trade-off –Fitts’ law– (Harris and Wolpert, 1998; Qian62

et al., 2013) and the increase of velocity and duration as a function of distance in point-to-point63

movements from mechanistic reasons only (van Beers, 2008; Berret et al., 2021). In this case,64

existing inter-individual differences of vigor would result from discrepancies in the subjective cost65

of movement represented by people and biomechanical factors, and the cost of time would explain66

changes of vigor around a certain nominal value in response to modulation of reward or urgency67

(Takikawa et al., 2002; Reppert et al., 2015; Manohar et al., 2015; Thura, 2020). Yet, it has been68

recently suggested that the cost of movement could be itself discounted over time (Shadmehr et al.,69

2016; Summerside et al., 2018) such that movement vigor would essentially reveals “how much we70

value the things we are moving toward” (Shadmehr and Ahmed, 2020a,b). Because of this uncer-71

tainty about the cost of movement actually represented by subjects, the role played by the cost72

of time in daily actions with intangible rewards remains putative. Hence, does the cost of time73

mainly serve to modulate vigor around some nominal value defined by a minimum movement cost,74

or does it broadly set movement invigoration?75

76

The goal of the present study was to clarify this issue by neutralizing the cost of movement77

experimentally. To this aim, we designed an isometric pointing task whose completion could78

be accurate and effortless in prefixed durations. This is like an airport treadmill that carries79

travelers to their destination in more or less time depending on whether they stand still or walk80

on it. Here participants had to control a cursor on a screen via a force applied onto an isometric81

joystick. A baseline condition was first tested to characterize the behavior of participants in such82

an isometric reaching task where the reward –if any– is intangible, and estimate their original83

vigor. In a second condition, the cursor was moved by an external drive such that the task could84

be accomplished successfully in a certain duration without any participant intervention. If time85

matters in the control of this isometric reaching task, we predicted that the participants should86

exert a substantial amount of force onto the joystick to save time, especially when the drive duration87
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Figure 1: Vigor prediction for the different hypotheses. A. Prediction of vigor within the cost
of time hypothesis. The preferred duration of a given point-to-point movement (here 3.1 s) is
obtained as a trade-off between a cost of movement (blue trace) and a cost of time (red trace).
Note that the cost of movement could possibly increase for longer durations (dotted blue trace).
B. Prediction of vigor using the cost of movement alone (alternative hypothesis). The preferred
duration is the same and the two hypotheses are indistinguishable in this baseline condition. C.
Prediction of movement vigor within the cost of time hypothesis in presence of an external drive.
The assisting drive (here executing the task in duration Td=4 s) reshapes the cost of movement
such that the task can be accomplished with a smaller movement cost for durations shorter than
the drive duration, and at no movement cost for longer durations. Due to the drive and the cost
of time, the preferred duration will be shorter than the initial duration (here 2.7 s). D. Prediction
of vigor using a cost of movement alone in presence of an external drive. Again, the drive reshapes
the cost of movement so that the preferred duration will be that of the drive because increasing
speed would result in energy expenditure anyway. In this scenario, the preferred duration will be
longer than the initial duration (here 4 s). This illustrates that the two hypotheses make distinct
predictions depending on whether the cost of time plays a predominant role in the invigoration of
reaching actions without tangible reward.
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is long enough according to the cost of time hypothesis (Fig. 1C). Furthermore the time savings of88

each participant should be related to their original vigor in the task if it reflects how they implicitly89

value task accomplishment. In contrast, if time does not matter and vigor is essentially determined90

by a cost of movement in this task, participants should favor restful strategies even for a relatively91

long drive duration (Fig. 1D). Indeed, this would be the optimal behavior with respect to the92

minimization of any cost of movement, whether related to energy, inaccuracy or other factors.93

Materials and Methods94

Participants95

The experiment included 15 participants (7 females, mean age ± SD: 27±7). All participants were96

contacted through a mailing list of persons who volunteer to do experiments at the Italian Institute97

of Technology and were paid 10 euros for the participation. All participant were naive with respect98

to the goal of the experiment and signed a written informed consent. The experimental protocol99

was approved by the local ethical committee (C.E.R. Liguria, P.R.063REG2016).100

Experimental methods101

Experimental apparatus The experimental setup comprised an isometric joystick that mea-102

sured the force applied by the participant on it with a 6-dof force/torque sensor (Mini 45, ATI)103

and a screen (dimension 19 inch) in front of the participant (distance 65 cm). The joystick was104

connected to a computer via a digital acquisition card (USB-6211, National Instrument). The force105

was sampled at 10 kHz and filtered on-line by fitting a linear regression line to the most recent106

160 samples. A custom C++ program simulated the cursor dynamics at 1 kHz and updated its107

position on the screen at 60 Hz. The force and system state (position, velocity and external drive)108

were saved at 60 Hz.109

Task The participant sat in front of the table with the experimental setup and grasped the110

joystick with the right hand and the elbow bent at 90 degree angle. The goal of the task was111

to move a cursor from its home position to the target displayed on the screen by pushing the112

isometric joystick (see Fig. 2). Importantly, participants were always instructed to move the cursor113

at their preferred velocity. For simplicity the cursor was restricted to move only along the y-axis114

(bottom-up axis on the screen).115

116

The experiment was divided into two sessions that were executed one after the other on the same117

day. The first experimental session (Session 1) served as a baseline condition from which the118

vigor and the cost of time of each participant were inferred. This session included four movement119

distances and no assistance was provided (amplitude 0.1, 0.2, 0.3 and 0.4 of screen size [height:120

25.5 cm]). The goal of this session was to find out the movement time corresponding to each121

amplitude, compute nominal vigor scores for each participant and identify the cost of time that122

would predict these movement times, given a cost of movement based on effort (Berret and Jean,123

2016). There were 20 repetitions for each amplitude, thus yielding 80 trials in this session. The124

order of presentation of movement amplitudes was randomized. The second session (Session 2)125

included two movement distances (0.2 and 0.4). Importantly in this session, an external drive that126

generated biological movements reaching the target in different durations (Td = 1, 2, 4 or 6 s) was127

added to the cursor dynamics (see next paragraph).128

An illustration of a trial from the participant’s perspective is given in Figure 2. Each trial started129

with the display of the target and the initial cursor’s position. The participants freely initiated130

the force and trajectory recording, and in the second session the external drive, by pushing the131

space bar. They were told to avoid pushing the joystick before this event. The self-starting of the132

recording was necessary in the second session to start the external drive and allow strategies that133

did not require the participant to push the joystick at all. The motion and recording terminated134

when the target was reached according to position and velocity thresholds defined below. The135
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Figure 2: Trial structure from the participant’s perspective. Each trial started with the display of
the target on the screen and an invariant initial cursor’s position. By pressing the space bar, the
participant self-started the recording of the data and made it possible to accelerate the cursor by
applying forces on the isometric joystick. In Session 2, this event also started the drive and so the
cursor’s displacement. The motion and recording terminated when the target was reached. The
next trial with a new target occurred after a few seconds.

participant could start the next trial after completing the previous movement only if 3.5 seconds136

had elapsed from the beginning of the previous trial in order to limit the pace of the experiment137

when there was a strong external drive which led to very short trials. In Session 2, participants138

were aware of the presence and characteristics of the drive because each block started with two139

trials (one per amplitude) with a message on the screen instructing them to watch the cursor being140

moved to the target by the external drive in duration Td. In this session, the participants were still141

instructed to move the cursor at their preferred velocity and to avoid pushing the joystick before142

pressing the space bar. There were 20 repetitions for each condition of amplitude and drive, thus143

yielding a total of 160 trials in this session. The task was executed from the slowest to the fastest144

drive with the amplitude randomized within each block. In Session 2, we used a block-wise design145

to ensure that the participant was fully aware of the characteristics of the drive. The participants146

were informed about this block-wise design without being told that the assistance will shift from147

slow to fast.148

Cursor Dynamics The cursor dynamics along the y-axis was as follows:149

mÿ = fs − vẏ (1)

where m = 25 kg and v = 10 kg/s are the simulated mass and damping of the virtual system.150

These values were chosen during preliminary experiments to induce comfortable behaviors and151

force levels.152

The force fs (measured by the force sensor on the y-axis) was the external force applied by the153

participant on the cursor. Hence, the force applied by the participant directly affected the cursor154

acceleration. The goal of the task in Session 1 was to move the cursor to a target (1.275 cm width,155

that is, 0.05 of screen’s height), yf , from a given home position, y0, at the participant’s preferred156

speed.157

Choice of external drive When an external drive was added, the cursor’s dynamics was mod-158

ified as:159

mÿ = fd + fs − vẏ (2)

where fd is the external action implemented by an external controller.160
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We noted in preliminary data that participants normally executed this isometric reaching task161

using bell-shaped velocity profiles. Therefore, we implemented an external drive as an optimal162

feedback control law that allowed to reach the target in a desired duration, Td, with bell-shaped163

velocity profiles.164

To this aim, we considered a minimum force change model as it predicts smooth, bell-shaped165

velocity profiles (Uno et al., 1989). We noted this optimal control ud which was the solution of the166

optimal control problem described hereafter. We denote by x = (y, ẏ, fd) the column state vector167

and consider the dynamics:168

ẋ = Ax +Bdud (3)

where169

A =

 0 1 0
0 −v/m 1/m
0 0 0

 and Bd =

 0
0
1

 .

The optimal drive was chosen to move the system from an initial state x0 = (yf − y0, 0, 0) to a170

final state xf = (0, 0, 0) in desired time Td while minimizing the cost:171

C(ud) = x(Td)>Qfx(Td) +

∫ Td

0

u2d(t) dt (4)

where Qf is the terminal cost matrix chosen as Qf = diag(6.297 × 106, 6.301 × 106, 10). These172

parameters were also determined from preliminary simulations and tests to design an optimal drive173

that achieves the task reliably for all durations.174

Solving this optimal control problem (linear-quadratic in finite horizon) yielded an optimal feedback175

control of the form (e.g. Stengel, 1986):176

ud(t,x) = K(t)x (5)

where K(t) is the optimal feedback gain defined from t = 0 to t = Td. For t ≥ Td, we defined177

K(t) = K(Td). Note however that this situation was assumed not to occur in practice as we did178

not expect participants to move slower than the duration given by the external drive (it would179

be non-optimal with respect to both the cost of movement and the cost of time). We computed180

optimal control for drives with duration of Td equal to 1 s, 2 s, 4 s and 6 s and for distances equal181

to yf − y0 = 0.2 m and 0.4 m. Note that for simplicity we mapped the distances relative to screen182

size (see above) to S.I. units in the model for simulations (i.e. using the same numbers).183

Coupled cursor dynamics Once the external drive is defined, we can consider the coupled184

dynamics used in the experiment of Session 2. Here the state-space dynamics was as follows:185

ẋ = Ax +Bdud +Bsfs (6)

where Bs = (0, 1/m, 0)>. The force input of the human participant thus affected directly the186

cursor acceleration.187

Data processing and parameters188

Kinematics The force was the only user input and was filtered on-line (see Experimental Ap-189

paratus). Position and velocity being integrated by the dynamic system (Eq. 6) were not filtered190

further. For each trial, we identified the beginning of the movement (velocity threshold 0.005 m/s).191

The trial and recording finished when the cursor position was inside the target (distance to its cen-192

ter less than 0.025 m) with a velocity below 0.02 m/s. For each trial, we computed the movement193

duration and the movement amplitude. We also identified if a sub-movement was present (negative194

velocity) and counted the number of peaks in the force profile (each force peak corresponds to a195

period when the absolute of the force is above 1 N for at least 0.1 s). We excluded from the analyses196

about 13% of the trials because there was movement reversal, more than five peaks in the force197

profile or the movement time differed from the condition average by more than three standard198

deviation. To compute average trajectories, single trial trajectories were resampled to have the199

same number of samples and average duration.200
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Amount of force In order to estimate the effort produced by the participant using an objective201

measure, we considered the amount of force applied during the trial, defined as (Shadmehr et al.,202

2016):203 ∫ Ts

0

|fs(t)| dt.

Vigor scores In this paper we computed vigor scores using the maximum likelihood approach204

described by Reppert et al. (2018) but we used the duration of movements instead of peak velocities.205

To this end, we first computed the grand mean duration of movements of each amplitude Ai ∈206

{0.1, 0.2, 0.3, 0.4} (data of all participants pooled together). These movement durations were then207

used to fit the affine function208

Ti = g(Ai) = α+ βAi, α, β ∈ R

Then, we expressed the movement duration for each amplitude of each participant j = 1, ..., 15 as:209

Ti,j =
1

vgj

g(Ai) + εj

where εj ∼ N (0, σ2
j ) (Gaussian variable with zero mean and variance σ2

j ). The quantity vgj210

will denote the vigor score of participant j. A score of vigor greater than 1 will thus indicate211

a participant that is more vigorous than the average of the participants and therefore exhibits212

shorter movement durations in general.213

Considering the log-likelihood of all the data points given the model parameters {vgj , σ
2
j }j=1,...,15214

and maximizing it with respect to vgj , yields the following formula for each participant j ∈215

{1, ..., 15}:216

vgj =

∑4
i=1 g(Ai)

2∑4
i=1 Ti,j g(Ai)

where Ai is the movement amplitude and Ti,j the individual mean movement duration for that217

amplitude.218

Note that we also tested a canonical function g(Ai) including a concave term g(Ai) = α+ β Ai +219

γ log2(Ai/W+1) where W is the target’s width (see Berret et al., 2018; Young et al., 2009) but this220

resulted in vigor scores that were highly correlated with the present ones (r>0.99). Furthermore,221

we could have defined vigor scores from peak velocities as Reppert et al. (2018) but, again, the222

vigor scores were strongly correlated with the present ones (r>0.99).223

Statistical analyses224

We used repeated-measure ANOVAs to analyze movement duration and average force as a function225

of movement amplitude and, in Session 2, drive duration. Both factors were coded with polynomial226

contrasts to conduct a trend analysis. All statistical analyses were conducted in R (R Core Team,227

2019) with afex (Singmann et al., 2019) and emmeans (Lenth, 2019) packages.228

Optimal control modelling229

Here we model the behavior of participants in the second session. We extended the system state230

x = (y, ẏ, fd) to include the human contribution, as x̃ = (x, fs), and considered the following231

augmented dynamics:232

˙̃x = Ãx̃ + B̃dud + B̃sus (7)

with B̃d = (0, 0, 1, 0)> and B̃s = (0, 0, 0, 1)> and233

Ã =


0 1 0 0
0 −v/m 1/m 1/m
0 0 0 0
0 0 0 0

 . (8)
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where ud is the optimal drive and us is the human motor command. In this model, the motor234

command us is at the level of force change, which reflects the fact that human force varies smoothly235

due to the low-pass filtering property of muscle contraction. The motor optimal drive ud is also236

at the level of force change and affects the cursor dynamics via fd. In absence of participant237

intervention (i.e., us ≡ 0), the system is equivalent to Eq. 3 and the cursor moves according to the238

previously defined optimal drive.239

Here, we considered the following cost function:240

C(us) =

∫ Ts

0

(
u2s(t) + h(t)

)
dt. (9)

where Ts is the movement duration, h(t) is the cost of time of the participant, and u2s(t) counts241

their effort input in the task. We finally added terminal constraints to capture how a trial was242

terminated in the experiment. We imposed that the final velocity and position were respectively243

below 0.02 m/s and 0.025 m in accordance with the experimental conditions given above.244

The use of the optimal control model involved two steps: (1) an identification step with the data245

of Session 1; and (2) a prediction step to compare with the data of Session 2.246

In the identification step, we followed the methodology documented in Berret and Jean (2016)247

and Berret et al. (2018) to identify the term h(t) for each participant using the data of Session 1248

where movement duration Ts for each amplitude was obtained from linear regression (see above),249

and external drive was absent (ud ≡ 0 in the above equations). The cost of time was then fitted250

to a generalized sigmoid function to get an analytical formula for h(t) (see Berret et al., 2018 for251

more details details about the procedure). In the prediction step, we solved an optimal control252

problem in free time to predict movement duration Ts and the user’s input fs. In this step, the253

external drive ud was as defined experimentally and the cost of time h(t) was as identified during254

the identification step, all the other parameters being unchanged.255

The procedure was repeated for each distance of Session 2 (0.2 m and 0.4 m), each Td (1 s, 2 s, 4 s256

and 6 s) and each participant (since each participant will have a different cost of time given that257

their behaviors in Session 1 will differ).258

This model predicts that participants who perform optimally will find a trade-off between a certain259

physical effort and a cost related to the passage of time. In other words, if there is a cost of time,260

they should spend some energy to save time even when there is an assisting drive that can achieve261

the task by itself. An illustration of the balance between effort and time was provided in Fig. 1. If262

there is no cost of time, participants should not intervene as it would be the optimal strategy with263

respect to any cost of movement (for instance effort or accuracy here).264

Results265

Experimental results of Session 1 (without drive)266

Mean trajectories Here we describe the average self-paced behavior of the participants in267

absence of an external drive. The grand mean trajectories are reported in Figure 3 for the distances268

0.2 m (Fig. 3A) and 0.4 m (Fig. 3B) respectively. Velocity profiles are approximately bell-shaped269

even though the experimental protocol stopped motion according to some threshold that is visible270

at the end of the velocity profiles. Force profiles resemble acceleration profiles and mainly consist of271

a positive phase (to accelerate the cursor) and a negative phase to decelerate it. Small initial force272

values indicate that the participants respected well the instruction of not pushing on the joystick273

before pressing the space bar (initial force 0.39±0.66 N). The force profiles do not return to zero274

because of the criterion used to detect the end of a trial (see Methods). Substantial inter-individual275

differences can be noted for instance on velocity peaks or on the force used to perform the task.276

Repeated-measures ANOVA confirmed that movement duration (F3,42=85.33, η2G=.39, p<.001)277

and force (F3,42=93.93, η2G=.36, p<.001) varied across amplitudes. A trend analysis revealed that278

movement time and average force increased linearly with movement amplitude for the range of279

values included in the study.280
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Figure 3: Grand mean trajectories in Session 1. A. Mean displacement, velocity and force for the
distance 0.2 m. Thick black lines are means across participants and shaded areas are standard
deviations. Trajectories were normalized temporally before computing means and deviations. B.
Same information for the distance 0.4 m.

281

Amplitude-duration and amplitude-force relationships The overall behavior of partici-282

pants in terms of movement duration and amount of force are shown in Figure 4 (black filled283

circles). As in real point-to-point arm reaching experiments, the duration of movement was found284

to increase with amplitude almost linearly, as confirmed by trend analysis (linear: t42=15.88,285

p<.001; quadratic: t42=-1.95, p=.06). Movements of distance corresponding to 0.2 m and 0.4 m286

were performed in about 2.5 s and 3.5 s respectively. The amount of force also increased with287

amplitude in a similar way (linear: t42=16.76, p<.001; quadratic: t42=-0.92, p=0.36). The grand288

mean amount of force was about 7 N for the distance 0.2 m and 11 N for the distance 0.4 m. Again,289

a relatively large inter-individual variability was visible here and we thus focus on some individual290

performance scores in the following.291

292

Individual movement vigor scores and costs of time The relationship between amplitude293

and duration for each individual is reported in Figure 5A. A color code is used to track each indi-294

vidual throughout the study. Linear regressions confirmed that duration increased with movement295

amplitude in an approximately affine way for every participant (r2 = 0.95±0.06, mean±std across296

participants). Using a fitting function including a log2 term, we got a slightly improved goodness of297

fit but with one additional parameter (r2 = 0.97± 0.06). From these relationships, it was possible298

to compute vigor scores and sort individuals according to these scores (Fig. 5B) (see Methods).299

300

Furthermore, the same relationships allowed us to identify the cost of time for each participant301

(see also Methods). The resultant costs of time are depicted in Figure 5C. As expected since302

both measures are derived from the same data, there is a strong correlation between the vigor of303
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Figure 4: Mean behavior across participants as a function of distance. A. Amplitude-duration
relationships in Sessions 1 and 2. Filled circles are data from Session 1 for the 4 tested amplitudes.
Grey-colored filled squares are data from Session 2 for the 4 drives and the 2 amplitudes tested.
Vertical bars represent standard deviations in all cases. B. Same information for the amplitude-
amount of force relationships.

participants and the magnitude of their cost of time (Fig. 5D). Typically, the faster participants in304

Session 1 (i.e. with larger vigor scores) penalized time more steeply (i.e. increased more quickly,305

and to a higher asymptotic value, their time costs).306

Experimental and simulation results of Session 2 (with drive)307

We now consider the experimental data of Session 2 where the external drive allows, in theory,308

the participant to complete the task without any muscular force. Figure 6 depicts the grand mean309

behavior across participants for two different drives (2 s and 6 s) and the two distances tested in310

this Session (0.2 m in panels A-C and 0.4 m in panels D-F). These two distances were illustrated for311

Session 1 in Fig. 3 for comparison. Black/grey traces show the experimental data and red/purple312

traces show the simulated data. The simulations relied on the costs of time identified from the313

data of Session 1 (one cost of time per participant) and the free-time optimal control simulations314

minimizing a trade-off between the cost of movement and the individual-based cost of time (which315

explains why simulated data also vary across participants). Velocity profiles are bell-shaped as in316

the first Session. Force profiles appear more irregular but they still present a positive and negative317

peaks that corresponds to an acceleration and deceleration of the cursor, even though the presence318

of the drive may both accelerate and decelerate the cursor on its own. The figure shows that319

participants used some force to save time, thus achieving the task in less than 3.5 s when the drive320

corresponded to a 6 s movement duration for example. Noticeably, participants still used some321

force on average even when the drive was stronger and would lead to a 2 s long movement on its322

own.323

Mean movement duration and amounts of force across participants are reported in Figure 4 (filled324

squares). As expected, the performance became closer to that of Session 1 as the drive dura-325

tion increased. Average movement duration increased with drive duration (F3,42= 69.25, η2G=.68,326

p<.001) and amplitude (F1,14=393.36, η2G=.10, p<.001). The statistically significant interaction327

(F3,42=63.47, η2G=.065, p<.001) reflected a steeper increase of the movement duration with drive328

duration for large movement than for small movements (contrast between linear trends: t42=16.62,329

p<.001). A similar analysis of average force revealed the same trends. Average amount of force330

also increased with drive duration (F3,42= 17.27, η2G=0.15, p<.001) and amplitude (F1,14=19.56,331

p<0.001). The statistically significant interaction (F3,42=21.33, η2G=0.01, p<.001) reflected a332

steeper increase of the average force with drive duration for large movement than for small move-333

ments (contrast between linear trends: t42=6.02, p<.001).334
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Figure 5: Individual vigor scores. A. Amplitude-duration relationships in Session 1. Each color is
the data of one participant. Linear regression lines are displayed. The cost of time was inferred
from these individual-level relationships. B. Corresponding vigor scores allowing to sort individuals
from the slowest to the fastest in the isometric reaching task of Session 1. The horizontal black
line corresponds to a reference vigor score of 1. C. Logarithm of the costs of time identified for

each participant, i.e. log(
∫ T

0
h(t)dt). The x-axis in this plot refers to the movement duration T .

D. Correlation between the vigor scores and the logarithm of the peak derivative of the costs of
time (i.e. maximal value of h(t)).
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Figure 6: Experimental and simulated trajectories in presence of the drive. A. Cursor displacements
in the experiments (black/grey) and simulations (purple/red), for two different drive durations (2 s
and 6 s), for the distance 0.2 m. Mean trajectories across participants are reported with standard
deviations as shaded areas. B. Same information for the velocity. C. Same information for the
force. In solid line, the input force fs is depicted. In dotted line, the external force coming from
the drive is also reported. D-F. Same information but for the distance 0.4 m.
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335

In Figure 7, we depict mean movement durations chosen by participants in Session 2 and compare336

them to drive durations (black identity line –indicating the optimal duration if only a cost of337

movement is minimized–) and model predictions (red trace and shaded area). The overall behavior338

was as follows: movement duration increased with the duration of the drive and tended to plateau339

near the movement duration obtained in Session 1 for slow drives. Indeed, the movement duration340

of participants for a drive of 6 s was closed to the duration obtained in Session 1 (dotted line in341

Fig. 7). Noticeably, the model replicated quite well this average behavior. An optimal trade-off342

between movement and time costs thus leads to this evolution of movement duration with respect343

to drive duration for each distance.344

345

Next, we analyzed the force that participants were prone to exert to save a given amount of time.346

We thus focused on the relationship between the gain of time and the amount of force used by347

the participants to complete the task, the gain of time being defined as the drive duration minus348

the actual duration. We found that all the participants tended to increase the amount of force to349

save more time across conditions (Fig. 8). The model replicated this trend quite well on average,350

especially for the longer drive durations. Important inter-individual differences could also be noted.351

For instance, to save one second, participants could use quite different amounts of force. In Fig. 8C352

for instance, participant #1 (least vigorous) used less than 5 N to save 1 second while participant353

#15 (most vigorous) used more than 10 N to save the same amount of time. It is worth noting that354

they saved the same amount of time for different drive durations (Td=4 s for participant #1 and355

Td=2 s for participant #15). Our model captured these main inter-individual differences thanks356

to the subjective costs of time identified from the data of Session 1.357

358

Finally, we investigated if there was any relationship between the vigor of participants in Session 1359

and their behavior in Session 2 (Fig. 9). Remarkably, we found that the more vigorous participants360

in Session 1 were indeed the ones saving more time in Session 2 (high correlations with r>0.90 for361

both tested distances, N=15 participants). These participants were also the ones using a greater362

amount of force (correlation coefficients between vigor and average amount of force r>0.90 –not363

depicted–). In summary, vigorous participants spent more energy to save more time.364

365

Discussion366

Recent studies have suggested that the vigor of movement results from a trade-off between a cost367

related to movement production and a cost related to the passage of time. However, whether a cost368

of time underlies the vigor of simple reaching movements remains unclear as a cost of movement369

could be theoretically sufficient to explain our preferred speed on average. This cost of time could370

mainly serve to modulate our speed around a reference value according to the urgency or reward371

of the task. To disambiguate this question, we designed an isometric pointing task that makes372

distinct predictions depending on whether a cost of movement or a cost of time is prevalent. In373

some conditions, an external drive moved the cursor to the target with a certain duration such374

that the task could be accomplished accurately and effortlessly with no participant intervention.375

Despite this self-completion of the task, the participants exerted all the more force the slower the376

movement of the cursor was and the higher their original vigor in the task was, in agreement377

with optimal control simulations assuming a trade-off between time and effort. These findings are378

compatible with the existence of an idiosyncratic, cognitive cost of time underlying the invigoration379

of basic isometric reaching movements.380

Producing a movement inevitably entails a motor cost that can be translated into tangible variables381

such as metabolic energy, effort, smoothness, error or variance. The identification of the cost that382

best reproduces human trajectories has attracted a lot of attention in optimal control theory383

(see Engelbrecht, 2001; Todorov, 2004; Berret et al., 2019 for reviews) but it has proven difficult to384
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Figure 7: Movement duration with respect to drive duration in Session 2. A. Mean experimental
and simulated data for distance 0.2 m. Black markers and traces are experimental data. Mean
and standard deviations across participants are reported. Red traces and shaded areas are model
predictions (also mean and standard deviations across participants). The horizontal dotted line
correspond to the mean duration measured in Session 1 for that distance. The identity line cor-
responds to the drive duration, which would the optimal duration if only a cost of movement is
minimized. B. Same information for distance 0.4 m. C-D. Same information for three participants
with high, medium and low vigor respectively.
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Figure 8: Relationship between gains of time and amount of forces used in Session 2. A. Mean
experimental and simulated data for distance 0.2 m. Black markers and traces are experimental
data. The black filled circles correspond to the drives in the following order from left to right: 1 s,
2 s, 4 s and 6 s, respectively. Mean and standard deviations were calculated across participants.
Red traces and shaded areas are model predictions (also mean and standard deviations across
participants). The horizontal dotted line correspond to the mean amount of force measured in
Session 1 for that distance. B. Same information for distance 0.4 m. C-D. Same information for
three participants with high, medium and low vigor respectively.
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Figure 9: Relationship between vigor scores as measured in Session 1 and average gains of time
in Session 2. Same color code than in Figure 5. Each dot is a participant. A. Distance 0.2 m. B.
Distance 0.4 m.

unequivocally identify the cost of movement because of its potential compositeness and subjectivity385

(Berret et al., 2011; Summerside and Ahmed, 2021). The design of our task circumvents this issue386

by creating a condition in which the task accomplishes by itself, thereby neutralizing the cost of387

movement for specific motion durations. Despite this opportunity, our participants systematically388

exerted some force onto the joystick to achieve the task more quickly. They clearly favored saving389

time over saving energy in this task. Yet, when the drive was present, it was always optimal to390

remain inactive with respect to any cost of movement. This suggests that slow movements are391

generally avoided (van der Wel et al., 2010), not specifically because they may incur a large cost392

related to movement execution but mostly because they last long. This predominance of movement393

duration over energy expenditure was also found in a perceptual decision-making task at movement394

initiation (Lunazzi et al., 2021). Morel et al. (2017) have shown that duration is indeed a key factor395

that makes people judge a reaching movement as “effortful”, and that this judgement does not396

seem to be based on objective measures such as metabolic energy. Here, it was clear that our397

participants did not minimize isometric force production alone, which suggests that the passage of398

time may contribute to action selection per se and perhaps to a subjective representation of effort.399

It has been proposed that the cost of time mainly expresses a subjective temporal discounting of400

reward within the brain, which could explain why the participant achieved the task more quickly401

than what is prescribed by the drive. This cost of time has been reviewed in several recent articles402

(Shadmehr et al., 2019; Carland et al., 2019) and a monograph (Shadmehr and Ahmed, 2020a),403

and might even reflect general personality traits (Choi et al., 2014; Berret et al., 2018). Hence404

the most vigorous participants should be the steepest temporal discounters and/or the ones who405

attribute the greatest subjective value to task accomplishment (Reppert et al., 2015; Yoon et al.,406

2020; Shadmehr and Ahmed, 2020a). This prediction agreed well with our findings that the most407

vigorous participants (as sorted from a baseline experiment) were the ones spending more energy408

to save a given amount of time. In our case, the cost of time may also capture an attentional cost409

related to the fact that participants were observing the motion of the cursor on the screen even410

when exerting no force, or just that they were engaged in the task. Since these higher-level costs411

are not strictly related to movement production processes, they are excluded from our definition412

of the cost of movement but can be integrated into a cognitive cost of time.413

Although we mainly interpreted our results within the cost of time theory, it could be argued414

that participants just preferred to be active in the task. In this case, participants would also have415

preferred to move the cursor by themselves rather than to passively look at it. Assessing passivity416

from an amount of force lower than 0.15 N, a total of 3, 2, 1 and 0 participants passively executed417

the task for the drive durations 1 s, 2 s, 4 s and 6 s respectively (post-analysis for both distances).418
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For instance, one participant (#6) remained passive for drive durations ≤4 s but suddenly became419

active when the drive lasted 6 s. However, participants were generally active even for the smaller420

drive durations. The critical observation is that participants did not exert forces onto the joystick421

arbitrarily or just by habituation (e.g. using a fixed amount of force or fixed time in the task). In422

contrast, they saved time and exerted force in an idiosyncratic manner that was closely linked to423

their the original vigor in the task and that depended on the drive duration as predicted by an424

optimal control model based on their identified cost of time (which were obtained before the drive425

was introduced). Accordingly, highly vigorous participants were highly active in most conditions426

even for the 1 s or 2 s drives. These participants were clearly prone to spend a substantial effort to427

save a small amount of time. This may seem surprising (and it was not captured accurately by our428

model) but it fits well with the theory of vigor (Shadmehr and Ahmed, 2020a) and a putative link429

with personality traits like impulsivity or boredom proneness (Choi et al., 2014; Berret et al., 2018).430

Weakly vigorous participants were also active in most conditions but produced much lower amounts431

of force in the task, that is, they were also inclined to save time but much less than participants432

with high vigor scores. These observations show that participants did not simply prefer to be active433

with arbitrary levels of force and durations, nor did they try to replicate their baseline behaviour434

regardless of the duration of the drive. Instead, they energize the movement according to both435

their own vigor (or implicit motivation, Mazzoni et al., 2007) and the characteristics of the drive436

in agreement with an optimality principle minimizing a trade-off between a cost of movement and437

a cost of time. Another argument may be that the passage of time is subjectively faster when438

one is actively moving. The literature indeed suggests that the perception of time could be itself439

modulated by our ongoing voluntary actions (Eagleman, 2008; Merchant and Yarrow, 2016). For440

instance, saccadic eye movements seems to produce a time compression (Morrone et al., 2005), an441

observation which has been generalized to hand reaching movement and isometric force production442

(Tomassini et al., 2014). In the latter study, participants had to judge the time interval between443

tactile taps and time intervals defined by tactile stimuli were perceived as shorter when hand444

movements were prepared and executed. This psychophysical phenomenon is not incompatible445

with the hypothesis of a cognitive cost of time. Indeed, to either save true time or its subjective446

perception, it would have been worthwhile for the participants to energize task’s achievement.447

Interestingly, the link between impulsivity and the sense of time have been reviewed in (Wittmann448

and Paulus, 2008) and it was suggested that “[impulsive] individuals are more likely to experience449

a slowing down of time during situations in which they are not able to act on their impulsive urges,450

for example when one has to wait for a delayed reward and is confronted with the passage of time”.451

To draw the present conclusions we relied on an isometric reaching task. The advantage of this452

task is that it allows resolving a number of issues that would occur with real movements. First,453

it removes the problem of dealing with participant-dependent or poorly known biomechanical454

limb parameters for different participants (inertia, centers of mass etc.). This lack of knowledge is455

typically problematic when estimating an objective cost of movement using musculoskeletal models.456

Here every participant controlled the same virtual point mass. Therefore, only the endpoint force457

was used to move the cursor, which allowed for a simpler definition of the movement cost in this458

task even though different choices were still possible. Here we used the amount of force as in459

(Shadmehr et al., 2016) (i.e. force-time integral) to estimate energy expenditure as objectively460

as possible from our experimental data. One limitation could be that we did not consider the461

metabolic cost of sitting with the arm still on the handle. However, this constant cost is unlikely462

to explain the motor decisions of the participants in our task as it is not related to movement463

but posture (see also Summerside and Ahmed, 2021 for a similar conclusion in a study estimating464

metabolic cost using expired gas analysis). Another limitation could be that we restricted our465

analysis to the force component on the y-axis. Additional principal component analyses however466

revealed that the horizontal force components linearly co-varied and that working with the norm467

of the force would only increase our estimation of effort by 1.3% on average, with idiosyncratic468

differences probably related to the specific posture of the participant in the task. Differences in469

vigor between participants could still arise from differences in their force production capacities,470

although this would not disprove the evidence for a cost of time in this task because the cost471

of movement was potentially neutralized in any case with the drive. Second, isometric reaching472

simplifies the implementation of the drive because there is no physical interaction between the473
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moving cursor and the participant. It should be possible to create similar experimental tasks with474

real movements. For instance, generalization of this task could involve a long treadmill for walking475

or an exoskeleton/manipulandum for providing participants with assistive control laws at different476

speeds. An additional limitation of our study could be the choice to shift from the slowest to the477

fastest drives, but it was made to remove a potential confound. Indeed, practicing with a fast drive478

could have habituated the participant to execute the task more quickly than usual (Mazzoni et al.,479

2012). Consequently, the finding that a participant moved faster than their preferred speed in a480

slow-drive block (i.e. our premise) after having practiced extensively with a fast drive could have481

been attributed to some habituation effect and not to a cost of time. It is likely that this confound482

could be mitigated by considering many trials per block and analyzing the asymptotic behavior of483

the participant. Here we limited the number of trials per block to reduce other side-effects such484

as fatigue. Accordingly, we chose to start with slow-drive blocks to attribute any time saving to a485

cost of time and not to a strategy biased by previous practice with a quick drive. Yet, we did not486

test a fully randomized block-wise design and whether it would significantly change the behavior487

of the participants cannot be asserted. Finally, one could argue that an isometric reaching task is488

not ecological. Yet, isometric reaching tasks have been used successfully in the past to explore the489

neural control of movement, in particular trajectory planning, motor adaptation, muscle synergies490

and optimal control (Ghez et al., 1997; de Rugy et al., 2012, 2013; Berger et al., 2013; Rotella491

et al., 2013). Hence, it has proven to be an interesting paradigm that can provide relevant insights492

about the control of goal-directed actions. Choosing between time and effort is indeed a commonly493

encountered situation in daily life (e.g. the airport’s treadmill example) and it is possible that494

the principles of such in-lab experiments will generalize to more ecological tasks such as choosing495

between taking the car or go by foot, take an escalator or climb the stairs, use his/her slow neuro-496

prosthetic arm or healthy arm and so on. Future work will aim at using a motorized upper-limb497

exoskeleton to assist the movements of participants and test whether similar principles apply when498

muscles produce work and a real movement of the limb occurs.499

18



Acknowledgments500
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