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Abstract1

How the brain determines the vigor of goal-directed movements is a fundamental question2

in neuroscience. Recent evidence has suggested that vigor results from a trade-off between3

a cost related to movement production (cost of movement) and a cost related to our brain’s4

tendency to temporally discount the value of future reward (cost of time). However, whether it5

is critical to hypothesize a cost of time to explain the vigor of basic reaching movements with6

intrinsic reward is unclear because the cost of movement may be theoretically sufficient for this7

purpose. Here we directly address this issue by designing an isometric reaching task in which8

target-directed movements can be performed accurately and effortlessly in prefixed durations.9

The cost of time hypothesis predicts that participants should be prone to spend energy to10

save time even if the task can be accomplished at no movement cost. Accordingly, we found11

that all participants generated substantial amounts of force to invigorate task accomplishment,12

especially when the prefixed duration was long enough. Remarkably, the time saved by each13

participant was linked to their original vigor in the task and predicted by an optimal control14

model balancing out movement and time costs. Taken together, our results supports the15

existence of an idiosyncratic, cognitive cost of time that underlies the invigoration of basic16

isometric reaching movements.17

Introduction18

Understanding the principles underlying movement invigoration is an important topic in neuro-19

science given its potential implications for disorders such as Parkinson’s disease (Mazzoni et al.,20

2007). Parkinsonian patients typically suffer from bradykinesia (Berardelli et al., 2001), an overall21

movement slowness which is related to a dysfunction of the basal ganglia (Turner and Desmurget,22

2010; Dudman and Krakauer, 2016; Robbe and Dudman, 2020). Vigor generally characterizes the23

preferred speed of movement, which has been experimentally quantified through the –idiosyncratic–24

increase of velocity and duration as a function of distance in simple point-to-point movements.25

Large differences in vigor were reported across individuals but, remarkably, these differences were26

consistent between/within sessions or between movement modalities (e.g. head vs hand move-27

ments, dominant vs non-dominant reaching or vs walking Reppert et al., 2018; Berret et al., 2018;28

Labaune et al., 2020). While biomechanical factors may of course play a role, inter-individual dif-29

ferences of vigor were primarily attributed to psycho-economical processes that reflect a trait-like30

feature of individuality (Shadmehr et al., 2016; Berret et al., 2018; Shadmehr et al., 2019; Carland31

et al., 2019; Shadmehr and Ahmed, 2020a). The main results point to a cost of time related to32

the brain’s tendency to discount the value of delayed rewards (Shadmehr et al., 2010; Haith et al.,33

2012; Rigoux and Guigon, 2012; Choi et al., 2014; Berret and Jean, 2016). Assuming that the34

goal of any movement is to put the system in a more rewarding state (Shadmehr, 2010), moving35

slowly would decrease the subjective value of reward and would thus be avoided in the control of36
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goal-directed actions. This principle has been formalized in optimal control theory by using a cost37

of time that explicitly penalizes the passage of time in sensorimotor control (Hoff, 1994; Berret38

and Jean, 2016), thereby compensating for the inability of classical trajectory-formation models39

to account for the duration of self-paced movement (e.g. Flash and Hogan, 1985; Uno et al., 1989;40

Berret et al., 2011).41

However, people may also be reluctant to move slowly for alternative reasons (van der Wel et al.,42

2010; Park et al., 2017; Guigon et al., 2019). Producing a slow movement may be physiologically43

costly, so a cost of movement alone may be theoretically sufficient to explain our preferred speed. By44

implication, the cost of time assumed or identified in previous studies could be partly artifactual45

or only critical to explain the change of vigor in response to modulation of reward or urgency46

(Takikawa et al., 2002; Reppert et al., 2015; Manohar et al., 2015; Thura, 2020). Objective measures47

of the cost of movement have shown that metabolic energy expenditure increases at both low and48

fast speeds, which is a well-known result for walking that seems to be valid for arm reaching as well49

(Ralston, 1958; Huang and Ahmed, 2012; Shadmehr et al., 2016). Endpoint variance also tends to50

increase at both fast and slow speeds due to the effects of signal-dependent and constant motor51

noise unless efficient feedback corrections are triggered by the system (Wang et al., 2016). Effort52

and variance are two fundamental features of sensorimotor control that are thought to compose53

the cost of movement (Todorov and Jordan, 2002; Liu and Todorov, 2007; Gaveau et al., 2014,54

2021; Berret and Jean, 2020). Interestingly, using a cost of movement was sufficient to explain the55

speed/accuracy trade-off –Fitts’ law– (Harris and Wolpert, 1998; Qian et al., 2013) and why our56

spontaneous movements are neither too fast nor too slow from mechanistic reasons only (van Beers,57

2008; Berret et al., 2021). In this case, existing inter-individual differences of vigor could result from58

discrepancies in the cost of movement represented by people and biomechanical factors. Recently,59

it has been suggested that the cost of movement could be itself discounted over time (Shadmehr60

et al., 2016; Summerside et al., 2018) such that movement vigor would essentially reveals “how61

much we value the things we are moving toward” (Shadmehr and Ahmed, 2020a,b). Obviously,62

the cost of movement represented by the brain is not yet known exactly (Berret et al., 2011;63

Summerside and Ahmed, 2021) and this uncertainty is necessarily reflected in the cost of time, the64

role of which is then particularly unclear for daily actions with intangible rewards. Hence, does65

the cost of time mainly serve to modulate vigor around some nominal value or does it broadly set66

movement invigoration?67

The goal of the present study was to clarify this issue by neutralizing the cost of movement68

experimentally. To this aim, we designed an isometric pointing task that could be performed69

accurately and effortlessly in prefixed durations. This is like an airport treadmill that carries70

travelers to their destination in more or less time depending on whether they stand still or walk71

on it. Here participants had to control a cursor on a screen via a force applied onto an isometric72

joystick. A baseline condition was first tested to characterize the behavior of participants in such73

an isometric reaching task where the reward –if any– is intrinsic, and estimate their original vigor.74

In a second condition, the cursor had an internal drive such that the task could be accomplished75

successfully without any participant intervention. If time matters in the control of this isometric76

reaching task, we predicted that the participants should exert a substantial amount of force onto77

the joystick to save time, especially when the drive duration is long enough according to the cost78

of time hypothesis. Furthermore the time savings of each participant should be related to their79

original vigor in the task if it reflects how they implicitly value task accomplishment. In contrast,80

if time does not matter and vigor is essentially determined by a cost of movement in this task,81

participants should favor restful strategies regardless of the drive duration. Indeed, this would be82

the optimal behavior with respect to the minimization of any cost of movement, whether related83

to energy, inaccuracy or other factors.84

Materials and Methods85

Participants86

The experiment included 15 participants (7 females, mean age ± SD: 27 ± 7). All participants87

were contacted through a mailing list of persons who volunteer to do experiments at the Italian88
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Institute of Technology and were paid 10 euros for the participation. All participant were naive89

with respect to the goal of the experiment and signed an informed consent. The experimental90

protocol was approved by the local ethical committee (C.E.R. Liguria, P.R.063REG2016).91

Experimental methods92

Experimental apparatus The experimental setup comprised an isometric joystick that mea-93

sured the force applied by the participant on it with a 6-dof force/torque sensor (Mini 45, ATI)94

and a screen (dimension 19 inch) in front of the participant (distance 65 cm). The joystick was95

connected to a computer via a digital acquisition card (USB-6211, National Instrument). The force96

was sampled at 10 kHz and filtered on-line by fitting a linear regression line to the most recent97

160 samples. A custom C++ program simulated the cursor dynamics at 1 kHz and updated its98

position on the screen at 60 Hz. The force and system state (position, velocity and external drive)99

were saved at 60 Hz.100

Task The participant sat in front of the table with the experimental setup and grasped the101

joystick with the right hand and the elbow bent at 90 degree angle. The participant was instructed102

to move a cursor toward the target at their preferred velocity. For simplicity the cursor was103

restricted to move only along the y-axis (bottom-up axis on the screen). The trial was self-started104

by pushing the space bar on the keyboard. The participant was told to avoid pushing the isometric105

joystick before the beginning of the trial and the level of force was checked to ensure the participant106

did not apply a force when starting the trial.107

The experiment was divided into two sessions that were executed one after the other on the same108

day.109

The first experimental session (Session 1) served as a baseline condition from which the vigor and110

the cost of time of each participant was inferred. It included four movement distances and no111

assistance was provided (amplitude 0.1, 0.2, 0.3 and 0.4 of screen size [height: 25.5 cm]). The112

goal of this session was to find out the movement time corresponding to each amplitude, compute113

nominal vigor scores for each participant and identify the cost of time that would predict these114

movement times, given a cost of movement based on effort and error (Berret and Jean, 2016).115

The second session (Session 2) included two different movement distances (0.2 and 0.4). Impor-116

tantly in this session, an external drive that corresponded to biological movements of different117

durations (Td = 1, 2, 4 or 6 s) was added to the cursor dynamics.118

There were 20 repetitions for each condition, thus yielding 80 trials in the first session and 160119

trials in the second session. The order of presentation of movement amplitudes were randomized in120

the first session. The conditions in the second session were executed from the slowest to the fastest121

drive with the amplitude randomized within each condition. In session 2, we used a block-wise122

design to minimize surprise effects and evaluate behavior when the participant is aware of the123

current drive applied to the cursor dynamics. Accordingly, each condition in the second session124

started with two trials that showed the external drive and where the participants was instructed125

not to touch the isometric joystick.126

Cursor Dynamics The cursor dynamics along the y-axis was as follows:127

mÿ = fs − vẏ (1)

where m = 25 kg and v = 10 kg/s are the simulated mass and damping of the virtual system.128

These values were chosen during preliminary experiments to induce comfortable behaviors and129

force levels.130

The force fs (measured by the force sensor) was the external force applied by the participant on131

the cursor. Hence, the force applied by the participant directly affected the cursor acceleration.132

The goal of the task in Session 1 was to move the cursor to a target (1.275 cm width), yf , from a133

given home position, y0, at the participant’s preferred speed.134
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Choice of external drive When an external drive was added, the cursor’s dynamics was mod-135

ified as:136

mÿ = fd + fs − vẏ (2)

where fd is the external action implemented by an external controller.137

We noted in preliminary data that participants normally executed this isometric reaching task138

using bell-shaped velocity profiles. Therefore, we implemented an external drive as an optimal139

feedback control law that allowed to reach the target in a desired duration, Td, with bell-shaped140

velocity profiles.141

To this aim, we considered a minimum torque change model as it predicts smooth, bell-shaped142

velocity profiles (Uno et al., 1989). We noted this optimal control ud which was the solution of the143

optimal control problem described hereafter. We denote by x = (y, ẏ, fd) the column state vector144

and consider the dynamics:145

ẋ = Ax +Bdud (3)

where146

A =

 0 1 0
0 −v/m 1/m
0 0 0

 and Bd =

 0
0
1

 .

The optimal drive was chosen to move the system from an initial state x0 = (yf − y0, 0, 0) to a147

final state xf = (0, 0, 0) in desired time Td while minimizing the cost:148

C(ud) = x(Td)>Qfx(Td) +

∫ Td

0

u2d(t) dt (4)

where Qf is the terminal cost matrix chosen as Qf = diag(6.297 · 106, 6.301 · 106, 10). These149

parameters were also determined from preliminary simulations and tests to design an optimal150

drive that achieves the task reliably for all durations.151

Solving this optimal control problem (linear-quadratic in finite horizon) yielded an optimal feedback152

control of the form (e.g. Stengel, 1986):153

ud(t,x) = K(t)x (5)

where K(t) is the optimal feedback gain defined from t = 0 to t = Td. For t ≥ Td, we defined154

K(t) = K(Td). Note however that this situation was assumed not to occur in practice as we did155

not expect participants to move slower than the duration given by the external drive (it would156

be non-optimal with respect to both the cost of movement and the cost of time). We computed157

optimal control for drives with duration of Td equal to 1 s, 2 s, 4 s and 6 s and for distances equal158

to yf − y0 = 0.2 m and 0.4 m. Note that for simplicity we mapped the distances relative to screen159

size (see above) to S.I. units in the model for simulations (i.e. using the same numbers).160

Coupled cursor dynamics Once the external drive is defined, we can consider the coupled161

dynamics used in the experiment of Session 2. Here the state-space dynamics was as follows:162

ẋ = Ax +Bdud +Bsfs (6)

where Bs = (0, 1/m, 0)>. The force input of the human participant thus affected directly the163

cursor acceleration.164

Data processing and parameters165

Kinematics The force was the only user input and was filtered on-line (see Experimental Ap-166

paratus). Position and velocity being integrated by the dynamic system (Eq. 6) were not filtered167

further. For each trial, we identified the beginning of the movement (velocity threshold 0.005 m/s).168

The trial and recording finished when the cursor position was inside the target with a velocity below169

0.02 m/s. For each trial, we computed the movement duration and the movement amplitude. We170

4



also identified if a sub-movement was present (negative velocity) and counted the number of peaks171

in the force profile (each force peak corresponds to a period when the absolute of the force is above172

1 N for at least 0.1 s). We excluded from the analyses about 13% of the trials because there was173

movement reversal, more than five peaks in the force profile or the movement time differed from174

the condition average by more than three standard deviation. To compute average trajectories,175

single trial trajectories were resampled to have the same number of samples and average duration.176

Amount of force In order to estimate the effort produced by the participant using an objective177

measure, we considered the amount of force applied during the trial, defined as (Shadmehr et al.,178

2016):179 ∫ Ts

0

|fs(t)| dt.

Vigor scores In this paper we computed vigor scores using the maximum likelihood approach180

described by Reppert et al. (2018) but we used the duration of movements instead of peak velocities.181

To this end, we first computed the grand mean duration of movements of each amplitude Ai ∈182

{0.1, 0.2, 0.3, 0.4} (data of all participants pooled together). These movement durations were then183

used to fit the function184

Ti = g(Ai) = α+ βAi, α, β ∈ R

The vigor score of each participant j = 1, ..., 15, denoted by vgj , was finally computed as:185

vgj =

∑4
i=1 g(Ai)

2∑4
i=1 Ti,j g(Ai)

where Ai is the movement amplitude and Ti,j the individual mean movement time for that ampli-186

tude. A score of vigor greater than 1 thus indicates a participant that is more vigorous than the187

average of the participants.188

Statistical analyses189

We used repeated-measure ANOVAs to analyze movement duration and average force as a function190

of movement amplitude and, in Session 2, drive duration. Both factors were coded with polynomial191

contrasts to conduct a trend analysis. All statistical analyses were conducted in R (R Core Team,192

2019) with afex (Singmann et al., 2019) and emmeans (Lenth, 2019) packages.193

Optimal control modelling194

Here we model the behavior of participants in the second session. We extended the system state195

x = (y, ẏ, fd) to include the human contribution, as x̃ = (x, fs), and considered the following196

augmented dynamics:197

˙̃x = Ãx̃ + B̃dud + B̃sus (7)

with B̃d = (0, 0, 1, 0)> and B̃s = (0, 0, 0, 1)> and198

Ã =


0 1 0 0
0 −v/m 1/m 1/m
0 0 0 0
0 0 0 0

 . (8)

where ud is the optimal drive and us is the human motor command. In this model, the motor199

command us is at the level of force change, which reflects the fact that human force varies smoothly200

due to the low-pass filtering property of muscle contraction. The motor optimal drive ud is also201

at the level of torque change and affects the cursor dynamics via fd. In absence of participant202

intervention (i.e., us ≡ 0), the system is equivalent to Eq. 3 and the cursor moves according to the203

previously defined optimal drive.204
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Figure 1: Optimal costs for the task with different drives corresponding to Td = 6 s and Td = 2 s,
and a distance of 0.4 m. Cost of movement is zero for times t ≥ Td because ud already drives the
system to the desired target (no effort and no error strategies). Moving faster than duration Td
will require some energy expenditure but allows saving time, which can be a relevant strategy if
there is a cost of time. The optimal trade-off between the cost of time and the cost of movement,
yielding an optimal movement duration, is indicated by filled circles. When the drive is fast (2 s),
the optimal duration remains close to 2 s. However, when the drive is slow (6 s), the optimal
duration from the trade-off is around 2.8 s. If there was no drive, the optimal duration would have
been 3.1 s in this example.

We moreover considered the following cost function:205

C(us) = x(Ts)
>Qfx(Ts) +

∫ Ts

0

(
u2s(t) + h(t)

)
dt. (9)

where h(t) is the cost of time, Ts is the movement duration, and effort/error terms are modeled as206

before.207

The use of the optimal control model involved two steps: (1) an identification step with the data208

of Session 1; and (2) a prediction step to compare with the data of Session 2.209

In the identification step, we followed the methodology documented in Berret and Jean (2016) and210

Berret et al. (2018) to identify the term h(t) for each participant using the data of Session 1 where211

movement duration Ts is known and external drive is absent (ud ≡ 0 in the above equations).212

In the prediction step, we solved an optimal control problem in free time to predict movement213

duration Ts and effort fs. In this step, external drive ud is as defined experimentally and the cost214

of time h(t) is as identified in Session 1, and we assume that the participant minimizes force change215

(u2s) and error (term in Q).216

The procedure was repeated for each distance of Session 2 (0.2 m and 0.4 m), each Td (1 s, 2 s, 4 s217

and 6 s) and each participant (since each participant will have a different cost of time given that218

their behaviors in Session 1 will differ).219

This model predicts that participants who behave optimally should trade some physical effort for220

a gain in time. In other words, if there is a cost of time, they should spend some energy even when221

there is an external drive that achieves the task by itself. An illustration of the balance between222

effort and time is provided in Fig. 1. If there is no cost of time, participants should not intervene223

as it would be the optimal strategy with respect to any cost of movement (for instance effort or224

accuracy here).225

226
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Figure 2: Grand mean trajectories in Session 1. A. Mean displacement, velocity and force for the
distance 0.2 m. Thick black lines are means across participants and shaded areas are standard
deviations. Trajectories were normalized temporally before computing means and deviations. B.
Same information for the distance 0.4 m.

Results227

Experimental results of Session 1 (without drive)228

Mean trajectories Here we describe the average self-paced behavior of the participants in ab-229

sence of an external drive. The grand mean trajectories are reported in Figure 2 for the distances230

0.2 m (Fig. 2A) and 0.4 m (Fig. 2B) respectively. Velocity profiles are approximately bell-shaped231

even though the experimental protocol stopped motion according to some threshold that is visible232

at the end of the velocity profiles. Force profiles resemble acceleration profiles and mainly consist233

of a positive phase (to accelerate the cursor) and a negative phase to decelerate it. The force234

profiles do not return to zero because of the criterion used to detect the end of a trial (see Meth-235

ods). Substantial inter-individual differences can be noted for instance on velocity peaks or on the236

force used to perform the task. Repeated-measures ANOVA confirmed that movement duration237

(F3,42=85.33, η2G=.39, p<.001) and force (F3,42=93.93, η2G=.36, p<.001) varied across amplitudes.238

A trend analysis revealed that movement time and average force increased linearly with movement239

amplitude for the range of values included in the study.240

241

Amplitude-duration and amplitude-force relationships The overall behavior of partici-242

pants in terms of movement duration and amount of force are shown in Figure 3 (black filled243

circles). As in real point-to-point arm reaching experiments, the duration of movement was found244

to increase with amplitude almost linearly, as confirmed by trend analysis (linear: t42=15.88,245

p<.001; quadratic: t42=-1.95, p=.06). Movements of distance corresponding to 0.2 m and 0.4 m246

were performed in about 2.5 s and 3.5 s respectively. The amount of force also increased with247

amplitude in a similar way (linear: t42=16.76, p<.001; quadratic: t42=-0.92, p=0.36). The grand248

mean amount of force was about 7 N for the distance 0.2 m and 11 N for the distance 0.4 m. Again,249

a relatively large inter-individual variability was visible here and we thus focus on some individual250
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Figure 3: Mean behavior across participants as a function of distance. A. Amplitude-duration
relationships in Sessions 1 and 2. Filled circles are data from Session 1 for the 4 tested amplitudes.
Grey-colored filled squares are data from Session 2 for the 4 drives and the 2 amplitudes tested.
Vertical bars represent standard deviations in all cases. B. Same information for the amplitude-
amount of force relationships.

performance scores in the following.251

252

Individual movement vigor scores and costs of time The relationship between amplitude253

and duration for each individual is reported in Figure 4A. A color code is used to track each indi-254

vidual throughout the study. Linear regressions confirmed that duration increased with movement255

amplitude in an approximately affine way for every participant (R2 = 0.97 ± 0.03 across partic-256

ipants). From these relationships, it was possible to compute vigor scores and sort individuals257

according to these scores (Fig. 4B) (see Methods).258

259

Furthermore, the same relationships allowed us to identify the cost of time for each participant260

(see also Methods). The resultant costs of time are depicted in Figure 4C. As expected since261

both measures are derived from the same data, there is a strong correlation between the vigor of262

participants and the magnitude of their cost of time (Fig. 4D). Typically, the faster participants in263

Session 1 (i.e. with larger vigor scores) penalized time more steeply (i.e. increased more quickly,264

and to a higher asymptotic value, their time costs).265

Experimental and simulation results of Session 2 (with drive)266

We now consider the experimental data of Session 2 where the external drive allows, in theory,267

the participant to complete the task without any muscular force. Figure 5 depicts the grand mean268

behavior across participants for two different drives (2 s and 6 s) and the two distances tested in269

this Session (0.2 m in panels A-C and 0.4 m in panels D-F). These two distances were illustrated for270

Session 1 in Fig. 2 for comparison. Black/grey traces show the experimental data and red/purple271

traces show the simulated data. The simulations relied on the costs of time identified from the272

data of Session 1 (one cost of time per participant) and the free-time optimal control simulations273

minimizing a trade-off between the cost of movement and the individual-based cost of time (which274

explains why simulated data also vary across participants). Velocity profiles are bell-shaped as in275

the first Session. Force profiles appear more irregular but they still present a positive and negative276

peaks that corresponds to an acceleration and deceleration of the cursor, even though the presence277

of the drive may both accelerate and decelerate the cursor on its own. The figure shows that278

participants used some force to save time, thus achieving the task in less than 3.5 s when the drive279
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Figure 4: Individual vigor scores. A. Amplitude-duration relationships in Session 1. Each color is
the data of one participant. Linear regression lines are displayed. The cost of time was inferred
from these individual-level relationships. B. Corresponding vigor scores allowing to sort individuals
from the slowest to the fastest in the isometric reaching task of Session 1. The horizontal black
line corresponds to a reference vigor score of 1. C. Logarithm of the costs of time identified for

each participant, i.e. log(
∫ T

0
h(t)dt). D. Correlation between the vigor scores and the logarithm of

the peak derivative of the costs of time (i.e. the maximal value of h(t)).
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Figure 5: Experimental and simulated trajectories in presence of the drive. A. Cursor displacements
in the experiments (black/grey) and simulations (purple/red), for two different drive durations (2 s
and 6 s), for the distance 0.2 m. Mean trajectories across participants are reported with standard
deviations as shaded areas. B-C. Same information for the velocity and force respectively. D-F.
Same information but for the distance 0.4 m.

corresponded to a 6 s movement duration for example. Noticeably, participants still used some280

force on average even when the drive was stronger and would lead to a 2 s long movement on its281

own.282

Mean movement duration and amounts of force across participants are reported in Figure 3 (filled283

squares). As expected, the performance became closer to that of Session 1 as the drive dura-284

tion increased. Average movement duration increased with drive duration (F3,42= 69.25, η2G=.68,285

p<.001) and amplitude (F1,14=393.36, η2G=.10, p<.001). The statistically significant interaction286

(F3,42=63.47, η2G=.065, p<.001) reflected a steeper increase of the movement duration with drive287

duration for large movement than for small movements (contrast between linear trends: t42=16.62,288

p<.001). A similar analysis of average force revealed the same trends. Average amount of force289

also increased with drive duration (F3,42= 17.27, η2G=0.15, p<.001) and amplitude (F1,14=19.56,290

p<0.001). The statistically significant interaction (F3,42=21.33, η2G=0.01, p<.001) reflected a291

steeper increase of the average force with drive duration for large movement than for small move-292

ments (contrast between linear trends: t42=6.02, p<.001).293

294

In Figure 6, we depict mean movement durations chosen by participants in Session 2 and compare295

them to drive durations (black identity line –indicating the optimal duration if only a cost of296

movement is minimized–) and model predictions (red trace and shaded area). The overall behavior297

was as follows: movement duration increased with the duration of the drive and tended to plateau298

near the movement duration obtained in Session 1 for slow drives. Indeed, the movement duration299

of participants for a drive of 6 s was closed to the duration obtained in Session 1 (dotted line in300

Fig. 6). Noticeably, the model replicated quite well this average behavior. An optimal trade-off301
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between movement and time costs thus leads to this evolution of movement duration with respect302

to drive duration for each distance.303

304

Next, we analyzed the force that participants were prone to exert to save a given amount of305

time. We thus focused on the relationship between the gain of time and the amount of force used306

by the participants to complete the task, the gain of time being defined as the drive duration307

minus the actual duration. We found that all the participants tended to increase the amount308

of force to save more time across conditions (Fig. 7). The model replicated this trend quite well309

although it generally tended to overestimate the amount of force necessary to save a given amount of310

time. Important inter-individual differences could also be noted. For instance, to save one second,311

participants could use quite different amounts of force (e.g. less than 5 N for the participant with312

the lowest vigor to more than 10 N for the participant with the higher vigor).313

314

Finally, we investigated if there was any relationship between the vigor of participants in Session 1315

and their behavior in Session 2 (Fig. 4). Remarkably, we found that the more vigorous participants316

in Session 1 were indeed the ones saving more time in Session 2 (high correlations with r>0.90 for317

both tested distances, N=15 participants). These participants were also the ones using a greater318

amount of force (correlation coefficients between vigor and average amount of force r>0.90 –not319

depicted–). In summary, vigorous participants spent more energy to save more time.320

321

Discussion322

Recent studies have suggested that the vigor of movement results from a trade-off between a cost323

related to movement production and a cost related to the passage of time. However, whether a cost324

of time underlies the vigor of simple reaching movements remains unclear as a cost of movement325

could be theoretically sufficient to explain our preferred speed on average. This cost of time could326

mainly serve to modulate our speed around a reference value according to the urgency or reward327

of the task. To disambiguate this question, we designed an isometric pointing task that makes328

distinct predictions depending on whether a cost of movement or a cost of time is prevalent. In329

some conditions, a drive moved the cursor to the target with a certain duration such that the task330

could be accomplished accurately and effortlessly with no participant intervention. Despite this331

self-completion of the task, the participants exerted all the more force the slower the movement332

of the cursor was and the higher their original vigor in the task was, in agreement with optimal333

control simulations assuming a trade-off between time and effort. These findings are compatible334

with the existence of an idiosyncratic, cognitive cost of time underlying the invigoration of basic335

isometric reaching movements.336

Producing a movement inevitably entails a motor cost that can be translated into tangible variables337

such as metabolic energy, effort, smoothness, error or variance. The identification of the cost that338

best reproduces human trajectories has attracted a lot of attention in optimal control theory339

(see Engelbrecht, 2001; Todorov, 2004; Berret et al., 2019 for reviews) but it has proven difficult to340

unequivocally identify the cost of movement because of its potential compositeness and subjectivity341

(Berret et al., 2011; Summerside and Ahmed, 2021). The design of our task circumvents this issue342

by creating a condition in which the task accomplishes by itself, thereby neutralizing the cost of343

movement for specific motion durations. Despite this opportunity to perform the task accurately344

and effortlessly, our participants systematically exerted some force onto the joystick to achieve345

the task more quickly. They clearly favored saving time over saving energy in this task. Yet,346

when the drive was present, it was always optimal to remain inactive with respect to any cost of347

movement. This suggests that slow movements are generally avoided, not specifically because they348

may incur a large cost related to movement execution but mostly because they last long (van der349

Wel et al., 2010). This predominance of movement duration over energy expenditure was also350

found in a perceptual decision-making task at movement initiation (Lunazzi et al., 2021). Morel351
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Figure 6: Movement duration with respect to drive duration in Session 2. A. Mean experimental
and simulated data for distance 0.2 m. Black markers and traces are experimental data. Mean
and standard deviations across participants are reported. Red traces and shaded areas are model
predictions (also mean and standard deviations across participants). The horizontal dotted line
correspond to the mean duration measured in Session 1 for that distance. The identity line cor-
responds to the drive duration, which would the optimal duration if only a cost of movement is
minimized. B. Same information for distance 0.4 m. C-D. Same information for three participants
with high, medium and low vigor respectively.
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Figure 7: Relationship between gains of time and amount of forces used in Session 2. A. Mean
experimental and simulated data for distance 0.2 m. Black markers and traces are experimental
data. The black filled circles correspond to the drives in the following order: 1 s, 2 s, 4 s and 6 s
respectively. Mean and standard deviations were calculated across participants. Red traces and
shaded areas are model predictions (also mean and standard deviations across participants). The
horizontal dotted line correspond to the mean amount of force measured in Session 1 for that
distance. B. Same information for distance 0.4 m. C-D. Same information for three participants
with high, medium and low vigor respectively.
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Figure 8: Relationship between vigor scores as measured in Session 1 and average gains of time
in Session 2. Same color code than in Figure 4. Each dot is a participant. A. Distance 0.2 m. B.
Distance 0.4 m.

et al. (2017) have shown that duration is indeed a key factor that makes people judge a reaching352

movement as “effortful”, and that this judgement does not seem to be based on objective measures353

such as metabolic energy. Here, it was clear that our participants did not minimize isometric force354

production alone, which suggests that the passage of time may contribute to action selection per355

se and perhaps to a subjective representation of effort. It has been proposed that the cost of time356

mainly expresses a subjective temporal discounting of reward within the brain, which could explain357

why the participant achieved the task more quickly than what is prescribed by the drive. This358

cost of time has been reviewed in several recent articles (Shadmehr et al., 2019; Carland et al.,359

2019) and a monograph (Shadmehr and Ahmed, 2020a), and might even reflect general personality360

traits (Choi et al., 2014; Berret et al., 2018). Hence the most vigorous participants should be the361

steepest temporal discounters and/or the ones who attribute the greatest subjective value to task362

accomplishment (Reppert et al., 2015; Yoon et al., 2020; Shadmehr and Ahmed, 2020a). This363

prediction agreed well with our findings that the most vigorous participants (as sorted from a364

baseline experiment) were the ones spending more energy to save a given amount of time. In our365

case, the cost of time may also capture an attentional cost related to the fact that participants366

were observing the motion of the cursor on the screen even when exerting no force, or just that367

they were engaged in the task. Since these higher-level costs are not strictly related to movement368

production processes, they are excluded from our definition of the cost of movement but can be369

integrated into a cognitive cost of time.370

Although we mainly interpreted our results within the cost of time theory, it could be argued371

that participants just preferred to be active in the task. In this case, participants would also372

have preferred to move the cursor by themselves rather than to passively look at it. Assessing373

passivity from an amount of force lower than 0.15 N, a total of 3, 2, 1 and 0 participants passively374

executed the task for the drive durations 1 s, 2 s, 4 s and 6 s respectively (for both distances). For375

instance, one participant (#6) remained passive for drive durations ≤4 s but suddenly became376

active when the drive lasted 6 s. However, participants were generally active even for the smaller377

drive durations. The critical observation is that participants did not exert forces onto the joystick378

arbitrarily or just by habituation (e.g. using a fixed amount of force or fixed gain of time in379

the task). In contrast, they saved time and exerted force in an idiosyncratic manner that was380

closely linked to their the original vigor in the task and that depended on the drive duration as381

predicted by an optimal control model based on their identified cost of time (which were obtained382

before the drive was introduced). Accordingly, highly vigorous participants were highly active in383

most conditions even for the 1 s or 2 s drives. These participants were clearly prone to spend a384

substantial effort to save a small amount of time. This may seem surprising but it fits well with385
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the theory of vigor (Shadmehr and Ahmed, 2020a) and a putative link with personality traits386

like impulsivity or boredom proneness (Choi et al., 2014; Berret et al., 2018). Weakly vigorous387

participants were also active in most conditions but produced much lower amounts of force in the388

task, that is, they were also inclined to save time but much less that participants with high vigor389

scores. These observations show that participants did not simply prefer to be active with arbitrary390

levels of force and durations, nor did they try to replicate their baseline behaviour regardless of391

the duration of the drive. Instead, they energize the movement according to both their own vigor392

(or implicit motivation, Mazzoni et al., 2007) and the characteristics of the drive in agreement393

with an optimality principle minimizing a trade-off between a cost of movement and a cost of time.394

Another argument may be that the passage of time is subjectively faster when one is actively395

moving. The literature indeed suggests that the perception of time could be itself modulated396

by our ongoing voluntary actions (Eagleman, 2008; Merchant and Yarrow, 2016). For instance,397

saccadic eye movements seems to produce a time compression (Morrone et al., 2005), an observation398

which has been generalized to hand reaching movement and isometric force production (Tomassini399

et al., 2014). In the latter study, participants had to judge the time interval between tactile taps400

and time intervals defined by tactile stimuli were perceived as shorter when hand movements were401

prepared and executed. This psychophysical phenomenon is not incompatible with the hypothesis402

of a cognitive cost of time. Indeed, to either save true time or its subjective perception, it would403

have been worthwhile for the participants to energize task’s achievement. Interestingly, the link404

between impulsivity and the sense of time have been reviewed in (Wittmann and Paulus, 2008)405

and it was suggested that “[impulsive] individuals are more likely to experience a slowing down406

of time during situations in which they are not able to act on their impulsive urges, for example407

when one has to wait for a delayed reward and is confronted with the passage of time”.408

To draw the present conclusions we relied on an isometric reaching task. The advantage of this409

task is that it allows resolving a number of issues that would occur with real movements. First,410

it removes the problem of dealing with participant-dependent or poorly known biomechanical411

limb parameters for different participants (inertia, centers of mass etc.). This lack of knowledge is412

typically problematic when estimating an objective cost of movement using musculoskeletal models.413

Here every participant controlled the same virtual point mass. Therefore, only the endpoint force414

was used to move the cursor, which allowed for a simpler definition of the movement cost in this415

task even though different choices were still possible. Here we used the amount of force as in416

(Shadmehr et al., 2016) (i.e. force-time integral) to estimate energy expenditure as objectively417

as possible from our experimental data. One limitation could be that we did not consider the418

metabolic cost of sitting with the arm still on the handle. However, this constant cost is unlikely419

to explain the motor decisions of the participants in our task as it is not related to movement420

but posture (see also Summerside and Ahmed, 2021 for a similar conclusion in a study estimating421

metabolic cost using expired gas analysis). Differences between participants could still arise from422

differences in their force production capacities, although this would not disprove the evidence for423

a cost of time in this task because the cost of movement was neutralized in any case with the424

drive. Second, isometric reaching simplifies the implementation of the drive because there is no425

physical interaction between the moving cursor and the participant. It should be possible to create426

similar experimental tasks with real movements. For instance, generalization of this task could427

involve a long treadmill for walking or an exoskeleton/manipulandum for providing participants428

with assistive control laws at different speeds. Another limitation of our study is that an isometric429

reaching task may not be very ecological. Yet, isometric reaching tasks have been used successfully430

in the past to explore the neural control of movement, in particular trajectory planning, motor431

adaptation, muscle synergies and optimal control (Ghez et al., 1997; de Rugy et al., 2012, 2013;432

Berger et al., 2013; Rotella et al., 2013). Hence, it has proven to be an interesting paradigm that433

can provide relevant insights about the control of goal-directed actions. Choosing between time434

and effort is indeed a commonly encountered situation in daily life (e.g. the airport’s treadmill435

example) and it is possible that the principles of such in-lab experiments will generalize to more436

ecological tasks such as choosing between taking the car or go by foot, take an escalator or climb437

the stairs, use his/her slow neuro-prosthetic arm or healthy arm and so on. Future work will aim at438

using a motorized upper-limb exoskeleton to assist the movements of participants and test whether439

similar principles apply when muscles produce work and a real movement of the limb occurs.440
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We thank Nicolò Balzarotti for his help during the data acquisition. We also thank Dorian Verdel442

and Jérémie Gaveau for useful comments on earlier versions of the manuscript.443

16



References444

Berardelli, A., Rothwell, J. C., Thompson, P. D., and Hallett, M. (2001). Pathophysiology of445

bradykinesia in parkinson’s disease. Brain, 124(Pt 11):2131–2146.446

Berger, D. J., Gentner, R., Edmunds, T., Pai, D. K., and d’Avella, A. (2013). Differences in447

adaptation rates after virtual surgeries provide direct evidence for modularity. The Journal of448

neuroscience : the official journal of the Society for Neuroscience, 33:12384–12394.449

Berret, B., Castanier, C., Bastide, S., and Deroche, T. (2018). Vigour of self-paced reaching450

movement: cost of time and individual traits. Sci. Rep., 8(1):1.451

Berret, B., Chiovetto, E., Nori, F., and Pozzo, T. (2011). Evidence for composite cost func-452

tions in arm movement planning: an inverse optimal control approach. PLoS Comput. Biol.,453

7(10):e1002183.454

Berret, B., Conessa, A., Schweighofer, N., and Burdet, E. (2021). Stochastic optimal feedforward-455

feedback control determines timing and variability of arm movements with or without vision.456

PLOS Computational Biology, 17(6):e1009047.457

Berret, B., Delis, I., Gaveau, J., and Jean, F. (2019). Optimality and Modularity in Human458

Movement: From Optimal Control to Muscle Synergies, pages 105–133. Springer International459

Publishing, Cham.460

Berret, B. and Jean, F. (2016). Why don’t we move slower? the value of time in the neural control461

of action. J. Neurosci., 36(4):1056–1070.462

Berret, B. and Jean, F. (2020). Stochastic optimal open-loop control as a theory of force and463

impedance planning via muscle co-contraction. PLoS computational biology, 16:e1007414.464

Carland, M. A., Thura, D., and Cisek, P. (2019). The urge to decide and act: Implications for465

brain function and dysfunction. The Neuroscientist, 25(5):491–511.466

Choi, J. E. S., Vaswani, P. A., and Shadmehr, R. (2014). Vigor of movements and the cost of467

time in decision making. The Journal of neuroscience : the official journal of the Society for468

Neuroscience, 34:1212–1223.469

de Rugy, A., Loeb, G. E., and Carroll, T. J. (2012). Muscle coordination is habitual rather than470

optimal. The Journal of neuroscience : the official journal of the Society for Neuroscience,471

32:7384–7391.472

de Rugy, A., Loeb, G. E., and Carroll, T. J. (2013). Are muscle synergies useful for neural control?473

Frontiers in computational neuroscience, 7:19.474

Dudman, J. T. and Krakauer, J. W. (2016). The basal ganglia: from motor commands to the475

control of vigor. Curr. Opin. Neurobiol., 37:158–166.476

Eagleman, D. M. (2008). Human time perception and its illusions. Current opinion in neurobiology,477

18:131–136.478

Engelbrecht, S. (2001). Minimum principles in motor control. J. Math. Psychol., 45(3):497–542.479

Flash, T. and Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed480

mathematical model. J. Neurosci., 5(7):1688–1703.481

Gaveau, J., Berret, B., Demougeot, L., Fadiga, L., Pozzo, T., and Papaxanthis, C. (2014). Energy-482

related optimal control accounts for gravitational load: comparing shoulder, elbow, and wrist483

rotations. J. Neurophysiol., 111(1):4–16.484

Gaveau, J., Grospretre, S., Berret, B., Angelaki, D. E., and Papaxanthis, C. (2021). A cross-species485

neural integration of gravity for motor optimization. Science Advances, 7(15).486

17



Ghez, C., Favilla, M., Ghilardi, M. F., Gordon, J., Bermejo, R., and Pullman, S. (1997). Discrete487

and continuous planning of hand movements and isometric force trajectories. Experimental brain488

research, 115:217–233.489
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